Linkage Mapping in Drosophila Melanogaster

Size: px
Start display at page:

Download "Linkage Mapping in Drosophila Melanogaster"

Transcription

1 Linkage Mapping in Drosophila Melanogaster Genetics: Fall 2012 Joshua Hanau

2 Introduction: An experiment was performed in order to determine the presence and degree of gene linkage in Drosophila Melanogaster. Gene linkage describes whether or not two or more genes are located on the same chromosome in a eukaryotic individual. The degree of gene linkage can describe the relative distance between two linked genes on a single chromosome. Drosophila Melanogaster, which is also known by the common name Fruit Fly, is an ideal organism to use for genetic studies. Drosophila proliferates rapidly, are small, are cheap to maintain, and their phenotypes are easily observable. Drosophila males and females display numerous gender dimorphisms, which enable gender segregation, and ultimately, controlled mating. Females have a striped black posterior, on the dorsal side of their abdomen, while males have a solid black posterior, on the dorsal side of their abdomen. Females have no external genitalia, on their ventral posterior end, while males do have external genitalia, on their ventral posterior end. Females have a larger elongated abdomen, when compared to males. Males have sex combs on their anterior appendages, while females do not. These dimorphisms (Figure 1) enable females to be separated from males before they are ready to mate, thus enabling controlled mating.

3 Figure 1: Ventral Gender Dimorphisms in Drosophila [I] A three- factor cross was the method used to determine whether or not three drosophila genes were linked, and if so, to what degree. The three genes that were analyzed displayed different phenotypes when they were in mutant and wild type forms. The first of these genes corresponded to the fly s eye- color. While wild type flies have dull red colored eyes, the mutants displayed brighter orange colored eyes. The second gene analyzed corresponded to the bristles located on the dorsal side of the fly s thorax. Wild type flies had long straight bristles, while the mutants had short and curled bristled. The third gene analyzed corresponded to the body color being displayed on the dorsal side of the fly s abdominal section. The wild type flies

4 displayed a regular pattern of alternating black and tan sections, which differed in males and females (Figure 2). The mutants, displayed the same basic pattern, only the black sections were faded, and less pronounced than they were in the wild type strain. Figure 2: Body Color Pattern in Wild Type Drosophila [II] After performing the three- factor cross, the ratio of the F2 progeny (Filial generation #2) phenotypes could be used to determine whether or not the three genes were linked, and if they were, to determine the degree of the linkage. This data could then be compared to a map of known drosophila genes, and the identity of the genes could potentially be inferred from the literature.

5 Methods: At the start of the experiment, two strains of flies were crossed. The first strain was a true- breeding wild type stock, which proves that it was homozygous for all three wild type alleles, or +/+ ; +/+ ; +/+, where + indicates the wild type allele for any given gene. The second strain was a true breeding triple mutant, which proves it was homozygous for all three mutant alleles, or e/e ; br/br ; bc/bc, where e indicates the unknown mutant eye color allele, br indicates the unknown mutant bristle allele, and bc indicates the unknown mutant body color allele. To perform a cross, virgin females of one strain must be placed in a vial with males of the other strain. Virgin females can be identified by their pale coloring, their folded wings, their enlarged abdomens, and by the presence of a meconium (Figure 3). Not all four of these signs are required, but the presence of a meconium is the most important sign of recent eclosion (emergence from the pupa casing), and the best guarantee of a female fly being a virgin, since drosophila females do not mate for the first few hours (around 8 on average) after eclosion. Using virgin females in all crosses is crucial. Female drosophila can only mate with one male, and they then store that male s sperm for the rest of their adult life cycle. Therefore, in order to control mating, females must be isolated soon after they eclose from their pupa casing, while they still exhibit the features listed above, and have a guaranteed virgin status.

6 Figure 3: Virgin Female Drosophila Image [III] The general pattern of a cross was as follows (Figure 4). Once 4-5 virgin females were isolated, they were placed in a vial with 8-10 males from the other cross strain. The flies would mate, and the females began laying eggs shortly thereafter. After the eggs were laid, the larva, or 1 st instars, would emerge within a day or so. The larva would continue to grow, and pass through the 2 nd and 3 rd instar phases. During the 3 rd instar phase, the larva would climb up the wall of the vial and form a pupa case. Around four days later, and around 10 days after the cross was started, a new generation of adult flies would emerge. The parental generation was

7 removed from the vial by this point, to ensure that the two generations were kept separate. Figure 4: Drosophila Life Cycle [IV] Assuming that none of the three genes are sex linked, the progeny of this initial cross would all display wild type phenotypes, since the wild type is presumably dominant, and all the offspring would be heterozygous for all three genes (+/e ; +/br ; +/bc). However, if one or more genes are sex linked, then there is a possibility that the male offspring, who are hemizygous for x linked genes, would display the mutant phenotype. To test for sex linkage, reciprocal crosses were

8 performed. This means that there were two crosses performed between the two strains, with the genders of each strain alternated in the two crosses. One cross was between wild type males and female mutants, while the other was between male mutants and wild type females. If one or more genes were sex linked, then the male F1 generation (Filial generation #1) offspring of the reciprocal crosses would always have the same phenotype as their mothers for that one or more genes, instead of simply having the wild type phenotype that would be expected for all F1 flies. The second cross was a test cross. A test cross is when heterozygous individuals (F1 virgin females) are crossed with double mutant individuals (Parental mutant males). This cross is performed in order to determine whether or not the genes assort independently. If the genes assorted independently, then all 8 potential phenotype combinations (2 phenotypes for 3 genes. 2 3 = 8) would ideally show up with the same frequency, 12.5%, in the F2 generation. If the parental phenotypes are displayed the majority of the time, or far greater than the expected 12.5% (i.e. no need for chi squared analysis), then it can be assumed that the three genes are linked. Since linked genes are on the same chromosome, it makes sense that the genes are inherited together the majority of the time, and it explains the lack of independent assortment. Additionally, any phenotypes that are not parental, in the linkage scenario, must be the result of crossing over during meiosis, which is also known as meiotic recombination. Thomas Hunt Morgan s research showed that the frequency of recombination between two genes is directly proportional to the physical distance between them. Thus, using recombinant frequencies, an RF map of

9 the chromosome, which is similar to the physical map (but not identical), can be constructed using recombinant frequencies. The progression of crosses performed is shown below (Figure 5). Figure 5: Progression of Crosses Performed P: +/+ ; +/+ ; +/+ x e/e ; br/br ; bc/bc + reciprocal cross F1: e/e ; br/br; bc/bc x +/e ; +/br ; +/bc F2: Eight possible phenotypes (See results section) Results: The results of the reciprocal crosses suggest that all three genes are sex linked, since the male offspring of the cross with the mutant phenotype females were mutant for all three genes. By extension, all three genes are linked, since there is only one sex chromosome. Therefore, the ratio of F2 phenotypes were expected to, and in fact did, deviate from the 1:1:1:1:1:1:1:1 ratio that would be expected in a case of independent assortment. The number and percentage of each phenotype is displayed below (Table 1). In addition to there being eight possible phenotypes, there are eight possible genotypes that can result from this type of test cross. Each genotype corresponds to a phenotype, where the wild type allele (+) is always

10 expressed over the mutant type. Eight testcrosses were performed, resulting in a total of 515 progeny. Table 1: F2 Progeny Ratios Genotype/Phenotype Number of F2 Progeny % of Total Progeny 1: +/e ; +/br ; +/bc % 2: e/e ; br/br ; bc/bc % 3: +/e ; +/br ; bc/bc % 4: e/e ; br/br ; +/bc % 5: +/e ; br/br ; +/bc % 6: e/e ; +/br ; bc/bc % 7: e/e ; +/br ; +/bc 2 0.4% 8: +/e ; br/br ; bc/bc 2 0.4% Using these ratios a recombination map of the X chromosome (because they are sex linked) can be constructed. For example, in the parental phenotypes (# s 1+2) the gene for eye color and bristles are the same type of allele (both wild, or both mutant). Thus, any offspring where they display different types of alleles on the maternal homologue must be a case where recombination took place between the two genes. Thus, recombination took place between these two genes in progeny numbers 5,6,7, and 8. By adding up the percentages of recombinants, the total recombination frequency between the two genes can be calculated to be 22.3%. Therefore, the genes for eye color and bristles should be located around 22.3 map units (map units) apart on an RF map. The distance between the other sets of genes

11 can be calculated in the same way (Table 2). The one small point to note is that in between br and bc, the percentage of double recombinants needs to be counted twice, since two crossover events took place between these two genes in those scenarios. Table 2: Recombinant Frequencies Alleles of Interest Calculation Recombinant Frequency e and br % (m.u.) e and bc % (m.u.) br and bc % (m.u.) 2(0.4) + 2(0.4) Using the tabulated data, an RF map for these three genes can be constructed (Figure 6). A useful trick for constructing a recombinant map is to look for the flipped allele in the least common phenotype, which is always the result of the double crossover. This flipped allele in the double recombinant will always be located between the other two genes [V]. Since the allele for eye color differs from the two parental strains in the double recombinant, the gene for eye color must be located between the other two genes on the recombinant map. Figure 6: RF Map of Three Genes of Interest

12 Conclusions: By comparing these results to a map of known genes on the drosophila X chromosome (Figure 7), the identity of the three genes can be inferred. The three genes must correspond to eye color, bristle shape, and body color. The distances between the three known genes must also be similar to the distances calculated between the three unknown genes in this lab report. Figure 7: RF Map of Drosophila X Chromosome [VI] This small segment of the Drosophila X chromosome contains the most likely candidates for our three unknown genes. The calculated distance between our bristle and body color mutations is 29.5 map units, while in this map, the distance between forked bristles and tan bodies is 29.2 maps units. Since both of these mutations sound like they could correspond with our mutant phenotypes, it is reasonable to conclude that the two genes that contain these two mutant alleles are the same as our first unknown genes. Our eye color mutation is located 7.2 maps

13 units away from our body color mutation, and 22.3 map units away from our bristle mutation. On this map of known genes, the mutation for Vermillion eyes is located 5.5 maps units away from the tan body mutation, and 23.7 map units away from the forked bristles mutation. These results are similar enough to conclude that our eye color mutation might be caused by a mutant vermillion allele. Thus, it is reasonable to conclude that our three unknown genes, correspond with the genes whose mutated forms result in the tan body, Forked bristles, and vermillion eyes mutations. This inference was much easier to make due to the use of a reciprocal cross. The reciprocal crosses showed that all three genes were sex linked, which led to the conclusion that all three genes were located on the X chromosome. This narrowed down the search for the identity of the unknown alleles considerably. Although the results were pretty close (assuming these are the correct genes), there was some error, which has to be explained. The most obvious cause is human error. It was not always easy to distinguish the mutant body color from the wild type. This may have resulted in incorrect phenotype tallying, and therefore, faulty recombinant frequencies. The same is true for eye color, which was not always 100% discernable. The bristle mutation was the only one that was completely obvious in all cases.

14 Another source of error may have been due to a failed separation of generations. In one case, flies were scored from a vial 22 days after the cross was set up. It is possible that some of the flies that were counted belonged to the F3 generation, and may have interfered with the results. To verify the identity of the genes a complementation test could be performed. Flies that are known to be heterozygous for the three genes mentioned above could be crossed with the unknown mutant parental strain. If the result were a wild type phenotype (or phenotypes), then the hypothesis of the genes identity of that gene (or genes) must be incorrect, since complementation suggests the mutations are on different genes. If mutant phenotype flies were prevalent in 50% of the offspring, for one or all three genes, then the identity of that mutant allele, or alleles, will be confirmed. Citations: [I]: muenster.de/genetics/flies/malefemale/malefemalepage.html?http&&&flymove.u ni- muenster.de/genetics/flies/malefemale/malefemaletxt.html [II]: 10/15- pollock.pdf [III]: See [I] [IV]: See [II]

15 [V]: Griffiths, Anthony; Wessler, Susan; Carroll, Sean; Doebley, John (2012). Introduction to Genetic Analysis- 10 th Edition. New York City: W.H. Freeman and Company. Pages [VI]:

A gene is a sequence of DNA that resides at a particular site on a chromosome the locus (plural loci). Genetic linkage of genes on a single

A gene is a sequence of DNA that resides at a particular site on a chromosome the locus (plural loci). Genetic linkage of genes on a single 8.3 A gene is a sequence of DNA that resides at a particular site on a chromosome the locus (plural loci). Genetic linkage of genes on a single chromosome can alter their pattern of inheritance from those

More information

The Determination of the Genetic Order and Genetic Map for the Eye Color, Wing Size, and Bristle Morphology in Drosophila melanogaster

The Determination of the Genetic Order and Genetic Map for the Eye Color, Wing Size, and Bristle Morphology in Drosophila melanogaster Kudlac 1 Kaitie Kudlac March 24, 2015 Professor Ma Genetics 356 The Determination of the Genetic Order and Genetic Map for the Eye Color, Wing Size, and Bristle Morphology in Drosophila melanogaster Abstract:

More information

READING ASSIGNMENT GENETIC ANALYSIS OF DROSOPHILA POPULATIONS I. HOW DO MITOSIS AND MEIOSIS COMPARE?

READING ASSIGNMENT GENETIC ANALYSIS OF DROSOPHILA POPULATIONS I. HOW DO MITOSIS AND MEIOSIS COMPARE? READING ASSIGNMENT GENETIC ANALYSIS OF DROSOPHILA POPULATIONS I. HOW DO MITOSIS AND MEIOSIS COMPARE? II. HOW CAN WE DETERMINE EXPECTED RATIOS OF OFFSPRING? What rules can we learn from Mendel s work with

More information

Chapter 15: The Chromosomal Basis of Inheritance

Chapter 15: The Chromosomal Basis of Inheritance Name Period Chapter 15: The Chromosomal Basis of Inheritance Concept 15.1 Mendelian inheritance has its physical basis in the behavior of chromosomes 1. What is the chromosome theory of inheritance? 2.

More information

Inheritance of Aldehyde Oxidase in Drosophila melanogaster

Inheritance of Aldehyde Oxidase in Drosophila melanogaster Inheritance of Aldehyde Oxidase in Drosophila melanogaster (adapted from Morgan, J. G. and V. Finnerty. 1991. Inheritance of aldehyde oxidase in Drosophilia melanogaster. Pages 33-47, in Tested studies

More information

Biology 164 Laboratory

Biology 164 Laboratory Biology 164 Laboratory Transmission Genetics: Inheritance of Mutant Traits in Drosophila Fruit Flies Introduction To reinforce your understanding of basic eukaryotic genetic principles, you will study

More information

Laboratory. Mendelian Genetics

Laboratory. Mendelian Genetics Laboratory 9 Mendelian Genetics Biology 171L FA17 Lab 9: Mendelian Genetics Student Learning Outcomes 1. Predict the phenotypic and genotypic ratios of a monohybrid cross. 2. Determine whether a gene is

More information

Experiment 1. The aim here is to understand the pattern of

Experiment 1. The aim here is to understand the pattern of H A Ranganath and M T Tanuja Drosophila Stock Centre Department of Studies in Zoology University of Mysore Manasagangotri Mysore 570006, India. E-mail:drosrang@bgl.vsnl.net.in hranganath@hotmail.com Part

More information

Chromosomal inheritance & linkage. Exceptions to Mendel s Rules

Chromosomal inheritance & linkage. Exceptions to Mendel s Rules Overhead If a cell is 2n = 6, then how many different chromosomal arrangements at Metaphase I (not including mirror images) could it have? 2. 2 3. 3 4. 4 show 5. 5 Probability What is the probability that

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance The Chromosomal Basis of Inheritance Factors and Genes Mendel s model of inheritance was based on the idea of factors that were independently assorted and segregated into gametes We now know that these

More information

LABORATÓRIUMI GYAKORLAT SILLABUSZ SYLLABUS OF A PRACTICAL DEMOSTRATION. financed by the program

LABORATÓRIUMI GYAKORLAT SILLABUSZ SYLLABUS OF A PRACTICAL DEMOSTRATION. financed by the program TÁMOP-4.1.1.C-13/1/KONV-2014-0001 projekt Az élettudományi-klinikai felsőoktatás gyakorlatorientált és hallgatóbarát korszerűsítése a vidéki képzőhelyek nemzetközi versenyképességének erősítésére program

More information

Example: Colour in snapdragons

Example: Colour in snapdragons Incomplete Dominance this occurs when the expression of one allele does not completely mask the expression of another. the result is that a heterozygous organism has a phenotype that is a blend of the

More information

Chapter 15: The Chromosomal Basis of Inheritance

Chapter 15: The Chromosomal Basis of Inheritance Name Chapter 15: The Chromosomal Basis of Inheritance 15.1 Mendelian inheritance has its physical basis in the behavior of chromosomes 1. What is the chromosome theory of inheritance? 2. Explain the law

More information

The Modern Genetics View

The Modern Genetics View Inheritance Mendelian Genetics The Modern Genetics View Alleles are versions of a gene Gene for flower color Alleles for purple or white flowers Two alleles per trait 2 chromosomes, each with 1 gene The

More information

BIOLOGY - CLUTCH CH.15 - CHROMOSOMAL THEORY OF INHERITANCE

BIOLOGY - CLUTCH CH.15 - CHROMOSOMAL THEORY OF INHERITANCE !! www.clutchprep.com Chromosomal theory of inheritance: chromosomes are the carriers of genetic material. Independent Assortment alleles for different characters sort independently of each other during

More information

Chapter 15 - The Chromosomal Basis of Inheritance. A. Bergeron +AP Biology PCHS

Chapter 15 - The Chromosomal Basis of Inheritance. A. Bergeron +AP Biology PCHS Chapter 15 - The Chromosomal Basis of Inheritance A. Bergeron +AP Biology PCHS Do Now - Predicting Unpredictable Genotypes As an inexperienced (albeit precocious) gardener, I am always looking to maximize

More information

UNIT 6 GENETICS 12/30/16

UNIT 6 GENETICS 12/30/16 12/30/16 UNIT 6 GENETICS III. Mendel and Heredity (6.3) A. Mendel laid the groundwork for genetics 1. Traits are distinguishing characteristics that are inherited. 2. Genetics is the study of biological

More information

Patterns of Inheritance

Patterns of Inheritance 1 Patterns of Inheritance Bio 103 Lecture Dr. Largen 2 Topics Mendel s Principles Variations on Mendel s Principles Chromosomal Basis of Inheritance Sex Chromosomes and Sex-Linked Genes 3 Experimental

More information

THE CHROMOSOMAL BASIS OF INHERITANCE CHAPTER 15

THE CHROMOSOMAL BASIS OF INHERITANCE CHAPTER 15 THE CHROMOSOMAL BASIS OF INHERITANCE CHAPTER 15 What you must know: Inheritance in sex-linked genes. Inheritance of linked genes and chromosomal mapping. How alteration of chromosome number or structurally

More information

Figure 1: Transmission of Wing Shape & Body Color Alleles: F0 Mating. Figure 1.1: Transmission of Wing Shape & Body Color Alleles: Expected F1 Outcome

Figure 1: Transmission of Wing Shape & Body Color Alleles: F0 Mating. Figure 1.1: Transmission of Wing Shape & Body Color Alleles: Expected F1 Outcome I. Chromosomal Theory of Inheritance As early cytologists worked out the mechanism of cell division in the late 1800 s, they began to notice similarities in the behavior of BOTH chromosomes & Mendel s

More information

Activity 15.2 Solving Problems When the Genetics Are Unknown

Activity 15.2 Solving Problems When the Genetics Are Unknown f. Blue-eyed, color-blind females 1 2 0 0 g. What is the probability that any of the males will be color-blind? 1 2 (Note: This question asks only about the males, not about all of the offspring. If we

More information

Chromosomes, Mapping, and the Meiosis-Inheritance Connection. Chapter 13

Chromosomes, Mapping, and the Meiosis-Inheritance Connection. Chapter 13 Chromosomes, Mapping, and the Meiosis-Inheritance Connection Chapter 13 Chromosome Theory Chromosomal theory of inheritance - developed in 1902 by Walter Sutton - proposed that genes are present on chromosomes

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance Chapter 15 The Chromosomal Basis of Inheritance PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero Overview: Locating Genes on Chromosomes A century

More information

Drosophila melanogaster. Introduction. Drosophila melanogaster is a kind of flies fruit fly that is widely used in genetic

Drosophila melanogaster. Introduction. Drosophila melanogaster is a kind of flies fruit fly that is widely used in genetic Jessie Tran Mrs. Lajoie Honors Biology Date of Experiment: 4 May 2015 Due Date: 12 May 2015 Determining the Inheritance Patterns of Purple Eyes, Lobe Eyes, and Yellow Body Genes of Drosophila melanogaster

More information

For a long time, people have observed that offspring look like their parents.

For a long time, people have observed that offspring look like their parents. Chapter 10 For a long time, people have observed that offspring look like their parents. Even before we knew about genes, people were breeding livestock to get certain traits in the offspring. They knew

More information

Heredity. Biology 30i Cooper

Heredity. Biology 30i Cooper Heredity Biology 30i Cooper Early Theories of Inheritance Aristotle (384-322 B.C.E.) l proposed the first widely accepted theory of inheritance called pangenesis egg and sperm consist of particles

More information

Mendel s Methods: Monohybrid Cross

Mendel s Methods: Monohybrid Cross Mendel s Methods: Monohybrid Cross Mendel investigated whether the white-flowered form disappeared entirely by breeding the F1 purple flowers with each other. Crossing two purple F1 monohybrid plants is

More information

Name Class Date. KEY CONCEPT The chromosomes on which genes are located can affect the expression of traits.

Name Class Date. KEY CONCEPT The chromosomes on which genes are located can affect the expression of traits. Section 1: Chromosomes and Phenotype KEY CONCEPT The chromosomes on which genes are located can affect the expression of traits. VOCABULARY carrier sex-linked gene X chromosome inactivation MAIN IDEA:

More information

Lab 5: Testing Hypotheses about Patterns of Inheritance

Lab 5: Testing Hypotheses about Patterns of Inheritance Lab 5: Testing Hypotheses about Patterns of Inheritance How do we talk about genetic information? Each cell in living organisms contains DNA. DNA is made of nucleotide subunits arranged in very long strands.

More information

The Chromosomal Basis Of Inheritance

The Chromosomal Basis Of Inheritance The Chromosomal Basis Of Inheritance Chapter 15 Objectives Explain the chromosomal theory of inheritance and its discovery. Explain why sex-linked diseases are more common in human males than females.

More information

Genetics & The Work of Mendel. AP Biology

Genetics & The Work of Mendel. AP Biology Genetics & The Work of Mendel Gregor Mendel Modern genetics began in the mid-1800s in an abbey garden, where a monk named Gregor Mendel documented inheritance in peas u used experimental method u used

More information

This document is a required reading assignment covering chapter 4 in your textbook.

This document is a required reading assignment covering chapter 4 in your textbook. This document is a required reading assignment covering chapter 4 in your textbook. Chromosomal basis of genes and linkage The majority of chapter 4 deals with the details of mitosis and meiosis. This

More information

Chapter 15 Notes 15.1: Mendelian inheritance chromosome theory of inheritance wild type 15.2: Sex-linked genes

Chapter 15 Notes 15.1: Mendelian inheritance chromosome theory of inheritance wild type 15.2: Sex-linked genes Chapter 15 Notes The Chromosomal Basis of Inheritance Mendel s hereditary factors were genes, though this wasn t known at the time Now we know that genes are located on The location of a particular gene

More information

Gallery Walk. Fundamentals of Genetics

Gallery Walk. Fundamentals of Genetics Gallery Walk Fundamentals of Genetics Question 1 Hitchhiker's thumb (H) is dominant to no hitchhiker's thumb (h). A woman who does not have hitchhiker's thumb marries a man who is heterozygous for hitchhiker's

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance Chapter 15 The Chromosomal Basis of Inheritance PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

UNIT 2: GENETICS Chapter 7: Extending Medelian Genetics

UNIT 2: GENETICS Chapter 7: Extending Medelian Genetics CORNELL NOTES Directions: You must create a minimum of 5 questions in this column per page (average). Use these to study your notes and prepare for tests and quizzes. Notes will be stamped after each assigned

More information

Mendelian Genetics. 7.3 Gene Linkage and Mapping Genes can be mapped to specific locations on chromosomes.

Mendelian Genetics. 7.3 Gene Linkage and Mapping Genes can be mapped to specific locations on chromosomes. 7 Extending CHAPTER Mendelian Genetics GETTING READY TO LEARN Preview Key Concepts 7.1 Chromosomes and Phenotype The chromosomes on which genes are located can affect the expression of traits. 7.2 Complex

More information

Ch 8 Practice Questions

Ch 8 Practice Questions Ch 8 Practice Questions Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What fraction of offspring of the cross Aa Aa is homozygous for the dominant allele?

More information

Heredity and Meiosis AP BIOLOGY. Heredity. Slide 1 / 142 Slide 2 / 142. Slide 4 / 142. Slide 3 / 142. Slide 6 / 142. Slide 5 / 142.

Heredity and Meiosis AP BIOLOGY. Heredity. Slide 1 / 142 Slide 2 / 142. Slide 4 / 142. Slide 3 / 142. Slide 6 / 142. Slide 5 / 142. Slide 1 / 142 Slide 2 / 142 AP BIOLOGY Heredity Slide 3 / 142 Slide 4 / 142 Heredity Unit Topics Click on the topic to go to that section Heredity & Meiosis Law of Independent Assortment What Mendel Didn't

More information

Genetics & The Work of Mendel

Genetics & The Work of Mendel Genetics & The Work of Mendel 2006-2007 Gregor Mendel Modern genetics began in the mid-1800s in an abbey garden, where a monk named Gregor Mendel documented inheritance in peas used experimental method

More information

Genetics & The Work of Mendel

Genetics & The Work of Mendel Genetics & The Work of Mendel 2006-2007 Gregor Mendel Modern genetics began in the mid-1800s in an abbey garden, where a monk named Gregor Mendel documented inheritance in peas used experimental method

More information

Name: PS#: Biol 3301 Midterm 1 Spring 2012

Name: PS#: Biol 3301 Midterm 1 Spring 2012 Name: PS#: Biol 3301 Midterm 1 Spring 2012 Multiple Choice. Circle the single best answer. (4 pts each) 1. Which of the following changes in the DNA sequence of a gene will produce a new allele? a) base

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance Chapter 15 The Chromosomal Basis of Inheritance PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

Genetics Review. Alleles. The Punnett Square. Genotype and Phenotype. Codominance. Incomplete Dominance

Genetics Review. Alleles. The Punnett Square. Genotype and Phenotype. Codominance. Incomplete Dominance Genetics Review Alleles These two different versions of gene A create a condition known as heterozygous. Only the dominant allele (A) will be expressed. When both chromosomes have identical copies of the

More information

Biology 105: Introduction to Genetics Midterm EXAM. Part1. Definitions. 1 Recessive allele. Name. Student ID. 2 Homologous chromosomes

Biology 105: Introduction to Genetics Midterm EXAM. Part1. Definitions. 1 Recessive allele. Name. Student ID. 2 Homologous chromosomes Biology 105: Introduction to Genetics Midterm EXAM Part1 Definitions 1 Recessive allele Name Student ID 2 Homologous chromosomes Before starting, write your name on the top of each page Make sure you have

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance Chapter 15 The Chromosomal Basis of Inheritance PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

Genetics Unit Exam. Number of progeny with following phenotype Experiment Red White #1: Fish 2 (red) with Fish 3 (red) 100 0

Genetics Unit Exam. Number of progeny with following phenotype Experiment Red White #1: Fish 2 (red) with Fish 3 (red) 100 0 Genetics Unit Exam Question You are working with an ornamental fish that shows two color phenotypes, red or white. The color is controlled by a single gene. These fish are hermaphrodites meaning they can

More information

Lab 7 Heredity. Is there a fly in here?

Lab 7 Heredity. Is there a fly in here? Lab 7 Heredity Is there a fly in here? Note: This lab is another old lab from the previous manual, however you ll need to write it into your lab notebooks as an informal report (not a packet). The Background

More information

Meiosis. Prophase I But something else happens: each chromosome pairs up with the other member of its pair... Prophase I Chromosomes become visible...

Meiosis. Prophase I But something else happens: each chromosome pairs up with the other member of its pair... Prophase I Chromosomes become visible... Thought mitosis was bad? It gets worse... Meiosis Double division, divided into meiosis I and meiosis II, producing four cells at the end. Before meiosis, a cell goes through the G and S phases we talked

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 15 The Chromosomal Basis of Inheritance

More information

Genetic analysis of sex-chromosome arrangement in Drosophila americana; a laboratory exercise for undergraduate or advanced placement students.

Genetic analysis of sex-chromosome arrangement in Drosophila americana; a laboratory exercise for undergraduate or advanced placement students. Bryant F. McAllister Department of Biology University of Texas at Arlington Arlington, TX 76019 bryantm@uta.edu DIS Vol. 8 (December 2001) 227-23 Genetic analysis of sex-chromosome arrangement in Drosophila

More information

Name Class Date. Review Guide. Genetics. The fundamental principles of genetics were first discovered by. What type of plant did he breed?.

Name Class Date. Review Guide. Genetics. The fundamental principles of genetics were first discovered by. What type of plant did he breed?. Name Class Date Review Guide Genetics The fundamental principles of genetics were first discovered by. What type of plant did he breed?. True-breeding parental plants are called the generation. Their hybrid

More information

Pedigree Analysis Why do Pedigrees? Goals of Pedigree Analysis Basic Symbols More Symbols Y-Linked Inheritance

Pedigree Analysis Why do Pedigrees? Goals of Pedigree Analysis Basic Symbols More Symbols Y-Linked Inheritance Pedigree Analysis Why do Pedigrees? Punnett squares and chi-square tests work well for organisms that have large numbers of offspring and controlled mating, but humans are quite different: Small families.

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 15 The Chromosomal Basis of Inheritance

More information

HEREDITY. Heredity is the transmission of particular characteristics from parent to offspring.

HEREDITY. Heredity is the transmission of particular characteristics from parent to offspring. INHERITANCE IN LIFE HEREDITY Heredity is the transmission of particular characteristics from parent to offspring. Mendel presented completely new theory of inheritance in the journal Transactions of the

More information

The Discovery of Chromosomes and Sex-Linked Traits

The Discovery of Chromosomes and Sex-Linked Traits The Discovery of Chromosomes and Sex-Linked Traits Outcomes: 1. Compare the pattern of inheritance produced by genes on the sex chromosomes to that produced by genes on autosomes, as investigated by Morgan.

More information

LABORATORY #8 -- BIOL 111 Genetics and Inheritance

LABORATORY #8 -- BIOL 111 Genetics and Inheritance LABORATORY #8 -- BIOL 111 Genetics and Inheritance You have seen chromosomes in the onion root tip slides we used to examine the cell cycle. What we cannot see are the individual genes on these chromosomes.

More information

UNIT IV. Chapter 14 The Human Genome

UNIT IV. Chapter 14 The Human Genome UNIT IV Chapter 14 The Human Genome UNIT 2: GENETICS Chapter 7: Extending Medelian Genetics I. Chromosomes and Phenotype (7.1) A. Two copies of each autosomal gene affect phenotype 1. Most human traits

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Chapter 15 Chromosomal Basis for Inheritance AP Biology Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) When Thomas Hunt Morgan crossed

More information

Midterm 1. Number of students Score. Mean: 73 Median: 75 Top Score: 98

Midterm 1. Number of students Score. Mean: 73 Median: 75 Top Score: 98 Midterm 1 14 12 Number of students 10 8 6 4 2 0 35-40 41-45 Mean: 73 Median: 75 Top Score: 98 46-50 51-55 56-60 61-65 66-70 71-75 Score 76-80 81-85 86-90 91-95 96-100 Write your name and student ID# on

More information

GENETICS - CLUTCH CH.2 MENDEL'S LAWS OF INHERITANCE.

GENETICS - CLUTCH CH.2 MENDEL'S LAWS OF INHERITANCE. !! www.clutchprep.com CONCEPT: MENDELS EXPERIMENTS AND LAWS Mendel s Experiments Gregor Mendel was an Austrian monk who studied Genetics using pea plants Mendel used pure lines meaning that all offspring

More information

Mendelian Genetics: Patterns of Inheritance

Mendelian Genetics: Patterns of Inheritance Mendelian Genetics: Patterns of Inheritance A Bit on Gregor Mendel Born to a poor farming family in what is now part of Czech Republic Attended Augustinian monastery (1843) Became an excellent teacher

More information

What we mean more precisely is that this gene controls the difference in seed form between the round and wrinkled strains that Mendel worked with

What we mean more precisely is that this gene controls the difference in seed form between the round and wrinkled strains that Mendel worked with 9/23/05 Mendel Revisited In typical genetical parlance the hereditary factor that determines the round/wrinkled seed difference as referred to as the gene for round or wrinkled seeds What we mean more

More information

Solutions to Genetics Unit Exam

Solutions to Genetics Unit Exam Solutions to Genetics Unit Exam Question 1 You are working with an ornamental fish that shows two color phenotypes, red or white. The color is controlled by a single gene. These fish are hermaphrodites

More information

Answers to Questions from old quizzes and exams Problem 1A (i). a (ii) c (iii) a (iv) d

Answers to Questions from old quizzes and exams Problem 1A (i). a (ii) c (iii) a (iv) d BIOLOGY 321 SPRING 2013 ANSWERS TO ASSIGNMENT SET #2 Answers to text questions: Chapter 2 http://fire.biol.wwu.edu/trent/trent/iga_10e_sm_chapter_02.pdf Chapter 3 http://fire.biol.wwu.edu/trent/trent/iga_10e_sm_chapter_03.pdf

More information

Genetics: Mendel and Beyond

Genetics: Mendel and Beyond Genetics: Mendel and Beyond 10 Genetics: Mendel and Beyond Put the following words in their correct location in the sentences below. crossing over fertilization meiosis zygote 4 haploid prophase I diploid

More information

Test Booklet. Subject: SC, Grade: HS Genetics Assessment. Student name:

Test Booklet. Subject: SC, Grade: HS Genetics Assessment. Student name: Test Booklet Subject: SC, Grade: HS Genetics Assessment Student name: Author: Megan Kitchens School: SHAW HIGH SCHOOL Printed: Monday January 30, 2017 1 In fruit flies, the gray body color (G) is dominant

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 15 The Chromosomal Basis of Inheritance

More information

Bio 102 Practice Problems Mendelian Genetics and Extensions

Bio 102 Practice Problems Mendelian Genetics and Extensions Bio 102 Practice Problems Mendelian Genetics and Extensions Short answer (show your work or thinking to get partial credit): 1. In peas, tall is dominant over dwarf. If a plant homozygous for tall is crossed

More information

Mendel explained how a dominant allele can mask the presence of a recessive allele.

Mendel explained how a dominant allele can mask the presence of a recessive allele. Section 2: Mendel explained how a dominant allele can mask the presence of a recessive allele. K What I Know W What I Want to Find Out L What I Learned Essential Questions What is the significance of Mendel

More information

Section 11 1 The Work of Gregor Mendel (pages )

Section 11 1 The Work of Gregor Mendel (pages ) Chapter 11 Introduction to Genetics Section 11 1 The Work of Gregor Mendel (pages 263 266) This section describes how Gregor Mendel studied the inheritance of traits in garden peas and what his conclusions

More information

Unit 5 Review Name: Period:

Unit 5 Review Name: Period: Unit 5 Review Name: Period: 1 4 5 6 7 & give an example of the following. Be able to apply their meanings: Homozygous Heterozygous Dominant Recessive Genotype Phenotype Haploid Diploid Sex chromosomes

More information

Mendelian Genetics and Beyond Chapter 4 Study Prompts

Mendelian Genetics and Beyond Chapter 4 Study Prompts Mendelian Genetics and Beyond Chapter 4 Study Prompts 1. What is a mode of inheritance? 2. Can you define the following? a. Autosomal dominant b. Autosomal recessive 3. Who was Gregor Mendel? 4. What did

More information

draw and interpret pedigree charts from data on human single allele and multiple allele inheritance patterns; e.g., hemophilia, blood types

draw and interpret pedigree charts from data on human single allele and multiple allele inheritance patterns; e.g., hemophilia, blood types Specific Outcomes for Knowledge Students will: 30 C2.1k describe the evidence for dominance, segregation and the independent assortment of genes on different chromosomes, as investigated by Mendel 30 C2.2k

More information

Chapter 11: Introduction to Genetics

Chapter 11: Introduction to Genetics Chapter 11: Introduction to Genetics 1 DO NOW Work in groups of 3 Create a list of physical characteristics you have in common with your group. Consider things like eye and hair color, style/texture of

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Calico cats are female because 1) A) the Y chromosome has a gene blocking orange coloration.

More information

1042SCG Genetics & Evolutionary Biology Semester Summary

1042SCG Genetics & Evolutionary Biology Semester Summary 1042SCG Genetics & Evolutionary Biology Semester Summary Griffith University, Nathan Campus Semester 1, 2014 Topics include: - Mendelian Genetics - Eukaryotic & Prokaryotic Genes - Sex Chromosomes - Variations

More information

100% were red eyed = red is dominant - He then bred 2 offspring from the F1 generation F1 = Rr x Rr

100% were red eyed = red is dominant - He then bred 2 offspring from the F1 generation F1 = Rr x Rr 7. Gene Linkage and Cross-over Thomas Hunt Morgan 1910 Working with fruit flies he proved that genes on the same chromosome tended to be inherited together. = Linked genes ie. Eye color and hair color

More information

Agro/ANSC/Biol/Gene/Hort 305 Fall, 2017 MENDELIAN INHERITANCE Chapter 2, Genetics by Brooker (Lecture outline) #2

Agro/ANSC/Biol/Gene/Hort 305 Fall, 2017 MENDELIAN INHERITANCE Chapter 2, Genetics by Brooker (Lecture outline) #2 Agro/ANSC/Biol/Gene/Hort 305 Fall, 2017 MENDELIAN INHERITANCE Chapter 2, Genetics by Brooker (Lecture outline) #2 MENDEL S LAWS OF INHERITANCE Gregor Johann Mendel (1822-1884) is considered the father

More information

Biology. Slide 1 of 31. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 31. End Show. Copyright Pearson Prentice Hall Biology 1 of 31 11 3 Exploring Mendelian 11-3 Exploring Mendelian Genetics Genetics 2 of 31 Independent Assortment Independent Assortment To determine if the segregation of one pair of alleles affects

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 15 The Chromosomal Basis of Inheritance

More information

9/25/ Some traits are controlled by a single gene. Selective Breeding: Observing Heredity

9/25/ Some traits are controlled by a single gene. Selective Breeding: Observing Heredity Chapter 7 Learning Outcomes Explain the concept of a single-gene trait Describe Mendel s contributions to the field of genetics Be able to define the terms gene, allele, dominant, recessive, homozygous,

More information

GENETICS - NOTES-

GENETICS - NOTES- GENETICS - NOTES- Warm Up Exercise Using your previous knowledge of genetics, determine what maternal genotype would most likely yield offspring with such characteristics. Use the genotype that you came

More information

Extensions of the Laws of

Extensions of the Laws of Extensions of the Laws of Inheritance Bởi: OpenStaxCollege Mendel studied traits with only one mode of inheritance in pea plants. The inheritance of the traits he studied all followed the relatively simple

More information

Summary The Work of Gregor Mendel Probability and Punnett Squares. Oass

Summary The Work of Gregor Mendel Probability and Punnett Squares. Oass --------------------------- Oass ---------------- Date Chapter 11 Summary Introduction to Genetics 11-1 The Work of Gregor Mendel The scientific study of heredity is called genetics. Gregor Mendel used

More information

Honors Biology Test Chapter 9 - Genetics

Honors Biology Test Chapter 9 - Genetics Honors Biology Test Chapter 9 - Genetics 1. The exceptions to the rule that every chromosome is part of a homologous pair are the a. sex chromosomes. c. linked chromosomes. b. autosomes. d. linked autosomes.

More information

The Experiments of Gregor Mendel

The Experiments of Gregor Mendel 11.1 The Work of Gregor Mendel 11.2 Applying Mendel s Principles The Experiments of Gregor Mendel Every living thing (plant or animal, microbe or human being) has a set of characteristics inherited from

More information

Mendel and Heredity. Chapter 12

Mendel and Heredity. Chapter 12 Mendel and Heredity Chapter 12 Objectives: 1.) Differentiate between genotype and phenotype 2.)Differentiate between genes and alleles. 3.) Differentiate between dominant and recessive alleles. 4.) Explain

More information

Ch. 15 The Chromosomal Basis of Inheritance

Ch. 15 The Chromosomal Basis of Inheritance Ch. 15 The Chromosomal Basis of Inheritance Nov 12 12:58 PM 1 Essential Question: Are chromosomes the basis of inheritance? Nov 12 1:00 PM 2 1902 Walter S. Sutton, Theodor Boveri, et al Chromosome Theory

More information

You are who you are because of a combination of HEREDITY and ENVIRONMENT. ENVIRONMENT: all outside forces that act on an organism.

You are who you are because of a combination of HEREDITY and ENVIRONMENT. ENVIRONMENT: all outside forces that act on an organism. Unit 6 Genetics 6.1 Genetics You are who you are because of a combination of HEREDITY and ENVIRONMENT. ENVIRONMENT: all outside forces that act on an organism. HEREDITY: traits that are passed from parents

More information

Inheritance. What is inheritance? What are genetics? l The genetic characters transmitted from parent to offspring, taken collectively

Inheritance. What is inheritance? What are genetics? l The genetic characters transmitted from parent to offspring, taken collectively Genetics Interest Grabber Look at your classmates. Note how they vary in the shape of the front hairline, the space between the two upper front teeth, and the way in which the ear lobes are attached. Make

More information

Objectives. ! Describe the contributions of Gregor Mendel to the science of genetics. ! Explain the Law of Segregation.

Objectives. ! Describe the contributions of Gregor Mendel to the science of genetics. ! Explain the Law of Segregation. Objectives! Describe the contributions of Gregor Mendel to the science of genetics.! Explain the Law of Segregation.! Explain the Law of Independent Assortment.! Explain the concept of dominance.! Define

More information

Chapter 02 Mendelian Inheritance

Chapter 02 Mendelian Inheritance Chapter 02 Mendelian Inheritance Multiple Choice Questions 1. The theory of pangenesis was first proposed by. A. Aristotle B. Galen C. Mendel D. Hippocrates E. None of these Learning Objective: Understand

More information

2/7&9/2010 Biology 321. The inheritance patterns discovered by Mendel are true for genes that are located on autosomes. What is an autosome?

2/7&9/2010 Biology 321. The inheritance patterns discovered by Mendel are true for genes that are located on autosomes. What is an autosome? 2/7&9/2010 Biology 321 The inheritance patterns discovered by Mendel are true for genes that are located on autosomes What is an autosome? 1 The fly room at Columbia University ~ 1920 l to r: Calvin Bridges,

More information

AP Biology Chapter 15 Notes The Chromosomal Basis of Inheritance

AP Biology Chapter 15 Notes The Chromosomal Basis of Inheritance AP Biology Chapter 15 Notes The Chromosomal Basis of Inheritance I. Chapter 15.1: Mendelian inheritance has its physical basis in the behavior of chromosomes. a. Chromosome theory of inheritance: i. Mendelian

More information

Class XII Chapter 5 Principles of Inheritance and Variation Biology

Class XII Chapter 5 Principles of Inheritance and Variation Biology Question 1: Mention the advantages of selecting pea plant for experiment by Mendel. Mendel selected pea plants to carry out his study on the inheritance of characters from parents to offspring. He selected

More information

Using Drosophila melanogaster in middle and high school classrooms

Using Drosophila melanogaster in middle and high school classrooms Laboratory Handbook Using Drosophila melanogaster in middle and high school classrooms Drosophila Handbook page 1 Table of Contents This handbook was designed as a resource for classroom teachers interested

More information

Genes and Inheritance (11-12)

Genes and Inheritance (11-12) Genes and Inheritance (11-12) You are a unique combination of your two parents We all have two copies of each gene (one maternal and one paternal) Gametes produced via meiosis contain only one copy of

More information

B-4.7 Summarize the chromosome theory of inheritance and relate that theory to Gregor Mendel s principles of genetics

B-4.7 Summarize the chromosome theory of inheritance and relate that theory to Gregor Mendel s principles of genetics B-4.7 Summarize the chromosome theory of inheritance and relate that theory to Gregor Mendel s principles of genetics The Chromosome theory of inheritance is a basic principle in biology that states genes

More information

Lesson Overview 11.2 Applying Mendel s Principles

Lesson Overview 11.2 Applying Mendel s Principles THINK ABOUT IT Nothing in life is certain. Lesson Overview 11.2 Applying Mendel s Principles If a parent carries two different alleles for a certain gene, we can t be sure which of those alleles will be

More information