The Annals of Human Genetics has an archive of material originally published in print format by the Annals of Eugenics ( ).

Size: px
Start display at page:

Download "The Annals of Human Genetics has an archive of material originally published in print format by the Annals of Eugenics ( )."

Transcription

1 The Annals of uman Genetics has an archive of material originally published in print format by the Annals of Eugenics ( ). This material is available in specialised libraries and archives. We believe there is a clear academic interest in making this historical material more widely available to a scholarly audience online. These articles have been made available online, by the Annals of uman Genetics, UCL and Blackwell Publishing Ltd strictly for historical and academic reasons. The work of eugenicists was often pervaded by prejudice against racial, ethnic and disabled groups. Publication of this material online is for scholarly research purposes is not an endorsement or promotion of the views expressed in any of these articles or eugenics in general. All articles are published in full, except where necessary to protect individual privacy. We welcome your comments about this archive and its online publication.

2 OMOGAMY AN TE INTECOELATION OF CAPACITY T AITS BY BONSON PICE, P.. TE positive intercorrelation of desirable traits is generally considered to hold to the extent that no two such variates have been shown to correlate negatively in an adequate aampling of individuals, while low positive correlations are regularly reported. Largely in explanation of the relatively high correlations observed throughout desirable capacity traits, Prof. Spearman insists that there exist g and other major variates. Certain opponents of this view have long since pointed out that such an explanation is not readily reconciled with the particulate nature of inheritance. The great body of contemporary experimentation on intercorrelation problems, and the controversies over the generality or specificity of traits so revealed, nevertheless evidence small regard for genetical considerations. It is here suggested that the nature of human homogamy may well account for much observed intercorrelation. Positive correlations are of course positive only in so far as the desirable directions of the variates are generally agreed upon. On the view to be advanced, tunefulness and lightness of foot, for example, should be found positively correlated with each other but negatively correlated with desirable traits ) in general, in a society wherein the counterparts of these two characters were considered enviable. Since the desirable direction of any variate reflects accepted ideas, desired traits is perhaps a better expression. Goodness, as the term will be used below, is thus taken to mean simply a generally desired direction of variation. The discussion will be concerned with the effects of homogamy, and not with sex-associated factors or with selective mating in which some genotypes leave more offspring than others. Uniformity of environment and genetical variation in psychological traits are assumed. Let us consider a population in which good, average, and poor individuals occur as 1 : 2 : 1 in respect to the trait x and also in respect to the trait y. Let us assume that a single gene substitution causes the variation in each of the traits, that the heterozygote is intermediate, i.e. represents average, and that the x and y variates are uncorrelated in the population. Each individual may be considered as of one of the five groups : (1) poor in both traits, (2) poor in one and average in the other, (3) poor in one and good in the other, or average in both, (4) average in one and good in the other, and (5) good in both. The population may be represented as (5) (4) (3) (2) (1) AABB 2AABb 2AaBB asbb AAbb 4AaBb 2Aabb 2aaBb aabb oras

3 ~ BONSON PICE 23 If mating is perfectly homogamous for total goodness in these traits, a (5) individual will mate with another (5) individual, a (4) with another (4), a (3) with some other (3), etc. These matings, their relative frequencies, and the distributions of offspring for four children per mating are given in I of Fig. 1. Correlation between the x and y variates is shown to arise in the offspring population (Fig. 2). The result will be found to be the same when the two pairs of alleles are assumed to be linked as when assumed to be independently segregating. The effective mechanism here is correlation of trait x in individuals of the Mating I. Frequency (See IV below) or : 1. Matings and offspring offspring ' If mating were such that the direct marital correlations were unity: U If mating were such that the cross marital correlations were unity: E IV. The second generation matings from I are of the frequencies given there in italic figures. The offspring are found to be $18: V. If complete dominance is aasumed, there are three intermating classes. The offspring are found to be aa: VI. If three pairs of alleles are used, there are seven intermating classes, and intercorrelations of 0.14 are found in the offspring 2 13

4 24 INTECOELATION OF CAPACITY TAITS mating population with trait y in their mates. This we may refer to as cross homogamy, in order to distinguish it from the ordinary type of marital correlation which is also present and which we may call direct homogamy. Perfect homogamy in respect to the sum of the traits, and perfect equivalence of the traits in mating were of course gratuitous assumptions. It is necessary to assume that the marital correlation in respect to the sum of the traits is higher than the average of the direct marital correlations for the same traits, then cross marital correlation must be A(=s) B 1 B (=Y) E ; i: :p Fin. " 2. Intercorrelations E ri=o E ri=1/2 E j V. Ti= 15/119 VI. ri=1/7 A Fig. 3. Sibling correlations for the population of offspring in I of Pig. 1 A B A+B E (1) (2) (3) (4) r, = 3/ r, = 11.5 r, = 213 present. This may be seen from application of the Spearman-Brown relation for the correlation between the sum of several variates and the sum of another series of the same - variates, to the case of marital correlation: ere n = n' = the number of traits considered; ( n) is the sum of the traits for any individual of the mating population, and ( n') is the sum of the. same traits fsr his mate; Pi is the average intercorrelation of the traits (in either series of mates); and fnrli is the average of all the possible correlations between any of the variates in one

5 BONSON PICE 25 series of individuals and any of the variates in their mates. There are n2 correlations Of the type r,,,, and of these, n are direct marital coefficients (r,), and (n2-n) are cross marital coefficients (re). That is, Fnn, is equal to ni, - + (n- 1) Ic n2 Substituting this in the equation above, reducing, and writing r, for the marital coefficient in respect to the sum of the traits, I,+ (n- 1) Fc r, = ( 1). (n- 1) FJ In a different connection, Conrad* derived a numerically expressed relation equivalent to this. The relation is general for familial correlation of intraclass type. In mating populations of Fig. 1 these values are, I11 IV VI These effects should receive fuller genetical and statistical treatment than the present writer has been able to give them. owever, Wright? has worked out the limiting compositions of the population for certain degrees of assortative mating maintained in respect to a single trait determined by two pairs of alleles lacking dominance. This case is analogous to that for two traits, equivalent so far as homogamy is concerned, and each determined by a single gene substitution. Wright gives equations whereby the final incidences of the genotypes AAbb, AABB, and AABB, which incidences he calls y, z, and x respectively, may be found in terms of m, which corresponds to r,. Since the scatter is symmetrical, the correlation between the two pairs of alleles at equilibrium is determined by these incidences, and may be represented as r( = -Y ~ x+y+z *. S. Conrad, On kin resemblances in physique v. intelligence, J. edw. Psychd. (1931). 22,378. Conrad was concerned with eibling correlation, and chose the following valuea to represent possible data for several intelligence test funct,ions : n=ll, fi=0.o,?,=0.52, f,=0.37. These were shown to effect a sibling correlation of averages (r,=o.eo) higher than the average sibling correlation (?a) of 0-2. The matter turned however on the value assigned to F, and this was not noted. The opposite effect is evident if instead of 0.37 any figure leas than (=F,F,) is used. It is important to note that, for siblings in the offspring population of I of Fig. 1, them values are (see Fig. 3 above) n=2, r,=0.20, rd=o-0, ro=0.2o, r,=0-7. n, therefore, for sibling correlation, an P, higher than Fp, is actually found, the consequent rise in r, over Fd should be &B understandable in terms of the effects of cross marital correlation as in terms of current views of mental organisation. t S. Wright, Systems of mating, Ge7let4ea (1921),, 1.

6 2 INTECOELATION OF CAPACITY TAITS Wright s values for x, y, and z in terms of m need not be reproduced here ; upon substituting them in this expression, reducing, and solving for m, there is found, however, 7, + Fc Also, from (1) above, when n= 2, r,=-. l+ri Assuming equivalence of the traits in mating, rd=rc, and m=r,. It thus appeam that at equilibrium the cross or direct marital correlation then holding in respect to two pairs of alleles equals the intercorrelation reached between them. Since this condition is independent of the number of such pairs for which mating may be homogamous, we may place ri = Fa = Fc in (l), obtaining for the equilibrium intercombtion of n pairs of alleles lacking dominance and equivalent in respect to homogamy,... (2). It would seem dif icult to doubt that human homogamy has for long involved cross marital correlation in respect to desired traits, and an important cause of the intercorrelation of such traits is therefore indicated. The process which has been described is of course simply the throwing together or the association of traits which would otherwise be independently distributed in the population. To the extent that there is a common element in various concepts of the integration of personality and of character, it may be said that such expressions concern the predictability of one or several traits of the individual from one or several others, and this implies some degree of association of these traits in a group of individuals. In the present view, groups in differing circumstances should be expected to develop differing ideas concerning desirable traits, and, through corresponding variations in homogamy, eventually to reflect those differences in the integrations of character found in their prominent members. Similarly, intercorrelations should change as generally recognized concepts as to what is desirable are changed by the conditions and needs of the group concerned. Since the effects of cross homogamy are cumulative, it is clear that the lag between changed circumstances and their significant effects on intercorrelations may be a marked one. We should expect however to find differing sets of intercorrelatibns for groups which have long mated under different sets of conditions. The fact that high marital correlations are observed for those capacity traits which intercorrelate highly is here considered to be of more than incidental importance. If it be argued that such marital correlations reflect in part, or are raised by, non-genetic differences between social classes, then the same argument holds for the intercorrelations as obtained, and the presumption of a genetically causal relation between the two kinds of phenomena remains largely unaffected. It would appear likely that large numbers of genetically discrete traits which we have come to regard as comprising general mental capacity and versatility are simply traits for which mating has been crossly homogarnous, and that this is a primary source of their marked intercorrelation and seeming unity.

7 BONSON PICE 27 It appears from (2) above that for a marital coefficient of 0.75 maintained in respect to the sum of forty pairs of alleles determining general intelligence, the average intercorrelation throughout them would approach 0.07 at equilibrium if dominance were absent. Let us assume that the effect of dominance is to diminish this intercorrelation of the pairs to It may be seen from the relation for the correlation of sums or averages that the correlation between two mental functions each determined by twelve different such pairs would be If, say, four out of twenty of these pairs overlapped the tested functions, the correlation r~~+2+~~~+12~~s+lo+ll+~2+~~~+20~ would be These arbitrary values suggest that the structure of intercorrelations may be unlike that assumed or anticipated in contemporary factor analysis methodology. It has here been assumed that the alleles determining capacity traits are not only (i) many in kind and number, but also (ii) intercorrelated through cross homogamy. If (ii) is correct, the obliqueness variant in factor theory-that of allowing that the sought-for variates may be correlated-becomes a necessary line of attack. If (i) is correct, it is of course doubtful whether factor analyses can properly describe capacity functions in terms of a few variates. The Something which, as has been held, must cause the observed intercorrelations, may thus be in large part cross homogamy, and major variates may be much less necessary hypotheses than has been supposed. On the other hand, it is probable that there exist genes having pleiotropic effects in some degree analogous to the roles which have been assigned to so-called general factors. Proponents of major variates have apparently been little concerned with this possibility and the effectiveness of such genes in causing intercorrelations is yet to be explored. In the writer s view however, since solid evidence for either general or specific variates is lacking, the probable multiplicity of genetically discrete but slightly correlated determiners should receive no less emphasis in present-day intercorrelation theory than should the possible singularity of certain as yet hypothetical factors. SUMMAY In this paper it is noted that intercorrelation of otherwise uncorrelated traits arises as a result of cross inarital correlation. It is assumed that human homogamy is more marked in respect to a summation of generally desired traits than in respect to such traits considered singly, and it is noted that cross marital correlation is a consequence of such mating. The observed positive correlations among desirable traits are thus explained as due in major degree to cross homogamy. Probable effects of bionomic and social conditions on intercorrelations are also noted. To the extent that the present account of intercorrelation may be correct, modern efforts to resolve capacity traits into a few uncorrelated variates appear to be without promise of success, since the very importance of such traits will have associated their determiners in the general population. The intercorrelations which g has been presumed to illumine are seen primarily as consequences of the social and therefore marital importance which has attached to the abilities concerned.

Genetic basis of inheritance and variation. Dr. Amjad Mahasneh. Jordan University of Science and Technology

Genetic basis of inheritance and variation. Dr. Amjad Mahasneh. Jordan University of Science and Technology Genetic basis of inheritance and variation Dr. Amjad Mahasneh Jordan University of Science and Technology Segment 1 Hello and welcome everyone. My name is Amjad Mahasneh. I teach molecular biology at Jordan

More information

The Annals of Human Genetics has an archive of material originally published in print format by the Annals of Eugenics ( ).

The Annals of Human Genetics has an archive of material originally published in print format by the Annals of Eugenics ( ). The Annals of Human Genetics has an archive of material originally published in print format by the Annals of Eugenics (95954). This material is available in specialised libraries and archives. We believe

More information

MENDELIAN GENETICS. Punnet Squares and Pea Plants

MENDELIAN GENETICS. Punnet Squares and Pea Plants MENDELIAN GENETICS Punnet Squares and Pea Plants Introduction Mendelian laws of inheritance are statements about the way certain characteristics are transmitted from one generation to another in an organism.

More information

Bio 312, Spring 2017 Exam 3 ( 1 ) Name:

Bio 312, Spring 2017 Exam 3 ( 1 ) Name: Bio 312, Spring 2017 Exam 3 ( 1 ) Name: Please write the first letter of your last name in the box; 5 points will be deducted if your name is hard to read or the box does not contain the correct letter.

More information

Ch 8 Practice Questions

Ch 8 Practice Questions Ch 8 Practice Questions Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What fraction of offspring of the cross Aa Aa is homozygous for the dominant allele?

More information

Your DNA extractions! 10 kb

Your DNA extractions! 10 kb Your DNA extractions! 10 kb Quantitative characters: polygenes and environment Most ecologically important quantitative traits (QTs) vary. Distributions are often unimodal and approximately normal. Offspring

More information

PopGen4: Assortative mating

PopGen4: Assortative mating opgen4: Assortative mating Introduction Although random mating is the most important system of mating in many natural populations, non-random mating can also be an important mating system in some populations.

More information

Mating Systems. 1 Mating According to Index Values. 1.1 Positive Assortative Matings

Mating Systems. 1 Mating According to Index Values. 1.1 Positive Assortative Matings Mating Systems After selecting the males and females that will be used to produce the next generation of animals, the next big decision is which males should be mated to which females. Mating decisions

More information

Genetics PPT Part 1 Biology-Mrs. Flannery

Genetics PPT Part 1 Biology-Mrs. Flannery Genetics PPT Part Biology-Mrs. Flannery In an Abbey Garden Mendel studied garden peas because they were easy to grow, came in many readily distinguishable varieties, had easily visible traits are easily

More information

Genetics and Heredity Notes

Genetics and Heredity Notes Genetics and Heredity Notes I. Introduction A. It was known for 1000s of years that traits were inherited but scientists were unsure about the laws that governed this inheritance. B. Gregor Mendel (1822-1884)

More information

READING ASSIGNMENT GENETIC ANALYSIS OF DROSOPHILA POPULATIONS I. HOW DO MITOSIS AND MEIOSIS COMPARE?

READING ASSIGNMENT GENETIC ANALYSIS OF DROSOPHILA POPULATIONS I. HOW DO MITOSIS AND MEIOSIS COMPARE? READING ASSIGNMENT GENETIC ANALYSIS OF DROSOPHILA POPULATIONS I. HOW DO MITOSIS AND MEIOSIS COMPARE? II. HOW CAN WE DETERMINE EXPECTED RATIOS OF OFFSPRING? What rules can we learn from Mendel s work with

More information

Inbreeding and Inbreeding Depression

Inbreeding and Inbreeding Depression Inbreeding and Inbreeding Depression Inbreeding is mating among relatives which increases homozygosity Why is Inbreeding a Conservation Concern: Inbreeding may or may not lead to inbreeding depression,

More information

COURSE: NURSING RESEARCH CHAPTER I: INTRODUCTION

COURSE: NURSING RESEARCH CHAPTER I: INTRODUCTION COURSE: NURSING RESEARCH CHAPTER I: INTRODUCTION 1. TERMINOLOGY 1.1 Research Research is a systematic enquiry about a particular situation for a certain truth. That is: i. It is a search for knowledge

More information

Selection at one locus with many alleles, fertility selection, and sexual selection

Selection at one locus with many alleles, fertility selection, and sexual selection Selection at one locus with many alleles, fertility selection, and sexual selection Introduction It s easy to extend the Hardy-Weinberg principle to multiple alleles at a single locus. In fact, we already

More information

THE USE OF MULTIVARIATE ANALYSIS IN DEVELOPMENT THEORY: A CRITIQUE OF THE APPROACH ADOPTED BY ADELMAN AND MORRIS A. C. RAYNER

THE USE OF MULTIVARIATE ANALYSIS IN DEVELOPMENT THEORY: A CRITIQUE OF THE APPROACH ADOPTED BY ADELMAN AND MORRIS A. C. RAYNER THE USE OF MULTIVARIATE ANALYSIS IN DEVELOPMENT THEORY: A CRITIQUE OF THE APPROACH ADOPTED BY ADELMAN AND MORRIS A. C. RAYNER Introduction, 639. Factor analysis, 639. Discriminant analysis, 644. INTRODUCTION

More information

Pedigree Construction Notes

Pedigree Construction Notes Name Date Pedigree Construction Notes GO TO à Mendelian Inheritance (http://www.uic.edu/classes/bms/bms655/lesson3.html) When human geneticists first began to publish family studies, they used a variety

More information

A Difference that Makes a Difference: Welfare and the Equality of Consideration

A Difference that Makes a Difference: Welfare and the Equality of Consideration 84 A Difference that Makes a Difference: Welfare and the Equality of Consideration Abstract Elijah Weber Philosophy Department Bowling Green State University eliweber1980@gmail.com In Welfare, Happiness,

More information

Chapter 2 Multiple Choice Questions (The answers are provided after the last question.) 1. Which research paradigm is based on the pragmatic view of reality? a. quantitative research b. qualitative research

More information

Unit 7 Section 2 and 3

Unit 7 Section 2 and 3 Unit 7 Section 2 and 3 Evidence 12: Do you think food preferences are passed down from Parents to children, or does the environment play a role? Explain your answer. One of the most important outcomes

More information

PRINCIPLE OF INHERITANCE AND

PRINCIPLE OF INHERITANCE AND 29 CHAPTER 5 PRINCIPLE OF INHERITANCE AND VARIATION MULTIPLE-CHOICE QUESTIONS 1. All genes located on the same chromosome: a. Form different groups depending upon their relative distance b. Form one linkage

More information

Models of Parent-Offspring Conflict Ethology and Behavioral Ecology

Models of Parent-Offspring Conflict Ethology and Behavioral Ecology Models of Parent-Offspring Conflict Ethology and Behavioral Ecology A. In this section we will look the nearly universal conflict that will eventually arise in any species where there is some form of parental

More information

Introduction to Quantitative Genetics

Introduction to Quantitative Genetics Introduction to Quantitative Genetics 1 / 17 Historical Background Quantitative genetics is the study of continuous or quantitative traits and their underlying mechanisms. The main principals of quantitative

More information

Chapter 10 Notes Patterns of Inheritance, Part 1

Chapter 10 Notes Patterns of Inheritance, Part 1 Chapter 10 Notes Patterns of Inheritance, Part 1 I. Gregor Mendel (1822-1884) a. Austrian monk with a scientific background b. Conducted numerous hybridization experiments with the garden pea, Pisum sativum,

More information

Mendelian Genetics. Gregor Mendel. Father of modern genetics

Mendelian Genetics. Gregor Mendel. Father of modern genetics Mendelian Genetics Gregor Mendel Father of modern genetics Objectives I can compare and contrast mitosis & meiosis. I can properly use the genetic vocabulary presented. I can differentiate and gather data

More information

TECHNIQUE. Parental generation (P) Stamens Carpel 3. RESULTS First filial. offspring (F 1 )

TECHNIQUE. Parental generation (P) Stamens Carpel 3. RESULTS First filial. offspring (F 1 ) TECHNIQUE 2 Parental generation (P) Stamens Carpel 3 4 RESULTS First filial generation offspring (F ) 5 2 EXPERIMENT P Generation (true-breeding parents) Purple flowers White flowers F Generation (hybrids)

More information

Mendelism: the Basic principles of Inheritance

Mendelism: the Basic principles of Inheritance Chapter 3. Mendelism: the Basic principles of Inheritance 1. Mendel s Study of Heredity 2. Applications of Mendel s Principles 3. Formulating and Testing Genetic Hypothesis 4. Mendelian Principles in Human

More information

LEDYARD R TUCKER AND CHARLES LEWIS

LEDYARD R TUCKER AND CHARLES LEWIS PSYCHOMETRIKA--VOL. ~ NO. 1 MARCH, 1973 A RELIABILITY COEFFICIENT FOR MAXIMUM LIKELIHOOD FACTOR ANALYSIS* LEDYARD R TUCKER AND CHARLES LEWIS UNIVERSITY OF ILLINOIS Maximum likelihood factor analysis provides

More information

Week 4 Day 1 Lab: MENDELIAN TRAITS and INHERITANCE

Week 4 Day 1 Lab: MENDELIAN TRAITS and INHERITANCE Week 4 Day 1 Lab: MENDELIAN TRAITS and INHERITANCE Part 1: Mendelian Traits Alleles are alternative versions of one gene. Alleles are found at the same locus on homologous chromosomes, but may code for

More information

Take a look at the three adult bears shown in these photographs:

Take a look at the three adult bears shown in these photographs: Take a look at the three adult bears shown in these photographs: Which of these adult bears do you think is most likely to be the parent of the bear cubs shown in the photograph on the right? How did you

More information

Intelligence as the Tests Test It

Intelligence as the Tests Test It Boring. E. G. (1923). Intelligence as the tests test it. New Republic, 36, 35 37. Intelligence as the Tests Test It Edwin G. Boring If you take on of the ready-made tests of intelligence and try it on

More information

Agro/ANSC/Biol/Gene/Hort 305 Fall, 2017 MENDELIAN INHERITANCE Chapter 2, Genetics by Brooker (Lecture outline) #2

Agro/ANSC/Biol/Gene/Hort 305 Fall, 2017 MENDELIAN INHERITANCE Chapter 2, Genetics by Brooker (Lecture outline) #2 Agro/ANSC/Biol/Gene/Hort 305 Fall, 2017 MENDELIAN INHERITANCE Chapter 2, Genetics by Brooker (Lecture outline) #2 MENDEL S LAWS OF INHERITANCE Gregor Johann Mendel (1822-1884) is considered the father

More information

Evolution II.2 Answers.

Evolution II.2 Answers. Evolution II.2 Answers. 1. (4 pts) Contrast the predictions of blending inheritance for F1 and F2 generations with those observed under Mendelian inheritance. Blending inheritance predicts both F1 and

More information

Chapter 6 Topic 6B Test Bias and Other Controversies. The Question of Test Bias

Chapter 6 Topic 6B Test Bias and Other Controversies. The Question of Test Bias Chapter 6 Topic 6B Test Bias and Other Controversies The Question of Test Bias Test bias is an objective, empirical question, not a matter of personal judgment. Test bias is a technical concept of amenable

More information

Roadmap. Inbreeding How inbred is a population? What are the consequences of inbreeding?

Roadmap. Inbreeding How inbred is a population? What are the consequences of inbreeding? 1 Roadmap Quantitative traits What kinds of variation can selection work on? How much will a population respond to selection? Heritability How can response be restored? Inbreeding How inbred is a population?

More information

LABORATORY #8 -- BIOL 111 Genetics and Inheritance

LABORATORY #8 -- BIOL 111 Genetics and Inheritance LABORATORY #8 -- BIOL 111 Genetics and Inheritance You have seen chromosomes in the onion root tip slides we used to examine the cell cycle. What we cannot see are the individual genes on these chromosomes.

More information

Mitosis and Meiosis. See Mitosis and Meiosis on the class web page

Mitosis and Meiosis. See Mitosis and Meiosis on the class web page Mitosis and Meiosis Mitosis and Cellular Reproduction. A cell s hereditary material (DNA) is located on chromosomes in the cell s nucleus. In the process called mitosis, a cell s hereditary material is

More information

Laboratory. Mendelian Genetics

Laboratory. Mendelian Genetics Laboratory 9 Mendelian Genetics Biology 171L FA17 Lab 9: Mendelian Genetics Student Learning Outcomes 1. Predict the phenotypic and genotypic ratios of a monohybrid cross. 2. Determine whether a gene is

More information

UNIT 1-History of life on earth! Big picture biodiversity-major lineages, Prokaryotes, Eukaryotes-Evolution of Meiosis

UNIT 1-History of life on earth! Big picture biodiversity-major lineages, Prokaryotes, Eukaryotes-Evolution of Meiosis Where are we in this course??? UNIT 1-History of life on earth! Big picture biodiversity-major lineages, Prokaryotes, Eukaryotes-Evolution of Meiosis Today we will start with UNIT 2 A. Mendel and the Gene

More information

Complex Traits Activity INSTRUCTION MANUAL. ANT 2110 Introduction to Physical Anthropology Professor Julie J. Lesnik

Complex Traits Activity INSTRUCTION MANUAL. ANT 2110 Introduction to Physical Anthropology Professor Julie J. Lesnik Complex Traits Activity INSTRUCTION MANUAL ANT 2110 Introduction to Physical Anthropology Professor Julie J. Lesnik Introduction Human variation is complex. The simplest form of variation in a population

More information

PSYCHOMETRIC PROPERTIES OF CLINICAL PERFORMANCE RATINGS

PSYCHOMETRIC PROPERTIES OF CLINICAL PERFORMANCE RATINGS PSYCHOMETRIC PROPERTIES OF CLINICAL PERFORMANCE RATINGS A total of 7931 ratings of 482 third- and fourth-year medical students were gathered over twelve four-week periods. Ratings were made by multiple

More information

Psychologist use statistics for 2 things

Psychologist use statistics for 2 things Psychologist use statistics for 2 things O Summarize the information from the study/experiment O Measures of central tendency O Mean O Median O Mode O Make judgements and decisions about the data O See

More information

8.1 Genes Are Particulate and Are Inherited According to Mendel s Laws 8.2 Alleles and Genes Interact to Produce Phenotypes 8.3 Genes Are Carried on

8.1 Genes Are Particulate and Are Inherited According to Mendel s Laws 8.2 Alleles and Genes Interact to Produce Phenotypes 8.3 Genes Are Carried on Chapter 8 8.1 Genes Are Particulate and Are Inherited According to Mendel s Laws 8.2 Alleles and Genes Interact to Produce Phenotypes 8.3 Genes Are Carried on Chromosomes 8.4 Prokaryotes Can Exchange Genetic

More information

HERITABILITY AND ITS GENETIC WORTH FOR PLANT BREEDING

HERITABILITY AND ITS GENETIC WORTH FOR PLANT BREEDING HERITABILITY AND ITS GENETIC WORTH FOR PLANT BREEDING Author: Prasanta Kumar Majhi M. Sc. (Agri.), Junior Research Scholar, Department of Genetics and Plant Breeding, College of Agriculture, UAS, Dharwad,

More information

A MILESTONE IN GENETICS: Mendel s 1866 Paper

A MILESTONE IN GENETICS: Mendel s 1866 Paper A MILESTONE IN GENETICS: Mendel s 1866 Paper The paper that launched the science of genetics had the title Versuche über Pflanzenhybriden which translates from the German as Experiments with Plant-Hybrids.

More information

Model of an F 1 and F 2 generation

Model of an F 1 and F 2 generation Mendelian Genetics Casual observation of a population of organisms (e.g. cats) will show variation in many visible characteristics (e.g. color of fur). While members of a species will have the same number

More information

GENETICS - NOTES-

GENETICS - NOTES- GENETICS - NOTES- Warm Up Exercise Using your previous knowledge of genetics, determine what maternal genotype would most likely yield offspring with such characteristics. Use the genotype that you came

More information

Mendel and Heredity. Chapter 12

Mendel and Heredity. Chapter 12 Mendel and Heredity Chapter 12 12.1 Objectives: 1.) summarize the importance of Mendel s experiments 2.)Differentiate between genes and alleles. 3.) Explain that alleles determine what physical traits

More information

MENDELIAN GENETIC CH Review Activity

MENDELIAN GENETIC CH Review Activity MENDELIAN GENETIC CH. 6.3-6.5 Review Activity Question 1 Who is considered to be the father of genetics? Answer 1 Question 2 Gregor Mendel What part of DNA directs a cell to make a certain protein? 1 Answer

More information

IS IT GENETIC? How do genes, environment and chance interact to specify a complex trait such as intelligence?

IS IT GENETIC? How do genes, environment and chance interact to specify a complex trait such as intelligence? 1 IS IT GENETIC? How do genes, environment and chance interact to specify a complex trait such as intelligence? Single-gene (monogenic) traits Phenotypic variation is typically discrete (often comparing

More information

Activities to Accompany the Genetics and Evolution App for ipad and iphone

Activities to Accompany the Genetics and Evolution App for ipad and iphone Activities to Accompany the Genetics and Evolution App for ipad and iphone All of the following questions can be answered using the ipad version of the Genetics and Evolution App. When using the iphone

More information

B.A. / B.Sc. (Honours) 5 th Semester (THEORY) (2/13)

B.A. / B.Sc. (Honours) 5 th Semester (THEORY) (2/13) Course Name: PHYSICAL ANTHROPOLOGY Paper No. & Title: B.A. / B.Sc. (Honours) 5 th Semester (THEORY) Topic No. & Title: (2/13) Theories of inheritance: Man as an object of Genetical study, Laws of Heredity-

More information

MENDELIAN GENETICS. MENDEL RULE AND LAWS Please read and make sure you understand the following instructions and knowledge before you go on.

MENDELIAN GENETICS. MENDEL RULE AND LAWS Please read and make sure you understand the following instructions and knowledge before you go on. MENDELIAN GENETICS Objectives Upon completion of this lab, students should: 1. Understand the principles and terms used in Mendelian genetics. 2. Know how to complete a Punnett square to estimate phenotypic

More information

Meiotic Mistakes and Abnormalities Learning Outcomes

Meiotic Mistakes and Abnormalities Learning Outcomes Meiotic Mistakes and Abnormalities Learning Outcomes 5.6 Explain how nondisjunction can result in whole chromosomal abnormalities. (Module 5.10) 5.7 Describe the inheritance patterns for strict dominant

More information

Honors Biology Test Chapter 9 - Genetics

Honors Biology Test Chapter 9 - Genetics Honors Biology Test Chapter 9 - Genetics 1. The exceptions to the rule that every chromosome is part of a homologous pair are the a. sex chromosomes. c. linked chromosomes. b. autosomes. d. linked autosomes.

More information

What we mean more precisely is that this gene controls the difference in seed form between the round and wrinkled strains that Mendel worked with

What we mean more precisely is that this gene controls the difference in seed form between the round and wrinkled strains that Mendel worked with 9/23/05 Mendel Revisited In typical genetical parlance the hereditary factor that determines the round/wrinkled seed difference as referred to as the gene for round or wrinkled seeds What we mean more

More information

Analysis of single gene effects 1. Quantitative analysis of single gene effects. Gregory Carey, Barbara J. Bowers, Jeanne M.

Analysis of single gene effects 1. Quantitative analysis of single gene effects. Gregory Carey, Barbara J. Bowers, Jeanne M. Analysis of single gene effects 1 Quantitative analysis of single gene effects Gregory Carey, Barbara J. Bowers, Jeanne M. Wehner From the Department of Psychology (GC, JMW) and Institute for Behavioral

More information

Validity and Reliability. PDF Created with deskpdf PDF Writer - Trial ::

Validity and Reliability. PDF Created with deskpdf PDF Writer - Trial :: Validity and Reliability PDF Created with deskpdf PDF Writer - Trial :: http://www.docudesk.com Validity Is the translation from concept to operationalization accurately representing the underlying concept.

More information

Ch. 23 The Evolution of Populations

Ch. 23 The Evolution of Populations Ch. 23 The Evolution of Populations 1 Essential question: Do populations evolve? 2 Mutation and Sexual reproduction produce genetic variation that makes evolution possible What is the smallest unit of

More information

Pedigree Analysis Why do Pedigrees? Goals of Pedigree Analysis Basic Symbols More Symbols Y-Linked Inheritance

Pedigree Analysis Why do Pedigrees? Goals of Pedigree Analysis Basic Symbols More Symbols Y-Linked Inheritance Pedigree Analysis Why do Pedigrees? Punnett squares and chi-square tests work well for organisms that have large numbers of offspring and controlled mating, but humans are quite different: Small families.

More information

The Regression-Discontinuity Design

The Regression-Discontinuity Design Page 1 of 10 Home» Design» Quasi-Experimental Design» The Regression-Discontinuity Design The regression-discontinuity design. What a terrible name! In everyday language both parts of the term have connotations

More information

Patterns of Inheritance

Patterns of Inheritance Patterns of Inheritance Mendel the monk studied inheritance keys to his success: he picked pea plants he focused on easily categorized traits he used true-breeding populations parents always produced offspring

More information

Welcome Back! 2/6/18. A. GGSS B. ggss C. ggss D. GgSs E. Ggss. 1. A species of mice can have gray or black fur

Welcome Back! 2/6/18. A. GGSS B. ggss C. ggss D. GgSs E. Ggss. 1. A species of mice can have gray or black fur Welcome Back! 2/6/18 1. A species of mice can have gray or black fur and long or short tails. A cross between blackfurred, long-tailed mice and gray-furred, shorttailed mice produce all black-furred, long-tailed

More information

The laws of Heredity. Allele: is the copy (or a version) of the gene that control the same characteristics.

The laws of Heredity. Allele: is the copy (or a version) of the gene that control the same characteristics. The laws of Heredity 1. Definition: Heredity: The passing of traits from parents to their offspring by means of the genes from the parents. Gene: Part or portion of a chromosome that carries genetic information

More information

Laws of Inheritance. Bởi: OpenStaxCollege

Laws of Inheritance. Bởi: OpenStaxCollege Bởi: OpenStaxCollege The seven characteristics that Mendel evaluated in his pea plants were each expressed as one of two versions, or traits. Mendel deduced from his results that each individual had two

More information

1 eye 1 Set of trait cards. 1 tongue 1 Sheet of scrap paper

1 eye 1 Set of trait cards. 1 tongue 1 Sheet of scrap paper Access prior knowledge Why do offspring often resemble their parents? Yet rarely look exactly alike? Is it possible for offspring to display characteristics that are not apparent in their parents? What

More information

Patterns of Inheritance

Patterns of Inheritance 1 Patterns of Inheritance Bio 103 Lecture Dr. Largen 2 Topics Mendel s Principles Variations on Mendel s Principles Chromosomal Basis of Inheritance Sex Chromosomes and Sex-Linked Genes 3 Experimental

More information

THE APPLICATION OF ORDINAL LOGISTIC HEIRARCHICAL LINEAR MODELING IN ITEM RESPONSE THEORY FOR THE PURPOSES OF DIFFERENTIAL ITEM FUNCTIONING DETECTION

THE APPLICATION OF ORDINAL LOGISTIC HEIRARCHICAL LINEAR MODELING IN ITEM RESPONSE THEORY FOR THE PURPOSES OF DIFFERENTIAL ITEM FUNCTIONING DETECTION THE APPLICATION OF ORDINAL LOGISTIC HEIRARCHICAL LINEAR MODELING IN ITEM RESPONSE THEORY FOR THE PURPOSES OF DIFFERENTIAL ITEM FUNCTIONING DETECTION Timothy Olsen HLM II Dr. Gagne ABSTRACT Recent advances

More information

Genetics: field of biology that studies heredity, or the passing of traits from parents to offspring Trait: an inherited characteristic, such as eye

Genetics: field of biology that studies heredity, or the passing of traits from parents to offspring Trait: an inherited characteristic, such as eye Genetics: field of biology that studies heredity, or the passing of traits from parents to offspring Trait: an inherited characteristic, such as eye colour or hair colour Gregor Mendel discovered how traits

More information

Writing the Rules of Heredity. 23. Genetics I

Writing the Rules of Heredity. 23. Genetics I 1. 2. 3. 4. 5. 6. 7. Describe the general aspects of Mendel s experimental method, and explain why his work is considered so important. Define the following terms: gene, F 1 generation, F 2 generation,

More information

For more information about how to cite these materials visit

For more information about how to cite these materials visit Author(s): Kerby Shedden, Ph.D., 2010 License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution Share Alike 3.0 License: http://creativecommons.org/licenses/by-sa/3.0/

More information

GENETICS - CLUTCH CH.2 MENDEL'S LAWS OF INHERITANCE.

GENETICS - CLUTCH CH.2 MENDEL'S LAWS OF INHERITANCE. !! www.clutchprep.com CONCEPT: MENDELS EXPERIMENTS AND LAWS Mendel s Experiments Gregor Mendel was an Austrian monk who studied Genetics using pea plants Mendel used pure lines meaning that all offspring

More information

Genes and Inheritance (11-12)

Genes and Inheritance (11-12) Genes and Inheritance (11-12) You are a unique combination of your two parents We all have two copies of each gene (one maternal and one paternal) Gametes produced via meiosis contain only one copy of

More information

DEFINING THE CASE STUDY Yin, Ch. 1

DEFINING THE CASE STUDY Yin, Ch. 1 Case Study Research DEFINING THE CASE STUDY Yin, Ch. 1 Goals for today are to understand: 1. What is a case study 2. When is it useful 3. Guidelines for designing a case study 4. Identifying key methodological

More information

12 MENDEL, GENES, AND INHERITANCE

12 MENDEL, GENES, AND INHERITANCE 12 MENDEL, GENES, AND INHERITANCE Chapter Outline 12.1 THE BEGINNINGS OF GENETICS: MENDEL S GARDEN PEAS Mendel chose true-breeding garden peas for his experiments Mendel first worked with single-character

More information

Physiological Function, Health and Medical Theory

Physiological Function, Health and Medical Theory Physiological Function, Health and Medical Theory Amanda Thorell PhD-student at the Department of Philosophy, Stockholm University amanda.thorell@philosophy.su.se Abstract In medicine, the concepts of

More information

NARRATION FOR UNDERSTANDING INHERITANCE: MENDEL, METHOD, AND MAPPING

NARRATION FOR UNDERSTANDING INHERITANCE: MENDEL, METHOD, AND MAPPING NARRATION FOR UNDERSTANDING INHERITANCE: MENDEL, METHOD, AND MAPPING Each of us, unless we re an identical twin, is characterized by a unique combination of traits that makes us different from all other

More information

Mendelian Genetics. KEY CONCEPT Mendel s research showed that traits are inherited as discrete units.

Mendelian Genetics. KEY CONCEPT Mendel s research showed that traits are inherited as discrete units. KEY CONCEPT Mendel s research showed that traits are inherited as discrete units. Mendel laid the groundwork for genetics. Traits are distinguishing characteristics that are inherited. Genetics is the

More information

The Inheritance of Complex Traits

The Inheritance of Complex Traits The Inheritance of Complex Traits Differences Among Siblings Is due to both Genetic and Environmental Factors VIDEO: Designer Babies Traits Controlled by Two or More Genes Many phenotypes are influenced

More information

Inbreeding and Crossbreeding. Bruce Walsh lecture notes Uppsala EQG 2012 course version 2 Feb 2012

Inbreeding and Crossbreeding. Bruce Walsh lecture notes Uppsala EQG 2012 course version 2 Feb 2012 Inbreeding and Crossbreeding Bruce Walsh lecture notes Uppsala EQG 2012 course version 2 Feb 2012 Inbreeding Inbreeding = mating of related individuals Often results in a change in the mean of a trait

More information

11/18/2013. Correlational Research. Correlational Designs. Why Use a Correlational Design? CORRELATIONAL RESEARCH STUDIES

11/18/2013. Correlational Research. Correlational Designs. Why Use a Correlational Design? CORRELATIONAL RESEARCH STUDIES Correlational Research Correlational Designs Correlational research is used to describe the relationship between two or more naturally occurring variables. Is age related to political conservativism? Are

More information

Section 8.1 Studying inheritance

Section 8.1 Studying inheritance Section 8.1 Studying inheritance Genotype and phenotype Genotype is the genetic constitution of an organism that describes all the alleles that an organism contains The genotype sets the limits to which

More information

SIMULATION OF GENETIC SYSTEMS BY AUTOMATIC DIGITAL COMPUTERS III. SELECTION BETWEEN ALLELES AT AN AUTOSOMAL LOCUS. [Manuscript receit'ed July 7.

SIMULATION OF GENETIC SYSTEMS BY AUTOMATIC DIGITAL COMPUTERS III. SELECTION BETWEEN ALLELES AT AN AUTOSOMAL LOCUS. [Manuscript receit'ed July 7. SIMULATION OF GENETIC SYSTEMS BY AUTOMATIC DIGITAL COMPUTERS III. SELECTION BETWEEN ALLELES AT AN AUTOSOMAL LOCUS By J. S. F. BARKER* [Manuscript receit'ed July 7. 1958] Summary A new approach to analysis

More information

EPDs and Heterosis - What is the Difference?

EPDs and Heterosis - What is the Difference? EPDs and Heterosis - What is the Difference? By Steven D. Lukefahr KINGSVILLE, Texas: The value of Expected Progeny Differences or EPDs as a genetic tool of selection is widely accepted especially in the

More information

INTERACTION BETWEEN NATURAL SELECTION FOR HETEROZYGOTES AND DIRECTIONAL SELECTION

INTERACTION BETWEEN NATURAL SELECTION FOR HETEROZYGOTES AND DIRECTIONAL SELECTION INTERACTION BETWEEN NATURAL SELECTION FOR HETEROZYGOTES AND DIRECTIONAL SELECTION MARGRITH WEHRLI VERGHESE 1228 Kingston Ridge Driue, Cary, N.C. 27511 Manuscript received May 5, 1973 Revised copy received

More information

Cognitive recovery after severe head injury 2. Wechsler Adult Intelligence Scale during post-traumatic amnesia

Cognitive recovery after severe head injury 2. Wechsler Adult Intelligence Scale during post-traumatic amnesia Journal of Neurology, Neurosurgery, and Psychiatry, 1975, 38, 1127-1132 Cognitive recovery after severe head injury 2. Wechsler Adult Intelligence Scale during post-traumatic amnesia IAN A. MANDLEBERG

More information

Statistical sciences. Schools of thought. Resources for the course. Bayesian Methods - Introduction

Statistical sciences. Schools of thought. Resources for the course. Bayesian Methods - Introduction Bayesian Methods - Introduction Dr. David Lucy d.lucy@lancaster.ac.uk Lancaster University Bayesian methods p.1/38 Resources for the course All resources for this course can be found at: http://www.maths.lancs.ac.uk/

More information

(b) What is the allele frequency of the b allele in the new merged population on the island?

(b) What is the allele frequency of the b allele in the new merged population on the island? 2005 7.03 Problem Set 6 KEY Due before 5 PM on WEDNESDAY, November 23, 2005. Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. Two populations (Population One

More information

Unit 4 Structure, Function and Information Processing

Unit 4 Structure, Function and Information Processing Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful

More information

Chapter 15 Review Page 1

Chapter 15 Review Page 1 hapter 15 Review Page 1 1 ased on the results of this cross, you determine that the allele for round eyes is linked to the allele for no tooth. round eyes are dominant to vertical eyes, and the absence

More information

The Standard Theory of Conscious Perception

The Standard Theory of Conscious Perception The Standard Theory of Conscious Perception C. D. Jennings Department of Philosophy Boston University Pacific APA 2012 Outline 1 Introduction Motivation Background 2 Setting up the Problem Working Definitions

More information

Activity 15.2 Solving Problems When the Genetics Are Unknown

Activity 15.2 Solving Problems When the Genetics Are Unknown f. Blue-eyed, color-blind females 1 2 0 0 g. What is the probability that any of the males will be color-blind? 1 2 (Note: This question asks only about the males, not about all of the offspring. If we

More information

Behavioral genetics: The study of differences

Behavioral genetics: The study of differences University of Lethbridge Research Repository OPUS Faculty Research and Publications http://opus.uleth.ca Lalumière, Martin 2005 Behavioral genetics: The study of differences Lalumière, Martin L. Department

More information

Fundamentals of Genetics

Fundamentals of Genetics Fundamentals of Genetics For thousands of years people have known that living things somehow pass on some type of information to their offspring. This was very clear in things that humans selected to breed

More information

GENETIC LINKAGE ANALYSIS

GENETIC LINKAGE ANALYSIS Atlas of Genetics and Cytogenetics in Oncology and Haematology GENETIC LINKAGE ANALYSIS * I- Recombination fraction II- Definition of the "lod score" of a family III- Test for linkage IV- Estimation of

More information

Interaction of Genes and the Environment

Interaction of Genes and the Environment Some Traits Are Controlled by Two or More Genes! Phenotypes can be discontinuous or continuous Interaction of Genes and the Environment Chapter 5! Discontinuous variation Phenotypes that fall into two

More information

Bending it Like Beckham: Movement, Control and Deviant Causal Chains

Bending it Like Beckham: Movement, Control and Deviant Causal Chains Bending it Like Beckham: Movement, Control and Deviant Causal Chains MARKUS E. SCHLOSSER Forthcoming in Analysis This is the author s copy that may differ from the final print version Like all causal theories

More information

UNIT III (Notes) : Genetics : Mendelian. (MHR Biology p ) Traits are distinguishing characteristics that make a unique individual.

UNIT III (Notes) : Genetics : Mendelian. (MHR Biology p ) Traits are distinguishing characteristics that make a unique individual. 1 UNIT III (Notes) : Genetics : endelian. (HR Biology p. 526-543) Heredity is the transmission of traits from one generation to another. Traits that are passed on are said to be inherited. Genetics is

More information

Mendelian Genetics using Fast Plants Report due Sept. 15/16. Readings: Mendelian genetics: Hartwell Chapter 2 pp , Chapter 5 pp

Mendelian Genetics using Fast Plants Report due Sept. 15/16. Readings: Mendelian genetics: Hartwell Chapter 2 pp , Chapter 5 pp 1 Biology 423L Sept. 1/2 Mendelian Genetics using Fast Plants Report due Sept. 15/16. Readings: Mendelian genetics: Hartwell Chapter 2 pp. 13-27, Chapter 5 pp. 127-130. FASTPLANTS: Williams et al. (1986)

More information

Color naming and color matching: A reply to Kuehni and Hardin

Color naming and color matching: A reply to Kuehni and Hardin 1 Color naming and color matching: A reply to Kuehni and Hardin Pendaran Roberts & Kelly Schmidtke Forthcoming in Review of Philosophy and Psychology. The final publication is available at Springer via

More information