Introduction to Physiological Psychology Learning and Memory II

Size: px
Start display at page:

Download "Introduction to Physiological Psychology Learning and Memory II"

Transcription

1 Introduction to Physiological Psychology Learning and Memory II cogsci.ucsd.edu/~ksweeney/psy260.html Memory Working Memory Long-term Memory Declarative Memory Procedural Memory Episodic Memory Semantic Memory 1

2 What can possibly go wrong? n Anterograde Amnesia: Amnesia for events occurring after the precipitating event. n Retrograde Amnesia: Amnesia for events occurring before the precipitating event. Hippocampus 3D 2

3 H.M. Effects of Bilateral Medial Temporal Lobectomy n Minor seizure beginning at age 10, major seizures beginning age 16 n Severe, persistent seizure condition- not controlled with anticonvulsants n By mid-20 s, condition was so severe he was unable to work n Surgery at age 27: Bilateral medial temporal lobe resection. Tissues typically excised in medial temporal lobectomy 3

4 n In HM, the amygdala, entorhinal and perirhinal cortices, and about twothirds of the hippocampus were removed 4

5 H.M. Effects of Bilateral Medial Temporal Lobectomy n Seizures were dramatically reduced but so was his long-term memory! n Evaluation two years post-surgery (April, 1955) Gave date as March 1953, and age as 27 Talked to physician before entering exam room, but at exam had no recollection of him Memories of his past were clear No deficits in perception, abstract thought, reasoning As he progressed through tests, retained no memory of earlier tests, and didn t recognize them when presented a second time. What s wrong with H.M., and what does it tell us about functions of Hippocampus and MTL? n What CAN he do? Intellect is normal Can remember the past (pre-surgery) He has relatively little retrograde amnesia His long-term memory is intact Can carry on excellent, short conversation His working memory is intact Can learn new skills at a normal rate- and retains those skills over long periods of time His procedural memory is intact 5

6 n Procedural memory is intact! Rotary Pursuit task Mirror Drawing task Other spared learning n Broken drawing recognition n Preference task melodies Valenced faces n Repetition priming n Serial reaction time task 6

7 What s wrong with H.M., and what does it tell us about functions of Hippocampus and MTL? n What CAN T he do? Doesn t retain new semantic or episodic information Can t form new declarative memories. The Medial Temporal Lobe: Crucial in the Declarative Memory System n Damage to these areas usually results in anterograde amnesia: patients are unable to form new declarative memories. n Can also result in retrograde amnesia: typically graded. n Non-declarative memory is not affected. 7

8 What does H.M. tell us about role of Hippocampus and MTL? n Hippocampus is essential for the formation, but not the storage or retrieval, of long-term declarative memory n Memory depends on Hippocampus for a short duration n Hippocampus does not mediate short-term memory What does H.M. tell us about role of Hippocampus and MTL? n STM and LTM are distinctly separate H.M. is unable to move memories from STM to LTM, a problem with memory consolidation n Memory may exist but not be recalled as when H.M. exhibits a skill he does not know he has learned 8

9 Explicit vs. Implicit Memories n Explicit memories conscious memories n Implicit memories unconscious memories, as when H.M. shows the benefits of prior experience Repetition priming tests- word fragments Incomplete pictures test- picture fragments Also, new songs, response to stranger Medial Temporal Lobe Amnesia n Often (but not always) unable to form new explicit long-term memories n Semantic memory (general information) may function normally while episodic memory (events that one has experienced) does not able to learn facts, but do not remember doing so (the episode when it occurred) n Medial temporal lobe amnesiacs may have trouble imagining future events 9

10 Spared Leaning Abilities n Perceptual Learning: Intact n Stimulus-Response Learning: Intact n Motor Learning: Intact n But Relational Learning Hippocampus 3D 10

11 11

12 Information pathway in hippocampal formation n Entorhinal cortex > n Dentate gyrus > n CA3 > n CA1 & forebrain Long Term Potentiation n Deliver single pulse to perforant path n Measure population EPSP in dentate gyrus n Stimulate perforant path with series of rapid pulses n After rapid stimulation response in dentate gyrus to a single pulse is increased- LTP has occurred!! 12

13 Associative LTP n Exactly as Hebb had suspected: when both a weak and a strong synapse are stimulated at ~the same time, the weak synapse becomes strengthened. n Neurons that fire together, wire together 13

14 Remember Temporal Summation? n The reason many pulses are necessary is because for LTP to occur, the postsynaptic cell must already be depolarized. n Why? Temporal summation NMDA and AMPA n Among the glutamate receptors: NMDA and AMPA n Glutamate binds to NMDA receptors, which controls a calcium (Ca2+) channel. n So, Ca2+ rushes in, right? NO! 14

15 NMDA and AMPA n At rest, that same calcium channel is guarded by a magnesium ion (Mg2+), so calcium can t get in through NMDA receptors. n That Mg2+ ion won t budge unless cell is depolarized. n But cell can t depolarize unless Ca2+ can get in, right? NO! NMDA and AMPA n If a weak synapse is active by itself, nothing happens n BUT- if the cell has just fired due to a strong synapse elsewhere else on the cell, a dendritic spike will depolarize the membrane 15

16 NMDA and AMPA n Depolarization kicks the Mg2+ ion out, and NOW Ca2+ ions can enter the cell. n and an association between those two synapses is formed. We still don t have LTP! n Ca2+ ions entering the cell bind with the enzyme CaM- KII n CaM-KII causes more AMPA receptors to to move to post-synaptic membrane. n More AMPA receptors means it s easier to depolarize the cell in the future. 16

17 We still don t have LTP! n Ca2+ ions entering the cell bind with the enzyme CaM- KII n CaM-KII causes more AMPA receptors to to move to post-synaptic membrane. n More AMPA receptors means it s easier to depolarize the cell in the future. n For Ca2+ to enter the cell, NMDA receptors have to be activated by glutamate AND subjected to depolarization simultaneously. n The fact that both these things must occur together means that NMDA receptors are coincidence detectors. n Thus, they are crucial for LTP. 17

18 Perceptual Learning n Learning enables us to adapt to our environment and to respond to changes in it: In particular, learning provides us with the ability to perform an appropriate behavior in an appropriate situation. n The first part of learning involves learning to perceive particular stimuli: Perceptual learning involves learning to recognize things, not what to do when they are present. n Perceptual learning can involve learning to recognize entirely new stimuli, or it can involve learning to recognize changes or variations in familiar stimuli. 18

19 Perceptual Learning n Visual information: After the first level of analysis the information is sent to the extrastriate cortex, which surrounds the primary visual cortex (striate cortex, V1). n After analyzing particular attributes of the visual scene, such as form, color, and movement, subregions of the extrastriate cortex send the results of their analysis to the next level of the visual association cortex, which is divided into two streams. Perceptual Learning n The ventral stream involved with object recognition, continues ventrally into the inferior temporal cortex. n The dorsal stream involved with perception of the location of objects, continues dorsally into the posterior parietal cortex. n The ventral stream is involved with the what of visual perception; the dorsal stream is involved with the where. 19

20 PET study of where/what dichotomy Perceptual Learning n Specific kinds of visual information can activate very specific regions of visual association cortex. n The investigators presented subjects with photographs that implied motion for example, an athlete getting ready to throw a ball. n They found that photographs like these, but not photographs of people remaining still, activated area MT/MST. 20

21 Stimulus-Response Learning (Classical Conditioning) Extinction Several trials of the tone-alone (with no shock given). Intact rats show normal blood pressure and movement to the tone, following this (extinction) training. 21

22 The Amygdala n n n The amygdala (almond) sits at the tip of the hippocampus It receives information from virtually the entire brainafter different amounts of processing It projects to many areas, but one of the strongest projections is to the entorhinal cortex! The Amygdala n As a rat learns the pairing, (more) neurons become more responsive. But after several tones without the pairing, firing rates return to baseline. If rendered inactive, conditioning does not occur! Firing in the lateral amygdala 22

23 Basic Fear Circuitry Creation and Extinction of Fear Memories n The lateral nucleus of the amygdala receives information from somatosensory system and auditory system. n It projects (directly and indirectly) to central nucleus, which mediates expression of fear response 23

24 Creation and Extinction of Fear Memories n With a lesion to the lateral nucleus, a rat will not learn the conditioned emotional response. n With a lesion to the central nucleus, the conditioned response is reduced. Stimulus-Response Learning: Instrumental Conditioning n Instrumental conditioning is the means by which we profit from experience If the response is already known, we need strengthening of connections b/t neural circuits that detect relevant stimuli, and those that control the relative response If a new response is needed, then motor learning will take place 24

25 Instrumental Conditioning n Circuits responsible for instrumental conditioning begin in sensory association cortices and end in motor association cortex. Instrumental Conditioning n Two major pathways from sensory to motor association areas: Direct transcortical connections- involved in STM, acquisition of episodic memories and of complex behaviors that involve deliberation or instruction (slow and laborious) Connections via the basal ganglia and thalamus- which are involved as behaviors become automatic and routine (fast and easy) 25

26 Basal Ganglia n Neostriatum (caudate and putamen) receives sensory info from all areas of cortex n Projects to globus pallidus, which projects to premotor and supplementary motor circuits (involved in planning and execution of movements), and to primary motor cortex Basal Ganglia n Damage to neostriatum makes it difficult to learn to make a visually guided response n but does NOT disrupt visual perceptual learning. 26

27 Instrumental Conditioning n As we deliberately perform a complex behavior, the basal ganglia receive information both about the stimuli that are present and the responses we are making. n At first the basal ganglia are passive observers of the situation, but as the behaviors are repeated again and again, the basal ganglia begin to learn what to do. n Eventually, they take over most of the details of the process, leaving the transcortical circuits free to do something else- We need no longer think about what we are doing. Relational Learning 27

28 n Spatial Memory Relational Learning n Spatial information need not be declared (we can demonstrate our topographical memories by successfully getting from place to place) n BUT: people with anterograde amnesia are often unable to consolidate information about the location of rooms, corridors, buildings, roads, and other important items in their environment. n Spatial Memory Relational Learning n Bilateral medial temporal lobe lesions produce the most profound impairment in spatial memory, but significant deficits can be produced by damage that is limited to the right hemisphere. n Functional imaging studies have shown that the right hippocampal formation becomes active when a person is remembering or performing a navigational task. 28

29 Relational Learning n Relational Learning in Laboratory Animals n The discovery that hippocampal lesions produced anterograde amnesia in humans stimulated interest in the exact role that this structure plays in the learning process. n Researchers have developed tasks that require relational learning, and on such tasks laboratory animals with hippocampal lesions show memory deficits, just as humans do. Relational Learning n Relational Learning in Laboratory Animals n The Morris water maze requires relational learning; to navigate around the maze, the animals get their bearings from the relative locations of stimuli located outside the maze furniture, windows, doors, and so on, but the maze can be used for nonrelational, stimulus response learning too. 29

30 Relational Learning n Relational Learning in Laboratory Animals n If rats with hippocampal lesions are always released from the same place, they learn this nonrelational, stimulus response task about as well as normal rats do. n However, if they are released from a new position on each trial, they swim in what appears to be an aimless fashion until they finally encounter the platform. 30

31 Relational Learning n Relational Learning in Laboratory Animals n Place cells have receptive fields in the environment. n Place cells are active when the animal is in a particular location in the environment; most typically found in the hippocampal formationbut also in entorhinal cortex. n Evidence indicates that firing of hippocampal place cells appears to reflect the location where an animal thinks it is. 31

32 Hippocampus and spatial memory Hippocampus seems to play role in spatial memory in many species not just rats! n Food-caching birds caching and retrieving is needed for hippocampal growth n Primate studies are inconsistent But perhaps due to poor design! n Taxi drivers! The Hippocampus and Memory for Spatial Location n So Rhinal cortex plays an important role in object recognition n Hippocampus plays a key role in memory for spatial location Hippocampectomy produces deficits on Morris maze and radial arm maze Place cells also found in entorhinal cortex 32

Introduction to Physiological Psychology Review

Introduction to Physiological Psychology Review Introduction to Physiological Psychology Review ksweeney@cogsci.ucsd.edu www.cogsci.ucsd.edu/~ksweeney/psy260.html n Learning and Memory n Human Communication n Emotion 1 What is memory? n Working Memory:

More information

Perceptual Learning. Motor Learning. Stimulus-Response Learning. Relational Learning

Perceptual Learning. Motor Learning. Stimulus-Response Learning. Relational Learning Introduction to Physiological Psychology Review ksweeney@cogsci.ucsd.edu www.cogsci.ucsd.edu/~ksweeney/psy260.html Learning and Memory Human Communication Emotion 1 Working Memory: What is memory? Limited

More information

More dendritic spines, changes in shapes of dendritic spines More NT released by presynaptic membrane

More dendritic spines, changes in shapes of dendritic spines More NT released by presynaptic membrane LEARNING AND MEMORY (p.1) You are your learning and memory! (see movie Total Recall) L&M, two sides of the same coin learning refers more to the acquisition of new information & brain circuits (storage)

More information

Systems Neuroscience November 29, Memory

Systems Neuroscience November 29, Memory Systems Neuroscience November 29, 2016 Memory Gabriela Michel http: www.ini.unizh.ch/~kiper/system_neurosci.html Forms of memory Different types of learning & memory rely on different brain structures

More information

Ch 8. Learning and Memory

Ch 8. Learning and Memory Ch 8. Learning and Memory Cognitive Neuroscience: The Biology of the Mind, 2 nd Ed., M. S. Gazzaniga, R. B. Ivry, and G. R. Mangun, Norton, 2002. Summarized by H.-S. Seok, K. Kim, and B.-T. Zhang Biointelligence

More information

Learning and Memory. The Case of H.M.

Learning and Memory. The Case of H.M. Learning and Memory Learning deals with how experience changes the brain Memory refers to how these changes are stored and later reactivated The Case of H.M. H.M. suffered from severe, intractable epilepsy

More information

Ch 8. Learning and Memory

Ch 8. Learning and Memory Ch 8. Learning and Memory Cognitive Neuroscience: The Biology of the Mind, 2 nd Ed., M. S. Gazzaniga,, R. B. Ivry,, and G. R. Mangun,, Norton, 2002. Summarized by H.-S. Seok, K. Kim, and B.-T. Zhang Biointelligence

More information

Serial model. Amnesia. Amnesia. Neurobiology of Learning and Memory. Prof. Stephan Anagnostaras. Lecture 3: HM, the medial temporal lobe, and amnesia

Serial model. Amnesia. Amnesia. Neurobiology of Learning and Memory. Prof. Stephan Anagnostaras. Lecture 3: HM, the medial temporal lobe, and amnesia Neurobiology of Learning and Memory Serial model Memory terminology based on information processing models e.g., Serial Model Prof. Stephan Anagnostaras Lecture 3: HM, the medial temporal lobe, and amnesia

More information

Theories of memory. Memory & brain Cellular bases of learning & memory. Epileptic patient Temporal lobectomy Amnesia

Theories of memory. Memory & brain Cellular bases of learning & memory. Epileptic patient Temporal lobectomy Amnesia Cognitive Neuroscience: The Biology of the Mind, 2 nd Ed., M. S. Gazzaniga, R. B. Ivry, and G. R. Mangun, Norton, 2002. Theories of Sensory, short-term & long-term memories Memory & brain Cellular bases

More information

Cognitive Neuroscience of Memory

Cognitive Neuroscience of Memory Cognitive Neuroscience of Memory Types and Structure of Memory Types of Memory Type of Memory Time Course Capacity Conscious Awareness Mechanism of Loss Sensory Short-Term and Working Long-Term Nondeclarative

More information

9.01 Introduction to Neuroscience Fall 2007

9.01 Introduction to Neuroscience Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 9.01 Introduction to Neuroscience Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Declarative memory conscious,

More information

This Lecture: Psychology of Memory and Brain Areas Involved

This Lecture: Psychology of Memory and Brain Areas Involved Lecture 18 (Nov 24 th ): LEARNING & MEMORY #1 Lecture Outline This Lecture: Psychology of Memory and Brain Areas Involved Next lecture: Neural Mechanisms for Memory 1) Psychology of Memory: Short Term

More information

Memory. Psychology 3910 Guest Lecture by Steve Smith

Memory. Psychology 3910 Guest Lecture by Steve Smith Memory Psychology 3910 Guest Lecture by Steve Smith Note: Due to copyright restrictions, I had to remove the images from the Weschler Memory Scales from the slides I posted online. Wechsler Memory Scales

More information

Butter Food Eat Sandwich Rye Jam Milk Flour Jelly Dough Crust Slice Wine Loaf Toast

Butter Food Eat Sandwich Rye Jam Milk Flour Jelly Dough Crust Slice Wine Loaf Toast Introduction to Physiological Psychology Learning and Memory ksweeney@cogsci.ucsd.edu cogsci.ucsd.edu/~ /~ksweeney/psy260.html Comments on your comments Thank you! Some things that I can change NOW: Slow

More information

Summarized by. Biointelligence Laboratory, Seoul National University

Summarized by. Biointelligence Laboratory, Seoul National University Ch 8. Learning and Memory Cognitive Neuroscience: The Biology of the Mind, 3 rd Ed., M. S. Gazzaniga, R. B. Ivry, and G. R. Mangun, Norton, 2008. Summarized by H.-S. Seok, K. Kim, and db.-t. TZhang Biointelligence

More information

CSE511 Brain & Memory Modeling Lect 22,24,25: Memory Systems

CSE511 Brain & Memory Modeling Lect 22,24,25: Memory Systems CSE511 Brain & Memory Modeling Lect 22,24,25: Memory Systems Compare Chap 31 of Purves et al., 5e Chap 24 of Bear et al., 3e Larry Wittie Computer Science, StonyBrook University http://www.cs.sunysb.edu/~cse511

More information

NST II Psychology NST II Neuroscience (Module 5)

NST II Psychology NST II Neuroscience (Module 5) NST II Psychology NST II Neuroscience (Module 5) Brain Mechanisms of Memory and Cognition 4 Forms of memory. Neural basis of memory (1): amnesia, the hippocampus Rudolf Cardinal Department of Experimental

More information

Synap&c Plas&city. long-term plasticity (~30 min to lifetime) Long-term potentiation (LTP) / Long-term depression (LTD)

Synap&c Plas&city. long-term plasticity (~30 min to lifetime) Long-term potentiation (LTP) / Long-term depression (LTD) Synap&c Plas&city synaptic connectivity constantly changes in response to activity and other factors During development: provides the basic wiring of the brain s circuits Throughout rest of life: basis

More information

CASE 49. What type of memory is available for conscious retrieval? Which part of the brain stores semantic (factual) memories?

CASE 49. What type of memory is available for conscious retrieval? Which part of the brain stores semantic (factual) memories? CASE 49 A 43-year-old woman is brought to her primary care physician by her family because of concerns about her forgetfulness. The patient has a history of Down syndrome but no other medical problems.

More information

COGNITIVE SCIENCE 107A. Hippocampus. Jaime A. Pineda, Ph.D.

COGNITIVE SCIENCE 107A. Hippocampus. Jaime A. Pineda, Ph.D. COGNITIVE SCIENCE 107A Hippocampus Jaime A. Pineda, Ph.D. Common (Distributed) Model of Memory Processes Time Course of Memory Processes Long Term Memory DECLARATIVE NON-DECLARATIVE Semantic Episodic Skills

More information

Morris water maze: standard test for spatial memory in rodents

Morris water maze: standard test for spatial memory in rodents Vertebrate Models: The Hippocampus 34 Vertebrate Models: The Hippocampus 35 Vertebrate Models: The Hippocampus 36 Vertebrate Models: The Hippocampus 37 Animal Models of Learning (Vertebrates) Morris water

More information

Henry Molaison. Biography. From Wikipedia, the free encyclopedia

Henry Molaison. Biography. From Wikipedia, the free encyclopedia Henry Molaison From Wikipedia, the free encyclopedia Henry Gustav Molaison (February 26, 1926 December 2, 2008), known widely as H.M., was an American memory disorder patient who had a bilateral medial

More information

Memory Systems II How Stored: Engram and LTP. Reading: BCP Chapter 25

Memory Systems II How Stored: Engram and LTP. Reading: BCP Chapter 25 Memory Systems II How Stored: Engram and LTP Reading: BCP Chapter 25 Memory Systems Learning is the acquisition of new knowledge or skills. Memory is the retention of learned information. Many different

More information

Cellular Neurobiology BIPN140

Cellular Neurobiology BIPN140 Cellular Neurobiology BIPN140 Second midterm is next Tuesday!! Covers lectures 7-12 (Synaptic transmission, NT & receptors, intracellular signaling & synaptic plasticity). Review session is on Monday (Nov

More information

Why do we have a hippocampus? Short-term memory and consolidation

Why do we have a hippocampus? Short-term memory and consolidation Why do we have a hippocampus? Short-term memory and consolidation So far we have talked about the hippocampus and: -coding of spatial locations in rats -declarative (explicit) memory -experimental evidence

More information

SAMPLE EXAMINATION QUESTIONS

SAMPLE EXAMINATION QUESTIONS SAMPLE EXAMINATION QUESTIONS PLEASE NOTE, THE QUESTIONS BELOW SAMPLE THE ENTIRE LECTURE COURSE AND THEREORE INCLUDE QUESTIONS ABOUT TOPICS THAT WE HAVE NOT YET COVERED IN CLASS. 1. Which of the following

More information

Introduction to Long-Term Memory

Introduction to Long-Term Memory Introduction to Long-Term Memory Psychology 355: Cognitive Psychology Instructor: John Miyamoto 04/26/2018: Lecture 05-4 Note: This Powerpoint presentation may contain macros that I wrote to help me create

More information

MEMORY STORAGE. There are three major kinds of storage:

MEMORY STORAGE. There are three major kinds of storage: MEMORY Jill Price was capable of remembering everything that happened last year and several years ago. Memory is the ability to store and retrieve information over time. Memories are the residue of those

More information

Cerebral Cortex: Association Areas and Memory Tutis Vilis

Cerebral Cortex: Association Areas and Memory Tutis Vilis 97 Cerebral Cortex: Association Areas and Memory Tutis Vilis a) Name the 5 main subdivisions of the cerebral cortex. Frontal, temporal, occipital, parietal, and limbic (on the medial side) b) Locate the

More information

October 2, Memory II. 8 The Human Amnesic Syndrome. 9 Recent/Remote Distinction. 11 Frontal/Executive Contributions to Memory

October 2, Memory II. 8 The Human Amnesic Syndrome. 9 Recent/Remote Distinction. 11 Frontal/Executive Contributions to Memory 1 Memory II October 2, 2008 2 3 4 5 6 7 8 The Human Amnesic Syndrome Impaired new learning (anterograde amnesia), exacerbated by increasing retention delay Impaired recollection of events learned prior

More information

Psychology 320: Topics in Physiological Psychology Lecture Exam 2: March 19th, 2003

Psychology 320: Topics in Physiological Psychology Lecture Exam 2: March 19th, 2003 Psychology 320: Topics in Physiological Psychology Lecture Exam 2: March 19th, 2003 Name: Student #: BEFORE YOU BEGIN!!! 1) Count the number of pages in your exam. The exam is 8 pages long; if you do not

More information

memory Examples: Obama is president, PSYC 2 is in Price Center Theater, my 21st birthday was a disaster

memory Examples: Obama is president, PSYC 2 is in Price Center Theater, my 21st birthday was a disaster PSYC 2: Biological Foundations - Fall 2012 - Professor Claffey Notes: Cognition 2 Version: 11/18/12 - original version Memory Classifications A note on memory classifications Definitions developed from

More information

BIPN 140 Problem Set 6

BIPN 140 Problem Set 6 BIPN 140 Problem Set 6 1) The hippocampus is a cortical structure in the medial portion of the temporal lobe (medial temporal lobe in primates. a) What is the main function of the hippocampus? The hippocampus

More information

Brain anatomy and artificial intelligence. L. Andrew Coward Australian National University, Canberra, ACT 0200, Australia

Brain anatomy and artificial intelligence. L. Andrew Coward Australian National University, Canberra, ACT 0200, Australia Brain anatomy and artificial intelligence L. Andrew Coward Australian National University, Canberra, ACT 0200, Australia The Fourth Conference on Artificial General Intelligence August 2011 Architectures

More information

Memory: Computation, Genetics, Physiology, and Behavior. James L. McClelland Stanford University

Memory: Computation, Genetics, Physiology, and Behavior. James L. McClelland Stanford University Memory: Computation, Genetics, Physiology, and Behavior James L. McClelland Stanford University A Playwright s Take on Memory What interests me a great deal is the mistiness of the past Harold Pinter,

More information

Consciousness Gleitman et al. (2011), Chapter 6, Part 1

Consciousness Gleitman et al. (2011), Chapter 6, Part 1 Consciousness Gleitman et al. (2011), Chapter 6, Part 1 Mike D Zmura Department of Cognitive Sciences, UCI Psych 9A / Psy Beh 11A March 11, 2014 T. M. D'Zmura 1 Consciousness Moment-by-moment awareness

More information

Memory 2/15/2017. The Three Systems Model of Memory. Process by which one encodes, stores, and retrieves information

Memory 2/15/2017. The Three Systems Model of Memory. Process by which one encodes, stores, and retrieves information Chapter 6: Memory Memory Process by which one encodes, stores, and retrieves information The Three Systems Model of Memory Each system differs in terms of span and duration 1 The Three Systems Model of

More information

LONG TERM MEMORY. Learning Objective Topics. Retrieval and the Brain. Retrieval Neuroscience of Memory. LTP Brain areas Consolidation Reconsolidation

LONG TERM MEMORY. Learning Objective Topics. Retrieval and the Brain. Retrieval Neuroscience of Memory. LTP Brain areas Consolidation Reconsolidation LONG TERM MEMORY Retrieval and the rain Learning Objective Topics Retrieval Neuroscience of Memory LTP rain areas onsolidation Reconsolidation 1 Long-term memory How does info become encoded/stored in

More information

MEMORY. Announcements. Practice Question 2. Practice Question 1 10/3/2012. Next Quiz available Oct 11

MEMORY. Announcements. Practice Question 2. Practice Question 1 10/3/2012. Next Quiz available Oct 11 Announcements Next Quiz available Oct 11 Due Oct 16 MEMORY Practice Question 1 Practice Question 2 What type of operant conditioning is Stewie using to get attention from his mom? A rercer that acquires

More information

Visual Memory Any neural or behavioural phenomenon implying storage of a past visual experience. E n c o d i n g. Individual exemplars:

Visual Memory Any neural or behavioural phenomenon implying storage of a past visual experience. E n c o d i n g. Individual exemplars: Long-term Memory Short-term Memory Unconscious / Procedural Conscious / Declarative Working Memory Iconic Memory Visual Memory Any neural or behavioural phenomenon implying storage of a past visual experience.

More information

Chapter 2: Studies of Human Learning and Memory. From Mechanisms of Memory, second edition By J. David Sweatt, Ph.D.

Chapter 2: Studies of Human Learning and Memory. From Mechanisms of Memory, second edition By J. David Sweatt, Ph.D. Chapter 2: Studies of Human Learning and Memory From Mechanisms of Memory, second edition By J. David Sweatt, Ph.D. Medium Spiny Neuron A Current Conception of the major memory systems in the brain Figure

More information

Synaptic plasticity and hippocampal memory

Synaptic plasticity and hippocampal memory Synaptic plasticity and hippocampal memory Tobias Bast School of Psychology, University of Nottingham tobias.bast@nottingham.ac.uk Synaptic plasticity as the neurophysiological substrate of learning Hebb

More information

Lecture 35 Association Cortices and Hemispheric Asymmetries -- M. Goldberg

Lecture 35 Association Cortices and Hemispheric Asymmetries -- M. Goldberg Lecture 35 Association Cortices and Hemispheric Asymmetries -- M. Goldberg The concept that different parts of the brain did different things started with Spurzheim and Gall, whose phrenology became quite

More information

1) Drop off in the Bi 150 box outside Baxter 331 or to the head TA (jcolas).

1) Drop off in the Bi 150 box outside Baxter 331 or  to the head TA (jcolas). Bi/CNS/NB 150 Problem Set 5 Due: Tuesday, Nov. 24, at 4:30 pm Instructions: 1) Drop off in the Bi 150 box outside Baxter 331 or e-mail to the head TA (jcolas). 2) Submit with this cover page. 3) Use a

More information

Computational Explorations in Cognitive Neuroscience Chapter 7: Large-Scale Brain Area Functional Organization

Computational Explorations in Cognitive Neuroscience Chapter 7: Large-Scale Brain Area Functional Organization Computational Explorations in Cognitive Neuroscience Chapter 7: Large-Scale Brain Area Functional Organization 1 7.1 Overview This chapter aims to provide a framework for modeling cognitive phenomena based

More information

BIPN 140 Problem Set 6

BIPN 140 Problem Set 6 BIPN 140 Problem Set 6 1) Hippocampus is a cortical structure in the medial portion of the temporal lobe (medial temporal lobe in primates. a) What is the main function of the hippocampus? The hippocampus

More information

Neuronal Plasticity, Learning and Memory. David Keays Institute of Molecular Pathology

Neuronal Plasticity, Learning and Memory. David Keays Institute of Molecular Pathology Neuronal Plasticity, Learning and Memory David Keays Institute of Molecular Pathology http://keayslab.org Structure 1. What is learning and memory? 2. Anatomical basis 3. Cellular basis 4. Molecular

More information

Prior Knowledge and Memory Consolidation Expanding Competitive Trace Theory

Prior Knowledge and Memory Consolidation Expanding Competitive Trace Theory Prior Knowledge and Memory Consolidation Expanding Competitive Trace Theory Anna Smith Outline 1. 2. 3. 4. 5. Background in Memory Models Models of Consolidation The Hippocampus Competitive Trace Theory

More information

Chapter 6: Hippocampal Function In Cognition. From Mechanisms of Memory, second edition By J. David Sweatt, Ph.D.

Chapter 6: Hippocampal Function In Cognition. From Mechanisms of Memory, second edition By J. David Sweatt, Ph.D. Chapter 6: Hippocampal Function In Cognition From Mechanisms of Memory, second edition By J. David Sweatt, Ph.D. Grid Cell The Hippocampus Serves a Role in Multimodal Information Processing and Memory

More information

The origins of localization

The origins of localization Association Cortex, Asymmetries, and Cortical Localization of Affective and Cognitive Functions Michael E. Goldberg, M.D. The origins of localization The concept that different parts of the brain did different

More information

Cortex and Mind Chapter 5. Memory is stored knowledge about the internal and external environments; it includes perceptual and motor knowledge.

Cortex and Mind Chapter 5. Memory is stored knowledge about the internal and external environments; it includes perceptual and motor knowledge. Cortex and Mind Chapter 5 Memory is stored knowledge about the internal and external environments; it includes perceptual and motor knowledge. Review of classical classification of learning and memory

More information

Association Cortex, Asymmetries, and Cortical Localization of Affective and Cognitive Functions. Michael E. Goldberg, M.D.

Association Cortex, Asymmetries, and Cortical Localization of Affective and Cognitive Functions. Michael E. Goldberg, M.D. Association Cortex, Asymmetries, and Cortical Localization of Affective and Cognitive Functions Michael E. Goldberg, M.D. The origins of localization The concept that different parts of the brain did different

More information

Memory. Lynn Yen, class of 2009

Memory. Lynn Yen, class of 2009 Memory Lynn Yen, class of 2009 Objectives 1. Understand the different types of memory. 2. Describe where different types of memory are stored and the CNS structures involved in storage. 3. Describe how

More information

Neuroscience of Consciousness II

Neuroscience of Consciousness II 1 C83MAB: Mind and Brain Neuroscience of Consciousness II Tobias Bast, School of Psychology, University of Nottingham 2 Consciousness State of consciousness - Being awake/alert/attentive/responsive Contents

More information

Neuroplasticity:. Happens in at least 3 ways: - - -

Neuroplasticity:. Happens in at least 3 ways: - - - BRAIN PLASTICITY Neuroplasticity:. Happens in at least 3 ways: - - - Recently, it was found that new neurons and glial cells are born in specific brain regions - reorganization. Brain plasticity occurs

More information

Feedback Education and Neuroscience. Pankaj Sah

Feedback Education and Neuroscience. Pankaj Sah Feedback Education and Neuroscience Pankaj Sah Science of Learning Learning The process of acquiring a skill or knowledge that leads to a change in behaviour Memory The ability to retain and recover information

More information

BRAIN PLASTICITY. Neuroplasticity:. Happens in at least 3 ways: - - -

BRAIN PLASTICITY. Neuroplasticity:. Happens in at least 3 ways: - - - BRAIN PLASTICITY Neuroplasticity:. Happens in at least 3 ways: - - - Recently, it was found that new neurons and glial cells are born in specific brain regions - reorganization. Brain plasticity occurs

More information

Prof. Saeed Abuel Makarem & Dr.Sanaa Alshaarawy

Prof. Saeed Abuel Makarem & Dr.Sanaa Alshaarawy Prof. Saeed Abuel Makarem & Dr.Sanaa Alshaarawy 1 Objectives By the end of the lecture, you should be able to: Describe the anatomy and main functions of the thalamus. Name and identify different nuclei

More information

FAILURES OF OBJECT RECOGNITION. Dr. Walter S. Marcantoni

FAILURES OF OBJECT RECOGNITION. Dr. Walter S. Marcantoni FAILURES OF OBJECT RECOGNITION Dr. Walter S. Marcantoni VISUAL AGNOSIA -damage to the extrastriate visual regions (occipital, parietal and temporal lobes) disrupts recognition of complex visual stimuli

More information

Memory, Attention, and Decision-Making

Memory, Attention, and Decision-Making Memory, Attention, and Decision-Making A Unifying Computational Neuroscience Approach Edmund T. Rolls University of Oxford Department of Experimental Psychology Oxford England OXFORD UNIVERSITY PRESS Contents

More information

The Nervous System. Neuron 01/12/2011. The Synapse: The Processor

The Nervous System. Neuron 01/12/2011. The Synapse: The Processor The Nervous System Neuron Nucleus Cell body Dendrites they are part of the cell body of a neuron that collect chemical and electrical signals from other neurons at synapses and convert them into electrical

More information

Synaptic plasticityhippocampus. Neur 8790 Topics in Neuroscience: Neuroplasticity. Outline. Synaptic plasticity hypothesis

Synaptic plasticityhippocampus. Neur 8790 Topics in Neuroscience: Neuroplasticity. Outline. Synaptic plasticity hypothesis Synaptic plasticityhippocampus Neur 8790 Topics in Neuroscience: Neuroplasticity Outline Synaptic plasticity hypothesis Long term potentiation in the hippocampus How it s measured What it looks like Mechanisms

More information

Memory. Information Processing Approach

Memory. Information Processing Approach Memory Information Processing Approach 5 Steps in Information ato Processing 1 Sensory Transduction Data first enters sensory register lasts 1 2secs C O N S O L I D A T I O N 5 Steps in Information ato

More information

Do all these faces look familiar? Can you name them all? Why is it difficult to recall names even though you can recognize them? More generally, why

Do all these faces look familiar? Can you name them all? Why is it difficult to recall names even though you can recognize them? More generally, why Do all these faces look familiar? Can you name them all? Why is it difficult to recall names even though you can recognize them? More generally, why do we forget things? Learning Causes Forgetting: Interference

More information

Systems Neuroscience CISC 3250

Systems Neuroscience CISC 3250 Systems Neuroscience CISC 325 Memory Types of Memory Declarative Non-declarative Episodic Semantic Professor Daniel Leeds dleeds@fordham.edu JMH 328A Hippocampus (MTL) Cerebral cortex Basal ganglia Motor

More information

The Central Nervous System I. Chapter 12

The Central Nervous System I. Chapter 12 The Central Nervous System I Chapter 12 The Central Nervous System The Brain and Spinal Cord Contained within the Axial Skeleton Brain Regions and Organization Medical Scheme (4 regions) 1. Cerebral Hemispheres

More information

The Neurobiology of Learning and Memory

The Neurobiology of Learning and Memory The Neurobiology of Learning and Memory JERRY W. RUDY University of Colorado, Boulder Sinauer Associates, Inc. Publishers Sunderland, Massachusetts 01375 Table of Contents CHAPTER 1 Introduction: Fundamental

More information

Brain Imaging Applied to Memory & Learning

Brain Imaging Applied to Memory & Learning Brain Imaging Applied to Memory & Learning John Gabrieli Department of Brain & Cognitive Sciences Institute for Medical Engineering & Sciences McGovern Institute for Brain Sciences MIT Levels of Analysis

More information

Linda Lušić Research fellow Department of neuroscience School of medicine. University of Split

Linda Lušić Research fellow Department of neuroscience School of medicine. University of Split Linda Lušić Research fellow Department of neuroscience School of medicine University of Split Nonassociative? Associative? Nonassociative learning when an animal or a person is exposed once or repeatedly

More information

Limbic system outline

Limbic system outline Limbic system outline 1 Introduction 4 The amygdala and emotion -history - theories of emotion - definition - fear and fear conditioning 2 Review of anatomy 5 The hippocampus - amygdaloid complex - septal

More information

Chapter 4: Representation in Memory

Chapter 4: Representation in Memory Chapter 4: Representation in Memory 1. What is a proposition according to the classic models of associative memory? a. An idea that emerges from the consideration of several different related ideas b.

More information

A systems neuroscience approach to memory

A systems neuroscience approach to memory A systems neuroscience approach to memory Critical brain structures for declarative memory Relational memory vs. item memory Recollection vs. familiarity Recall vs. recognition What about PDs? R-K paradigm

More information

Increasing the amount of information that can be held in short-term memory by grouping related items together into a single unit, or chunk.

Increasing the amount of information that can be held in short-term memory by grouping related items together into a single unit, or chunk. chunking Increasing the amount of information that can be held in short-term memory by grouping related items together into a single unit, or chunk. clustering Organizing items into related groups during

More information

Why is dispersion of memory important*

Why is dispersion of memory important* What is memory* It is a web of connections Research has shown that people who lose their memory also lose the ability to connect things to each other in their mind It is these connections that let us understand

More information

Importance of Deficits

Importance of Deficits Importance of Deficits In complex systems the parts are often so integrated that they cannot be detected in normal operation Need to break the system to discover the components not just physical components

More information

Physiology Unit 2 CONSCIOUSNESS, THE BRAIN AND BEHAVIOR

Physiology Unit 2 CONSCIOUSNESS, THE BRAIN AND BEHAVIOR Physiology Unit 2 CONSCIOUSNESS, THE BRAIN AND BEHAVIOR In Physiology Today What the Brain Does The nervous system determines states of consciousness and produces complex behaviors Any given neuron may

More information

COGNITIVE SCIENCE 107A. Motor Systems: Basal Ganglia. Jaime A. Pineda, Ph.D.

COGNITIVE SCIENCE 107A. Motor Systems: Basal Ganglia. Jaime A. Pineda, Ph.D. COGNITIVE SCIENCE 107A Motor Systems: Basal Ganglia Jaime A. Pineda, Ph.D. Two major descending s Pyramidal vs. extrapyramidal Motor cortex Pyramidal system Pathway for voluntary movement Most fibers originate

More information

Let me begin by telling a little story.

Let me begin by telling a little story. Chapter 19 Learning and Memory Let me begin by telling a little story. When I was a graduate student we had to take an exam that Cornell does in an interesting way. They put you in a swivelchair surrounded

More information

Memory retention the synaptic stability versus plasticity dilemma

Memory retention the synaptic stability versus plasticity dilemma Memory retention the synaptic stability versus plasticity dilemma Paper: Abraham, Wickliffe C., and Anthony Robins. "Memory retention the synaptic stability versus plasticity dilemma." Trends in neurosciences

More information

Physiology Unit 2 CONSCIOUSNESS, THE BRAIN AND BEHAVIOR

Physiology Unit 2 CONSCIOUSNESS, THE BRAIN AND BEHAVIOR Physiology Unit 2 CONSCIOUSNESS, THE BRAIN AND BEHAVIOR What the Brain Does The nervous system determines states of consciousness and produces complex behaviors Any given neuron may have as many as 200,000

More information

Synaptic plasticity. Mark van Rossum. Institute for Adaptive and Neural Computation University of Edinburgh

Synaptic plasticity. Mark van Rossum. Institute for Adaptive and Neural Computation University of Edinburgh Synaptic plasticity Mark van Rossum Institute for Adaptive and Neural Computation University of Edinburgh 1 Human memory systems 2 Psychologists have split up memory in: Declarative memory * Episodic memory

More information

4. The notion that all living things are related was put forward by: A) Charles Darwin. B) Alfred Russel Wallace. C) Gregor Mendel. D) both a and b.

4. The notion that all living things are related was put forward by: A) Charles Darwin. B) Alfred Russel Wallace. C) Gregor Mendel. D) both a and b. *see the end of the exam for multiple choice correct answers and all matching answers* 1. Phineas Gage's animal behavior was a result of damage to: A) the frontal lobes. B) the temporal lobes. C) the parietal

More information

Long-Term Potentiation and Memory

Long-Term Potentiation and Memory Physiol Rev 84: 87 136, 2004; 10.1152/physrev.00014.2003. Long-Term Potentiation and Memory M. A. LYNCH Trinity College Institute of Neuroscience, Department of Physiology, Trinity College, Dublin, Ireland

More information

Disorders of Object and Spatial perception. Dr John Maasch Brain Injury Rehabilitation Service Burwood Hospital.

Disorders of Object and Spatial perception. Dr John Maasch Brain Injury Rehabilitation Service Burwood Hospital. Disorders of Object and Spatial perception Dr John Maasch Brain Injury Rehabilitation Service Burwood Hospital. Take Home Message 1 Where there are lesions of the posterior cerebrum and posterior temporal

More information

THE BRAIN HABIT BRIDGING THE CONSCIOUS AND UNCONSCIOUS MIND

THE BRAIN HABIT BRIDGING THE CONSCIOUS AND UNCONSCIOUS MIND THE BRAIN HABIT BRIDGING THE CONSCIOUS AND UNCONSCIOUS MIND Mary ET Boyle, Ph. D. Department of Cognitive Science UCSD How did I get here? What did I do? Start driving home after work Aware when you left

More information

Introduction to Systems Neuroscience. Nov. 28, The limbic system. Daniel C. Kiper

Introduction to Systems Neuroscience. Nov. 28, The limbic system. Daniel C. Kiper Introduction to Systems Neuroscience Nov. 28, 2017 The limbic system Daniel C. Kiper kiper@ini.phys.ethz.ch http: www.ini.unizh.ch/~kiper/system_neurosci.html LIMBIC SYSTEM The term limbic system mean

More information

Chapter 2: Studies of Human Learning and Memory. From Mechanisms of Memory, second edition By J. David Sweatt, Ph.D.

Chapter 2: Studies of Human Learning and Memory. From Mechanisms of Memory, second edition By J. David Sweatt, Ph.D. Chapter 2: Studies of Human Learning and Memory From Mechanisms of Memory, second edition By J. David Sweatt, Ph.D. Definitions Learning: The acquisition of an altered behavioral response due to an environmental

More information

Basal Ganglia. Introduction. Basal Ganglia at a Glance. Role of the BG

Basal Ganglia. Introduction. Basal Ganglia at a Glance. Role of the BG Basal Ganglia Shepherd (2004) Chapter 9 Charles J. Wilson Instructor: Yoonsuck Choe; CPSC 644 Cortical Networks Introduction A set of nuclei in the forebrain and midbrain area in mammals, birds, and reptiles.

More information

The human brain. of cognition need to make sense gives the structure of the brain (duh). ! What is the basic physiology of this organ?

The human brain. of cognition need to make sense gives the structure of the brain (duh). ! What is the basic physiology of this organ? The human brain The human brain! What is the basic physiology of this organ?! Understanding the parts of this organ provides a hypothesis space for its function perhaps different parts perform different

More information

Chapter 5: Learning and Behavior Learning How Learning is Studied Ivan Pavlov Edward Thorndike eliciting stimulus emitted

Chapter 5: Learning and Behavior Learning How Learning is Studied Ivan Pavlov Edward Thorndike eliciting stimulus emitted Chapter 5: Learning and Behavior A. Learning-long lasting changes in the environmental guidance of behavior as a result of experience B. Learning emphasizes the fact that individual environments also play

More information

A model of the interaction between mood and memory

A model of the interaction between mood and memory INSTITUTE OF PHYSICS PUBLISHING NETWORK: COMPUTATION IN NEURAL SYSTEMS Network: Comput. Neural Syst. 12 (2001) 89 109 www.iop.org/journals/ne PII: S0954-898X(01)22487-7 A model of the interaction between

More information

Mechanisms of Memory: Can we distinguish true from false memories?

Mechanisms of Memory: Can we distinguish true from false memories? Mechanisms of Memory: Can we distinguish true from false memories? Lila Davachi D. Cohen (1996) Dept of Psychology & Center for Neural Science New York University AAAS Judicial Seminar on Neuroscience

More information

Excellent Network Courses. Department of Neurology Affiliated hospital of Jiangsu University

Excellent Network Courses. Department of Neurology Affiliated hospital of Jiangsu University Excellent Network Courses Department of Neurology Affiliated hospital of Jiangsu University Agnosia Visual Agnosia Lissauer (1890) described 2 types: a) Apperceptive Cannot see objects b) Associative Does

More information

Quiroga, R. Q., Reddy, L., Kreiman, G., Koch, C., Fried, I. (2005). Invariant visual representation by single neurons in the human brain, Nature,

Quiroga, R. Q., Reddy, L., Kreiman, G., Koch, C., Fried, I. (2005). Invariant visual representation by single neurons in the human brain, Nature, Quiroga, R. Q., Reddy, L., Kreiman, G., Koch, C., Fried, I. (2005). Invariant visual representation by single neurons in the human brain, Nature, Vol. 435, pp. 1102-7. Sander Vaus 22.04.2015 The study

More information

10/24/2017. Medial Temporal Lobes. Autobiographical Memory. Episodic and Semantic Memory. Arlo Clark-Foos, Ph.D.

10/24/2017. Medial Temporal Lobes. Autobiographical Memory. Episodic and Semantic Memory. Arlo Clark-Foos, Ph.D. Medial Temporal Lobes Henry Molaison (HM) (1926-2008) Arlo Clark-Foos, Ph.D. Consequences of bilateral removal Episodic and Semantic Memory Endel Tulving on Declarative (Explicit) Memories Autobiographical

More information

Arlo Clark-Foos, Ph.D.

Arlo Clark-Foos, Ph.D. Arlo Clark-Foos, Ph.D. Medial Temporal Lobes Henry Molaison (HM) (1926-2008) Consequences of bilateral removal Episodic and Semantic Memory Endel Tulving on Declarative (Explicit) Memories Episodic Memory

More information

SAMPLE. Memory. Long-Term Memory.

SAMPLE. Memory. Long-Term Memory. Memory Long-Term Memory tutor2u Full Lesson PowerPoint This tutor2u Full Lesson PowerPoint is copyrighted and may not be reproduced or shared without permission from the author. All images are sourced

More information

What is the Role of the Amygdala in Long Term Memory? Jack Pemment. University of Mississippi

What is the Role of the Amygdala in Long Term Memory? Jack Pemment. University of Mississippi LT Memory and the Amygdala 1 Running Head: Role of the amygdala in long term memory What is the Role of the Amygdala in Long Term Memory? Jack Pemment University of Mississippi LT Memory and the Amygdala

More information

Storage: Retaining Information

Storage: Retaining Information PSYCHOLOGY (8th Edition, in Modules) David Myers PowerPoint Slides Worth Publishers, 2007 1 Storage: Retaining Information Module 26 2 Storage: Retaining Information Storage: Retaining Information Sensory

More information

Lighta part of the spectrum of Electromagnetic Energy. (the part that s visible to us!)

Lighta part of the spectrum of Electromagnetic Energy. (the part that s visible to us!) Introduction to Physiological Psychology Vision ksweeney@cogsci.ucsd.edu cogsci.ucsd.edu/~ /~ksweeney/psy260.html Lighta part of the spectrum of Electromagnetic Energy (the part that s visible to us!)

More information