Further Chromosomal Studies on Irradiated Human

Size: px
Start display at page:

Download "Further Chromosomal Studies on Irradiated Human"

Transcription

1 Jap. Jour. Genet. Vol. 38, No. 2, (1963) Further Chromosomal Studies on Irradiated Human Leukocytes in vitrol) Akio AWA, Yasushi OHNUKI, and C. M. POMERAT Zoological Institute, Hokkaido University, Sapporo, Japan, and Pasadena Foundation for Medical Research, Pasadena, California Received April, 15, 1963 Recent improvements of culture technique for obtaining active multiplication of leukocytes from peripheral blood give promise of advancing hematological and cytological research. In combination with the methods for producing well-spread chromosome preparations, such procedures may facilitate more detailed cytological as well as cytogenetic analyses. In previous work, studies on leukocytic chromosome damage of man irradiated in vitro from a cobalt-60 source have been reported (Ohnuki et al. 1961). Additional data have been accumulated with the study of X-ray-induced chromosome aberrations in human leukocytes under the identical experimental conditions to those described. The present report was designed to compare X-ray and gamma irradiation data. Half of the experiments were carried out with the use of rhesus monkey peripheral blood in order to have comparative studies on leukocytic chromosome injury of man and of experimental animals, especially primates, irradiated both in vitro and in vivo. The techniques were not satisfactory. It is to be hoped that this report may facilitate future work. The leukocytes examined included: Materials and Methods (1) Two 18 to 30 ml of blood samples collected from each of three human adults (2 males and 1 female). (2) Three samples of approximately equal volume were obtained from each of three rhesus monkeys, Macaca mulatta (2 males and 1 female). (3) Blood specimens also were derived from two additional male monkeys for supplementary culture studies. A routine technique for obtaining leukocytes from peripheral blood has been reported by Ohnuki et al. (1961). Variations of this method were attempted in an effort to obtain satisfactory results. Some 4-day-sister cultures (3 to 5 T-30 flasks) were exposed to 400 r X-irradiation at a dosage rate of 67 r per minute. The X-ray tube was run at 200 kvp and 18 ma with 1.0 mm Al plus 0.25 mm Cu filtration at a focal distance of 48.5 cm. After irradiation the flasks were re- 1) This study was supported in part by fund provided under Contract AF 41 (657)-357 with the School of Aerospace Medicine, USAF Aerospace Medical Center (ATC), Brooks Air Force Base, Texas.

2 FURTHER CHROMOSOMAL STUDIES ON IRRADIATED HUMAN 107 incubated without change of nutrient fluid until fixation. In subsequent experiments total body irradiation at a dosage of 400 r was given to the three monkeys whose leukocytes were employed later for the in vitro tests. Venous blood was collected from these animals approximately one and 48 hours post-irradiation and cultured. After 5 or 6 days of incubation the cells were pretreated by adding 0.05 ml of a 1 : 10,000 dilution of colchicine solution per 10 ml of medium for a three-hour period. Well-spread chromosome preparations were then obtained from these cultures with the use of our routine squash technique (Ohnuki et al. 1961). For chromosome observations phase contrast microscope was employed with the aid of an oil immersion objective. Results Chromosome injuries in human leukocytes resulting from X-irradiation: Chromosome studies were made on both control and irradiated human leukocytes two days postirradiation, and consequently a total of 6 days of incubation. Table 1. The distribution of ploidy in control and irradiated human leukocytes As seen in Table 1, there was a predominant distribution of diploid cells in the controls (99.73 per cent) derived from three different individuals. The percentage of cells other than diploids was accordingly low showing only 0.27 per cent. These elements were chiefly tetraploids involving endoreduplication of chromosomes. These were found in one-third of the tetraploid cells (12 out of 33 cells). Only two haploids (0.02 per cent) were counted, and no other polyploids could be seen in the control series.

3 108 A. AWA, Y. OHNUKI, AND C. M. POMERAT The increase in the percentage of polyploid cells was remarkable in the X-irradiated series. There were triploid, tetraploid and possibly octoploid cells of which the tetraploids were the most dominant. As shown in Table 1, 317 cells out of 10,765 (2.95 per cent) were in the tetraploid range. Cells with endoreduplication of chromosomes were frequently noted. Triploid and octoploid elements which could not be seen in the controls were observed in the irradiated series. However, both were very low; 0.06 per cent for triploids and 0.01 per cent for octoploids. The increase in the percentage of haploid cells after irradiation might have been associated with the increase of polyploidy, especially of triploidy. Table 2. The distribution of chromosome numbers in control and irradiated human leukocytes Exact chromosome counts and morphological analysis of the chromosomes were made from well-spread metaphase figures in both control and irradiated specimens. In controls, euploid cells with 46 chromosomes were predominant in each individual. As seen in Table 2, the normal human chromosome number 46 was found in 175 cells out of 180 metaphase plates. Only a single cell showed 45 chromosomes. The remaining 4 metaphases had 92 ± 1 chromosomes which belonged to the tetraploid range. Leukocytes cultivated in vitro showed low numerical chromosome variation. Chromosome aberrations were detected frequently in cells receiving X-irradiation. As presented in Tables 2 and 3, numerical fluctuation and morphological anomalies of chromosomes became evident after irradiation. There were 64 out of 100 metaphases which showed chromosomal injuries of varying degrees of severity. These abnormalities were demonstrated in every sample except for Case H 1 (P) where poor mitoses could be observed, and consequently, no detailed morphogical analysis was achieved. Among the types of damage, chromosome and chromatid fragmentations were commonly seen. Complex aberrations such as dicentrics, rings and translocation of

4 FURTHER CHROMOSOMAL STUDIES ON IRRADIATED HUMAN 109 Table 3. Distribution of normal and by 400 r of X-irradiation abnormal cells in duced the chromosomes were also frequently noted. Since fragments were found in many cells after irradiation, there was a wide variation in the chromosome number (Table 2). Technical variations for obtaining monkey leukocyte cultures: In the general procedure employed, to each 10 ml sample of heparinized blood (containing 0.05 ml of heparin) 0.20 to 0.25 ml of Bacto-phytohemagglutinin (PHA) (Difco Laboratories, Detroit 1) was added. The PHA was uniformly distributed in the blood by agitating with a syringe, transferring into conical tubes and allowed to stand for approximately one hour at 4 C in ice water. An appropriate amount of plasma containing white blood cells was collected by gentle centrifugation (250 to 300 rpm. for 10 minutes). Approximately 1 to 2 ml of the supernatant were transferred into T-30 flasks to which 5 to 6 ml of Eagle's medium, enriched with 10 per cent horse serum, were added. The volume of medium was dependent upon the ratio of cells to plasma. Such cultures were incubated without change of nutrient fluid until fixation. the medium equilibrated to approximately 7.5 to 7.6. The initial ph of The technical variations involved in the present investigation are summarized as follows: (1) the amount of phytohemagglutinin (PHA) together with the use of different nature such as Exp. 4, 6 and P, (2) the isolation of leukocytes from the blood, (3) effects of various sera on leukocyte growth, or the ratio of host serum to the culture medium. Several combination of procedures developed on the basis of these experiments were examined in the present investigation. Successful results were obtained by all of these combinations with the use of human blood materials. In contrast, no satisfactory modification of techniques could be developed for monkey material. A very small number of mitotic figures were observed in all monkey preparations irrespective of the combinations which were tested. pycnotic and inadequate for chromosome analysis. However, metaphases were rather

5 110 A. AWA, Y. OHNUKI, AND C. M. POMERAT Discussion A considerable amount of information concerning radiation-induced chromosome breakages has been accumulated by many investigators up to date. The significance of the present study was the information obtained from the X-irradiation experiments using human materials which added to the previous data presented by the authors (Ohnuki et al. 1961). Gamma-irradiation from a Co60 source at a dose level of 400 r produced a marked increase in the percentage of polyploid cells and of chromosomal aberrations. Approximately 56 per cent of the metaphases in the irradiated samples were damaged and showed various morphological irregularities. A similar tendency was found for cells irradiated with an X-ray source at the same dose level and maintained under the identical culture conditions as in the previous study (Ohnuki et al. 1961). There was damage to 64 per cent of metaphase cells. Among these abnormalities, fragmentations of chromosomes or chromatids were commonly seen. Dicentrics, rings and sometimes translocations of the chromosomes were also noted. Therefore, these abnormalities as well as the increase in the number of polyploid cells were common phenomena as a result of both Co60 and X-ray at 400 r. Such chromosome injuries were commonly found in cells of various sort of organisms received ionizing radiation. Since the samples were examined 48 hours of postirradiation, most leukocytic cells in the population in vitro might not have been capable of dividing further at this period. Therefore, it is very likely to interpret that the mitotic cells, which seemed to be normal in both morphology and number, might have remained unaffected. Even they were affected, they might still have been viable. Some may degenerate after cell division due to its genetically imbalanced condition of chromosomes as a result of radiation treatment. Conen (1961) found structurally abnormal chromosomes in cells from the bloodculture of an infant after extensive diagnostic X-ray exposure. Bender and Gooch (1961) studied blood cultures of a number of subjects who had been accidentally exposed to gamma and fission neutron irradiation, and they found abnormalities 29 months after exposure. They also have investigated the types and rates of X-rayinduced chromosome aberrations in human blood cells irradiated in vitro (1962). A similar experimental result has been obtained from study which indicated that main aberration type was not chromatid-type but chromosome-type, although the former type of aberration could be observed in a few cells in the present observation. A similar result was obtained by Buckton et al. (1962) who reported in many cases of patients suffered from ankylosing spondylitis that various chromosomal injuries persistent after a long period of radiation therapy. This indicates a possibility that some of the cells showing structural changes of chromosomes may be self-perpetual and, to some extent, viable against in vivo or in vitro circumstance. Assuming these data, a further chromosome study of the effect of irradiation upon human cells will be interesting in relation to advances in medical as well as radiobiological research. No combination of the technical variables gave satisfactory results for the pro-

6 FURTHER CHROMOSOMAL STUDIES ON IRRADIATED HUMAN 111 duction of leukocytic mitoses from the peripheral blood of the monkey, Macaca mulatta. Only a few mitotic figures were seen in all samples following a wide variety of techniques. These dividing cells, however, did not furnish adequate numbers for detailed chromosome analysis and particularly for experimental studies. Parallel procedures and culture conditions yielded successful results with human material. The negative findings from these monkey specimens were possibly due either to technical factors other than those involved in the present study or to the physiological and chemical differences between human and monkey blood. In relation to the latter possibility, Cooper suggested that polymorphonuclear leukocytes perhaps has an inhibitory effect on leukocytic proliferation (personal communication). This suggestion might be reinforced by the fact that during the isolation of erythrocytes, monkey specimens required a much higher centrifugal force than human materials. Many investigators have insisted upon the indispensability of the PHA for leukocytic growth in tissue culture (Moorhead et al. 1960, Nowell 1960, Osgood and Krippaehne 1955, and many others). The present negative findings appeared rather unusual. They might be valuable for future studies, even if the technical variations employed here were not adequate as far as the monkey blood was concerned. Summary Human leukocyte cultures received X-irradiation at a dose of 400 r on the 4th day and fixed on the 6th day. There was an increase from 0.25 to 3.01 per cent in the number of polyploid cells. These were predominantly tetraploids. Microscopic examination revealed that 64 per cent of metaphases observed showed damage. The abnormalities were due to chromosomal breakages, particularly fragments and dicentrics. Counts and detailed analysis of chromosomes in human cells used as controls demonstrated the predominant distribution of euploid elements with 46 chromosomes. These values closely parallel those reported by Ohnuki et al. (1961). In order to develop a satisfactory culture procedure for rhesus monkey (Macaca mulatta) leukocytes, several technical variations of the routine method were investigated. None of these variations gave satisfactory results for monkey samples, but all were useful for human cells. Such an unusual situation might possibly be induced by differences in the physicochemical and cellular properties of monkey blood and that of man. Acknowledgements The experimental work was done at the Radiobiological Laboratory, Balcones Research Center, Austin, Texas. The authors are indebted to Captain Loren C. Logie and his associates for their kind cooperation and for supplying materials which made this work possible. Grateful acknowledgement is also made to Professor J. J. Biesele and his staff at the University of Texas, Austin, Texas, for their valuable encouragement, culture media preparations, and other materials. The phytohemagglutinin was kindly provided by the Difco Laboratories, Detroit, Michigan.

7 112 A. AWA, Y. OHNUKI, AND C. M. POMERAT Literature Cited Bender, M. A. and P. C. Gooch 1961 Somatic chromosome aberrations in normal and irradiated humans. Rad. Res. 14: 451. and 1962 Types and rates of X-ray-induced chromosome aberrations in human blood irradiated in vitro. Proc. Nat. Acad. Sci. 48: Buckton, K. E., P. A. Jacobs, W. M. Court Brown and R. Doll 1962 A study of the chromosome damage persisting after X-ray therapy for ankylosing spondylitis. Lancet. ii : Conen, P. E Chromosome damage in an infant after diagnostic X-irradiation. Lancet., 47. Cooper, H. L. Personal communication. Moorhead, P. S., P. C. Nowell, W. J. Mellman, D. M. Batipps and D. A. Hungerford 1960 Chromosome preparations of leukocytes cultured from human peripheral blood. Exptl. Cell Research 20: Nowell, P. C Phytohemagglutinin : An initiator of mitosis in culture of normal human leucocytes. Cancer Research 20: Ohnuki, Y., A. Awa and C. M. Pomerat 1961 Chromosomal studies on irradiated leukocytes in vitro. Ann. N. Y. Acad. Sci. 95: Osgood, E. E, and M. L. Krippaehne 1955 The gradient tissue culture method. Exptl. Cell Research 9: Tough, I. M., K. E. Buckton, A. G. Baikie and W. M. Court Brown 1960 X-ray-induced chromosome damage in man. Lancet Ii:

Radiation Research Society is collaborating with JSTOR to digitize, preserve and extend access to Radiation Research.

Radiation Research Society is collaborating with JSTOR to digitize, preserve and extend access to Radiation Research. Persistent Chromosome Aberrations in Irradiated Human Subjects Author(s): M. A. Bender and P. C. Gooch Reviewed work(s): Source: Radiation Research, Vol. 16, No. 1 (Jan., 1962), pp. 44-53 Published by:

More information

Arrested DNA Synthesis in Erythroleukaemia

Arrested DNA Synthesis in Erythroleukaemia J. med. Genet. (1969). 6, 95. Chromosomal Abnormality, Megaloblastosis, and Arrested DNA Synthesis in Erythroleukaemia P. E. CROSSEN, P. H. FITZGERALD, R. C. MENZIES, and L. A. BREHAUT From Cytogenetics

More information

A Complex Pattern of Chromosome Abnormalities in the Acute Phase of Chronic Granulocytic Leukaemia

A Complex Pattern of Chromosome Abnormalities in the Acute Phase of Chronic Granulocytic Leukaemia 7. med. Genet. (I966). 3, 258. A Complex Pattern of Chromosome Abnormalities in the Acute Phase of Chronic Granulocytic Leukaemia P. H. FITZGERALD From the Cytogenetics Unit*, Christchurch Hospital, Christchurch,

More information

KARYOTYPE OF A SEI WHALE

KARYOTYPE OF A SEI WHALE KARYOTYPE OF A SEI WHALE TOSHIO KASUYA The chromosomes of the Mammalia have been studied for a long period, and many species of mammals except those belonging to the Lemures, Proboscidea, Hyracoidea and

More information

Chromosomes of Human Endometrium

Chromosomes of Human Endometrium J. med. Genet. (1967). 4, 91. Chromosomes of Human Endometrium C. ELIZABETH BOWEY and A. I. SPRIGGS From Clinical Cytology Laboratory, Churchill Hospital, Oxford Evidence is gradually accumulating about

More information

Late-replicating X Chromosome

Late-replicating X Chromosome J. med. Genet. (I965). 2, I07. The Relative Length and Arm Ratio of the Human Late-replicating X Chromosome AUDREY BISHOP, MARGARET LEESE, and C. E. BLANK From the Centre for Human Genetics, United Sheffield

More information

Overripeness and the Mammalian Ova

Overripeness and the Mammalian Ova Overripeness and the Mammalian Ova II. Delayed Ovulation and Chromosome Anomalies ROY L. BUTCHER, PH.D., and N. W. FUGO, PH.D., M.D. THE CAUSES of abortion and birth defects are undoubtedly multiple and

More information

A CHROMOSOME STUDY IN 20 SEXUALLY ABNORMAL PATIENTS>> WOSAMU MARUYAMA, HACHIRO SHIMBA AND SET-ICHI KOHNO

A CHROMOSOME STUDY IN 20 SEXUALLY ABNORMAL PATIENTS>> WOSAMU MARUYAMA, HACHIRO SHIMBA AND SET-ICHI KOHNO JAPAN. J. GENETICS Vol. 43, No. 4: 289-298 (1968) A CHROMOSOME STUDY IN 20 SEXUALLY ABNORMAL PATIENTS>> WOSAMU MARUYAMA, HACHIRO SHIMBA AND SET-ICHI KOHNO Received May 9, 1968 Zoological Institute, Hokkaido

More information

176 N. TAKAGI, S. MAKINO, S. TAKAI, and M. HIKITA [Vol. 41,

176 N. TAKAGI, S. MAKINO, S. TAKAI, and M. HIKITA [Vol. 41, No. 2] 175 39. A Phenotypical XXYY Human Male with Notes on Two Regular Kline f elter Cases*' By Nobuo TAKAGI, Sajiro MAKINO, Shudo TAKAI, **~ and Masahiro HIKITA**) (Comm. by Yoshimaro TANAKA, M.J.A.,

More information

MECHANISM OF THE ORIGIN OF X-RAY INDUCED NOTCH. Summary.-Comparison has been made, using salivary gland chromosomes,

MECHANISM OF THE ORIGIN OF X-RAY INDUCED NOTCH. Summary.-Comparison has been made, using salivary gland chromosomes, 24 GENETICS: DEMEREC AND FANO PROC. N. A. S. the male pronucleus, the breaks or potential breaks may remain capable of reunion for a limited time during which contacts with other chromosomes may be realized.

More information

Testicular hypoplasia in a horned goat with 61, XXY/60, XY karyotype

Testicular hypoplasia in a horned goat with 61, XXY/60, XY karyotype Jpn. J. Genet. (1986) 61, pp. 177-181 SHORT PAPER Testicular hypoplasia in a horned goat with 61, XXY/60, XY karyotype BY Sandra S. G. TAKEBAYASHI and Wilham JORGE Department of Genetics, State University

More information

A FORMULA TO PREDICT THE TRANSMISSION FREQUENCY OF ACENTRIC FRAGMENTS*

A FORMULA TO PREDICT THE TRANSMISSION FREQUENCY OF ACENTRIC FRAGMENTS* A FORMULA TO PREDICT THE TRANSMISSION FREQUENCY OF ACENTRIC FRAGMENTS* A. V. CARRANO Laboratory of Radiobiology, University of California, San Francisco, California 94122 Manuscript received August 15,

More information

LYMHOCYTE CHROMOSOMAL ABERRATION ASSAY IN RADIATION BIODOSIMETRY

LYMHOCYTE CHROMOSOMAL ABERRATION ASSAY IN RADIATION BIODOSIMETRY LYMHOCYTE CHROMOSOMAL ABERRATION ASSAY IN RADIATION BIODOSIMETRY Dr. Birutė Gricienė 1,2 1 Radiation Protection Centre 2 Vilnius University Introduction Ionising radiation is a well-known mutagenic and

More information

Advances in biological dosimetry

Advances in biological dosimetry Advances in biological dosimetry A Ivashkevich 1,2, T Ohnesorg 3, C E Sparbier 1, H Elsaleh 1,4 1 Radiation Oncology, Canberra Hospital, Garran, ACT, 2605, Australia 2 Australian National University, Canberra

More information

A Review of Forty-Five Years Study of Hiroshima and Nagasaki Atomic Bomb Survivors

A Review of Forty-Five Years Study of Hiroshima and Nagasaki Atomic Bomb Survivors A Review of Forty-Five Years Study of Hiroshima and Nagasaki Atomic Bomb Survivors II. BIOLOGICAL EFFECTS Persistent Chromosome Aberrations in the Somatic Cells of A-bomb Survivors, Hiroshima and Nagasaki

More information

Chromosome Studies in Familial Leukaemia*

Chromosome Studies in Familial Leukaemia* J. med. Genet. (I966). 3, 96. Chromosome Studies in Familial Leukaemia* P. H. FITZGERALD, P. E. CROSSEN, A. C. ADAMS, C. V. SHARMAN, and F. W. GUNZ From the Cytogenetics Unitt, Christchurch Hospital, Christchurch,

More information

Chromosome Abnormalities

Chromosome Abnormalities Chromosome Abnormalities Chromosomal abnormalities vs. molecular mutations Simply a matter of size Chromosomal abnormalities are big errors Two types of abnormalities 1. Constitutional problem present

More information

66. The Cycle o f Tumor Cells in a Transplant Generation o f the Yoshida Sarcoma.

66. The Cycle o f Tumor Cells in a Transplant Generation o f the Yoshida Sarcoma. No. 6.] 287 66. The Cycle o f Tumor Cells in a Transplant Generation o f the Yoshida Sarcoma. By Sajiro MAKINO. Zoological Institute, Hokkaido University. (Comm. by T. KOMA1, M.J.A., June 12, 1951.) The

More information

STUDY OF MUTATION PROCESSES IN BONE MARROW AND BLOOD CELLS AFTER SEPARATE AND COMBINED EXTERNAL AND INTERNAL γ-irradiation OF ORGANISM

STUDY OF MUTATION PROCESSES IN BONE MARROW AND BLOOD CELLS AFTER SEPARATE AND COMBINED EXTERNAL AND INTERNAL γ-irradiation OF ORGANISM STUDY OF MUTATION PROCESSES IN BONE MARROW AND BLOOD CELLS AFTER SEPARATE AND COMBINED EXTERNAL AND INTERNAL γ-irradiation OF ORGANISM L.N. Nikolaevich Institute of Radiobiology of National Academy of

More information

[GANN, 52, ; September, 1961]

[GANN, 52, ; September, 1961] [GANN, 52, 257-264; September, 1961] CHROMOSOMAL ALTERATION AND THE DEVELOPMENT OF TUMORS, VII. KARYOLOGICAL ANALYSIS OF SPONTA- NEOUS AND INDUCED LEUKEMIAS IN MICE1)2) YOSHINORI KURITA and TOSIHIDE H.

More information

Salmonella typhimurium, as the disease causing organism investigations at

Salmonella typhimurium, as the disease causing organism investigations at 144 GENETICS: GOWEN AND CALHOUN PROC. N. A. S. linear increase in the mutation rate with the dosage of the Mutator gene. 4. The Mutator probably is linked to the second chromosome. 5. A total of approximately

More information

THE GENUS COLLINSIA. XVII. A CYTOGENETIC STUDY OF RADIATION-INDUCED RECIPROCAL TRANSLOCATIONS IN C. HETEROPHYLLAl

THE GENUS COLLINSIA. XVII. A CYTOGENETIC STUDY OF RADIATION-INDUCED RECIPROCAL TRANSLOCATIONS IN C. HETEROPHYLLAl TH GNUS COLLINSIA. XVII. A CYTOGNTIC STUDY OF RADIATION-INDUCD RCIPROCAL TRANSLOCATIONS IN C. HTROPHYLLAl. D. GARBR AND T. S. DHILLON2 Department of Botany, University of Chicago, Chicago, Illinois Received

More information

Cytological Effects of Paper Mills Effluents on Somatic Cells of Allium cepa

Cytological Effects of Paper Mills Effluents on Somatic Cells of Allium cepa Cytologia 44: 921-926, 1979 Cytological Effects of Paper Mills Effluents on Somatic Cells of Allium cepa K. B. Shanthamurthy and V. Rangaswamy Received April 6, 1978 Department of Post-Graduate Studies

More information

Chapter 8. The Cellular Basis of Reproduction and Inheritance. Lecture by Mary C. Colavito

Chapter 8. The Cellular Basis of Reproduction and Inheritance. Lecture by Mary C. Colavito Chapter 8 The Cellular Basis of Reproduction and Inheritance PowerPoint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Copyright 2009 Pearson Education,

More information

Chapter 8: Cellular Reproduction

Chapter 8: Cellular Reproduction Chapter 8: Cellular Reproduction 1. The Cell Cycle 2. Mitosis 3. Meiosis 2 Types of Cell Division 2n 1n Mitosis: occurs in somatic cells (almost all cells of the body) generates cells identical to original

More information

.might have been expected to be influenced by the spindle fibre were not. (standard map7). CROSSING-OVER IN DROSOPHILA

.might have been expected to be influenced by the spindle fibre were not. (standard map7). CROSSING-OVER IN DROSOPHILA 6 GENETICS: G. W. BEADLE A POSSIBLE INFLUENCE OF THE SPINDLE FIBRE ON CROSSING-OVER IN DROSOPHILA By G. W. BEADLE' WILLIAM G. KER'cZIOFF LABORATORIES OF THE B.OLOG:CAL. SCIENCES, CALIFORNIA INSTITUTE OF

More information

Simpson (1928), Julianelle (1937), Thompson and Khorazo. that the pathogenic strains, (Staphylococcus aureus and Staphylococcus

Simpson (1928), Julianelle (1937), Thompson and Khorazo. that the pathogenic strains, (Staphylococcus aureus and Staphylococcus THE RELATION OF AEROBIOSIS TO THE FERMENTATION OF MANNITOL BY STAPHYLOCOCCI EUGENIA VALENTINE COLWELL Laboratory of Industrial Hygiene Inc., New York City Received for publication August 5, 1938 While

More information

Why do cells reproduce?

Why do cells reproduce? Outline Cell Reproduction 1. Overview of Cell Reproduction 2. Cell Reproduction in Prokaryotes 3. Cell Reproduction in Eukaryotes 1. Chromosomes 2. Cell Cycle 3. Mitosis and Cytokinesis Examples of Cell

More information

Example: Distance in M.U. % Crossing Over Why? Double crossovers

Example: Distance in M.U. % Crossing Over Why? Double crossovers Example: Distance in M.U. % Crossing Over 1 5 10 15 50 80 100 107 Why? Double crossovers 232 .. A B. a b. 1. A fully heterozygous gray-bodied (b+), normal winged (vg+) female F 1 fruit fly crossed with

More information

JOURNAL OF INTERNATIONAL ACADEMIC RESEARCH FOR MULTIDISCIPLINARY Impact Factor 2.417, ISSN: , Volume 4, Issue 7, August 2016

JOURNAL OF INTERNATIONAL ACADEMIC RESEARCH FOR MULTIDISCIPLINARY Impact Factor 2.417, ISSN: , Volume 4, Issue 7, August 2016 KARYOTYPIC STUDIES ON SOME NOCTUID MOTHS MEENU SADHOTRA* *Asst. Professor, Dept. of Zoology, Govt. College for Women, Parade, Jammu, J & K, India Abstract Cytogenetic studies making use of in vitro injection

More information

Induction of Mitotic Abnormalities in Onion Root-Tips by Tobacco Smoke Condensate'

Induction of Mitotic Abnormalities in Onion Root-Tips by Tobacco Smoke Condensate' Cytologia 38: 707-712, 1973 Induction of Mitotic Abnormalities in Onion Root-Tips by Tobacco Smoke Condensate' P. R. Bhalla, T. S. Kochhar and P. S. Sabharwal Thomas Hunt Morgan School of Biological Sciences,

More information

Cell Cycle. Interphase, Mitosis, Cytokinesis, and Cancer

Cell Cycle. Interphase, Mitosis, Cytokinesis, and Cancer Cell Cycle Interphase, Mitosis, Cytokinesis, and Cancer Cell Division One cell divides into 2 new identical daughter cells. Chromosomes carry the genetic information (traits) of the cell How many Chromosomes

More information

Chromosomal Analvsis to Assess Radiation Dose

Chromosomal Analvsis to Assess Radiation Dose Chromosomal Analvsis to Assess Radiation Dose J DAVID C. LLOYD National Radiological Protection Board, Chilton, Didcot, Oxon, OX ORQ, UK Key Words. Cytogenetics Radiation. Dosimetry Dicentric. Micronucleus

More information

Acta Medica Okayama APRIL 2001

Acta Medica Okayama APRIL 2001 Acta Medica Okayama Volume 55, Issue 2 2001 Article 7 APRIL 2001 Comparison of chromosome aberrations in peripheral blood lymphocytes from people occupationally exposed to ionizing and radiofrequency radiation.

More information

Lymphocytes: An Adaptive Response Induced

Lymphocytes: An Adaptive Response Induced Environmental Health Perspectives Supplements Vol. 11 (Suppl. 3): 73-77 (1993) Indications of Repair of Radon-Induced Chromosome Damage in Human Lymphocytes: An Adaptive Response Induced by Low Doses of

More information

ISOLATION OF ENTEROVIRUSES FROM THE "NORMAL" BABOON (PAPIO DOGUERA)l

ISOLATION OF ENTEROVIRUSES FROM THE NORMAL BABOON (PAPIO DOGUERA)l ISOLATION OF ENTEROVIRUSES FROM THE "NORMAL" BABOON (PAPIO DOGUERA)l R. FUENTES-MARINS,2 A. R. RODRIGUEZ, S. S. KALTER, A. HELLMAN, AND R. A. CRANDELL The Southwest Foundation for Research and Education,

More information

Effects of Some Growth Substances on Mitosis

Effects of Some Growth Substances on Mitosis Cytologia 42: 323-329, 1977 Effects of Some Growth Substances on Mitosis Ganesh1 Prasad and K. Das2 Department of Genetics and Plant Breeding, Banaras Hindu University, Varanasi-221005, India Received

More information

Differences in the satellite association pattern in- the human population

Differences in the satellite association pattern in- the human population Hrrriliras 66: 21 3 (197) Differences in the satellite association pattern in- the human population ALF HANSSON Institute of Genetics, University of Lund, Sweden (Received July 16, 197) The incidence and

More information

Cell Division. Chromosome structure. Made of chromatin (mix of DNA and protein) Only visible during cell division

Cell Division. Chromosome structure. Made of chromatin (mix of DNA and protein) Only visible during cell division Chromosome structure Made of chromatin (mix of DNA and protein) Only visible during cell division Chromosome structure The DNA in a cell is packed into an elaborate, multilevel system of coiling and folding.

More information

The Role of ploidy in neuroblastoma. Michael D. Hogarty, MD Division of Oncology Children s Hospital of Philadelphia

The Role of ploidy in neuroblastoma. Michael D. Hogarty, MD Division of Oncology Children s Hospital of Philadelphia The Role of ploidy in neuroblastoma Reprinted from NB Journal Summer Issue 2003 Children s Neuroblastoma Cancer Foundation Michael D. Hogarty, MD Division of Oncology Children s Hospital of Philadelphia

More information

Title. Author(s)TAKAYANAGI, Tan. Issue Date Doc URL. Type. File Information. Mitomycin-C, Azan, MEPA and Podophyllin (With 16 Tex

Title. Author(s)TAKAYANAGI, Tan. Issue Date Doc URL. Type. File Information. Mitomycin-C, Azan, MEPA and Podophyllin (With 16 Tex Title Cytological and Cytogenetical Studies on Paramecium Mitomycin-C, Azan, MEPA and Podophyllin (With 16 Tex Author(s)TAKAYANAG, Tan 北海道大學理學部紀要 = JOURNAL OF THE FACULTY OF SCENCE HOKKA CitationZOOLOGY,

More information

The Cell Cycle CHAPTER 12

The Cell Cycle CHAPTER 12 The Cell Cycle CHAPTER 12 The Key Roles of Cell Division cell division = reproduction of cells All cells come from pre-exisiting cells Omnis cellula e cellula Unicellular organisms division of 1 cell reproduces

More information

NON-LACTOSE FERMENTING BACTERIA FROM. While B. coli is generally accepted as a satisfactory index of

NON-LACTOSE FERMENTING BACTERIA FROM. While B. coli is generally accepted as a satisfactory index of NON-LACTOSE FERMENTING BACTERIA FROM POLLUTED WELLS AND SUB-SOIL' I. J. KLIGLER From the Laboratories of the Rockefeller Institute for Medical Research, New York Received for publication February 1, 1918

More information

Radiation Cataract: Biomicroscopic Observations in Rabbit, Monkey, and Man*

Radiation Cataract: Biomicroscopic Observations in Rabbit, Monkey, and Man* Radiation Cataract: Biomicroscopic Observations in Rabbit, Monkey, and Man* WALTER J. GEERAETS, M.D. Professor of Ophthalmology and Associate Professor of Biophysics, Medical College of Virginia, Health

More information

EVALUATION OF CYTOTOXICITY OF DICHLORVOS PESTICIDE IN LABORATORY MOUSE

EVALUATION OF CYTOTOXICITY OF DICHLORVOS PESTICIDE IN LABORATORY MOUSE 2013 Vol. 2 JanuaryApril, pp.5155/veena Sahai EVALUATION OF CYTOTOXICITY OF DICHLORVOS PESTICIDE IN LABORATORY MOUSE *Veena Sahai Department of Zoology, G N Khalsa College, Mumbai *Author for Correspondence

More information

Chromosome Mutations

Chromosome Mutations Chromosome Mutations Variation in Chromosome Number Euploidy: having full sets of chromosomes Haploid Diploid Triploid Aneuploidy: having anything other than full sets of chromosomes Monosomy Trisomy Variation

More information

The effects of computed tomography derived low doses on human peripheral blood cells

The effects of computed tomography derived low doses on human peripheral blood cells The effects of computed tomography derived low doses on human peripheral blood cells Piroska Virág The Oncology Institute Prof. Dr. I. Chiricuta, Cluj-Napoca, Romania Low dose radiation effects on the

More information

MELANOGASTER. Bridges, C Triploid Intersexes in Drosophila melanogaster. Science, NS, 54: E S P

MELANOGASTER. Bridges, C Triploid Intersexes in Drosophila melanogaster. Science, NS, 54: E S P TRIPLOID INTERSEXES IN DROSOPHILA MELANOGASTER CALVIN BRIDGES Bridges, C. 1921. Triploid Intersexes in Drosophila melanogaster. Science, NS, 54: 252-254. E S P Electronic Scholarly Publishing Electronic

More information

Continuous Cell Culture From a Patient With Chronic Myelogenous Leukemia. I. Propagation and Presence of Philadelphia Chromosome 1

Continuous Cell Culture From a Patient With Chronic Myelogenous Leukemia. I. Propagation and Presence of Philadelphia Chromosome 1 Continuous Cell Culture From a Patient With Chronic Myelogenous Leukemia. I. Propagation and Presence of Philadelphia Chromosome 1 LINDA S. LUCAS,2 JACQUELINE J. K..WHANG,3 J. H. TJIO,4 ROBERT A. MANAKER,2

More information

Genomic Instability Induced by Ionizing Radiation

Genomic Instability Induced by Ionizing Radiation Genomic Instability Induced by Ionizing Radiation Christian Streffer Universitätsklinikum Essen, 45122 Essen, Germany INTRODUCTION In contrast to general assumptions it has frequently been shown that DNA

More information

Cell Cycle and Cell Division

Cell Cycle and Cell Division 122 Cell Cycle and Cell Division 1. Meiosis I is reductional division. Meiosis II is equational division due to [1988] (a) pairing of homologous chromosomes (b) crossing over (c) separation of chromatids

More information

Comparative effects of colchicine, 8-hydroxyquinoline and paradichlorobenzene on arm ratio of mitotic chromosomes of Allium cepa L.

Comparative effects of colchicine, 8-hydroxyquinoline and paradichlorobenzene on arm ratio of mitotic chromosomes of Allium cepa L. International Journal of Medicinal Plants and Alternative Medicine Vol. 2(2), pp. 021-026, August 2014 Available online at http://academeresearchjournals.org/journal/ijmpam ISSN 2327-560X 2013 Academe

More information

Major concepts: Notes: Cell Reproduction: From One Cell to Two. Why do Cells Reproduce?

Major concepts: Notes: Cell Reproduction: From One Cell to Two. Why do Cells Reproduce? Grade 7 Standard: Life Science 1e Students know cells divide to increase their numbers through a process of mitosis, which results in two daughter cells with identical sets of chromosomes. Major concepts:

More information

Title. Author(s)MAKINO, Sajiro. Issue Date Doc URL. Type. File Information. Tumor (With 10 Text-figures)

Title. Author(s)MAKINO, Sajiro. Issue Date Doc URL. Type. File Information. Tumor (With 10 Text-figures) Title Cytological Studies of Tumors, XX. : A Chromosome An Tumor (With 10 Text-figures) Author(s)MAKINO, Sajiro 北海道大學理學部紀要 = JOURNAL OF THE FACULTY OF SCIENCE HOKKA CitationZOOLOGY, 13(1-4): 263-267 Issue

More information

Triploidy and other chromosomal

Triploidy and other chromosomal Triploidy and other chromosomal abnormalities in a selected line of chickens MH Thorne, RK Collins, BL Sheldon CSIRO Division of Animal Production, Poultry Genetics, PO Box 184, North Ryde, NSW 211,!,

More information

Preparation of Human Chromosome Spreads - Kit 4. Introduction. This kit contains the following materials:

Preparation of Human Chromosome Spreads - Kit 4. Introduction. This kit contains the following materials: CellServ@FAES/NIH www.cellserv.org Preparation of Human Chromosome Spreads - Kit 4 Introduction Each somatic cell in the human body contains 23 pairs of chromosomes. During the interphase stage of the

More information

Name: Cell division and cancer review

Name: Cell division and cancer review Name: Cell division and cancer review 1. What type of cell undergoes meiosis? Gamete cells or Somatic cells 2. Define homologous chromosomes. 2 chromosomes with similar structure 3. For each of the following

More information

Transgenerational Transmission of Radiation Damage: Genomic Instability and Congenital Malformation 1

Transgenerational Transmission of Radiation Damage: Genomic Instability and Congenital Malformation 1 J. Radiat. Res., 47: Suppl., B19 B24 (2006) Transgenerational Transmission of Radiation Damage: Genomic Instability and Congenital Malformation 1 Christian STREFFER* Genomic instability/malformation/transgenerational

More information

Chromosomal Aberrations and Mortality of X-Irradiated Mammalian Cells: Emphasis on Repair

Chromosomal Aberrations and Mortality of X-Irradiated Mammalian Cells: Emphasis on Repair Proceedings of the National Academy of Sciences Vol. 68, No. 3, pp. 667671, March 1971 Chromosomal Aberrations and Mortality of XIrradiated Mammalian Cells: Emphasis on Repair W. C. DEWEY, H. H. MILLER,

More information

IMMUNOLOGIC REACTIVITY IN HUMAN BREAST CANCER AGAINST CULTURED HUMAN BREAST TUMOR CELLS

IMMUNOLOGIC REACTIVITY IN HUMAN BREAST CANCER AGAINST CULTURED HUMAN BREAST TUMOR CELLS 22 IMMUNOLOGIC REACTIVITY IN HUMAN BREAST CANCER AGAINST CULTURED HUMAN BREAST TUMOR CELLS Michael P. Lerner*, J. H. Anglin, Peggy L. Munson, Peggy J. Riggs, Nancy E. Manning, and Robert E. Nordquist Departments

More information

Effects of Radiation on the TitleIssue on Physical, Chemical Growth Radiation, V) and Bio Author(s) Matsuoka, Saburo Citation Bulletin of the Institute for Chemi University (1964), 42(1): 1-9 Issue Date

More information

The Gardner syndrome: increased tetraploidy in

The Gardner syndrome: increased tetraploidy in Journal of Medical Genetics (1976). 13, 52-56. The Gardner syndrome: increased tetraploidy in cultured skin fibroblast* B. SHANNON DANES Department of Medicine, Cornell University Medical College, New

More information

Stage-dependent changes of chromosomal radiosensitivity in primary oocytes of the Chinese hamster

Stage-dependent changes of chromosomal radiosensitivity in primary oocytes of the Chinese hamster Cytogenet. Cell Genet. 30: 174-178 (1981) Stage-dependent changes of chromosomal radiosensitivity in primary oocytes of the Chinese hamster K. M ikamo, Y. Kamiguchi, K. Funaki, S.Sugawara, and H.T ateno

More information

CHROMOSOME STUDIES IN 12 SOLID TUMOURS FROM CHILDREN

CHROMOSOME STUDIES IN 12 SOLID TUMOURS FROM CHILDREN 40 CHROMOSOME STUDIES IN SOLID TUMOURS FROM CHILDREN D. COX From the *Department of Morbid Anatomy, Institute of Child Health and Ho8pital for Sick Children, Great Ormond Street, London. W.C.I. Received

More information

Part II The Cell Cell Division, Chapter 2 Outline of class notes

Part II The Cell Cell Division, Chapter 2 Outline of class notes Part II The Cell Cell Division, Chapter 2 Outline of class notes 1 Cellular Division Overview Types of Cell Division Chromosomal Number The Cell Cycle Mitoses Cancer Cells In Vitro Fertilization Infertility

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Chapter 15 Chromosomal Basis for Inheritance AP Biology Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) When Thomas Hunt Morgan crossed

More information

Early Repair Processes in Marrow Cells Irradiated and Proliferating in Vivo1

Early Repair Processes in Marrow Cells Irradiated and Proliferating in Vivo1 RADIATION RESEARCH 18, 96-105 (1963) Early Repair Processes in Marrow Cells Irradiated and Proliferating in Vivo1 J. E. TILL AND E. A. McCULLOCH Department of Medical Biophysics, University of Toronto,

More information

Cellular Reproduction

Cellular Reproduction Chapter Test A CHAPTER 9 Cellular Reproduction Part A: Multiple Choice In the space at the left, write the letter of the term or phrase that best answers each question. Part B: Matching 1. What can limit

More information

The questions below refer to the following terms. Each term may be used once, more than once, or not at all.

The questions below refer to the following terms. Each term may be used once, more than once, or not at all. The questions below refer to the following terms. Each term may be used once, more than once, or not at all. a) telophase b) anaphase c) prometaphase d) metaphase e) prophase 1) DNA begins to coil and

More information

S decreased the effects of radium treatment on cancerous tumors, there have

S decreased the effects of radium treatment on cancerous tumors, there have SOME ASPECTS OF THE CHEMICAL PROTECTION AGAINST RADIATION DAMAGE TO VICIA FABA CHROMOSOMES SHELDON WOLFF 2 Biological Laboratories, Harvard University, Cambridge, Massachusetts Received September 24, 1953

More information

UNIDENTIFIED MULTIABERRANT CELLS AS EVIDENCE OF γ-irradiation IN Allium cepa L.

UNIDENTIFIED MULTIABERRANT CELLS AS EVIDENCE OF γ-irradiation IN Allium cepa L. 1 UNIDENTIFIED MULTIABERRANT CELLS AS EVIDENCE OF γ-irradiation IN Allium cepa L. Kutsokon N.K, Rashydov N.M., Grodzinsky D.M. Institute of Cell Biology and Genetic Engineering of the National Academy

More information

A Photographic Representation of Mitosis and Meiosis in the Male of Rattus norvegicus

A Photographic Representation of Mitosis and Meiosis in the Male of Rattus norvegicus 422 Cytologia 23 A Photographic Representation of Mitosis and Meiosis in the Male of Rattus norvegicus S. Ohno, W. D. Kaplan and R. Kinosita Department of Cytology and Genetics, Medical Research Institute,

More information

T breakage and reattachment-namely, an analysis of the end results following

T breakage and reattachment-namely, an analysis of the end results following XRAY AND ULTRAVIOLET STUDIES ON POLLEN TUBE CHROMOSOMES. I. THE EFFECT OF ULTRAVIOLET (2537 A) ON XRAYINDUCED CHROMOSOMAL ABERRATIONS C. P. SWANSON Michigan Agricultural Experiment Station, East Lansing,

More information

Xt in prophase figures, particularly since the only criterion of identification is based

Xt in prophase figures, particularly since the only criterion of identification is based 252 GENETICS: MUKHERJEE AND SINHA PROC. N. A. S. 4Hemmingsen, E., private communication. 6 Roughton, F. J. W., Progr. Biophys. Biophys. Chem., 9, 55 (1959). 6 Unpublished data. 7Collins, R. E., Science,

More information

Group G Chromosomes and the Susceptibility of Cells of Human Origin to Coxsackie B Viruses

Group G Chromosomes and the Susceptibility of Cells of Human Origin to Coxsackie B Viruses J. gen. Virol. (t974), 23, 17-22 Printed in Great Britain I7 Group G Chromosomes and the Susceptibility of Cells of Human Origin to Coxsackie B Viruses By YA. E. KHESIN, A. M. AMCHENKOVA AND G. P. SOVJETOVA

More information

Radiation-induced chromosome damage in human

Radiation-induced chromosome damage in human British Journal of Industrial Medicine, 1977, 34, 261-273 Radiation-induced chromosome damage in human lymphocytes D. C. LLOYD AND G. W. DOLPHIN From the National Radiological Protection Board, Harwell,

More information

The Cell Cycle. Chapter 10

The Cell Cycle. Chapter 10 The Cell Cycle Chapter 10 Why Do Cells Divide? Unicellular 1. Reproduction Multicellular 1. Grow 2. Repair 3. Development/reproduction Types of Division Prokaryotic cells Binary fission = asexual reproduction

More information

Omnis cellula e cellula

Omnis cellula e cellula Chapter 12 The Cell Cycle Omnis cellula e cellula 1855- Rudolf Virchow German scientist all cells arise from a previous cell Every cell from a cell In order for this to be true, cells must have the ability

More information

Mitosis: Cell Division

Mitosis: Cell Division Name Mitosis: Cell Division by Cindy Grigg Answer the following questions BEFORE you read this book. It is okay if you do not know as much as you thought. Do the best you can! 1.How do children grow? Do

More information

{Received 9th April 1962) Summary. The chromosome complement of the horse, the donkey and

{Received 9th April 1962) Summary. The chromosome complement of the horse, the donkey and SOMATIC CHROMOSOMES OF THE HORSE, THE DONKEY AND THEIR HYBRIDS, THE MULE AND THE HINNY KURT BENIRSCHKE, LYDIA E. BROWNHILL and MARGARET M. BEATH Department of Pathology, Dartmouth Medical School, Hanover,

More information

differ markedly in their quantitative effects.34' 5 The sensitivity ratio, about 3

differ markedly in their quantitative effects.34' 5 The sensitivity ratio, about 3 INDUCED POLLEN LETHALS FROM SEEDS OF DA TURA STRAMONIUM EXPOSED TO RADIATION FROM A NUCLEAR DETONATION* BY J. L. SPENCER AND A. F. BLAKESLEE UNIVERSITY OF MASSACHUSETTS AND SMITH COLLEGE GENETICS EXPERIMENT

More information

Cell Division and Inheritance

Cell Division and Inheritance Cell Division and Inheritance Continuing life relies on reproduction Individual organism replacing dead or damaged cells Species making more of same species Reproduction Cells divide, grow, divide again

More information

Cytogenetics of Stump-tailed Macaque, Macaca arctoides (Primate, Cercopithecidae) in Thailand by Conventional Staining

Cytogenetics of Stump-tailed Macaque, Macaca arctoides (Primate, Cercopithecidae) in Thailand by Conventional Staining Walailak J Sci & Tech 2005; 2(2): 231-240. Cytogenetics of Stump-tailed Macaque, Macaca arctoides (Primate, Cercopithecidae) in Thailand by Conventional Staining Alongkoad TANOMTONG 1, Sumpars KHUNSOOK

More information

Cell Division and Mitosis

Cell Division and Mitosis Chromatin-Uncoiled DNA during interphase Cell Division and Mitosis Chromosomes-Tightly coiled DNA Chromatid-One half of a duplicated chromosome. Each is identical and called sister chromatids Centromere-The

More information

meiosis asexual reproduction CHAPTER 9 & 10 The Cell Cycle, Meiosis & Sexual Life Cycles Sexual reproduction mitosis

meiosis asexual reproduction CHAPTER 9 & 10 The Cell Cycle, Meiosis & Sexual Life Cycles Sexual reproduction mitosis meiosis asexual reproduction CHAPTER 9 & 10 The Cell Cycle, Meiosis & Sexual Sexual reproduction Life Cycles mitosis Chromosomes Consists of a long DNA molecule (represents thousands of genes) Also consists

More information

The Cellular Basis of Reproduction and Inheritance

The Cellular Basis of Reproduction and Inheritance Chapter 8 The Cellular Basis of Reproduction and Inheritance PowerPoint Lectures for! Biology: Concepts and Connections, Fifth Edition! Campbell, Reece, Taylor, and Simon Lectures by Chris Romero Objective:

More information

DAPI ASY1 DAPI/ASY1 DAPI RAD51 DAPI/RAD51. Supplementary Figure 1. Additional information on meiosis in R. pubera. a) The

DAPI ASY1 DAPI/ASY1 DAPI RAD51 DAPI/RAD51. Supplementary Figure 1. Additional information on meiosis in R. pubera. a) The a % 10 Number of crossover per bivalent b 0 1 c DAPI/telomere 80 1 60 40 1 2 20 d 0 0 1 2 >=3 DAPI ASY1 DAPI/ASY1 e DAPI RAD51 DAPI/RAD51 Supplementary Figure 1. Additional information on meiosis in R.

More information

Chapter 12. The Cell Cycle

Chapter 12. The Cell Cycle Chapter 12 The Cell Cycle The Key Roles of Cell Division The ability of organisms to produce more of their own kind is the one characteristic that best distinguishes living things from nonliving things.

More information

Cell Division. The Process of Cell Division Section Section 10.2: The Process of Cell Division 12/8/2010

Cell Division. The Process of Cell Division Section Section 10.2: The Process of Cell Division 12/8/2010 The Process of Cell Division Section 10.2 Biology B Section 10.2: The Process of Cell Division The student will investigate and understand common mechanisms of inheritance and protein synthesis. Key concepts

More information

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Biology Mo Test: Q3 Mr. Rellinger Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Which event occurs during interphase? The cell carries

More information

Outline Interphase Mitotic Stage Cell Cycle Control Apoptosis Mitosis Mitosis in Animal Cells Cytokinesis Cancer Prokaryotic Cell Division

Outline Interphase Mitotic Stage Cell Cycle Control Apoptosis Mitosis Mitosis in Animal Cells Cytokinesis Cancer Prokaryotic Cell Division The Cell Cycle and Cellular Reproduction Chapter 9 Outline Interphase Mitotic Stage Cell Cycle Control Apoptosis Mitosis Mitosis in Animal Cells Cytokinesis Cancer Prokaryotic Cell Division 1 2 Interphase

More information

NOTES- CHAPTER 6 CHROMOSOMES AND CELL REPRODUCTION

NOTES- CHAPTER 6 CHROMOSOMES AND CELL REPRODUCTION NOTES- CHAPTER 6 CHROMOSOMES AND CELL REPRODUCTION Section I Chromosomes Formation of New Cells by Cell Division New cells are formed when old cells divide. 1. Cell division is the same as cell reproduction.

More information

Separation of Plasma and Serum and Their Proteins from Whole Blood

Separation of Plasma and Serum and Their Proteins from Whole Blood Separation of Plasma and Serum and Their Proteins from Whole Blood BCH 471 [Practical] BLOOD COMPOSITION Other names to blood cells Red blood cells (erythrocytes) White blood cells (leukocytes) Platelets

More information

Introduction.-Cytopathogenic viruses may lose their cell-destroying capacity

Introduction.-Cytopathogenic viruses may lose their cell-destroying capacity AN INHIBITOR OF VIRAL ACTIVITY APPEARING IN INFECTED CELL CULTURES* BY MONTO Hot AND JOHN F. ENDERS RESEARCH DIVISION OF INFECTIOUS DISEASES, THE CHILDREN'S MEDICAL CENTER, AND THE DEPARTMENT OF BACTERIOLOGY

More information

Karyological analysis of Lepidoptera has been a

Karyological analysis of Lepidoptera has been a RESEARCH PAPER Asian Journal of Bio Science, Vol. 4 Issue 1 : 47-52 (April to September, 2009) Karyological studies of five species of Lepidoptera P.G. Department of Zoology, University of Jammu, JAMMU

More information

CYTOGENETICS Dr. Mary Ann Perle

CYTOGENETICS Dr. Mary Ann Perle CYTOGENETICS Dr. Mary Ann Perle I) Mitosis and metaphase chromosomes A) Chromosomes are most fully condensed and clearly distinguishable during mitosis. B) Mitosis (M phase) takes 1 to 2 hrs and is divided

More information

Cell cycle and apoptosis

Cell cycle and apoptosis Cell cycle and apoptosis Cell cycle Definition Stages and steps Cell cycle Interphase (G1/G0, S, and G2) Mitosis (prophase, metaphase, anaphase, telophase, karyokinesis, cytokinesis) Control checkpoints

More information

Eeva Therman. Human Chromosomes. Structure, Behavior, Effects. Second Edition. With 87 Figures. Springer-Verlag New York Berlin Heidelberg Tokyo

Eeva Therman. Human Chromosomes. Structure, Behavior, Effects. Second Edition. With 87 Figures. Springer-Verlag New York Berlin Heidelberg Tokyo Human Chromosomes Eeva Therman Human Chromosomes Structure, Behavior, Effects Second Edition With 87 Figures Springer-Verlag New York Berlin Heidelberg Tokyo Eeva Therman Laboratory of Genetics University

More information

Cellular Reproduction, Part 2: Meiosis Lecture 10 Fall 2008

Cellular Reproduction, Part 2: Meiosis Lecture 10 Fall 2008 Mitosis & 1 Cellular Reproduction, Part 2: Lecture 10 Fall 2008 Mitosis Form of cell division that leads to identical daughter cells with the full complement of DNA Occurs in somatic cells Cells of body

More information

INFLUENCE OF CELL ENVIRONMENT ON MICRONUCLEATION IN CHINESE HAMSTER OVARY CELLS. A Dissertation NATALIA GENNADIEVNA MEDVEDEVA

INFLUENCE OF CELL ENVIRONMENT ON MICRONUCLEATION IN CHINESE HAMSTER OVARY CELLS. A Dissertation NATALIA GENNADIEVNA MEDVEDEVA INFLUENCE OF CELL ENVIRONMENT ON MICRONUCLEATION IN CHINESE HAMSTER OVARY CELLS A Dissertation by NATALIA GENNADIEVNA MEDVEDEVA Submitted to the Office of Graduate Studies of Texas A&M University in partial

More information