THE UMD TP53 MUTATION DATABASE UPDATES AND BENEFITS. Pr. Thierry Soussi

Size: px
Start display at page:

Download "THE UMD TP53 MUTATION DATABASE UPDATES AND BENEFITS. Pr. Thierry Soussi"

Transcription

1 THE UMD TP53 MUTATION DATABASE UPDATES AND BENEFITS Pr. Thierry Soussi

2 TP53: 33 YEARS AND COUNTING STRUCTURE FUNCTION RELATIONSHIP OF WILD AND MUTANT TP Crawford et al. 37 C P. May 1983 Oren et al. 37 C 1988 Soussi et al. 40 C 1987 Soussi et al. 25 C 1988 Soussi et al Levine et al. 25 C

3 TP53: 33 YEARS AND COUNTING STRUCTURE FUNCTION RELATIONSHIP OF WILD AND MUTANT TP Crawford et al. 37 C P. May 1983 Oren et al. 37 C 1988 Soussi et al. 40 C 1987 Soussi et al Soussi et al. 25 C 2000 Levine et al. 25 C A. Pompeii 2015 Soussi et al. 60 C Which TP53 residues are important for TP53 folding? How these residues have evolved to ensure TP53 function from 0 to 60 C What is the status of these residues in human cancer? Wild type? mutant? associated with more deleterious clinical features?

4 TP53 MUTATIONS IN HUMAN CANCER GENE MUTATION: FROM DISCOVERY TO APPLICATION THE TP53 MUTATION DATABASE TP53 MUTATION ANALYSIS IN THE NEXT DECADE

5 TP53 MUTATIONS IN HUMAN CANCER IT is STORY TIME! TP53! A NEW MUTATED GENE IN HUMAN CANCER!

6 PHASE I Discovery Variant detection Causes Incidence Total number of variants (cumulated) Discovery rate of novel variants

7 PHASE I Discovery Variant detection Causes Incidence Total number of variants (cumulated) Discovery rate of novel variants I.F. Consequences Incidence Publications Inconsistant reports

8 PHASE II Incidence Discovery Clinical value Consolidation Variant detection X No clinical value Total number of variants (cumulated) Causes Discovery rate of novel variants

9 PHASE II Incidence Discovery Clinical value Consolidation Variant detection X No clinical value Total number of variants (cumulated) Causes Discovery rate of novel variants I.F. Consequences Incidence Publications Inconsistant reports

10 PHASE III Discovery Consolidation Application Causes Variant detection Incidence Total number of variants (cumulated) Discovery rate of novel variants

11 PHASE III Discovery Consolidation Application Causes Variant detection Incidence Total number of variants (cumulated) Discovery rate of novel variants I.F. Consequences Incidence Publications Inconsistant reports

12 TP53 MUTATIONS IN HUMAN CANCER GENE MUTATION: FROM DISCOVERY TO APPLICATION THE TP53 MUTATION DATABASE TP53 MUTATION ANALYSIS IN THE NEXT DECADE

13 THE p53 MUTATION DATABASE "unbiased" compilation of "every" TP53 mutations published in the literature + TCGA and ICGC unpublished data October ,900 PUBLICATIONS 60,000 MUTATIONS TP53 VARIANTS 1750 missense variants 5450 indel variants Bernard Leroy and Thierry Soussi

14 TP53 MUTATION HETEROGENEITY AND DATABASE FREQUENCY hot spot variants R175H (1 600 x) R273H (1 100x) TP53 MUTANTS (1,750 VARIANTS) rare variants 800 variants 1x 400 variants 2x WHAT IS THE BIOLOGICAL SIGNIFICANCE OF THESE RARE VARIANTS????

15 TP53 MUTATION HETEROGENEITY 2,314 p53 mutants representing all possible amino acid substitutions caused by a point mutation throughout the entire protein (5.9 substitutions per residue) have been constructed The transcriptional activity of all these mutants was analyzed in a yeast based functional assay For each p53 mutant, a quantitative value of the remaining activity is available

16 TP53 MUTATION HETEROGENEITY 175 ACTIVITY (% wt p53) ONLY TUMORS HAVE BEEN INCLUDED IN THE ANALYSIS > x 10-49x 6-9x 3-5x 2x 1x FREQUENCY

17 REMAINING ACTIVITY OF MUTANT TP53 ACCORDING TO THEIR FREQUENCY IN THE DATABASE 4 P< NS NS ACTIVITY (%) 0 NS _+ 81_160 41_80 21_40 9_ _3 FREQUENCY 1 Tumors cell line germ line

18 TP53 MUTATION HETEROGENEITY What is the contribution of these "rare" mutations to tumorigenesis passenger mutations? PCR and sequencing artefacts? Weak mutations? Are they randomly distributed in the literature? Are they associated with other unusual features?

19 TP53 MUTATION HETEROGENEITY Each publication was ranked according: Frequency of each mutant in the db Remaining activity of each mutant Number of tumors with multiple mutations Tum 2x Tum 3x Tum >3x Number of tumors synonymous mutations Number of tumors with recurrent mutations 2,018 publications with 5 or more reported mutations Edlund, K. et al. Data-driven unbiased curation of the TP53 tumor suppressor gene mutation database and validation by ultradeep sequencing of human tumors. Proc Natl Acad Sci U S A 109, (2012).

20 THE p53 MUTATION DATABASE Included >90% of the publications Outliers 7 % of the publications (2 sigma) or 1% (5 sigma) Multiple tumours with more than 1 TP53 mutations Multiple tumours with rare variants Multiple tumours with a high frequency of synonymous va PARAFFIN EMBEDDED TISSUE

21 THE p53 MUTATION DATABASE Only 2 papers describing TP53 mutations in lymphoma have been flagged Both papers used DNA from paraffin embeded tissue

22 TP53 MUTATIONS IN HUMAN CANCER GENE MUTATION: FROM DISCOVERY TO APPLICATION THE TP53 MUTATION DATABASE TP53 MUTATION ANALYSIS IN THE NEXT DECADE

23 THE TP53 PATHWAY: A COMPLEX NETWORK

24 THE TP53 PATHWAY: A COMPLEX NETWORK TP53 activities are modulated by the ratio of the various isoforms

25 TP53 ISOFORMS: WHATS IMPORTANCE? p.p110l 6.6% 17.8%

26 TP53 ISOFORMS: WHATS IMPORTANCE? TP53 exon 9 beta and gamma are poorly analyzed They are not included in the majority of commercial exon selection kit They are excluded from most analytical pipelines (labeled as intron) They are excluded in custom arrays

27 TP53 ISOFORMS: WHATS IMPORTANCE? Revised guidelines for screening of TP53 gene mutations Bernard Leroy, Mandy L. Ballinger, Gareth L. Bond, Antony Braithwaite, Nicole Concin, Lawrence A. Donehower, Wafik S. El-Deiry, Pierre Fenaux, Gianluca Gaidano, Anita Langerød, Eva Hellstrom-Lindberg, Richard Iggo, Jacqueline Lehmann-Che, Phuong L. Mai, David Malkin, Ute M. Moll, Jeffrey N. Myers, Kim E. Nichols, Sarka Pospisilova, Davide Rossi, Sharon A. Savage, Louise C. Strong, Patricia N. Tonin, Robert Zeillinger, Thorsten Zenz,Joseph F. Fraumeni Jr., Pierre Hainaut and Thierry Soussi

28 ASSESSING TP53 STATUS IN HUMAN CANCER STRATEGY METHODOLOGY MUTATION VALIDATION

29 ANALYSIS OF TP53 MUTATIONS IN HUMAN CANCER Application phase All coding exons with +/- 5 intronic extension

30 ANALYSIS OF TP53 MUTATIONS IN HUMAN CANCER Discovery phase screening beta and gamma exons Intron 9

31 ASSESSING TP53 STATUS IN HUMAN CANCER Discovery phase Intron 4 promoter Intron 4 TP53 RE Int Promoter

32 ASSESSING TP53 STATUS IN HUMAN CANCER Discovery phase 3 UTR? Intron 9 TP53 RE Int Promoter Intron 4 3'UTR

33 ASSESSING TP53 STATUS IN HUMAN CANCER STRATEGY METHODOLOGY MUTATION VALIDATION

34 ASSESSING TP53 STATUS IN HUMAN CANCER CONVENTIONAL SEQUENCING SANGER HIGH-THROUGHPUT SEQUENCING TUMOR HETEROGENEITY TUMOUR WITH MULTIPLE TP53 MUTATIONS Multiple tumoral clones with different mutations

35 ASSESSING TP53 STATUS IN HUMAN CANCER STRATEGY METHODOLOGY MUTATION VALIDATION Sequencing artefacts? Passenger mutations? Very rare neutral SNP? Driver mutations?

36 TP53 SNP CAN BE VERY UNFREQUENT More than 150,000 TP53 gene have been sequenced P36P P47S R72P R213R N235S R290H R283C R283H R156H P222L?

37 TP53 SNP CAN BE VERY UNFREQUENT More than 150,000 TP53 gene have been sequenced P36P P47S R72P R213R N235S R290H R283C R283H R156H P222L?

38 P36P R72P R213R

39 ASSESSING TP53 STATUS IN HUMAN CANCER STRATEGY METHODOLOGY MUTATION VALIDATION Sequencing artefacts? Passenger mutations? Very rare neutral SNP? Driver mutations?

40 PHASE III Discovery Consolidation Application Causes Variant detection Incidence Total number of variants (cumulated) Discovery rate of novel variants I.F. Consequences Incidence Publications Inconsistant reports

41 TP53 MUTATION HETEROGENEITY AND DATABASE FREQUENCY hot spot variants R175H (1 600 x) R273H (1 100x) TP53 MUTANTS (1,750 VARIANTS) cut off: TP53 frequeny Remaining activity Frequency in outliers studies rare variants 800 variants 1x 400 variants 2x

42 THE p53 MUTATION DATABASE TP53 Mutation 60,000 mutations TP53 Variants 7,200 Variants Each publication are flagged with a statistical index

43 Protein variant p.r175h p.r175h p.r175h p.r136h p.r136h p.r136h p.r43h p.r43h p.r43h p.r16h p.r16h p.r16h ALL ISOFORMS Frequency 2307 Hemopathies 138 CLL MDS for ERIC Comment Frequency This mutation is very frequent Comment Activity No activity cdna variant Comment Isoforms c.524g>a This mutation targets the 12 TP53 isoforms Comment Prediction Damaging wt p.r175h RESIDUAL ACTIVITY Polyphen: Damaging Mutassessor: Damaging Condel: Damaging Provean: Damaging Splice assessor: Splice Neutral Variant PREDICTION Comment Outliers No specific association Comment Splice No defect predicted

44 Protein variant p.t125t p.t125t p.t125t p.t86t p.t86t p.t86t p.= p.= p.= p.= p.= p.= ALL ISOFORMS Frequency 74 Hemopathies 4 CLL MDS 4 0 for ERIC Comment Frequency This mutation is not frequent Comment Activity No data cdna variant Comment Isoforms c.375g>t This mutation targets 6 TP53 isoforms Comment Prediction No data wt No data p.t125t RESIDUAL ACTIVITY Polyphen: No data Mutassessor: No data Condel: No data Provean: No data Splice assessor: Splice Neutral Variant PREDICTION Comment Outliers No specific association Comment Splice This exonic mutation, close to a splice site, has been predicted to impair splicing; high confidence index

45 Protein variant p.n235s p.n235s p.n235s p.n196s p.n196s p.n196s p.n103s p.n103s p.n103s p.n76s p.n76s p.n76s ALL ISOFORMS Frequency 39 Hemopathies 8 CLL MDS 5 0 for ERIC Comment Frequency This mutation is no frequent Comment Activity Fully active cdna variant Comment Isoforms c.704a>g This mutation targets the 12 TP53 isoforms Comment Prediction Probably Benign wt p.n235s RESIDUAL ACTIVITY Polyphen: Tolerated Mutassessor: Low Condel: Benign Provean: Damaging Splice assessor: Splice Neutral Variant PREDICTION Comment Outliers No specific association Comment Splice No defect predicted

46 TP53 MUTATIONS ARE HETEROGENOUS R175H deficient for apoptosis and cell cycle arrest R175P deficient for apoptosis only EXON 4-9

47 TP53 MUTATIONS AND ERIC 17p deletion Notch deletion association with another TP53 mutation early versus late TP53 MUTATIONS IN CLL ERIC program Other parameters can be discussed

48 ACKNOWLEDGEMENTS Ola Larsson Thierry Soussi Karolina Edlund Magnus Sundström Patrick Micke Johan Botling Bernard Leroy Jean L. Fournier Adam Ameur Ignas Bunikis Ulf Gyllensten

49

50

Reporting TP53 gene analysis results in CLL

Reporting TP53 gene analysis results in CLL Reporting TP53 gene analysis results in CLL Mutations in TP53 - From discovery to clinical practice in CLL Discovery Validation Clinical practice Variant diversity *Leroy at al, Cancer Research Review

More information

TP53 mutational profile in CLL : A retrospective study of the FILO group.

TP53 mutational profile in CLL : A retrospective study of the FILO group. TP53 mutational profile in CLL : A retrospective study of the FILO group. Fanny Baran-Marszak Hopital Avicenne Bobigny France 2nd ERIC workshop on TP53 analysis in CLL, Stresa 2017 TP53 abnormalities :

More information

TP53 ABERRATIONS Methodical considerations

TP53 ABERRATIONS Methodical considerations TP53 ABERRATIONS Methodical considerations Sarka Pavlova University Hospital and Masaryk University, Brno, Czech republic Belgrade March 16-17, 2018 TP53 gene in CLL: modes of inactivation mutation(s)

More information

Importance of minor TP53 mutated clones in the clinic

Importance of minor TP53 mutated clones in the clinic Importance of minor TP53 mutated clones in the clinic Davide Rossi, M.D., Ph.D. Hematology IOSI - Oncology Institute of Southern Switzerland IOR - Institute of Oncology Reserach Bellinzona - Switzerland

More information

A Comprehensive Study of TP53 Mutations in Chronic Lymphocytic Leukemia: Analysis of 1,287 Diagnostic CLL Samples

A Comprehensive Study of TP53 Mutations in Chronic Lymphocytic Leukemia: Analysis of 1,287 Diagnostic CLL Samples A Comprehensive Study of TP53 Mutations in Chronic Lymphocytic Leukemia: Analysis of 1,287 Diagnostic CLL Samples Sona Pekova, MD., PhD. Chambon Ltd., Laboratory for molecular diagnostics, Prague, Czech

More information

BASIC PROCEDURES SAMPLING, MATERIAL, SANGER SEQUENCING

BASIC PROCEDURES SAMPLING, MATERIAL, SANGER SEQUENCING Technical aspects of TP53 mutation analysis: BASIC PROCEDURES SAMPLING, MATERIAL, SANGER SEQUENCING Sarka Pavlova University Hospital and Masaryk University, Brno, Czech republic TP53 gene in CLL: KEEP

More information

Whole Genome and Transcriptome Analysis of Anaplastic Meningioma. Patrick Tarpey Cancer Genome Project Wellcome Trust Sanger Institute

Whole Genome and Transcriptome Analysis of Anaplastic Meningioma. Patrick Tarpey Cancer Genome Project Wellcome Trust Sanger Institute Whole Genome and Transcriptome Analysis of Anaplastic Meningioma Patrick Tarpey Cancer Genome Project Wellcome Trust Sanger Institute Outline Anaplastic meningioma compared to other cancers Whole genomes

More information

Analysis of Massively Parallel Sequencing Data Application of Illumina Sequencing to the Genetics of Human Cancers

Analysis of Massively Parallel Sequencing Data Application of Illumina Sequencing to the Genetics of Human Cancers Analysis of Massively Parallel Sequencing Data Application of Illumina Sequencing to the Genetics of Human Cancers Gordon Blackshields Senior Bioinformatician Source BioScience 1 To Cancer Genetics Studies

More information

6/12/2018. Disclosures. Clinical Genomics The CLIA Lab Perspective. Outline. COH HopeSeq Heme Panels

6/12/2018. Disclosures. Clinical Genomics The CLIA Lab Perspective. Outline. COH HopeSeq Heme Panels Clinical Genomics The CLIA Lab Perspective Disclosures Raju K. Pillai, M.D. Hematopathologist / Molecular Pathologist Director, Pathology Bioinformatics City of Hope National Medical Center, Duarte, CA

More information

Introduction. Introduction

Introduction. Introduction Introduction We are leveraging genome sequencing data from The Cancer Genome Atlas (TCGA) to more accurately define mutated and stable genes and dysregulated metabolic pathways in solid tumors. These efforts

More information

The functional investigation of the interaction between TATA-associated factor 3 (TAF3) and p53 protein

The functional investigation of the interaction between TATA-associated factor 3 (TAF3) and p53 protein THESIS BOOK The functional investigation of the interaction between TATA-associated factor 3 (TAF3) and p53 protein Orsolya Buzás-Bereczki Supervisors: Dr. Éva Bálint Dr. Imre Miklós Boros University of

More information

The Role of Next Generation Sequencing in Solid Tumor Mutation Testing

The Role of Next Generation Sequencing in Solid Tumor Mutation Testing The Role of Next Generation Sequencing in Solid Tumor Mutation Testing Allie H. Grossmann MD PhD Department of Pathology, University of Utah Division of Anatomic Pathology & Oncology, ARUP Laboratories

More information

Genotype-Phenotype in Egyptian Patients with Nephropathic Cystinosis. (December 2012 report)

Genotype-Phenotype in Egyptian Patients with Nephropathic Cystinosis. (December 2012 report) Genotype-Phenotype in Egyptian Patients with Nephropathic Cystinosis (December 2012 report) This is the first study of the genotype of Nephropathic Cystinosis (NC) patients in Egypt and the region of North

More information

Variant interpretation exercise. ACGS Somatic Variant Interpretation Workshop Joanne Mason 21/09/18

Variant interpretation exercise. ACGS Somatic Variant Interpretation Workshop Joanne Mason 21/09/18 Variant interpretation exercise ACGS Somatic Variant Interpretation Workshop Joanne Mason 21/09/18 Format of exercise Compile a list of tricky variants across solid cancer and haematological malignancy.

More information

Functional analysis of DNA variants

Functional analysis of DNA variants Functional analysis of DNA variants GS011143, Introduction to Bioinformatics The University of Texas GSBS program, Fall 2012 Ken Chen, Ph.D. Department of Bioinformatics and Computational Biology UT MD

More information

Insights from Sequencing the Melanoma Exome

Insights from Sequencing the Melanoma Exome Insights from Sequencing the Melanoma Exome Michael Krauthammer, MD PhD, December 2 2015 Yale University School Yof Medicine 1 2012 Exome Screens and Results Exome Sequencing of 108 sun-exposed melanomas

More information

MEDICAL GENOMICS LABORATORY. Next-Gen Sequencing and Deletion/Duplication Analysis of NF1 Only (NF1-NG)

MEDICAL GENOMICS LABORATORY. Next-Gen Sequencing and Deletion/Duplication Analysis of NF1 Only (NF1-NG) Next-Gen Sequencing and Deletion/Duplication Analysis of NF1 Only (NF1-NG) Ordering Information Acceptable specimen types: Fresh blood sample (3-6 ml EDTA; no time limitations associated with receipt)

More information

Shashikant Kulkarni, M.S (Medicine)., Ph.D., FACMG Associate Professor of Pathology & Immunology Associate Professor of Pediatrics and Genetics

Shashikant Kulkarni, M.S (Medicine)., Ph.D., FACMG Associate Professor of Pathology & Immunology Associate Professor of Pediatrics and Genetics Shashikant Kulkarni, M.S (Medicine)., Ph.D., FACMG Associate Professor of Pathology & Immunology Associate Professor of Pediatrics and Genetics Director of Cytogenomics and Molecular Pathology Evidence-based

More information

Genética del Feocromocitoma/Paraganglioma.

Genética del Feocromocitoma/Paraganglioma. Genética del Feocromocitoma/Paraganglioma. Mercedes Robledo, PhD Head of the Hereditary Endocrine Cancer Group Human Cancer Genetics Programme CNIO, Madrid, Spain. mrobledo@cnio.es High susceptibility

More information

Genomic tests to personalize therapy of metastatic breast cancers. Fabrice ANDRE Gustave Roussy Villejuif, France

Genomic tests to personalize therapy of metastatic breast cancers. Fabrice ANDRE Gustave Roussy Villejuif, France Genomic tests to personalize therapy of metastatic breast cancers Fabrice ANDRE Gustave Roussy Villejuif, France Future application of genomics: Understand the biology at the individual scale Patients

More information

CHR POS REF OBS ALLELE BUILD CLINICAL_SIGNIFICANCE

CHR POS REF OBS ALLELE BUILD CLINICAL_SIGNIFICANCE CHR POS REF OBS ALLELE BUILD CLINICAL_SIGNIFICANCE is_clinical dbsnp MITO GENE chr1 13273 G C heterozygous - - -. - DDX11L1 chr1 949654 A G Homozygous 52 - - rs8997 - ISG15 chr1 1021346 A G heterozygous

More information

Genetic Testing and Analysis. (858) MRN: Specimen: Saliva Received: 07/26/2016 GENETIC ANALYSIS REPORT

Genetic Testing and Analysis. (858) MRN: Specimen: Saliva Received: 07/26/2016 GENETIC ANALYSIS REPORT GBinsight Sample Name: GB4411 Race: Gender: Female Reason for Testing: Type 2 diabetes, early onset MRN: 0123456789 Specimen: Saliva Received: 07/26/2016 Test ID: 113-1487118782-4 Test: Type 2 Diabetes

More information

p.arg119gly p.arg119his p.ala179thr c.540+1g>a c.617_633+6del Prediction basis structure

p.arg119gly p.arg119his p.ala179thr c.540+1g>a c.617_633+6del Prediction basis structure a Missense ATG p.arg119gly p.arg119his p.ala179thr p.ala189val p.gly206trp p.gly206arg p.arg251his p.ala257thr TGA 5 UTR 1 2 3 4 5 6 7 3 UTR Splice Site, Frameshift b Mutation p.gly206trp p.gly4fsx50 c.138+1g>a

More information

Supplementary Document

Supplementary Document Supplementary Document 1. Supplementary Table legends 2. Supplementary Figure legends 3. Supplementary Tables 4. Supplementary Figures 5. Supplementary References 1. Supplementary Table legends Suppl.

More information

4 TH International LFS Association Symposium

4 TH International LFS Association Symposium 4 TH International LFS Association Symposium hosted by The Hospital for Sick Children and in partnership with the LiFE Consortium April 25-29 TH, 2018 Toronto, Ontario Canada CONFERENCE AGENDA WEDNESDAY,

More information

Characterisation of structural variation in breast. cancer genomes using paired-end sequencing on. the Illumina Genome Analyser

Characterisation of structural variation in breast. cancer genomes using paired-end sequencing on. the Illumina Genome Analyser Characterisation of structural variation in breast cancer genomes using paired-end sequencing on the Illumina Genome Analyser Phil Stephens Cancer Genome Project Why is it important to study cancer? Why

More information

NGS panels in clinical diagnostics: Utrecht experience. Van Gijn ME PhD Genome Diagnostics UMCUtrecht

NGS panels in clinical diagnostics: Utrecht experience. Van Gijn ME PhD Genome Diagnostics UMCUtrecht NGS panels in clinical diagnostics: Utrecht experience Van Gijn ME PhD Genome Diagnostics UMCUtrecht 93 Gene panels UMC Utrecht Cardiovascular disease (CAR) (5 panels) Epilepsy (EPI) (11 panels) Hereditary

More information

Bio 111 Study Guide Chapter 17 From Gene to Protein

Bio 111 Study Guide Chapter 17 From Gene to Protein Bio 111 Study Guide Chapter 17 From Gene to Protein BEFORE CLASS: Reading: Read the introduction on p. 333, skip the beginning of Concept 17.1 from p. 334 to the bottom of the first column on p. 336, and

More information

The Complexity of Simple Genetics

The Complexity of Simple Genetics The Complexity of Simple Genetics? The ciliopathies: a journey into variable penetrance and expressivity Bardet-Biedl Syndrome Allelism at a single locus is insufficient to explain phenotypic variability

More information

Whole exome sequencing as a first line test: Is there even a role for metabolic biochemists in the future?

Whole exome sequencing as a first line test: Is there even a role for metabolic biochemists in the future? Whole exome sequencing as a first line test: Is there even a role for metabolic biochemists in the future? Tony Marinakii Purine Research Laboratory Biochemical Sciences Whole exome sequencing No doubt

More information

SUPPLEMENTARY INFORMATION. Rare independent mutations in renal salt handling genes contribute to blood pressure variation

SUPPLEMENTARY INFORMATION. Rare independent mutations in renal salt handling genes contribute to blood pressure variation SUPPLEMENTARY INFORMATION Rare independent mutations in renal salt handling genes contribute to blood pressure variation Weizhen Ji, Jia Nee Foo, Brian J. O Roak, Hongyu Zhao, Martin G. Larson, David B.

More information

NEXT GENERATION SEQUENCING. R. Piazza (MD, PhD) Dept. of Medicine and Surgery, University of Milano-Bicocca

NEXT GENERATION SEQUENCING. R. Piazza (MD, PhD) Dept. of Medicine and Surgery, University of Milano-Bicocca NEXT GENERATION SEQUENCING R. Piazza (MD, PhD) Dept. of Medicine and Surgery, University of Milano-Bicocca SANGER SEQUENCING 5 3 3 5 + Capillary Electrophoresis DNA NEXT GENERATION SEQUENCING SOLEXA-ILLUMINA

More information

MicroRNA dysregulation in cancer. Systems Plant Microbiology Hyun-Hee Lee

MicroRNA dysregulation in cancer. Systems Plant Microbiology Hyun-Hee Lee MicroRNA dysregulation in cancer Systems Plant Microbiology Hyun-Hee Lee Contents 1 What is MicroRNA? 2 mirna dysregulation in cancer 3 Summary What is MicroRNA? What is MicroRNA? MicroRNAs (mirnas) -

More information

Cell-free tumor DNA for cancer monitoring

Cell-free tumor DNA for cancer monitoring Learning objectives Cell-free tumor DNA for cancer monitoring Christina Lockwood, PhD, DABCC, DABMGG Department of Laboratory Medicine 1. Define circulating, cell-free tumor DNA (ctdna) 2. Understand the

More information

TITLE: The Role Of Alternative Splicing In Breast Cancer Progression

TITLE: The Role Of Alternative Splicing In Breast Cancer Progression AD Award Number: W81XWH-06-1-0598 TITLE: The Role Of Alternative Splicing In Breast Cancer Progression PRINCIPAL INVESTIGATOR: Klemens J. Hertel, Ph.D. CONTRACTING ORGANIZATION: University of California,

More information

Supplementary Online Content

Supplementary Online Content Supplementary Online Content Ku CA, Hull S, Arno G, et al. Detailed clinical phenotype and molecular genetic findings in CLN3-associated isolated retinal degeneration. JAMA Ophthalmol. Published online

More information

Germline Testing for Hereditary Cancer with Multigene Panel

Germline Testing for Hereditary Cancer with Multigene Panel Germline Testing for Hereditary Cancer with Multigene Panel Po-Han Lin, MD Department of Medical Genetics National Taiwan University Hospital 2017-04-20 Disclosure No relevant financial relationships with

More information

What we know about Li-Fraumeni syndrome

What we know about Li-Fraumeni syndrome What we know about Li-Fraumeni syndrome Dr Helen Hanson Consultant in Cancer Genetics St Georges Hospital, South-West Thames Regional Genetics Service History of LFS 1969 Li and Fraumeni describe four

More information

Supplementary Figure 1

Supplementary Figure 1 Count Count Supplementary Figure 1 Coverage per amplicon for error-corrected sequencing experiments. Errorcorrected consensus sequence (ECCS) coverage was calculated for each of the 568 amplicons in the

More information

EGFR ctdna Testing. Andrew Wallace 21/09/2015 Genomic Diagnostics Laboratory St. Mary s Hospital, Manchester

EGFR ctdna Testing. Andrew Wallace 21/09/2015 Genomic Diagnostics Laboratory St. Mary s Hospital, Manchester EGFR ctdna Testing Andrew Wallace 21/09/2015 Genomic Diagnostics Laboratory St. Mary s Hospital, Manchester ctdna & EGFR Testing in NSCLC EGFR ctdna testing Non-invasive - patients too sick/biopsy or cytology

More information

Illumina Trusight Myeloid Panel validation A R FHAN R A FIQ

Illumina Trusight Myeloid Panel validation A R FHAN R A FIQ Illumina Trusight Myeloid Panel validation A R FHAN R A FIQ G E NETIC T E CHNOLOGIST MEDICAL G E NETICS, CARDIFF To Cover Background to the project Choice of panel Validation process Genes on panel, Protocol

More information

genomics for systems biology / ISB2020 RNA sequencing (RNA-seq)

genomics for systems biology / ISB2020 RNA sequencing (RNA-seq) RNA sequencing (RNA-seq) Module Outline MO 13-Mar-2017 RNA sequencing: Introduction 1 WE 15-Mar-2017 RNA sequencing: Introduction 2 MO 20-Mar-2017 Paper: PMID 25954002: Human genomics. The human transcriptome

More information

AVENIO ctdna Analysis Kits The complete NGS liquid biopsy solution EMPOWER YOUR LAB

AVENIO ctdna Analysis Kits The complete NGS liquid biopsy solution EMPOWER YOUR LAB Analysis Kits The complete NGS liquid biopsy solution EMPOWER YOUR LAB Analysis Kits Next-generation performance in liquid biopsies 2 Accelerating clinical research From liquid biopsy to next-generation

More information

MEDICAL GENOMICS LABORATORY. Peripheral Nerve Sheath Tumor Panel by Next-Gen Sequencing (PNT-NG)

MEDICAL GENOMICS LABORATORY. Peripheral Nerve Sheath Tumor Panel by Next-Gen Sequencing (PNT-NG) Peripheral Nerve Sheath Tumor Panel by Next-Gen Sequencing (PNT-NG) Ordering Information Acceptable specimen types: Blood (3-6ml EDTA; no time limitations associated with receipt) Saliva (OGR-575 DNA Genotek;

More information

Analyse de données de séquençage haut débit

Analyse de données de séquençage haut débit Analyse de données de séquençage haut débit Vincent Lacroix Laboratoire de Biométrie et Biologie Évolutive INRIA ERABLE 9ème journée ITS 21 & 22 novembre 2017 Lyon https://its.aviesan.fr Sequencing is

More information

Introduction to Cancer Biology

Introduction to Cancer Biology Introduction to Cancer Biology Robin Hesketh Multiple choice questions (choose the one correct answer from the five choices) Which ONE of the following is a tumour suppressor? a. AKT b. APC c. BCL2 d.

More information

Personalis ACE Clinical Exome The First Test to Combine an Enhanced Clinical Exome with Genome- Scale Structural Variant Detection

Personalis ACE Clinical Exome The First Test to Combine an Enhanced Clinical Exome with Genome- Scale Structural Variant Detection Personalis ACE Clinical Exome The First Test to Combine an Enhanced Clinical Exome with Genome- Scale Structural Variant Detection Personalis, Inc. 1350 Willow Road, Suite 202, Menlo Park, California 94025

More information

Identifying Mutations Responsible for Rare Disorders Using New Technologies

Identifying Mutations Responsible for Rare Disorders Using New Technologies Identifying Mutations Responsible for Rare Disorders Using New Technologies Jacek Majewski, Department of Human Genetics, McGill University, Montreal, QC Canada Mendelian Diseases Clear mode of inheritance

More information

iplex genotyping IDH1 and IDH2 assays utilized the following primer sets (forward and reverse primers along with extension primers).

iplex genotyping IDH1 and IDH2 assays utilized the following primer sets (forward and reverse primers along with extension primers). Supplementary Materials Supplementary Methods iplex genotyping IDH1 and IDH2 assays utilized the following primer sets (forward and reverse primers along with extension primers). IDH1 R132H and R132L Forward:

More information

The lymphoma-associated NPM-ALK oncogene elicits a p16ink4a/prb-dependent tumor-suppressive pathway. Blood Jun 16;117(24):

The lymphoma-associated NPM-ALK oncogene elicits a p16ink4a/prb-dependent tumor-suppressive pathway. Blood Jun 16;117(24): DNA Sequencing Publications Standard Sequencing 1 Carro MS et al. DEK Expression is controlled by E2F and deregulated in diverse tumor types. Cell Cycle. 2006 Jun;5(11) 2 Lassandro L et al. The DNA sequence

More information

Update on the ERIC TP53 Network Activities and TP53 Certification Overview and Results of Round 4

Update on the ERIC TP53 Network Activities and TP53 Certification Overview and Results of Round 4 Update on the ERIC TP53 Network Activities and TP53 Certification Overview and Results of Round 4 Sarka Pospisilova Jitka Malcikova CEITEC, Masaryk University and University Hospital Brno, Czech Republic

More information

p.r623c p.p976l p.d2847fs p.t2671 p.d2847fs p.r2922w p.r2370h p.c1201y p.a868v p.s952* RING_C BP PHD Cbp HAT_KAT11

p.r623c p.p976l p.d2847fs p.t2671 p.d2847fs p.r2922w p.r2370h p.c1201y p.a868v p.s952* RING_C BP PHD Cbp HAT_KAT11 ARID2 p.r623c KMT2D p.v650fs p.p976l p.r2922w p.l1212r p.d1400h DNA binding RFX DNA binding Zinc finger KMT2C p.a51s p.d372v p.c1103* p.d2847fs p.t2671 p.d2847fs p.r4586h PHD/ RING DHHC/ PHD PHD FYR N

More information

Next generation histopathological diagnosis for precision medicine in solid cancers

Next generation histopathological diagnosis for precision medicine in solid cancers Next generation histopathological diagnosis for precision medicine in solid cancers from genomics to clinical application Aldo Scarpa ARC-NET Applied Research on Cancer Department of Pathology and Diagnostics

More information

De novo mutational profile in RB1 clarified using a mutation rate modeling algorithm

De novo mutational profile in RB1 clarified using a mutation rate modeling algorithm Aggarwala et al. BMC Genomics (2017) 18:155 DOI 10.1186/s12864-017-3522-z RESEARCH ARTICLE Open Access De novo mutational profile in RB1 clarified using a mutation rate modeling algorithm Varun Aggarwala

More information

Supplementary Appendix

Supplementary Appendix Supplementary Appendix This appendix has been provided by the authors to give readers additional information about their work. Supplement to: Yatsenko AN, Georgiadis AP, Röpke A, et al. X-linked TEX11

More information

TITLE: High throughput sequencing of germline and tumor from men with early-onset, metastatic prostate cancer

TITLE: High throughput sequencing of germline and tumor from men with early-onset, metastatic prostate cancer AWARD NUMBER: W81XWH-13-1-0371 TITLE: High throughput sequencing of germline and tumor from men with early-onset, metastatic prostate cancer PRINCIPAL INVESTIGATOR: A. Cooney, M.D. CONTRACTING ORGANIZATION:

More information

Nature Genetics: doi: /ng Supplementary Figure 1. Mutational signatures in BCC compared to melanoma.

Nature Genetics: doi: /ng Supplementary Figure 1. Mutational signatures in BCC compared to melanoma. Supplementary Figure 1 Mutational signatures in BCC compared to melanoma. (a) The effect of transcription-coupled repair as a function of gene expression in BCC. Tumor type specific gene expression levels

More information

Using the Bravo Liquid-Handling System for Next Generation Sequencing Sample Prep

Using the Bravo Liquid-Handling System for Next Generation Sequencing Sample Prep Using the Bravo Liquid-Handling System for Next Generation Sequencing Sample Prep Tom Walsh, PhD Division of Medical Genetics University of Washington Next generation sequencing Sanger sequencing gold

More information

Supplemental Information For: The genetics of splicing in neuroblastoma

Supplemental Information For: The genetics of splicing in neuroblastoma Supplemental Information For: The genetics of splicing in neuroblastoma Justin Chen, Christopher S. Hackett, Shile Zhang, Young K. Song, Robert J.A. Bell, Annette M. Molinaro, David A. Quigley, Allan Balmain,

More information

Defining Actionable Novel Discoveries, Annotating Genomes, and Reanalysis in Cancer A Laboratory Perspective

Defining Actionable Novel Discoveries, Annotating Genomes, and Reanalysis in Cancer A Laboratory Perspective Integrating Large-Scale Genomic Information into Clinical Practice: A Workshop Defining Actionable Novel Discoveries, Annotating Genomes, and Reanalysis in Cancer A Laboratory Perspective Federico A. Monzon

More information

New horizons for small cell lung cancers. Charles Rudin MD PhD

New horizons for small cell lung cancers. Charles Rudin MD PhD New horizons for small cell lung cancers Charles Rudin MD PhD Annual deaths (US) US cancer deaths 140000 120000 100000 80000 60000 40000 20000 0 Cancer type Small cell lung cancer: a disease in need of

More information

Oncofocus. Patient Test Report

Oncofocus. Patient Test Report Oncofocus Patient Test Report Lead Clinical Scientist: Keeda Snelson BMS: Tiffany Haddow Date: 22 Dec 2016 1 of 4 Comment: The DNA and RNA extracted from this sample were of optimal quality. The Oncofocus

More information

Introduction to Cancer Bioinformatics and cancer biology. Anthony Gitter Cancer Bioinformatics (BMI 826/CS 838) January 20, 2015

Introduction to Cancer Bioinformatics and cancer biology. Anthony Gitter Cancer Bioinformatics (BMI 826/CS 838) January 20, 2015 Introduction to Cancer Bioinformatics and cancer biology Anthony Gitter Cancer Bioinformatics (BMI 826/CS 838) January 20, 2015 Why cancer bioinformatics? Devastating disease, no cure on the horizon Major

More information

COMPUTATIONAL OPTIMISATION OF TARGETED DNA SEQUENCING FOR CANCER DETECTION

COMPUTATIONAL OPTIMISATION OF TARGETED DNA SEQUENCING FOR CANCER DETECTION COMPUTATIONAL OPTIMISATION OF TARGETED DNA SEQUENCING FOR CANCER DETECTION Pierre Martinez, Nicholas McGranahan, Nicolai Juul Birkbak, Marco Gerlinger, Charles Swanton* SUPPLEMENTARY INFORMATION SUPPLEMENTARY

More information

CHAPTER IV RESULTS Microcephaly General description

CHAPTER IV RESULTS Microcephaly General description 47 CHAPTER IV RESULTS 4.1. Microcephaly 4.1.1. General description This study found that from a previous study of 527 individuals with MR, 48 (23 female and 25 male) unrelated individuals were identified

More information

UNIVERSITY OF TORINO DEPARTMENT OF ONCOLOGY. Giorgio V. Scagliotti University of Torino Dipartment of Oncology

UNIVERSITY OF TORINO DEPARTMENT OF ONCOLOGY. Giorgio V. Scagliotti University of Torino Dipartment of Oncology Giorgio V. Scagliotti University of Torino Dipartment of Oncology giorgio.scagliotti@unito.it Molecular landscape of MM not fully characterized to allow personalized treatment Recurrent genetic alterations

More information

MEDICAL GENOMICS LABORATORY. Non-NF1 RASopathy panel by Next-Gen Sequencing and Deletion/Duplication Analysis of SPRED1 (NNP-NG)

MEDICAL GENOMICS LABORATORY. Non-NF1 RASopathy panel by Next-Gen Sequencing and Deletion/Duplication Analysis of SPRED1 (NNP-NG) Non-NF1 RASopathy panel by Next-Gen Sequencing and Deletion/Duplication Analysis of SPRED1 (NNP-NG) Ordering Information Acceptable specimen types: Blood (3-6ml EDTA; no time limitations associated with

More information

Cancer Genomics. Nic Waddell. Winter School in Mathematical and Computational Biology. July th

Cancer Genomics. Nic Waddell. Winter School in Mathematical and Computational Biology. July th Cancer Genomics Nic Waddell Winter School in Mathematical and Computational Biology 6th July 2015 Time Line of Key Events in Cancer Genomics Michael R. Stratton Science 2011;331:1553-1558 The Cancer Genome

More information

Integration of Cancer Genome into GECCO- Genetics and Epidemiology of Colorectal Cancer Consortium

Integration of Cancer Genome into GECCO- Genetics and Epidemiology of Colorectal Cancer Consortium Integration of Cancer Genome into GECCO- Genetics and Epidemiology of Colorectal Cancer Consortium Ulrike Peters Fred Hutchinson Cancer Research Center University of Washington U01-CA137088-05, PI: Peters

More information

Research Strategy: 1. Background and Significance

Research Strategy: 1. Background and Significance Research Strategy: 1. Background and Significance 1.1. Heterogeneity is a common feature of cancer. A better understanding of this heterogeneity may present therapeutic opportunities: Intratumor heterogeneity

More information

NGS in Cancer Pathology After the Microscope: From Nucleic Acid to Interpretation

NGS in Cancer Pathology After the Microscope: From Nucleic Acid to Interpretation NGS in Cancer Pathology After the Microscope: From Nucleic Acid to Interpretation Michael R. Rossi, PhD, FACMG Assistant Professor Division of Cancer Biology, Department of Radiation Oncology Department

More information

NGS in tissue and liquid biopsy

NGS in tissue and liquid biopsy NGS in tissue and liquid biopsy Ana Vivancos, PhD Referencias So, why NGS in the clinics? 2000 Sanger Sequencing (1977-) 2016 NGS (2006-) ABIPrism (Applied Biosystems) Up to 2304 per day (96 sequences

More information

Ch 7 Mutation. A heritable change in DNA Random Source of genetic variation in a species may be advantageous, deleterious, neutral

Ch 7 Mutation. A heritable change in DNA Random Source of genetic variation in a species may be advantageous, deleterious, neutral Ch 7 Mutation A heritable change in DNA Random Source of genetic variation in a species may be advantageous, deleterious, neutral Mutation (+ sexual reproduction) + natural selection = evolution Types

More information

To test the possible source of the HBV infection outside the study family, we searched the Genbank

To test the possible source of the HBV infection outside the study family, we searched the Genbank Supplementary Discussion The source of hepatitis B virus infection To test the possible source of the HBV infection outside the study family, we searched the Genbank and HBV Database (http://hbvdb.ibcp.fr),

More information

Correspondence to Nature Genetics: Exploring pediatric cancer mutation information using ProteinPaint

Correspondence to Nature Genetics: Exploring pediatric cancer mutation information using ProteinPaint SUPPLEMENTARY INFORMATION FOR Correspondence to Nature Genetics: Exploring pediatric cancer mutation information using ProteinPaint Xin Zhou 1, Michael Edmonson 1, Mark R. Wilkinson 1, Aman Patel 1, Gang

More information

Alabama University at Birmingham Birmingham, AL Approved for Public Release; Distribution Unlimited

Alabama University at Birmingham Birmingham, AL Approved for Public Release; Distribution Unlimited AD Award Number: W81XWH-04-1-0079 TITLE: The Role of Mutant p53 in Progression of Prostate Cancer PRINCIPAL INVESTIGATOR: Gang Liu, M.D., Ph.D. CONTRACTING ORGANIZATION: Alabama University at Birmingham

More information

CRISPR/Cas9 Enrichment and Long-read WGS for Structural Variant Discovery

CRISPR/Cas9 Enrichment and Long-read WGS for Structural Variant Discovery CRISPR/Cas9 Enrichment and Long-read WGS for Structural Variant Discovery PacBio CoLab Session October 20, 2017 For Research Use Only. Not for use in diagnostics procedures. Copyright 2017 by Pacific Biosciences

More information

Variant Classification. Author: Mike Thiesen, Golden Helix, Inc.

Variant Classification. Author: Mike Thiesen, Golden Helix, Inc. Variant Classification Author: Mike Thiesen, Golden Helix, Inc. Overview Sequencing pipelines are able to identify rare variants not found in catalogs such as dbsnp. As a result, variants in these datasets

More information

Finding subtle mutations with the Shannon human mrna splicing pipeline

Finding subtle mutations with the Shannon human mrna splicing pipeline Finding subtle mutations with the Shannon human mrna splicing pipeline Presentation at the CLC bio Medical Genomics Workshop American Society of Human Genetics Annual Meeting November 9, 2012 Peter K Rogan

More information

Investigating rare diseases with Agilent NGS solutions

Investigating rare diseases with Agilent NGS solutions Investigating rare diseases with Agilent NGS solutions Chitra Kotwaliwale, Ph.D. 1 Rare diseases affect 350 million people worldwide 7,000 rare diseases 80% are genetic 60 million affected in the US, Europe

More information

Supplementary Figure 1. Estimation of tumour content

Supplementary Figure 1. Estimation of tumour content Supplementary Figure 1. Estimation of tumour content a, Approach used to estimate the tumour content in S13T1/T2, S6T1/T2, S3T1/T2 and S12T1/T2. Tissue and tumour areas were evaluated by two independent

More information

IntelliGENSM. Integrated Oncology is making next generation sequencing faster and more accessible to the oncology community.

IntelliGENSM. Integrated Oncology is making next generation sequencing faster and more accessible to the oncology community. IntelliGENSM Integrated Oncology is making next generation sequencing faster and more accessible to the oncology community. NGS TRANSFORMS GENOMIC TESTING Background Cancers may emerge as a result of somatically

More information

Foreign antigens in human cancers

Foreign antigens in human cancers Foreign antigens in human cancers Lorenzo Fanchi PhD student, Ton Schumacher Lab ESMO Preceptorship on Immuno-Oncology May 26th, 2017 IMMUNE CHECKPOINT INHIBITION SHOWS CLINICAL BENEFIT IN DIFFERENT TUMOR

More information

Mutational and phenotypical spectrum of phenylalanine hydroxylase deficiency in Denmark

Mutational and phenotypical spectrum of phenylalanine hydroxylase deficiency in Denmark Clin Genet 2016: 90: 247 251 Printed in Singapore. All rights reserved Short Report 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd CLINICAL GENETICS doi: 10.1111/cge.12692 Mutational and

More information

Precision medicine: How to exploit the growing knowledge on the evolving genomes of cells to improve cancer prevention and therapy.

Precision medicine: How to exploit the growing knowledge on the evolving genomes of cells to improve cancer prevention and therapy. Precision medicine: How to exploit the growing knowledge on the evolving genomes of cells to improve cancer prevention and therapy Joe Costello, PhD Department of Neurological Surgery A more accurate and

More information

oncogenes-and- tumour-suppressor-genes)

oncogenes-and- tumour-suppressor-genes) Special topics in tumor biochemistry oncogenes-and- tumour-suppressor-genes) Speaker: Prof. Jiunn-Jye Chuu E-Mail: jjchuu@mail.stust.edu.tw Genetic Basis of Cancer Cancer-causing mutations Disease of aging

More information

Protein Domain-Centric Approach to Study Cancer Somatic Mutations from High-throughput Sequencing Studies

Protein Domain-Centric Approach to Study Cancer Somatic Mutations from High-throughput Sequencing Studies Protein Domain-Centric Approach to Study Cancer Somatic Mutations from High-throughput Sequencing Studies Dr. Maricel G. Kann Assistant Professor Dept of Biological Sciences UMBC 2 The term protein domain

More information

Discovery and Validation of Prognostic Genomic Based Signatures in High Risk Bladder Cancer Following Cystectomy

Discovery and Validation of Prognostic Genomic Based Signatures in High Risk Bladder Cancer Following Cystectomy Discovery and Validation of Prognostic Genomic Based Signatures in High Risk Bladder Cancer Following Cystectomy Anirban P. Mitra, M.D., Ph.D. Center for Personalized Medicine University of Southern California

More information

CHAPTER 3 PROBLEM STATEMENT AND RESEARCH METHODOLOGY

CHAPTER 3 PROBLEM STATEMENT AND RESEARCH METHODOLOGY 64 CHAPTER 3 PROBLEM STATEMENT AND RESEARCH METHODOLOGY 3.1 PROBLEM DEFINITION Clinical data mining (CDM) is a rising field of research that aims at the utilization of data mining techniques to extract

More information

1. Identify and characterize interesting phenomena! 2. Characterization should stimulate some questions/models! 3. Combine biochemistry and genetics

1. Identify and characterize interesting phenomena! 2. Characterization should stimulate some questions/models! 3. Combine biochemistry and genetics 1. Identify and characterize interesting phenomena! 2. Characterization should stimulate some questions/models! 3. Combine biochemistry and genetics to gain mechanistic insight! 4. Return to step 2, as

More information

HHS Public Access Author manuscript J Invest Dermatol. Author manuscript; available in PMC 2016 February 01.

HHS Public Access Author manuscript J Invest Dermatol. Author manuscript; available in PMC 2016 February 01. Rolling the genetic dice: neutral and deleterious Smoothened mutations in drug-resistant basal cell carcinoma Scott X. Atwood 1, Kavita Y. Sarin 1, Jiang R. Li 1, Catherine Yao 1, Nicole M. Urman 1, Anne

More information

Daniel Lieber, Ph.D. Senior Scientist, Computational Biology Foundation Medicine, Cambridge, MA. AACR 2017: Clinical Biomarkers April 3, 2017

Daniel Lieber, Ph.D. Senior Scientist, Computational Biology Foundation Medicine, Cambridge, MA. AACR 2017: Clinical Biomarkers April 3, 2017 Validation & clinical feasibility of a comprehensive genomic profiling assay to identify likely immunotherapy responders through tumor mutational burden (TMB) Daniel Lieber, Ph.D. Senior Scientist, Computational

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature10866 a b 1 2 3 4 5 6 7 Match No Match 1 2 3 4 5 6 7 Turcan et al. Supplementary Fig.1 Concepts mapping H3K27 targets in EF CBX8 targets in EF H3K27 targets in ES SUZ12 targets in ES

More information

Liquid biopsy: the experience of real life case studies

Liquid biopsy: the experience of real life case studies Liquid biopsy: the experience of real life case studies 10 th September 2018 Beatriz Bellosillo Servicio de Anatomía Patológica Hospital del Mar, Barcelona Agenda Introduction Experience in colorectal

More information

Please Silence Your Cell Phones. Thank You

Please Silence Your Cell Phones. Thank You Please Silence Your Cell Phones Thank You Utility of NGS and Comprehensive Genomic Profiling in Hematopathology Practice Maria E. Arcila M.D. Memorial Sloan Kettering Cancer Center New York, NY Disclosure

More information

Nature Genetics: doi: /ng Supplementary Figure 1. Somatic coding mutations identified by WES/WGS for 83 ATL cases.

Nature Genetics: doi: /ng Supplementary Figure 1. Somatic coding mutations identified by WES/WGS for 83 ATL cases. Supplementary Figure 1 Somatic coding mutations identified by WES/WGS for 83 ATL cases. (a) The percentage of targeted bases covered by at least 2, 10, 20 and 30 sequencing reads (top) and average read

More information

Laboratory Service Report

Laboratory Service Report Client C7028846-DLP Rochester Rochester, N 55901 Specimen Type Peripheral blood CR PDF Report available at: https://test.mmlaccess.com/reports/c7028846-zwselwql7p.ashx Indication for Test DS CR Pathogenic

More information

Session 4 Rebecca Poulos

Session 4 Rebecca Poulos The Cancer Genome Atlas (TCGA) & International Cancer Genome Consortium (ICGC) Session 4 Rebecca Poulos Prince of Wales Clinical School Introductory bioinformatics for human genomics workshop, UNSW 20

More information

Abstract. Patricia G. Melloy*

Abstract. Patricia G. Melloy* Laboratory Exercise Using an International p53 Mutation Database as a Foundation for an Online Laboratory in an Upper Level Undergraduate Biology Class ws Patricia G. Melloy* From the Department of Biological

More information

Moore s law in information technology. exponential growth!

Moore s law in information technology. exponential growth! Moore s law in information technology exponential growth! ... and how it compares to developments in bio sciences Biology is driven by an avalanche of new information... DNA sequencing methods and throughput

More information