FARMINGDALE STATE COLLEGE DEPARTMENT OF CHEMISTRY. April CONTACT HOURS: Lecture: 3 Laboratory: 3

Size: px
Start display at page:

Download "FARMINGDALE STATE COLLEGE DEPARTMENT OF CHEMISTRY. April CONTACT HOURS: Lecture: 3 Laboratory: 3"

Transcription

1 FARMINGDALE STATE COLLEGE DEPARTMENT OF CHEMISTRY COURSE OUTLINE: COURSE TITLE: Prepared by Dr. Glen Hinckley April 2017 Biochemistry COURSE CODE: CHM 380 CREDITS: 4 CONTACT HOURS: Lecture: 3 Laboratory: 3 CATALOG DESCRIPTION: A one semester course covering the fundamentals of biochemistry. Topics covered include: the structure and function of important biomolecules such as carbohydrates, lipids, amino acids, proteins and nucleic acids; enzyme kinetics and the use of cofactors & coenzymes; and metabolic pathways including glycolysis, TCA, electron-transport system, fatty acid and amino acid pathways. Laboratory work includes current biochemical laboratory techniques such as chromatography and electrophoresis, application of specific topics described above, and analysis of data from laboratory experiments. PREREQUSITE: CHM 260 or CHM 271. IMPORTANT NOTE: BOTH THEORY AND LABORATORY PARTS OF THIS COURSE MUST BE TAKEN CONCURRENTLY IN ORDER TO RECEIVE CREDIT. REQUIRED FOR: ELECTIVE FOR: Medical Laboratory Technology Bioscience 1

2 REQUIRED TEXT: OPTIONAL TEXT: Experiments in Biochemistry by Dr. Glen Hinckley. Biochemistry, by Garrett & Grisham, 5th Edition, Brooks/Cole REQUIRED SUPPLIES: Lab coat and safety glasses 2

3 FARMINGDALE STATE COLLEGE DEPARTMENT OF CHEMISTRY CHM 380 Biochemistry Lecture Schedule I. Biology Review Major organelles in the cell, Organization of the cell, Major organs in the body 1. Identify the major organelles of the cell and their function. 2. Identify the major organs of the body and their functions 3. Reproduce the structure of the cell at a schematic level II. General Chemistry Review Thermodynamics, Equilibrium, Acid / Base theories, Kinetics At the end of the section, the student should be able to: 1. Define spontaneity and correlate it with Gibbs free energy 2. Interpret an equilibrium equation and perform calculations of concentrations 3. Define the acid base theories of Arrhenius and Bronsted-Lowry and identify into which classification specific compounds fall 4. Interpret a rate equation and perform calculations of rates and rate constants III. The Nature of Water Polar and non-polar substances, Hydrogen bonds, strong and weak acids and bases, Henderson-Hasselbalch equation, buffer solutions. 1. Distinguish between polar and non-polar compounds 2. Draw a hydrogen bond schematic between donor and acceptors 3. Calculate concentrations, ph, and pka using the Henderson-Hasselbalch equation 4. Identify important regions, especially the buffering region, in the titration of a weak acid 3

4 IV. Organic Chemistry Review Functional groups in organic chemistry, Lewis Acid / base theory, fundamentals of organic reactions & mechanisms, acidity of the alpha carbon to carbonyls V. Lipids 1. Identify organic functional groups by name and structure 2. Identify compounds as Lewis acids or bases 3. Identify nucleophiles and electrophiles in organic reactions 4. Predict the product of biochemically relevant organic reactions 5. Draw the tautomerization of a ketone Classification, fatty acids, triglycerides, terpenes & steroids, phosphoand sphingolipids, physical properites of lipids 1. Identify and classify lipids by structure and name 2. Draw the structure of fatty acids (lauric, myristic, palmitic, stearic, oleic, linoleic, linolenic) 3. Draw the structure of triglycerides and phospholipids 4. Predict relative melting and polarity properites of lipids 5. Identify function of each type of lipid VI. Carbohydrates Classification by length and type, stereoisomerism, cyclic forms, anomers, di- and polysaccharide structures and linkages, typical polysaccharide structures and functions, reducing sugars and tests for. 1. Classify sugars by length, type, and stereoisomers 2. Draw the cyclic form of sugars from their straight chain structure, and visa-versa 3. Identify and define major di and polysaccharides, including their functions and digestion 4. Define reducing sugars and predict results of tests for reducing sugars. 4

5 VII. Amino acids and peptides Structures, names, and three letter & one letter codes of all 20 common amino acids, Zwitterion, ioniziation states of amino acids at different ph values, the structure of the peptide bond. 1. Identify all amino acids by structure, name, three letter, and one letter code 2. Determine the charge and ionization state of all ionizable groups on an amino acid given a specific ph 3. Construct a peptide from a sequence and given amino acid structures VIII. Proteins Four levels of protein structure, factors that affect each level of protein structure, including hydrogen bonding and the hydrophobic effect, types of proteins (fibrous, globular, membrane), major features of keratin and collagen, denaturation, glycosylation and lipoylation 1. Define each level of protein structure 2. Identify and interpret major factors affecting protein structure 3. Distinguish the fundamentals, strengths, and weaknesses in X-ray Crystallography and NMR protein structure determinations. 4. Catagorize proteins by type and characteristics 5. Recite major features of keratin and collagen 6. Define denaturation and intepret means of denaturation 7. Define glycosylation and lipoylation and define their importance to protein structure and function 5

6 IX. Myoglobin / Hemoglobin Gross structure of myoglobin & hemoglobin, structure, states, and function of heme, ligand binding equations, cooperativity, effects of ph, CO2, and BPG on oxygen binding to hemoglobin. X. Enzymes 1. Identify heme structure 2. Recite and define three oxidation states of heme 3. Define ligand 4. Define K D and calculate using appropriate equations 5. Define cooperative binding and sketch a binding curve 6. Name and interpret the three factors that affect oxygen binding to hemoglobin 7. Use the given equilibria with hemoglobin to interpret changes in oxygen binding to hemoglobin Classifications, catalytic theory, mechanisms of catalysis, Michaelis- Menten equation, types of inhibition, coenzymes and cofactors 1. Define activation state, catalysis, and activation state stabilization 2. Define and explain the three mechanisms of catalysis 3. Write the Michaelis-Menten equation and define V max & K M 4. Calculate V max & K M from a given Michaelis-Menten curve 5. Draw a Lineweaver-Burke plot given V max and K M 6. Define three types of inhbition 7. Interpret changes in V max & K M as they apply to inhibition types 8. Identify major coenzymes and their functions 6

7 XI. Nucleic Acids Purines and Pyrimidines, Nucleosides and Nucleotides, structure and function of DNA, relationship between DNA / RNA sequence and peptide / protein sequence 1. Identify the four bases from their structures 2. Identify the three phosphorylated versions and abbreviations of nucleic acids 3. Define RNA & DNA and identify structural and functional differences 4. Define base pair and how many hydrogen bonds in each base pair 5. Draw a 2 to 3 base length, single stranded nucleic acid 6. Use a genetic code to translate from an RNA sequence to a protein sequence XII. Metabolism Introduction Anabolism & Catabolism, ATP & high energy phosphate compounds, electron carriers (NAD + & FAD), Metabolic control by flux & regulation. 1. Define anabolism & catabolism and identify given reactions as such 2. Calculate free energy changes for two combined reactions 3. Define ATP, NAD +, & FAD and what their functions are 4. Define allostery and its function in regulation 5. Describe the necessity of multiple enzymes at flux control points. 7

8 XIII. Glucose Metabolism Glycolysis, Gluconeogenesis, Glycogen metabolism, Pyruvate dehydrogenase, Citric acid cycle 1. Assemble all intermediate structures and names in proper order in the glycolysis/gluconeogenesis and citric acid cycle pathways 2. Define substrate level phosphorylation & oxidative decarboxylation 3. Calculate ATPs, NADHs, and FADH 2 s derived at each step. 4. Define protein phosphorylation, its function and consequences 5. Recite the effects of insulin and glucagon on all pathways in glucose metabolism XIV. Electron Transport Reduction / oxidation reactions, electron transport pathway, F1-F0 ATPase, decoupling, conversion values for NADH & FADH 2 to ATP. 1. Assemble the components in the electron transport pathway and define the function of each. 2. Recite which components of the pathway pump protons across the mitochondrial membrane 3. Calculate total ATPs from NADH & FADH 2 values. 4. Define decoupling and its purpose 8

9 XV. Lipid Metabolism β-oxidation, fatty acid synthesis, regulation of fatty acid metabolism by insulin / glucagon system, ketone bodies and ketosis, synthesis of cholesterol from acetyl-coa, lipid transport through the body. 1. Calculate total acetyl-coa, NADH, and FADH2 produced in the β-oxidation of any saturated fatty acid 2. Calculate total acetyl-coa, NADPH, and FADH2 required for the synthesis of any fatty acid. 3. Identify the actions of insulin and glucagon on fatty acid synthesis, storage, and β-oxidation 4. Define ketone bodies, their function, and consequences of their production. 5. Identify the major intermediates in the cholesterol pathway 6. Identify the lipoproteins involve in lipid transport, their origins, and their functions. XVI. Amino acid Metabolism Deamination and transamination, Urea cycle, glucogenic vs. ketogenic, essential and non-essential amino acids 1. Predict the result of a deamination on an amino acid 2. Assemble all intermediate structures and names in proper order in the urea cycle 3. Define glucogenic and ketogenic amino acids 4. Identify all amino acids as either essential or nonessential. 9

10 FARMINGDALE STATE COLLEGE DEPARTMENT OF CHEMISTRY CHM 380 Biochemistry The aims of the laboratory section: 1. To have the students become familiar with biochemical methods or techniques. 2. To use the following biochemical methods: a. spectrophotometry b. electrophoresis c. protein analysis d. enzyme assays & activities e. ion exchange and size exclusion chromatographies f. high performance liquid chromatography g. thin layer chromatography h. micropipetting 3. To perform experiments which are biochemically related: a. ph b. proteins c. lipids d. carbohydrates e. enzymes 4. To obtain & analyze data for the above methods/experiments: 5. Hand in laboratory reports showing the data and conclusion drawn from the data. 6. The reports are graded as to neatness, accuracy of data and/or results, and conclusions. 7. The students are also given a test at the end of the semester testing their theory and practical knowledge of biochemistry they learned during the semester. 10

11 FARMINGDALE STATE COLLEGE DEPARTMENT OF CHEMISTRY CHM 380 Biochemistry Laboratory Manual: Supplies Required: Laboratory Period Experiments in Biochemistry, by Dr. Glen Hinckley Safety glasses or goggles, other materials may be required by the instructor. LABORATORY SCHEDULE Experiment Title 1 Calibration of Pipettes 2 Spectroscopy 3 Buffer Construction 4 Carbohydrate Analysis 5 Determination of Protein Concentration 6 Size Exclusion Chromatography 7 Spectroscopy of Hemoglobin 8 Michaelis-Menten Kinetics 9 Thin Layer Chromatography of Lipids 10 Lysozyme Purification Project: Batch Chromatography 11 Lysozyme Purification Project: Enzyme Analysis 12 Lysozyme III: Denaturing Protein Gel Electrophoresis 13 Practical Examination 11

12 FARMINGDALE STATE COLLEGE DEPARTMENT OF CHEMISTRY CHM 380 Biochemistry Grading Policies Components of Grade Examinations 58% Homeworks 17% Laboratory 25% Examinations Three unit examinations are given during the semester. No makeups are given for any examination. A comprehensive final is optional for students to take, but can be used to replace a missed or poor examination grade. Homeworks Six homeworks are given during the semester, covering concepts and objectives outlined for the sections covered. Late homeworks will be accepted with a point deduction up until one week late. After one week, a late homework is not accepted. Laboratory 12 Laboratory experiments are performed and a short written report is required for each laboratory, with the lowest scoring experiment being dropped. Absences are counted as no credit, and can be dropped as the lowest laboratory experiment. A laboratory final is given, consisting of a written examination covering basic practical laboratory concepts. The laboratory score percentages are given as follows: Laboratory Reports 60% Purification Project 25% Laboratory Practical 15% 12

FARMINGDALE STATE COLLEGE DEPARTMENT OF CHEMISTRY

FARMINGDALE STATE COLLEGE DEPARTMENT OF CHEMISTRY COURSE TITLE: Advanced Biochemistry COURSE CODE: CHM 381 CREDITS: 3 CONTACT HOURS: Lecture: 3 CATALOG DESCRIPTION: A continuation of the concepts covered in Biochemistry. Students will examine the pathways,

More information

*For complete material(s) information, refer to

*For complete material(s) information, refer to Butler Community College Science, Technology, Engineering, and Math Division Robert Carlson New Fall 2017 Implemented Fall 2018 COURSE OUTLINE Biochemistry Course Description CH 275. Biochemistry. 4 hours

More information

SYLLABUS. Departmental Syllabus DEPARTMENTAL SYLLABUS DEPARTMENTAL SYLLABUS DEPARTMENTAL SYLLABUS DEPARTMENTAL SYLLABUS

SYLLABUS. Departmental Syllabus DEPARTMENTAL SYLLABUS DEPARTMENTAL SYLLABUS DEPARTMENTAL SYLLABUS DEPARTMENTAL SYLLABUS SYLLABUS DATE OF LAST REVIEW: 05/2018 CIP CODE: 24.0101 SEMESTER: COURSE TITLE: COURSE NUMBER: Departmental Syllabus Biochemistry CHEM-0250 CREDIT HOURS: 4 INSTRUCTOR: OFFICE LOCATION: OFFICE HOURS: TELEPHONE:

More information

DEPARTMENT: Chemistry

DEPARTMENT: Chemistry CODE: CHEM-236 TITLE: Biochemistry Institute: STEM DEPARTMENT: Chemistry COURSE DESCRIPTION: Upon completion of this course the student will be able to recognize and draw the structure and state the nature

More information

Introductory Biochemistry

Introductory Biochemistry BCH3023 Introductory Biochemistry BCH3023 Introductory Biochemistry Course Description: This course surveys the fundamental components of biochemistry. In this course, students will learn concepts such

More information

Reg. No. : Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester BT 6201 BIOCHEMISTRY

Reg. No. : Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester BT 6201 BIOCHEMISTRY Ws 5 Reg. No. : Question Paper Code : 27075 B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015. Time : Three hours Second Semester Biotechnology BT 6201 BIOCHEMISTRY (Common to Pharmaceutical Technology)

More information

Enzymes and Metabolism

Enzymes and Metabolism PowerPoint Lecture Slides prepared by Vince Austin, University of Kentucky Enzymes and Metabolism Human Anatomy & Physiology, Sixth Edition Elaine N. Marieb 1 Protein Macromolecules composed of combinations

More information

CHEM/MBIO 2370 Biochemistry 2: Catabolism, Synthesis and Information Pathways--Syllabus

CHEM/MBIO 2370 Biochemistry 2: Catabolism, Synthesis and Information Pathways--Syllabus An introductory course dealing with the basic metabolic processes that occur in living cells including the production and use of metabolic energy, the breakdown and synthesis of biomolecules, the synthesis

More information

Course Competencies Template - Form 112

Course Competencies Template - Form 112 Course Competencies Template - Form 112 GENERAL INFORMATION Name: Drs. Susan Neimand and Edwin Ginés- Candelaria Course Prefix/Number: BCH 3023 Number of Credits: 3 Degree Type Phone #: (305) 237-6152,

More information

DEPARTMENT OF SCIENCE COURSE OUTLINE Fall 2018 BC 2000 INTRODUCTORY BIOCHEMISTRY 3 (3-0-0) 45 HOURS FOR 15 WEEKS

DEPARTMENT OF SCIENCE COURSE OUTLINE Fall 2018 BC 2000 INTRODUCTORY BIOCHEMISTRY 3 (3-0-0) 45 HOURS FOR 15 WEEKS DEPARTMENT OF SCIENCE COURSE OUTLINE Fall 2018 BC 2000 INTRODUCTORY BIOCHEMISTRY 3 (3-0-0) 45 HOURS FOR 15 WEEKS INSTRUCTOR: Beatrice Amar Ph.D. PHONE: 780-539-2031 OFFICE: J208 E-MAIL: Bamar@gprc.ab.ca

More information

SYLLABUS. 3.5 units; 55 hours (5 hrs lecture per week)

SYLLABUS. 3.5 units; 55 hours (5 hrs lecture per week) SYLLABUS NAME OF COURSE: Biochemistry 1 - CHEM 121 LENGTH OF COURSE: 3.5 units; 55 hours (5 hrs lecture per week) COURSE DESCRIPTION: Biochemistry 1 studies the structure, function and performance relationships

More information

DSC-1A 4T +2P = 6 4+1=5 DSC-1B

DSC-1A 4T +2P = 6 4+1=5 DSC-1B B.Sc. CBCS Biochemistry syllabus (wef2016-17) FIRST YEAR SEMESTER-I Code Course Title Course Type HPW Credits BS104 CHEMISTRY OF BIOMOLECULES DSC-1A 4T +2P = 6 4+1=5 FIRST YEAR SEMESTER-II BS204 CHEMISTRY

More information

Chemistry 1120 Exam 4 Study Guide

Chemistry 1120 Exam 4 Study Guide Chemistry 1120 Exam 4 Study Guide Chapter 12 12.1 Identify and differentiate between macronutrients (lipids, amino acids and saccharides) and micronutrients (vitamins and minerals). Master Tutor Section

More information

Course Outline Biochemistry 301 Winter 2016 Brad Hamilton. Office: 1410A Office Phone:

Course Outline Biochemistry 301 Winter 2016 Brad Hamilton. Office: 1410A Office Phone: Course Outline Biochemistry 301 Winter 2016 Brad Hamilton Office: 1410A Office Phone: 403-342-3212 E-mail: Bradley.Hamilton@rdc.ab.ca Class Time: M T Th 12:30-1:20 Credit hours: 3 Academic Calendar Entry

More information

DEPARTMENT OF SCIENCE

DEPARTMENT OF SCIENCE DEPARTMENT OF SCIENCE COURSE OUTLINE Winter 2017-18 BC 2000 INTRODUCTORY BIOCHEMISTRY 3 (3-0-0) 45 HOURS FOR 15 WEEKS INSTRUCTOR: Philip Johnson PHONE: 780-539-2863 OFFICE: J224 E-MAIL: PJohnson@gprc.ab.ca

More information

Biol 219 Lec 7 Fall 2016

Biol 219 Lec 7 Fall 2016 Cellular Respiration: Harvesting Energy to form ATP Cellular Respiration and Metabolism Glucose ATP Pyruvate Lactate Acetyl CoA NAD + Introducing The Players primary substrate for cellular respiration

More information

DEPARTMENT OF SCIENCE

DEPARTMENT OF SCIENCE DEPARTMENT OF SCIENCE COURSE OUTLINE Fall 2017 BC 2000 INTRODUCTORY BIOCHEMISTRY 3 (3-0-0) 45 HOURS FOR 15 WEEKS INSTRUCTOR: Philip Johnson PHONE: 780-539-2863 OFFICE: J224 E-MAIL: PJohnson@gprc.ab.ca

More information

Physiology Unit 1 METABOLISM OF LIPIDS AND PROTEINS

Physiology Unit 1 METABOLISM OF LIPIDS AND PROTEINS Physiology Unit 1 METABOLISM OF LIPIDS AND PROTEINS Alternate Fuel Sources When glucose levels are low Proteins and Triglycerides will be metabolized Tissues will use different fuel sources depending on:

More information

Metabolism. Chapter 5. Catabolism Drives Anabolism 8/29/11. Complete Catabolism of Glucose

Metabolism. Chapter 5. Catabolism Drives Anabolism 8/29/11. Complete Catabolism of Glucose 8/29/11 Metabolism Chapter 5 All of the reactions in the body that require energy transfer. Can be divided into: Cell Respiration and Metabolism Anabolism: requires the input of energy to synthesize large

More information

Biochemistry 7/11/ Bio-Energetics & ATP. 5.1) ADP, ATP and Cellular Respiration OVERVIEW OF ENERGY AND METABOLISM

Biochemistry 7/11/ Bio-Energetics & ATP. 5.1) ADP, ATP and Cellular Respiration OVERVIEW OF ENERGY AND METABOLISM Biochemistry 5. Bio-Energetics & ATP 5.1) ADP, ATP and Cellular Respiration Prof. Dr. Klaus Heese OVERVIEW OF ENERGY AND METABOLISM 1. The food we eat, (carbohydrates/ glucose /sugar, lipids/fat, proteins),

More information

DEPARTMENT OF SCIENCE

DEPARTMENT OF SCIENCE DEPARTMENT OF SCIENCE COURSE OUTLINE Fall 2015 BC 2000 INTRODUCTORY BIOCHEMISTRY INSTRUCTOR: Philip Johnson PHONE: 780-539-2863 OFFICE: J224 E-MAIL: PJohnson@gprc.ab.ca OFFICE HOURS: Tuesdays 1000-1120

More information

Energy Production In A Cell (Chapter 25 Metabolism)

Energy Production In A Cell (Chapter 25 Metabolism) Energy Production In A Cell (Chapter 25 Metabolism) Large food molecules contain a lot of potential energy in the form of chemical bonds but it requires a lot of work to liberate the energy. Cells need

More information

OVERVIEW OF ENERGY AND METABOLISM

OVERVIEW OF ENERGY AND METABOLISM Biochemistry 5. Bio-Energetics & ATP 5.1) ADP, ATP and Cellular Respiration OVERVIEW OF ENERGY AND METABOLISM 1. The food we eat, (carbohydrates/ glucose /sugar, lipids/fat, proteins), are our only source

More information

MULTIPLE CHOICE QUESTIONS

MULTIPLE CHOICE QUESTIONS MULTIPLE CHOICE QUESTIONS 1. Which of the following statements concerning anabolic reactions is FALSE? A. They are generally endergonic. B. They usually require ATP. C. They are part of metabolism. D.

More information

Citric Acid Cycle: Central Role in Catabolism. Entry of Pyruvate into the TCA cycle

Citric Acid Cycle: Central Role in Catabolism. Entry of Pyruvate into the TCA cycle Citric Acid Cycle: Central Role in Catabolism Stage II of catabolism involves the conversion of carbohydrates, fats and aminoacids into acetylcoa In aerobic organisms, citric acid cycle makes up the final

More information

BCM 221 LECTURES OJEMEKELE O.

BCM 221 LECTURES OJEMEKELE O. BCM 221 LECTURES BY OJEMEKELE O. OUTLINE INTRODUCTION TO LIPID CHEMISTRY STORAGE OF ENERGY IN ADIPOCYTES MOBILIZATION OF ENERGY STORES IN ADIPOCYTES KETONE BODIES AND KETOSIS PYRUVATE DEHYDROGENASE COMPLEX

More information

COURSE OUTLINE CHEMISTRY II 2018

COURSE OUTLINE CHEMISTRY II 2018 COURSE OUTLINE CHEMISTRY II 2018 Course: Course Code: Times & Location: Course Coordinator: Instructors/Teaching Assistants: E-mail: Office Hours: Office Location: Chemistry II : Foundations of Chemistry

More information

Chapter 8. Metabolism. Topics in lectures 15 and 16. Chemical foundations Catabolism Biosynthesis

Chapter 8. Metabolism. Topics in lectures 15 and 16. Chemical foundations Catabolism Biosynthesis Chapter 8 Topics in lectures 15 and 16 Metabolism Chemical foundations Catabolism Biosynthesis 1 Metabolism Chemical Foundations Enzymes REDOX Catabolism Pathways Anabolism Principles and pathways 2 Enzymes

More information

CHY2026: General Biochemistry UNIT 7& 8: CARBOHYDRATE METABOLISM

CHY2026: General Biochemistry UNIT 7& 8: CARBOHYDRATE METABOLISM CHY2026: General Biochemistry UNIT 7& 8: CARBOHYDRATE METABOLISM Metabolism Bioenergetics is the transfer and utilization of energy in biological systems The direction and extent to which a chemical reaction

More information

CHAPTER 5 MICROBIAL METABOLISM

CHAPTER 5 MICROBIAL METABOLISM CHAPTER 5 MICROBIAL METABOLISM I. Catabolic and Anabolic Reactions A. Metabolism - The sum of all chemical reactions within a living cell either releasing or requiring energy. (Overhead) Fig 5.1 1. Catabolism

More information

Biochemistry: The Molecular Basis of Life

Biochemistry: The Molecular Basis of Life Biochemistry: The Molecular Basis of Life McKee, Trudy ISBN-13: 9780195305753 Table of Contents * New to this edition Preface 1. WHAT IS LIFE? 1.1 The Living World Bacteria Archaea Eukarya 1.3 Biomolecules

More information

Energy Transformation: Cellular Respiration Outline 1. Sources of cellular ATP 2. Turning chemical energy of covalent bonds between C-C into energy

Energy Transformation: Cellular Respiration Outline 1. Sources of cellular ATP 2. Turning chemical energy of covalent bonds between C-C into energy Energy Transformation: Cellular Respiration Outline 1. Sources of cellular ATP 2. Turning chemical energy of covalent bonds between C-C into energy for cellular work (ATP) 3. Importance of electrons and

More information

What s the point? The point is to make ATP! ATP

What s the point? The point is to make ATP! ATP 2006-2007 What s the point? The point is to make ATP! ATP Glycolysis 2 ATP Kreb s cycle 2 ATP Life takes a lot of energy to run, need to extract more energy than 4 ATP! There s got to be a better way!

More information

Chemical Biology - Chem 370 (3 credits)

Chemical Biology - Chem 370 (3 credits) Chemical Biology - Chem 370 (3 credits) Spring Semester 2015 Instructors: Dr. Jeff Jones, Fulmer 406/408, 335-5983, jpj@wsu.edu Dr. ChulHee Kang, Fulmer 264, 509-335-1409, chkang@wsu.edu Class Meeting:

More information

Introduction to Metabolism Cell Structure and Function

Introduction to Metabolism Cell Structure and Function Introduction to Metabolism Cell Structure and Function Cells can be divided into two primary types prokaryotes - Almost all prokaryotes are bacteria eukaryotes - Eukaryotes include all cells of multicellular

More information

Physiological Chemistry II Exam IV Dr. Melissa Kelley April 13, 2004

Physiological Chemistry II Exam IV Dr. Melissa Kelley April 13, 2004 Name Write your name on the back of the exam Physiological Chemistry II Exam IV Dr. Melissa Kelley April 13, 2004 This examination consists of forty-four questions, each having 2 points. The remaining

More information

Jeffrey T. Kushner Chem 504 Lesson Plan Metabolism

Jeffrey T. Kushner Chem 504 Lesson Plan Metabolism Jeffrey T. Kushner Chem 504 Lesson Plan Metabolism Objective Students will be able to provide an overview of the chemical reactions involved in Metabolism. Students will be able to identify the reactants

More information

Activity: Biologically Important Molecules

Activity: Biologically Important Molecules Activity: Biologically Important Molecules AP Biology Introduction We have already seen in our study of biochemistry that the molecules that comprise living things are carbon-based, and that they are thought

More information

Chemical Biology - Chem 370 (3 credits)

Chemical Biology - Chem 370 (3 credits) Chemical Biology - Chem 370 (3 credits) Spring Semester 2016 Instructors: Dr. Jeff Jones, Fulmer 406/408, 335-5983, jpj@wsu.edu Dr. ChulHee Kang, Fulmer 264, 509-335-1409, chkang@wsu.edu Class Meeting:

More information

24. What is the half-life of a compound (reactant) and does it depend on the concentration of this compound (reactant) in a first order process? 25. W

24. What is the half-life of a compound (reactant) and does it depend on the concentration of this compound (reactant) in a first order process? 25. W Water 1. Why is water so different compared to methane although they have nearly the same molecular weight? 2. What are the main differences between water and methane which has nearly the same molecular

More information

SYLLABUS MBMB/CHEM/BCHM 451b 2013 This class meets from pm every Tuesday and Thursday in Room 1059 (Auditorium) LS III.

SYLLABUS MBMB/CHEM/BCHM 451b 2013 This class meets from pm every Tuesday and Thursday in Room 1059 (Auditorium) LS III. 1 SYLLABUS MBMB/CHEM/BCHM 451b 2013 This class meets from 12.35-1.50 pm every Tuesday and Thursday in Room 1059 (Auditorium) LS III. FACULTY P. M. D. Hardwicke, Room 210W, Neckers "C" Wing, Tel. 618-453-6469;

More information

In glycolysis, glucose is converted to pyruvate. If the pyruvate is reduced to lactate, the pathway does not require O 2 and is called anaerobic

In glycolysis, glucose is converted to pyruvate. If the pyruvate is reduced to lactate, the pathway does not require O 2 and is called anaerobic Glycolysis 1 In glycolysis, glucose is converted to pyruvate. If the pyruvate is reduced to lactate, the pathway does not require O 2 and is called anaerobic glycolysis. If this pyruvate is converted instead

More information

Chemical Biology - Chem 370 (3 credits) Spring Semester 2018

Chemical Biology - Chem 370 (3 credits) Spring Semester 2018 Chemical Biology - Chem 370 (3 credits) Spring Semester 2018 Instructors: Dr. ChulHee Kang, Fulmer 264, 509-335-1409, chkang@wsu.edu Class Meeting: M/W/F 11:10-12:00 PM, Fulmer 438 Office Hours M/W/F 12:10-13:00

More information

NBCE Mock Board Questions Biochemistry

NBCE Mock Board Questions Biochemistry 1. Fluid mosaic describes. A. Tertiary structure of proteins B. Ribosomal subunits C. DNA structure D. Plasma membrane structure NBCE Mock Board Questions Biochemistry 2. Where in the cell does beta oxidation

More information

Lecture Sixteen: METABOLIC ENERGY: [Based on GENERATION Chapter 15

Lecture Sixteen: METABOLIC ENERGY: [Based on GENERATION Chapter 15 Lecture Sixteen: METABOLIC ENERGY: [Based on GENERATION Chapter 15 AND STORAGE Berg, (Figures in red are for the 7th Edition) Tymoczko (Figures in Blue are for the 8th Edition) & Stryer] Two major questions

More information

Independent Study Guide Metabolism I. Principles of metabolism (section 6.1) a. Cells must: (figure 6.1) i. Synthesize new components

Independent Study Guide Metabolism I. Principles of metabolism (section 6.1) a. Cells must: (figure 6.1) i. Synthesize new components Independent Study Guide Metabolism I. Principles of metabolism (section 6.1) a. Cells must: (figure 6.1) i. Synthesize new components (anabolism/biosynthesis) ii. Harvest energy and convert it to a usable

More information

BIOLOGY 311C - Brand Spring 2010

BIOLOGY 311C - Brand Spring 2010 BIOLOGY 311C - Brand Spring 2010 NAME (printed very legibly) KEY UT-EID EXAMINATION III Before beginning, check to be sure that this exam contains 8 pages (including front and back) numbered consecutively,

More information

Class XI Chapter 14 Respiration in Plants Biology. 1. It is a biochemical process. 1. It is a physiochemical process.

Class XI Chapter 14 Respiration in Plants Biology. 1. It is a biochemical process. 1. It is a physiochemical process. Question 1: Differentiate between (a) Respiration and Combustion (b) Glycolysis and Krebs cycle (c) Aerobic respiration and Fermentation (a) Respiration and combustion Respiration Combustion 1. It is a

More information

A cell has enough ATP to last for about three seconds.

A cell has enough ATP to last for about three seconds. Energy Transformation: Cellular Respiration Outline 1. Energy and carbon sources in living cells 2. Sources of cellular ATP 3. Turning chemical energy of covalent bonds between C-C into energy for cellular

More information

Chapter 24 Lecture Outline

Chapter 24 Lecture Outline Chapter 24 Lecture Outline Carbohydrate Lipid and Protein! Metabolism! In the catabolism of carbohydrates, glycolysis converts glucose into pyruvate, which is then metabolized into acetyl CoA. Prepared

More information

Metabolism and Bioenergetics. Fuel and Digestion

Metabolism and Bioenergetics. Fuel and Digestion Metabolism and Bioenergetics Pratt and Cornely, Chapter 12 Breakdown of food biomolecules to monomers Absorption of monomers Storage metabolism Fuel and Digestion 1 Amylase in mouth, intestine Amylose

More information

BIOLOGY - CLUTCH CH.9 - RESPIRATION.

BIOLOGY - CLUTCH CH.9 - RESPIRATION. !! www.clutchprep.com CONCEPT: REDOX REACTIONS Redox reaction a chemical reaction that involves the transfer of electrons from one atom to another Oxidation loss of electrons Reduction gain of electrons

More information

Metabolism Energy Pathways Biosynthesis. Catabolism Anabolism Enzymes

Metabolism Energy Pathways Biosynthesis. Catabolism Anabolism Enzymes Topics Microbial Metabolism Metabolism Energy Pathways Biosynthesis 2 Metabolism Catabolism Catabolism Anabolism Enzymes Breakdown of complex organic molecules in order to extract energy and dform simpler

More information

Question 1: Differentiate between (a) Respiration and Combustion (b) Glycolysis and Krebs cycle (c) Aerobic respiration and Fermentation (a) Respiration and combustion Respiration Combustion 1. It is a

More information

Cells extract energy from their environment and use the energy for a host of biological activities including biosynthesis.

Cells extract energy from their environment and use the energy for a host of biological activities including biosynthesis. ATP=cellular energy Cells extract energy from their environment and use the energy for a host of biological activities including biosynthesis. The reactions of energy extraction and energy use are called

More information

Module C CHEMISTRY & CELL BIOLOGY REVIEW

Module C CHEMISTRY & CELL BIOLOGY REVIEW Module C CHEMISTRY & CELL BIOLOGY REVIEW Note: This module is provided for A&P courses that do not have a prerequisite class which includes chemistry and cell biology. Content covered by required prerequisite

More information

The University of Jordan. Accreditation & Quality Assurance Center. COURSE Syllabus

The University of Jordan. Accreditation & Quality Assurance Center. COURSE Syllabus The University of Jordan Accreditation & Quality Assurance Center COURSE Syllabus 1 Course title Biochemistry for Medical students 2 Course number 0501213 Credit hours (theory, practical) 3 3 Contact hours

More information

Chemical Energy. Valencia College

Chemical Energy. Valencia College 9 Pathways that Harvest Chemical Energy Valencia College 9 Pathways that Harvest Chemical Energy Chapter objectives: How Does Glucose Oxidation Release Chemical Energy? What Are the Aerobic Pathways of

More information

Integrative Metabolism: Significance

Integrative Metabolism: Significance Integrative Metabolism: Significance Energy Containing Nutrients Carbohydrates Fats Proteins Catabolism Energy Depleted End Products H 2 O NH 3 ADP + Pi NAD + NADP + FAD + Pi NADH+H + NADPH+H + FADH2 Cell

More information

Carbon. Isomers. The Chemical Building Blocks of Life

Carbon. Isomers. The Chemical Building Blocks of Life The Chemical Building Blocks of Life Carbon Chapter 3 Framework of biological molecules consists primarily of carbon bonded to Carbon O, N, S, P or H Can form up to 4 covalent bonds Hydrocarbons molecule

More information

Reading Assignments. A. Energy and Energy Conversions. Lecture Series 9 Cellular Pathways That Harvest Chemical Energy. gasoline) or elevated mass.

Reading Assignments. A. Energy and Energy Conversions. Lecture Series 9 Cellular Pathways That Harvest Chemical Energy. gasoline) or elevated mass. Lecture Series 9 Cellular Pathways That Harvest Chemical Energy Reading Assignments Review Chapter 3 Energy, Catalysis, & Biosynthesis Read Chapter 13 How Cells obtain Energy from Food Read Chapter 14

More information

Higher Biology. Unit 2: Metabolism and Survival Topic 2: Respiration. Page 1 of 25

Higher Biology. Unit 2: Metabolism and Survival Topic 2: Respiration. Page 1 of 25 Higher Biology Unit 2: Metabolism and Survival Topic 2: Respiration Page 1 of 25 Sub Topic: Respiration I can state that: All living cells carry out respiration. ATP is the energy currency of the cell

More information

Biology 12 - Biochemistry Practice Exam

Biology 12 - Biochemistry Practice Exam Biology 12 - Biochemistry Practice Exam Name: Water: 1. The bond between water molecules is a (n) a. ionic bond b. covalent bond c. polar covalent bond d. hydrogen bond 2. The water properties: good solvent,

More information

BIOCHEMISTRY. There are 4 major types of organic compounds each with unique characteristics: A. CARBOHYDRATES Contain,, and. Ratio of H:O is always

BIOCHEMISTRY. There are 4 major types of organic compounds each with unique characteristics: A. CARBOHYDRATES Contain,, and. Ratio of H:O is always BIOCHEMISTRY All organic compounds must contain and Are the following organic? Why or why not? H2O CO2 CH4 There are 4 major types of organic compounds each with unique characteristics: A. CARBOHYDRATES

More information

III. 6. Test. Respiració cel lular

III. 6. Test. Respiració cel lular III. 6. Test. Respiració cel lular Chapter Questions 1) What is the term for metabolic pathways that release stored energy by breaking down complex molecules? A) anabolic pathways B) catabolic pathways

More information

Metabolism and Bioenergetics. Fuel and Digestion

Metabolism and Bioenergetics. Fuel and Digestion Metabolism and Bioenergetics Pratt and Cornely, Chapter 12 Breakdown of food biomolecules to monomers Absorption of monomers Storage metabolism Fuel and Digestion 1 Amylase in mouth, intestine Amylose

More information

Nutrients. Chapter 25 Nutrition, Metabolism, Temperature Regulation

Nutrients. Chapter 25 Nutrition, Metabolism, Temperature Regulation Chapter 25 Nutrition, Metabolism, Temperature Regulation 25-1 Nutrients Chemicals used by body to produce energy, provide building blocks or function in other chemical reactions Classes Carbohydrates,

More information

Cellular Respiration

Cellular Respiration Cellular I can describe cellular respiration Cellular respiration is a series of metabolic pathways releasing energy from a foodstuff e.g. glucose. This yields energy in the form of ATP adenosine P i P

More information

Integration Of Metabolism

Integration Of Metabolism Integration Of Metabolism Metabolism Consist of Highly Interconnected Pathways The basic strategy of catabolic metabolism is to form ATP, NADPH, and building blocks for biosyntheses. 1. ATP is the universal

More information

Module No. # 01 Lecture No. # 19 TCA Cycle

Module No. # 01 Lecture No. # 19 TCA Cycle Biochemical Engineering Prof. Dr. Rintu Banerjee Department of Agricultural and Food Engineering Asst. Prof. Dr. Saikat Chakraborty Department of Chemical Engineering Indian Institute of Technology, Kharagpur

More information

Water: 1. The bond between water molecules is a(n) a. ionic bond b. covalent bond c. polar covalent bond d. hydrogen bond

Water: 1. The bond between water molecules is a(n) a. ionic bond b. covalent bond c. polar covalent bond d. hydrogen bond Biology 12 - Biochemistry Practice Exam KEY Water: 1. The bond between water molecules is a(n) a. ionic bond b. covalent bond c. polar covalent bond d. hydrogen bond 2. The water properties: good solvent,

More information

INTRODUCTORY BIOCHEMISTRY. BI 28 Second Midterm Examination April 3, 2007

INTRODUCTORY BIOCHEMISTRY. BI 28 Second Midterm Examination April 3, 2007 INTRODUCTORY BIOCHEMISTRY BI 28 Second Midterm Examination April 3, 2007 Name SIS # Make sure that your name or SIS # is on every page. This is the only way we have of matching you with your exam after

More information

3.7 CELLULAR RESPIRATION. How are these two images related?

3.7 CELLULAR RESPIRATION. How are these two images related? 3.7 CELLULAR RESPIRATION How are these two images related? CELLULAR RESPIRATION Cellular respiration is the process whereby the body converts the energy that we get from food (glucose) into an energy form

More information

Lecture 5: Cell Metabolism. Biology 219 Dr. Adam Ross

Lecture 5: Cell Metabolism. Biology 219 Dr. Adam Ross Lecture 5: Cell Metabolism Biology 219 Dr. Adam Ross Cellular Respiration Set of reactions that take place during the conversion of nutrients into ATP Intricate regulatory relationship between several

More information

Tutorial 27: Metabolism, Krebs Cycle and the Electron Transport Chain

Tutorial 27: Metabolism, Krebs Cycle and the Electron Transport Chain Tutorial 27: Metabolism, Krebs Cycle and the Electron Transport Chain Goals: To be able to describe the overall catabolic pathways for food molecules. To understand what bonds are hydrolyzed in the digestion

More information

CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM /19 BY: MOHAMAD FAHRURRAZI TOMPANG

CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM /19 BY: MOHAMAD FAHRURRAZI TOMPANG CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM 1 2018/19 BY: MOHAMAD FAHRURRAZI TOMPANG Chapter Outline (19-1) The central role of the citric acid cycle in metabolism (19-2) The overall pathway of the citric

More information

The Chemical Building Blocks of Life. Chapter 3

The Chemical Building Blocks of Life. Chapter 3 The Chemical Building Blocks of Life Chapter 3 Biological Molecules Biological molecules consist primarily of -carbon bonded to carbon, or -carbon bonded to other molecules. Carbon can form up to 4 covalent

More information

g) Cellular Respiration Higher Human Biology

g) Cellular Respiration Higher Human Biology g) Cellular Respiration Higher Human Biology What can you remember about respiration? 1. What is respiration? 2. What are the raw materials? 3. What are the products? 4. Where does it occur? 5. Why does

More information

D.K.M.COLLEGE FOR WOMEN (AUTONOMOUS), VELLORE-1. BIOCHEMISTRY

D.K.M.COLLEGE FOR WOMEN (AUTONOMOUS), VELLORE-1. BIOCHEMISTRY D.K.M.COLLEGE FOR WOMEN (AUTONOMOUS), VELLORE-1. BIOCHEMISTRY SECTION-A 2 MARKS 1. Write any three physical properties of water? 2. Define ph? 3. Define buffer? 4. Define acid? 5. Define base? 6. Define

More information

Cellular Respiration- -conversion of stored energy in glucose to usable energy for the cell -energy in cells is stored in the form of ATP

Cellular Respiration- -conversion of stored energy in glucose to usable energy for the cell -energy in cells is stored in the form of ATP Cellular Respiration Notes Chapter 7 How Cells Make ATP Energy Releasing Pathways Cellular Respiration- -conversion of stored energy in glucose to usable energy for the cell -energy in cells is stored

More information

Chapter 2: Biochemistry

Chapter 2: Biochemistry Chapter 2: Biochemistry Biochemistry Biochemistry is the study of chemical makeup and reactions of living matter All chemicals in the body are either organic & inorganic Organic compounds contain carbon

More information

Biological Molecules

Biological Molecules The Chemical Building Blocks of Life Chapter 3 Biological molecules consist primarily of -carbon bonded to carbon, or -carbon bonded to other molecules. Carbon can form up to 4 covalent bonds. Carbon may

More information

AP Biology Review: Theme 3- Energy

AP Biology Review: Theme 3- Energy AP Biology Review: Theme 3- Energy 3.1: All living systems require constant input of free energy. 3.2: Interactions between molecules affect their structure and function. 3.3: Organisms capture and store

More information

Quiz 4 Review Guide Fall 2018

Quiz 4 Review Guide Fall 2018 Quiz 4 Review Guide Fall 2018 Major Topics: Enzyme Kinetics: o reaction rates and catalysis; transition state binding theory o Michaelis-Menten equation and interpretation o Inhibitors types and explanations

More information

Vocabulary. Chapter 19: The Citric Acid Cycle

Vocabulary. Chapter 19: The Citric Acid Cycle Vocabulary Amphibolic: able to be a part of both anabolism and catabolism Anaplerotic: referring to a reaction that ensures an adequate supply of an important metabolite Citrate Synthase: the enzyme that

More information

Review Session 1. Control Systems and Homeostasis. Figure 1.8 A simple control system. Biol 219 Review Sessiono 1 Fall 2016

Review Session 1. Control Systems and Homeostasis. Figure 1.8 A simple control system. Biol 219 Review Sessiono 1 Fall 2016 Control Systems and Homeostasis Review Session 1 Regulated variables are kept within normal range by control mechanisms Keeps near set point, or optimum value Control systems local and reflex Input signal

More information

Human Anatomy & Physiology C H A P T E R

Human Anatomy & Physiology C H A P T E R PowerPoint Lecture Slides prepared by Barbara Heard, Atlantic Cape Community College Ninth Edition Human Anatomy & Physiology C H A P T E R 2 Annie Leibovitz/Contact Press Images 2013 Pearson Education,

More information

Cellular Pathways That Harvest Chemical Energy. Cellular Pathways That Harvest Chemical Energy. Cellular Pathways In General

Cellular Pathways That Harvest Chemical Energy. Cellular Pathways That Harvest Chemical Energy. Cellular Pathways In General Cellular Pathways That Harvest Chemical Energy A. Obtaining Energy and Electrons from Glucose Lecture Series 12 Cellular Pathways That Harvest Chemical Energy B. An Overview: Releasing Energy from Glucose

More information

Chapter Sections: 3.1 Carbon s Place in the Living World 3.2 Functional Groups 3.3 Carbohydrates 3.4 Lipids 3.5 Proteins 3.

Chapter Sections: 3.1 Carbon s Place in the Living World 3.2 Functional Groups 3.3 Carbohydrates 3.4 Lipids 3.5 Proteins 3. Chapter Sections: 3.1 Carbon s Place in the Living World 3.2 Functional Groups 3.3 Carbohydrates 3.4 Lipids 3.5 Proteins 3.6 Nucleic Acids Student Goals: By the end of this lecture series, students should

More information

Microbial Metabolism. PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R

Microbial Metabolism. PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R 5 Microbial Metabolism Big Picture: Metabolism Metabolism is the buildup and breakdown of nutrients

More information

Table of Contents. Section 1 Glycolysis and Fermentation. Section 2 Aerobic Respiration

Table of Contents. Section 1 Glycolysis and Fermentation. Section 2 Aerobic Respiration Table of Contents Section 1 Glycolysis and Fermentation Section 2 Aerobic Respiration Objectives Identify the two major steps of cellular respiration. Describe the major events in glycolysis. Compare lactic

More information

7/5/2014. Microbial. Metabolism. Basic Chemical Reactions Underlying. Metabolism. Metabolism: Overview

7/5/2014. Microbial. Metabolism. Basic Chemical Reactions Underlying. Metabolism. Metabolism: Overview PowerPoint Lecture Presentations prepared by Mindy Miller-Kittrell, North Carolina State University Basic Chemical Reactions Underlying Metabolism Metabolism C H A P T E R 5 Microbial Metabolism Collection

More information

Metabolism. Metabolic pathways. BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 11: Metabolic Pathways

Metabolism. Metabolic pathways. BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 11: Metabolic Pathways BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 11: Metabolic Pathways http://compbio.uchsc.edu/hunter/bio5099 Larry.Hunter@uchsc.edu Metabolism Metabolism is the chemical change of

More information

COURSE IN BIOCHEMISTRY FOR STUDENTS OF FACULTY OF MEDICINE DEPARTMENT OF BIOCHEMISTRY

COURSE IN BIOCHEMISTRY FOR STUDENTS OF FACULTY OF MEDICINE DEPARTMENT OF BIOCHEMISTRY COURSE IN BIOCHEMISTRY FOR STUDENTS OF FACULTY OF MEDICINE DEPARTMENT OF BIOCHEMISTRY The name of Unit in which the subject is realized: Department of Biochemistry Head: Prof. Dariusz Chlubek M.D., Ph.D.

More information

Macromolecules. Molecules of Life

Macromolecules. Molecules of Life Macromolecules Molecules of Life Learning Objectives know the difference between a dehydration synthesis reaction and a hydrolysis reaction know the different types of biological macromolecules be able

More information

23.1 Lipid Metabolism in Animals. Chapter 23. Micelles Lipid Metabolism in. Animals. Overview of Digestion Lipid Metabolism in

23.1 Lipid Metabolism in Animals. Chapter 23. Micelles Lipid Metabolism in. Animals. Overview of Digestion Lipid Metabolism in Denniston Topping Caret Copyright! The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 23 Fatty Acid Metabolism Triglycerides (Tgl) are emulsified into fat droplets

More information

All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds:

All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds: Biochemistry Organic Chemistry All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds: Do not contain carbon Organic

More information

Lipid and Amino Acid Metabolism

Lipid and Amino Acid Metabolism CHEM 3331 Fundamentals of Biochemistry Chapter 14 Lipid and Amino Acid Metabolism Organic and Biochemistry for Today Spencer L. Seager / Michael R. Slabaugh Mr. Kevin A. Boudreaux Angelo State University

More information

Cellular Respiration Other Metabolites & Control of Respiration. AP Biology

Cellular Respiration Other Metabolites & Control of Respiration. AP Biology Cellular Respiration Other Metabolites & Control of Respiration Cellular respiration: Beyond glucose: Other carbohydrates: Glycolysis accepts a wide range of carbohydrates fuels. polysaccharides glucose

More information