Biochemistry: The Molecular Basis of Life

Size: px
Start display at page:

Download "Biochemistry: The Molecular Basis of Life"

Transcription

1 Biochemistry: The Molecular Basis of Life McKee, Trudy ISBN-13: Table of Contents * New to this edition Preface 1. WHAT IS LIFE? 1.1 The Living World Bacteria Archaea Eukarya 1.3 Biomolecules Functional Groups of Organic Biomolecules Major Classes of Small Biomolecules 1.4 Is the Living Cell a Chemical Factory? Biochemical Reactions Energy Overview of Metabolism Biological Order * 1.5 Systems Biology Emergence Robustness Modularity Biochemistry in the Lab: An Introduction 2. LIVING CELLS 2.1 Basic Themes Water Biological Membranes Self-Assembly Molecular Machines * Macromolecular Crowding Signal Transduction 2.2 Structure of Prokaryotic Cells Cell Wall Plasma Membrane Cytoplasm Pili and Flagella 2.3 Structure of Eukaryotic Cells Plasma Membrane * Endoplasmic Reticulum Golgi Apparatus Nucleus Vesicular Organelles Mitochondria Peroxisomes Biochemistry in Perspective: Organelles in Human Disease Plastids Cytoskeleton Ribosomes Biochemistry in the Lab: Cell Technology 3. WATER: THE MATRIX OF LIFE 3.1 Molecular Structure of Water 3.2 Noncovalent Bonding

2 Ionic Interactions Hydrogen Bonds Van der Waals Forces 3.3 Thermal Properties of Water 3.4 Solvent Properties of Water * Hydrophilic Molecules Hydrophobic Molecules and the Hydrophobic Effect Amphipathic Molecules Osmotic Pressure 3.5 Ionization of Water Acids, Bases, and ph Buffers Physiological Buffers * Biochemistry in Perspective: Water, Abiotic Stress, and Compatible Solutes Biochemistry in the Lab: Dialysis Biochemistry in Perspective: Cell Volume Regulation and Metabolism 4. ENERGY 4.1 Thermodynamics The First Law of Thermodynamics Second Law of Thermodynamics 4.2 Free Energy Standard Free Energy Changes Coupled Reactions The Hydrophobic Effect Revisited * Biochemistry in Perspective: Non-Equilibrium Thermodynamics 4.4 The Role of ATP * Biochemistry in Perspective: The Extremophiles: Organisms that Make a Living in Hostile Environments 5. AMINO ACIDS, PEPTIDES, AND PROTEINS 5.1 Amino Acids Amino Acid Classes Biologically Active Amino Acids Modified Amino Acids in Proteins Amino Acid Stereoisomers Titration of Amino Acids Amino Acid Reactions 5.2 Peptides * 5.3 Proteins Protein Structure * Biochemistry in Perspective: Molecular Machines The Folding Problem Biochemistry in Perspective: Protein Folding and Human Disease Fibrous Proteins Globular Proteins Biochemistry in the Lab: Protein Technology 6. ENZYMES 6.1 Properties of Enzymes 6.2 Classification of Enzymes 6.3 Enzyme Kinetics Michaelis-Menten Kinetics Lineweaver-Burk Plots Enzyme Inhibition Enzyme Kinetics, Metabolism and Macromolecular Crowding 6.4 Catalysis Organic Reactions and the Transition State Catalytic Mechanisms

3 Quantum Tunneling and Enzyme Catalysis * The Role of Amino Acids in Enzyme Catalysis The Role of Cofactors in Enzyme Catalyses Effects of Temperature and ph on Enzyme-Catalyzed Reactions Detailed Mechanisms of Enzyme Catalysis 6.5 Enzyme Regulation Genetic Control Covalent Modification Allosteric Regulation Compartmentation Biochemistry in Perspective: Enzymes and Clinical Medicine 7. CARBOHYDRATES 7.1 Monosaccharides Monosaccharide Stereoisomers Cyclic Structure of Monosaccharides Reactions of Monosaccharides Important Monosaccharides Monosaccharide Derivatives 7.2 Disaccharides 7.3 Polysaccharides Homopolysaccharides Heteropolysaccharides 7.4 Glycoconjugates Proteoglycans Glycoproteins 7.5 The Sugar Code Lectins: Translators of the Sugar Code The Glycome * Biochemistry in Perspective Biochemistry in Perspective: Scurvy and Ascorbic Acid 8. CARBOHYDRATE METABOLISM 8.1 Glycolysis The Reactions of the Glycolytic Pathway The Fates of Pyruvate The Energetics of Glycolysis * Regulation of Glycolysis * Biochemistry in Perspective: Glycolysis and Jet Engines 8.2 Gluconeogenesis Gluconeogenesis Reactions Gluconeogenesis Substrates Gluconeogenesis Regulation 8.3 The Pentose Phosphate Pathway 8.4 Metabolism of Other Important Sugars Fructose Metabolism 8.5 Glycogen Metabolism Glycogenesis Glycogenolysis Regulation of Glycogen Metabolism Biochemistry in Perspective: Fermentation: An Ancient Heritage 9. AEROBIC METABOLISM I: THE CITRIC ACID CYCLE 9.1 Oxidation-Reduction Reactions Redox Coenzymes Aerobic Metabolism 9.2 Citric Acid Cycle

4 Conversion of Pyruvate to Acetyl-CoA Reactions of the Citric Acid Cycle Fate of Carbon Atoms in the Citric Acid Cycle The Amphibolic Citric Acid Cycle Citric Acid Cycle Regulation The Glyoxylate Cycle * Biochemistry in Perspective: The Evolutionary History of the Citric Acid Cycle Biochemistry in Perspective: Hans Krebs and the Citric Acid Cycle 10. AEROBIC METABOLISM II: ELECTRON TRANSPORT AND OXIDATIVE PHOSPHORYLATION 10.1 Electron Transport Electron Transport and Its Components Electron Transport Inhibitors 10.2 Oxidative Phosphorylation The Chemiosmotic Theory ATP Synthesis Control of Oxidative Phosphorylation The Complete Oxidation of Glucose Uncoupled Electron Transport * 10.3 Oxidative Stress Reactive Oxygen Species Antioxidant Enzyme Systems Antioxidant Molecules Biochemistry in Perspective: Ischemia and Reperfusion Biochemistry in Perspective: Glucose-6-Phosphate Dehydrogenase Deficiency 11. LIPIDS AND MEMBRANES * 11.1 Lipid Classes Fatty Acids and Their Derivatives The Eicosanoids Triacylglycerols Wax Esters Phospholipids Sphingolipids Sphingolipids Storage Diseases Isoprenoids Lipoproteins 11.2 Membranes Membrane Structure * Membrane Function Biochemistry in Perspective: The Aquaporins * Biochemistry in Perspective: Membrane Fusion and Botulism 12. LIPID METABOLISM 12.1 Fatty Acids and Triacylglycerols Fatty Acid Degradation The Complete Oxidation of a Fatty Acid Fatty Acid Oxidation: Double Bonds and Odd Chains Fatty Acid Biosynthesis Eicosanoid Metabolism * Regulation of Fatty Acid Metabolism in Mammals * Biochemistry in Perspective: Atherosclerosis 12.2 Membrane Lipid Metabolism Phospholipid Metabolism Sphingolipid Metabolism 12.3 Isoprenoid Metabolism Cholesterol Metabolism

5 Steroid Hormone Synthesis Biochemistry in Perspective: Biotransformation 13. PHOTOSYNTHESIS 13.1 Chlorophyll and Chloroplasts 13.2 Light 13.3 Light Reactions Photosystem II and Oxygen Generation Photosystem I and NADPH Synthesis Photophosporylation 13.4 The Light-Independent Reactions The Calvin Cycle Photorespiration * Alternatives to C3 Metabolism Regulation of Photosynthesis Light Control of Photosynthesis Control of Ribulose-1,5-Bisphosphate Carboxylase * Biochemistry in Perspective: Photosynthesis in the Deep Biochemistry in Perspective: Starch and Sucrose metabolism Biochemistry in the Lab: Photosynthetic Studies 14. NITROGEN METABOLISM I: SYNTHESIS 14.1 Nitrogen Fixation The Nitrogen Fixation Reaction Nitrogen Assimilation 14.2 Amino Acid Biosynthesis Amino Acid Metabolism Overview Reactions of Amino Groups Synthesis of the Amino Acids 14.3 Biosynthetic Reactions of Amino Acids One-Carbon Metabolism Glutathione Neurotransmitters * Biochemistry in Perspective: Gaso Transmitters Alkaloids * Nucleotides Heme Biochemistry in Perspective: Parkinson's Disease and Dopamine Biochemistry in Perspective: Lead Poisoning 15. NITROGEN METABOLISM II: DEGRADATION * 15.1 Protein Turnover 15.2 Amino Acid Catabolism Deamination Urea Synthesis Control of the Urea Cycle Catabolism of Amino Acid Carbon Skeletons Biochemistry in Perspective: Disorders of Amino Acid Catabolism 15.3 Degradation of Selected Neurotransmitters 15.4 Nucleotide Degradation Purine Catabolism Pyrimidine Catabolism 15.5 Heme Biotransformation Biochemistry in Perspective: Hyperammonemia Biochemistry in Perspective: Gout

6 16. INTEGRATION OF METABOLISM 16.1 Overview of Metabolism 16.2 Hormones and Intercellular Communication Peptide Hormones Biochemistry in Perspective: Diabetes Mellitus Growth Factors Steroid and Thyroid Hormone Mechanisms 16.3 Metabolism in the Mammalian Body: Division of Labor Gastrointestinal Tract Liver Muscle Adipose tissue Brain Kidney 16.4 The Feeding-Fasting Cycle The Feeding Phase The Fasting Phase * Feeding Behavior * Biochemistry in Perspective: Obesity and the Metabolic Syndrome Biochemistry in the Lab: Hormone Methods 17. NUCLEIC ACIDS 17.1 DNA DNA Structure: The Nature of Mutation DNA Structure: From Mendel's Garden to Watson and Crick DNA Structure: Variations on a Theme DNA Supercoiling * Chromosomes and Chromatin * Genome Structure Biochemistry in the Lab: Nucleic Acid Methods Biochemistry in Perspective: Forensic Investigations 17.2 RNA Transfer RNA Ribosomal RNA Messenger RNA * Noncoding RNA 17.3 Viruses The Structure of Viruses Biochemistry in Perspective: Viral "Lifestyles" Available Online: Biochemistry in Perspective: Epigenetics and the Epigenome: Genetic Inheritance Beyond DNA Base Sequences 18. GENETIC INFORMATION 18.1 Genetic Information: Replication, Repair, and Recombination DNA Replication DNA Repair DNA Recombination Biochemistry in the Lab: Genomics 18.2 Transcription Transcription in Prokaryotes Transcription in Eukaryotes 18.3 Gene Expression * Gene Expression in Prokaryote * Gene Expression in Eukaryotes Biochemistry in Perspective: Carcinogenesis

7 Thought Question 19. PROTEIN SYNTHESIS 19.1 The Genetic Code Codon-Anticodon Interactions The Aminoacyl-tRNA Synthetase Reaction: The Second Genetic Code 19.2 Protein Synthesis Prokaryotic Protein Synthesis Eukaryotic Protein Synthesis Biochemistry in Perspective: EF-TU: A Motor Protein * Biochemistry in Perspective: Context-Dependent Coding Reassignment Biochemistry in the Lab: Proteomics Appendix A: Solutions Glossary Credits Index

DEPARTMENT: Chemistry

DEPARTMENT: Chemistry CODE: CHEM-236 TITLE: Biochemistry Institute: STEM DEPARTMENT: Chemistry COURSE DESCRIPTION: Upon completion of this course the student will be able to recognize and draw the structure and state the nature

More information

Introductory Biochemistry

Introductory Biochemistry BCH3023 Introductory Biochemistry BCH3023 Introductory Biochemistry Course Description: This course surveys the fundamental components of biochemistry. In this course, students will learn concepts such

More information

Reg. No. : Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester BT 6201 BIOCHEMISTRY

Reg. No. : Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester BT 6201 BIOCHEMISTRY Ws 5 Reg. No. : Question Paper Code : 27075 B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015. Time : Three hours Second Semester Biotechnology BT 6201 BIOCHEMISTRY (Common to Pharmaceutical Technology)

More information

*For complete material(s) information, refer to

*For complete material(s) information, refer to Butler Community College Science, Technology, Engineering, and Math Division Robert Carlson New Fall 2017 Implemented Fall 2018 COURSE OUTLINE Biochemistry Course Description CH 275. Biochemistry. 4 hours

More information

NBCE Mock Board Questions Biochemistry

NBCE Mock Board Questions Biochemistry 1. Fluid mosaic describes. A. Tertiary structure of proteins B. Ribosomal subunits C. DNA structure D. Plasma membrane structure NBCE Mock Board Questions Biochemistry 2. Where in the cell does beta oxidation

More information

Course Competencies Template - Form 112

Course Competencies Template - Form 112 Course Competencies Template - Form 112 GENERAL INFORMATION Name: Drs. Susan Neimand and Edwin Ginés- Candelaria Course Prefix/Number: BCH 3023 Number of Credits: 3 Degree Type Phone #: (305) 237-6152,

More information

Published on Second Faculty of Medicine, Charles University (http://www.lf2.cuni.cz )

Published on Second Faculty of Medicine, Charles University (http://www.lf2.cuni.cz ) Published on Second Faculty of Medicine, Charles University (http://www.lf2.cuni.cz ) Biochemistry Submitted by Marie Havlová on 8. February 2012-0:00 Syllabus of Biochemistry Mechanisms of enzyme catalysis.

More information

SYLLABUS. Departmental Syllabus DEPARTMENTAL SYLLABUS DEPARTMENTAL SYLLABUS DEPARTMENTAL SYLLABUS DEPARTMENTAL SYLLABUS

SYLLABUS. Departmental Syllabus DEPARTMENTAL SYLLABUS DEPARTMENTAL SYLLABUS DEPARTMENTAL SYLLABUS DEPARTMENTAL SYLLABUS SYLLABUS DATE OF LAST REVIEW: 05/2018 CIP CODE: 24.0101 SEMESTER: COURSE TITLE: COURSE NUMBER: Departmental Syllabus Biochemistry CHEM-0250 CREDIT HOURS: 4 INSTRUCTOR: OFFICE LOCATION: OFFICE HOURS: TELEPHONE:

More information

Metabolism III. Aim: understand gluconeogenesis, pentose phosphate pathway, photosynthesis and amino acid synthesis

Metabolism III. Aim: understand gluconeogenesis, pentose phosphate pathway, photosynthesis and amino acid synthesis Metabolism III Aim: understand gluconeogenesis, pentose phosphate pathway, photosynthesis and amino acid synthesis Anabolism From a carbon source and inorganic molecules, microbes synthesize new organelles

More information

AP Biology Review Session 2

AP Biology Review Session 2 AP Biology Review Session 2 The cell is sometimes described as a protein factory. Using the cell-as-factory analogy, which of the following accurately describes the functions of the endomembrane system?

More information

Hand in the Test Sheets (with the checked multiple choice answers) and your Sheets with written answers.

Hand in the Test Sheets (with the checked multiple choice answers) and your Sheets with written answers. Page 1 of 13 IMPORTANT INFORMATION Hand in the Test Sheets (with the checked multiple choice answers) and your Sheets with written answers. THE exam has an 'A' and 'B' section SECTION A (based on Dykyy's

More information

Office number.

Office number. The University of Jordan Faculty: Pharmacy Department: Biopharmaceutics and Clinical Pharmacy Program: Pharmacy Academic Year/ Fall Semester: 2014/15 BIOCHEMISTRY 2 [1203253] Credit hours 3 Level 2 nd

More information

If you ate a clown, would it taste funny? Oh, wait, that s cannibalism . Anabolism

If you ate a clown, would it taste funny? Oh, wait, that s cannibalism . Anabolism If you ate a clown, would it taste funny? Oh, wait, that s cannibalism. Anabolism is about putting things together. Anabolism: The Use of Energy in Biosynthesis Anabolism energy from catabolism is used

More information

Introduction to Carbohydrate metabolism

Introduction to Carbohydrate metabolism Introduction to Carbohydrate metabolism Some metabolic pathways of carbohydrates 1- Glycolysis 2- Krebs cycle 3- Glycogenesis 4- Glycogenolysis 5- Glyconeogenesis - Pentose Phosphate Pathway (PPP) - Curi

More information

Introduction to Metabolism Cell Structure and Function

Introduction to Metabolism Cell Structure and Function Introduction to Metabolism Cell Structure and Function Cells can be divided into two primary types prokaryotes - Almost all prokaryotes are bacteria eukaryotes - Eukaryotes include all cells of multicellular

More information

The further from the nucleus, the higher the electron s energy Valence shell electrons participate in biological reactions

The further from the nucleus, the higher the electron s energy Valence shell electrons participate in biological reactions Chemistry of Life Revision: The further from the nucleus, the higher the electron s energy Valence shell electrons participate in biological reactions Atoms exchange electrons with other elements to form

More information

DEPARTMENT OF SCIENCE COURSE OUTLINE Fall 2018 BC 2000 INTRODUCTORY BIOCHEMISTRY 3 (3-0-0) 45 HOURS FOR 15 WEEKS

DEPARTMENT OF SCIENCE COURSE OUTLINE Fall 2018 BC 2000 INTRODUCTORY BIOCHEMISTRY 3 (3-0-0) 45 HOURS FOR 15 WEEKS DEPARTMENT OF SCIENCE COURSE OUTLINE Fall 2018 BC 2000 INTRODUCTORY BIOCHEMISTRY 3 (3-0-0) 45 HOURS FOR 15 WEEKS INSTRUCTOR: Beatrice Amar Ph.D. PHONE: 780-539-2031 OFFICE: J208 E-MAIL: Bamar@gprc.ab.ca

More information

DEPARTMENT OF SCIENCE

DEPARTMENT OF SCIENCE DEPARTMENT OF SCIENCE COURSE OUTLINE Winter 2017-18 BC 2000 INTRODUCTORY BIOCHEMISTRY 3 (3-0-0) 45 HOURS FOR 15 WEEKS INSTRUCTOR: Philip Johnson PHONE: 780-539-2863 OFFICE: J224 E-MAIL: PJohnson@gprc.ab.ca

More information

3. When he discovered enzymes in 1897, Eduard Buchner was investigating the causes of. disease antisepsis spontaneous generation fermentation

3. When he discovered enzymes in 1897, Eduard Buchner was investigating the causes of. disease antisepsis spontaneous generation fermentation Chapter 2 1. Which of the following elements forms the backbone of organic molecules? carbon fluorine chlorine sodium carbon 2. The smallest chemical unit of matter is the. neutron element atom proton

More information

DEPARTMENT OF SCIENCE

DEPARTMENT OF SCIENCE DEPARTMENT OF SCIENCE COURSE OUTLINE Fall 2017 BC 2000 INTRODUCTORY BIOCHEMISTRY 3 (3-0-0) 45 HOURS FOR 15 WEEKS INSTRUCTOR: Philip Johnson PHONE: 780-539-2863 OFFICE: J224 E-MAIL: PJohnson@gprc.ab.ca

More information

COURSE IN BIOCHEMISTRY FOR STUDENTS OF FACULTY OF MEDICINE DEPARTMENT OF BIOCHEMISTRY

COURSE IN BIOCHEMISTRY FOR STUDENTS OF FACULTY OF MEDICINE DEPARTMENT OF BIOCHEMISTRY COURSE IN BIOCHEMISTRY FOR STUDENTS OF FACULTY OF MEDICINE DEPARTMENT OF BIOCHEMISTRY The name of Unit in which the subject is realized: Department of Biochemistry Head: Prof. Dariusz Chlubek M.D., Ph.D.

More information

CHEM/MBIO 2370 Biochemistry 2: Catabolism, Synthesis and Information Pathways--Syllabus

CHEM/MBIO 2370 Biochemistry 2: Catabolism, Synthesis and Information Pathways--Syllabus An introductory course dealing with the basic metabolic processes that occur in living cells including the production and use of metabolic energy, the breakdown and synthesis of biomolecules, the synthesis

More information

FARMINGDALE STATE COLLEGE DEPARTMENT OF CHEMISTRY. April CONTACT HOURS: Lecture: 3 Laboratory: 3

FARMINGDALE STATE COLLEGE DEPARTMENT OF CHEMISTRY. April CONTACT HOURS: Lecture: 3 Laboratory: 3 FARMINGDALE STATE COLLEGE DEPARTMENT OF CHEMISTRY COURSE OUTLINE: COURSE TITLE: Prepared by Dr. Glen Hinckley April 2017 Biochemistry COURSE CODE: CHM 380 CREDITS: 4 CONTACT HOURS: Lecture: 3 Laboratory:

More information

General Biology I. BSC 1010 Fall 2011 Homework 2! Connect Due Date: 10/31/ :59PM. Multiple Choice Portion

General Biology I. BSC 1010 Fall 2011 Homework 2! Connect Due Date: 10/31/ :59PM. Multiple Choice Portion General Biology I BSC 1010 Fall 2011 Homework 2 Connect Due Date: 10/31/2011 11:59PM Instructions Complete this homework assignment as the material is covered in class. You may refer to any of the course

More information

AP Biology Review: Theme 3- Energy

AP Biology Review: Theme 3- Energy AP Biology Review: Theme 3- Energy 3.1: All living systems require constant input of free energy. 3.2: Interactions between molecules affect their structure and function. 3.3: Organisms capture and store

More information

Scantron Instructions

Scantron Instructions BIOLOGY 1A MIDTERM # 1 February 17 th, 2012 NAME SECTION # DISCUSSION GSI 1. Sit every other seat and sit by section number. Place all books and paper on the floor. Turn off all phones, pagers, etc. and

More information

Cellular Respiration. 3. In the figure, which step of the citric acid cycle requires both NAD+ and ADP as reactants? a. Step 1. c. Step 3 b.

Cellular Respiration. 3. In the figure, which step of the citric acid cycle requires both NAD+ and ADP as reactants? a. Step 1. c. Step 3 b. Cellular Respiration 1. Enzymes are organic catalysts. How do they increase the rate of chemical reactions? a. By decreasing the free-energy change of the reaction b. By increasing the free-energy change

More information

Week 1 Multiple Choice Questions: 1. A substrate molecule may be bound to the active site of an enzyme by all of the following EXCEPT

Week 1 Multiple Choice Questions: 1. A substrate molecule may be bound to the active site of an enzyme by all of the following EXCEPT WEEK 1: Chemistry of Life (7%) Week 1 Concepts: How do the unique chemical and physical properties of water make life on earth possible? What is the role of carbon in the molecular diversity of life? How

More information

2/25/2013. The Mechanism of Enzymatic Action

2/25/2013. The Mechanism of Enzymatic Action 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Chapter 5 Microbial Metabolism Catabolic and Anabolic Reactions Metabolism: The sum of the chemical reactions in an organism Catabolic and Anabolic Reactions Catabolism:

More information

INTRODUCTORY BIOCHEMISTRY. BI 28 Second Midterm Examination April 3, 2007

INTRODUCTORY BIOCHEMISTRY. BI 28 Second Midterm Examination April 3, 2007 INTRODUCTORY BIOCHEMISTRY BI 28 Second Midterm Examination April 3, 2007 Name SIS # Make sure that your name or SIS # is on every page. This is the only way we have of matching you with your exam after

More information

Name: Date: Block: Biology 12

Name: Date: Block: Biology 12 Name: Date: Block: Biology 12 Provincial Exam Review: Cell Processes and Applications January 2003 Use the following diagram to answer questions 1 and 2. 1. Which labelled organelle produces most of the

More information

DEPARTMENT OF SCIENCE

DEPARTMENT OF SCIENCE DEPARTMENT OF SCIENCE COURSE OUTLINE Fall 2015 BC 2000 INTRODUCTORY BIOCHEMISTRY INSTRUCTOR: Philip Johnson PHONE: 780-539-2863 OFFICE: J224 E-MAIL: PJohnson@gprc.ab.ca OFFICE HOURS: Tuesdays 1000-1120

More information

Biochemistry 7/11/ Bio-Energetics & ATP. 5.1) ADP, ATP and Cellular Respiration OVERVIEW OF ENERGY AND METABOLISM

Biochemistry 7/11/ Bio-Energetics & ATP. 5.1) ADP, ATP and Cellular Respiration OVERVIEW OF ENERGY AND METABOLISM Biochemistry 5. Bio-Energetics & ATP 5.1) ADP, ATP and Cellular Respiration Prof. Dr. Klaus Heese OVERVIEW OF ENERGY AND METABOLISM 1. The food we eat, (carbohydrates/ glucose /sugar, lipids/fat, proteins),

More information

The Cell and Its Chemical Compounds

The Cell and Its Chemical Compounds Cell Theory Cell - The basic unit of structure and function in living things. All of an organism s process or functions are carried out in the cell. Robert Hooke - One of the first people to observe cells

More information

CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM /19 BY: MOHAMAD FAHRURRAZI TOMPANG

CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM /19 BY: MOHAMAD FAHRURRAZI TOMPANG CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM 1 2018/19 BY: MOHAMAD FAHRURRAZI TOMPANG Chapter Outline (19-1) The central role of the citric acid cycle in metabolism (19-2) The overall pathway of the citric

More information

BRIEF CONTENTS COPYRIGHTED MATERIAL III METABOLIC AND DEVELOPMENTAL INTEGRATION COMPARTMENTS CELL REPRODUCTION PLANT ENVIRONMENT AND AGRICULTURE

BRIEF CONTENTS COPYRIGHTED MATERIAL III METABOLIC AND DEVELOPMENTAL INTEGRATION COMPARTMENTS CELL REPRODUCTION PLANT ENVIRONMENT AND AGRICULTURE BRIEF CONTENTS I COMPARTMENTS 1 Membrane Structure and Membranous Organelles 2 2 The Cell Wall 45 3 Membrane Transport 111 4 Protein Sorting and Vesicle Traffic 151 5 The Cytoskeleton 191 II CELL REPRODUCTION

More information

Test Review Worksheet 1 Name: Per:

Test Review Worksheet 1 Name: Per: Test Review Worksheet 1 Name: Per: 1. Put the following in order according to blood flow through the body, starting with the lungs: Lungs, right atrium, left atrium, right ventricle, left ventricle, aorta,

More information

OVERVIEW OF ENERGY AND METABOLISM

OVERVIEW OF ENERGY AND METABOLISM Biochemistry 5. Bio-Energetics & ATP 5.1) ADP, ATP and Cellular Respiration OVERVIEW OF ENERGY AND METABOLISM 1. The food we eat, (carbohydrates/ glucose /sugar, lipids/fat, proteins), are our only source

More information

Biology 12 - Biochemistry Practice Exam

Biology 12 - Biochemistry Practice Exam Biology 12 - Biochemistry Practice Exam Name: Water: 1. The bond between water molecules is a (n) a. ionic bond b. covalent bond c. polar covalent bond d. hydrogen bond 2. The water properties: good solvent,

More information

Review Session 1. Control Systems and Homeostasis. Figure 1.8 A simple control system. Biol 219 Review Sessiono 1 Fall 2016

Review Session 1. Control Systems and Homeostasis. Figure 1.8 A simple control system. Biol 219 Review Sessiono 1 Fall 2016 Control Systems and Homeostasis Review Session 1 Regulated variables are kept within normal range by control mechanisms Keeps near set point, or optimum value Control systems local and reflex Input signal

More information

Macromolcules, Enzymes, & Cells Intro

Macromolcules, Enzymes, & Cells Intro Name: Date: 1. The distortion (change in shape) of enzyme molecules which occurs at high temperatures is known as 5. A characteristic shared by all enzymes, hormones, and antibodies is that their function

More information

Sample Questions BSC1010C Chapters 5-7

Sample Questions BSC1010C Chapters 5-7 Sample Questions BSC1010C Chapters 5-7 1. Which type of lipid is most important in biological membranes? a. oils b. fats c. wax d. phospholipids e. triglycerides 2. Which type of interaction stabilizes

More information

1- Which of the following statements is TRUE in regards to eukaryotic and prokaryotic cells?

1- Which of the following statements is TRUE in regards to eukaryotic and prokaryotic cells? Name: NetID: Exam 3 - Version 1 October 23, 2017 Dr. A. Pimentel Each question has a value of 4 points and there are a total of 160 points in the exam. However, the maximum score of this exam will be capped

More information

Chem 280 Final Exam. Here is the summary of the total 150 points plus 6 points bonus. Carefully read the questions. Good luck!

Chem 280 Final Exam. Here is the summary of the total 150 points plus 6 points bonus. Carefully read the questions. Good luck! May 2 nd, 2012 Name: CLID: Score: Chem 280 Final Exam There are 32 multiple choices that are worth 3 points each. There are 5 problems and one bonus problem. Try to answer the questions, which you know

More information

True or False: 1. Reactions are called endergonic if they occur spontaneously and release free energy.

True or False: 1. Reactions are called endergonic if they occur spontaneously and release free energy. True or False: 1. Reactions are called endergonic if they occur spontaneously and release free energy. 2. Enzymes catalyze chemical reactions by lowering the activation energy 3. Biochemical pathways are

More information

BBSG 501 Section 4 Metabolic Fuels, Energy and Order Fall 2003 Semester

BBSG 501 Section 4 Metabolic Fuels, Energy and Order Fall 2003 Semester BBSG 501 Section 4 Metabolic Fuels, Energy and Order Fall 2003 Semester Section Director: Dave Ford, Ph.D. Office: MS 141: ext. 8129: e-mail: fordda@slu.edu Lecturers: Michael Moxley, Ph.D. Office: MS

More information

7/5/2014. Microbial. Metabolism. Basic Chemical Reactions Underlying. Metabolism. Metabolism: Overview

7/5/2014. Microbial. Metabolism. Basic Chemical Reactions Underlying. Metabolism. Metabolism: Overview PowerPoint Lecture Presentations prepared by Mindy Miller-Kittrell, North Carolina State University Basic Chemical Reactions Underlying Metabolism Metabolism C H A P T E R 5 Microbial Metabolism Collection

More information

Introduction. Biochemistry: It is the chemistry of living things (matters).

Introduction. Biochemistry: It is the chemistry of living things (matters). Introduction Biochemistry: It is the chemistry of living things (matters). Biochemistry provides fundamental understanding of the molecular basis for the function and malfunction of living things. Biochemistry

More information

AS Level Paper 1 and 2. A2 Level Paper 1 and 3 - Topics 1-4

AS Level Paper 1 and 2. A2 Level Paper 1 and 3 - Topics 1-4 Section 3.1: Biological Molecules 3.1.1 Monomers and Polymers 3.1.2 Carbohydrates 3.1.3 Lipids 3.1.4.1 Proteins 3.1.4.2 Enzymes 3.1.5.1 Nucleic acid structure 3.1.5.2 DNA Replication 3.1.6 ATP 3.1.7 Water

More information

CELLS. Cells. Basic unit of life (except virus)

CELLS. Cells. Basic unit of life (except virus) Basic unit of life (except virus) CELLS Prokaryotic, w/o nucleus, bacteria Eukaryotic, w/ nucleus Various cell types specialized for particular function. Differentiation. Over 200 human cell types 56%

More information

Integration Of Metabolism

Integration Of Metabolism Integration Of Metabolism Metabolism Consist of Highly Interconnected Pathways The basic strategy of catabolic metabolism is to form ATP, NADPH, and building blocks for biosyntheses. 1. ATP is the universal

More information

Chapter 8. Metabolism. Topics in lectures 15 and 16. Chemical foundations Catabolism Biosynthesis

Chapter 8. Metabolism. Topics in lectures 15 and 16. Chemical foundations Catabolism Biosynthesis Chapter 8 Topics in lectures 15 and 16 Metabolism Chemical foundations Catabolism Biosynthesis 1 Metabolism Chemical Foundations Enzymes REDOX Catabolism Pathways Anabolism Principles and pathways 2 Enzymes

More information

CHY2026: General Biochemistry UNIT 7& 8: CARBOHYDRATE METABOLISM

CHY2026: General Biochemistry UNIT 7& 8: CARBOHYDRATE METABOLISM CHY2026: General Biochemistry UNIT 7& 8: CARBOHYDRATE METABOLISM Metabolism Bioenergetics is the transfer and utilization of energy in biological systems The direction and extent to which a chemical reaction

More information

BIOCHEMISTRY 302 / BIOLOGY 302 / 502 BIOCHEMISTRY: METABOLIC ASPECTS

BIOCHEMISTRY 302 / BIOLOGY 302 / 502 BIOCHEMISTRY: METABOLIC ASPECTS BIOCHEMISTRY 302 / BIOLOGY 302 / 502 BIOCHEMISTRY: METABOLIC ASPECTS Dr. Anna Tan-Wilson Spring 2004 For more information on the course including how to contact your instructor and teaching assistant,

More information

Connections of Carbohydrate, Protein, and Lipid Metabolic Pathways

Connections of Carbohydrate, Protein, and Lipid Metabolic Pathways OpenStax-CNX module: m44441 1 Connections of Carbohydrate, Protein, and Lipid Metabolic Pathways OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution

More information

Biology. Slide 1 of 37. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 37. End Show. Copyright Pearson Prentice Hall Biology 1 of 37 2 of 37 The Chemistry of Carbon The Chemistry of Carbon Organic chemistry is the study of all compounds that contain bonds between carbon atoms. 3 of 37 Macromolecules Macromolecules Macromolecules

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam 3 BIOL 1406, Fall 2012 HCC Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) When biologists wish to study the internal ultrastructure

More information

BIOCHEMISTRY. How Are Macromolecules Formed? Dehydration Synthesis or condensation reaction Polymers formed by combining monomers and removing water.

BIOCHEMISTRY. How Are Macromolecules Formed? Dehydration Synthesis or condensation reaction Polymers formed by combining monomers and removing water. BIOCHEMISTRY Organic compounds Compounds that contain carbon are called organic. Inorganic compounds do not contain carbon. Carbon has 4 electrons in outer shell. Carbon can form covalent bonds with as

More information

Metabolic integration and Regulation

Metabolic integration and Regulation Metabolic integration and Regulation 109700: Graduate Biochemistry Trimester 2/2016 Assistant Prof. Dr. Panida Khunkaewla kpanida@sut.ac.th School of Chemistry Suranaree University of Technology 1 Overview

More information

Water: 1. The bond between water molecules is a(n) a. ionic bond b. covalent bond c. polar covalent bond d. hydrogen bond

Water: 1. The bond between water molecules is a(n) a. ionic bond b. covalent bond c. polar covalent bond d. hydrogen bond Biology 12 - Biochemistry Practice Exam KEY Water: 1. The bond between water molecules is a(n) a. ionic bond b. covalent bond c. polar covalent bond d. hydrogen bond 2. The water properties: good solvent,

More information

Cellular Pathways That Harvest Chemical Energy. Cellular Pathways That Harvest Chemical Energy. Cellular Pathways In General

Cellular Pathways That Harvest Chemical Energy. Cellular Pathways That Harvest Chemical Energy. Cellular Pathways In General Cellular Pathways That Harvest Chemical Energy A. Obtaining Energy and Electrons from Glucose Lecture Series 12 Cellular Pathways That Harvest Chemical Energy B. An Overview: Releasing Energy from Glucose

More information

CHAPTER 5 MICROBIAL METABOLISM

CHAPTER 5 MICROBIAL METABOLISM CHAPTER 5 MICROBIAL METABOLISM I. Catabolic and Anabolic Reactions A. Metabolism - The sum of all chemical reactions within a living cell either releasing or requiring energy. (Overhead) Fig 5.1 1. Catabolism

More information

D.K.M.COLLEGE FOR WOMEN (AUTONOMOUS), VELLORE-1. BIOCHEMISTRY

D.K.M.COLLEGE FOR WOMEN (AUTONOMOUS), VELLORE-1. BIOCHEMISTRY D.K.M.COLLEGE FOR WOMEN (AUTONOMOUS), VELLORE-1. BIOCHEMISTRY SECTION-A 2 MARKS 1. Write any three physical properties of water? 2. Define ph? 3. Define buffer? 4. Define acid? 5. Define base? 6. Define

More information

The Structure and Function of Biomolecules

The Structure and Function of Biomolecules The Structure and Function of Biomolecules The student is expected to: 9A compare the structures and functions of different types of biomolecules, including carbohydrates, lipids, proteins, and nucleic

More information

Unit 2 Biology Course Outline Winter BIOC 305 Molecular Biochemistry (3) TTh 8 a.m.- 9:20 a.m. Art 376

Unit 2 Biology Course Outline Winter BIOC 305 Molecular Biochemistry (3) TTh 8 a.m.- 9:20 a.m. Art 376 Unit 2 Biology Course Outline 2013 Winter BIOC 305 Molecular Biochemistry (3) TTh 8 a.m.- 9:20 a.m. Art 376 Instructor: Dr. Joyce Boon Office: Science 316 Phone: (250-807- 9545) Email: Joyce.Boon@ubc.ca

More information

Chapter 8. An Introduction to Microbial Metabolism

Chapter 8. An Introduction to Microbial Metabolism Chapter 8 An Introduction to Microbial Metabolism The metabolism of microbes Metabolism sum of all chemical reactions that help cells function Two types of chemical reactions: Catabolism -degradative;

More information

The University of Jordan. Accreditation & Quality Assurance Center. COURSE Syllabus

The University of Jordan. Accreditation & Quality Assurance Center. COURSE Syllabus The University of Jordan Accreditation & Quality Assurance Center COURSE Syllabus 1 Course title Biochemistry for Medical students 2 Course number 0501213 Credit hours (theory, practical) 3 3 Contact hours

More information

Bio Metabolism. Metabolism Life is a bag of biochemistry. Chloroplasts and mitochondria. What is food?

Bio Metabolism. Metabolism Life is a bag of biochemistry. Chloroplasts and mitochondria. What is food? Metabolism Life is a bag of biochemistry 1 Chloroplasts and mitochondria Heat Carbohydrate O 2 CO 2 + H 2 O Heat Chloroplast Mitochondria 2 What is food? Proteins - polymers of amino acids Carbohydrates

More information

Carbon. Isomers. The Chemical Building Blocks of Life

Carbon. Isomers. The Chemical Building Blocks of Life The Chemical Building Blocks of Life Carbon Chapter 3 Framework of biological molecules consists primarily of carbon bonded to Carbon O, N, S, P or H Can form up to 4 covalent bonds Hydrocarbons molecule

More information

Objectives. Carbon Bonding. Carbon Bonding, continued. Carbon Bonding

Objectives. Carbon Bonding. Carbon Bonding, continued. Carbon Bonding Biochemistry Table of Contents Objectives Distinguish between organic and inorganic compounds. Explain the importance of carbon bonding in biological molecules. Identify functional groups in biological

More information

Macromolecules. 3. There are several levels of protein structure, the most complex of which is A) primary B) secondary C) tertiary D) quaternary

Macromolecules. 3. There are several levels of protein structure, the most complex of which is A) primary B) secondary C) tertiary D) quaternary Macromolecules 1. If you remove all of the functional groups from an organic molecule so that it has only carbon and hydrogen atoms, the molecule become a molecule. A) carbohydrate B) carbonyl C) carboxyl

More information

Chapter 5. Microbial Metabolism

Chapter 5. Microbial Metabolism Chapter 5 Microbial Metabolism Metabolism Collection of controlled biochemical reactions that take place within a microbe Ultimate function of metabolism is to reproduce the organism Metabolic Processes

More information

In glycolysis, glucose is converted to pyruvate. If the pyruvate is reduced to lactate, the pathway does not require O 2 and is called anaerobic

In glycolysis, glucose is converted to pyruvate. If the pyruvate is reduced to lactate, the pathway does not require O 2 and is called anaerobic Glycolysis 1 In glycolysis, glucose is converted to pyruvate. If the pyruvate is reduced to lactate, the pathway does not require O 2 and is called anaerobic glycolysis. If this pyruvate is converted instead

More information

Chemistry 107 Exam 4 Study Guide

Chemistry 107 Exam 4 Study Guide Chemistry 107 Exam 4 Study Guide Chapter 10 10.1 Recognize that enzyme catalyze reactions by lowering activation energies. Know the definition of a catalyst. Differentiate between absolute, relative and

More information

AP Bio Photosynthesis & Respiration

AP Bio Photosynthesis & Respiration AP Bio Photosynthesis & Respiration Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. What is the term used for the metabolic pathway in which

More information

Organic Molecules. 8/27/2004 Mr. Davenport 1

Organic Molecules. 8/27/2004 Mr. Davenport 1 Organic Molecules 8/27/2004 Mr. Davenport 1 Carbohydrates Commonly called sugars and starches Consist of C, H, O with H:O ration 2:1 Usually classified as to sugar units Monosaccharide are single sugar

More information

Copyright 2014 Edmentum - All rights reserved.

Copyright 2014 Edmentum - All rights reserved. Study Island Copyright 2014 Edmentum - All rights reserved. Generation Date: 04/01/2014 Generated By: Cheryl Shelton Title: Science- biology Cells 1. Below is an image of a plant cell. What processes require

More information

Energy Production In A Cell (Chapter 25 Metabolism)

Energy Production In A Cell (Chapter 25 Metabolism) Energy Production In A Cell (Chapter 25 Metabolism) Large food molecules contain a lot of potential energy in the form of chemical bonds but it requires a lot of work to liberate the energy. Cells need

More information

Topic 3: The chemistry of life (15 hours)

Topic 3: The chemistry of life (15 hours) Topic : The chemistry of life (5 hours). Chemical elements and water.. State that the most frequently occurring chemical elements in living things are carbon, hydrogen, oxygen and nitrogen...2 State that

More information

INORGANIC COMPOUNDS. Ex: Water. Compounds that may be essential to life, but are not necessarily found in living things.

INORGANIC COMPOUNDS. Ex: Water. Compounds that may be essential to life, but are not necessarily found in living things. INORGANIC COMPOUNDS Compounds that may be essential to life, but are not necessarily found in living things. Ex: Water Other example: CO2 - ¾ of earth - 90% of living tissue WATER Water is a POLAR compound.

More information

10/25/2010 CHAPTER 9 CELLULAR RESPIRATION. Life is Work. Types of cellular respiration. Catabolic pathways = oxidizing fuels

10/25/2010 CHAPTER 9 CELLULAR RESPIRATION. Life is Work. Types of cellular respiration. Catabolic pathways = oxidizing fuels CHAPTER 9 CELLULAR RESPIRATION Life is Work Living cells require transfusions of energy from outside sources to perform their many tasks: Chemical work Transport work Mechanical work Energy stored in the

More information

Cells. Variation and Function of Cells

Cells. Variation and Function of Cells Cells Variation and Function of Cells Cell Theory states that: 1. All living things are made of cells 2. Cells are the basic unit of structure and function in living things 3. New cells are produced from

More information

Sul Ross State University Syllabus for Biochemistry II: CHEM 4302 (Fall 2017) (Alpine and Midland)

Sul Ross State University Syllabus for Biochemistry II: CHEM 4302 (Fall 2017) (Alpine and Midland) Sul Ross State University Syllabus for Biochemistry II: CHEM 4302 (Fall 2017) (Alpine and Midland) Class: Biochemistry II Instructor: Dr. David Leaver Room: WSB 321 (Alpine) Office: WSB 318 Time: MWF 11:00-11:50am

More information

Name: AP Biology Review Mid-Term. Multiple Choice Identify the choice that best completes the statement or answers the question.

Name: AP Biology Review Mid-Term. Multiple Choice Identify the choice that best completes the statement or answers the question. Name: AP Biology Review Mid-Term Multiple Choice Identify the choice that best completes the statement or answers the question.. 1. When does a hydronium ion form? a. when a water molecule splits in half

More information

1 A *Copyright Michigan State University. Unauthorized copying or distribution is punishable by law.*

1 A *Copyright Michigan State University. Unauthorized copying or distribution is punishable by law.* Midterm Exam Note: Before beginning, please scan the entire exam so that you can budget your time. If necessary you may request a "challenge sheet" to present alternate interpretations of questions, but

More information

Biological Chemistry. Is biochemistry fun? - Find it out!

Biological Chemistry. Is biochemistry fun? - Find it out! Biological Chemistry Is biochemistry fun? - Find it out! 1. Key concepts Outline 2. Condensation and Hydrolysis Reactions 3. Carbohydrates 4. Lipids 5. Proteins 6. Nucleic Acids Key Concepts: 1. Organic

More information

WELCOME TO BIOLOGY 11. Mr. Gandha

WELCOME TO BIOLOGY 11. Mr. Gandha WELCOME TO BIOLOGY 11 Mr. Gandha TOPICS OF BIOLOGY 11 Chemicals of life Cells Evolution Taxonomy Microbio Plants Animals BIOLOGY THIS SEMESTER Review of Biology and Processes Adaptation and Evolution:

More information

AP Biology Summer Assignment Chapter 3 Quiz

AP Biology Summer Assignment Chapter 3 Quiz AP Biology Summer Assignment Chapter 3 Quiz 2016-17 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. All of the following are found in a DNA nucleotide

More information

GRADO DE CIENCIA Y TECNOLOGÍA DE LOS ALIMENTOS

GRADO DE CIENCIA Y TECNOLOGÍA DE LOS ALIMENTOS COURSE DETAILS Title (of the course): BIOQUÍMICA Code: 102210 Degree/Master: GRADO DE CIENCIA Y TECNOLOGÍA DE LOS ALIMENTOS Year: 1 Name of the module to which it belongs: FORMACIÓN BÁSICA COMÚN Field:

More information

Biology 5A Fall 2010 Macromolecules Chapter 5

Biology 5A Fall 2010 Macromolecules Chapter 5 Learning Outcomes: Macromolecules List and describe the four major classes of molecules Describe the formation of a glycosidic linkage and distinguish between monosaccharides, disaccharides, and polysaccharides

More information

Chemical Energy. Valencia College

Chemical Energy. Valencia College 9 Pathways that Harvest Chemical Energy Valencia College 9 Pathways that Harvest Chemical Energy Chapter objectives: How Does Glucose Oxidation Release Chemical Energy? What Are the Aerobic Pathways of

More information

Metabolism Energy Pathways Biosynthesis. Catabolism Anabolism Enzymes

Metabolism Energy Pathways Biosynthesis. Catabolism Anabolism Enzymes Topics Microbial Metabolism Metabolism Energy Pathways Biosynthesis 2 Metabolism Catabolism Catabolism Anabolism Enzymes Breakdown of complex organic molecules in order to extract energy and dform simpler

More information

AP Biology Cells: Chapters 4 & 5

AP Biology Cells: Chapters 4 & 5 AP Biology Cells: Chapters 4 & 5 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The was the first unifying principle of biology. a. spontaneous generation

More information

UNIT 1: Introduction to metabolic regulation

UNIT 1: Introduction to metabolic regulation UNIT 1: Introduction to metabolic regulation Prof K Syed Department of Biochemistry & Microbiology University of Zululand Room no. 247 SyedK@unizulu.ac.za Topics Metabolism Metabolism: Categories Important

More information

Module C CHEMISTRY & CELL BIOLOGY REVIEW

Module C CHEMISTRY & CELL BIOLOGY REVIEW Module C CHEMISTRY & CELL BIOLOGY REVIEW Note: This module is provided for A&P courses that do not have a prerequisite class which includes chemistry and cell biology. Content covered by required prerequisite

More information

From Atoms to Cells: Fundamental Building Blocks. Models of atoms. A chemical connection

From Atoms to Cells: Fundamental Building Blocks. Models of atoms. A chemical connection From Atoms to Cells: A chemical connection Fundamental Building Blocks Matter - all materials that occupy space & have mass Matter is composed of atoms Atom simplest form of matter not divisible into simpler

More information

Multiple Choice Identify the choice that best completes the statement or answers the question.

Multiple Choice Identify the choice that best completes the statement or answers the question. Take Home Exam: Cell Parts, Membranes, Photosynthesis, Cell Respiration. You are allowed to use any resources you can find for this exam. You may also work with a partner. Multiple Choice Identify the

More information

Chemistry 1120 Exam 4 Study Guide

Chemistry 1120 Exam 4 Study Guide Chemistry 1120 Exam 4 Study Guide Chapter 12 12.1 Identify and differentiate between macronutrients (lipids, amino acids and saccharides) and micronutrients (vitamins and minerals). Master Tutor Section

More information

The Structure and Function of Large Biological Molecules

The Structure and Function of Large Biological Molecules Chapter 5 The Structure and Function of Large Biological Molecules PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley

More information

Key to Biol 1400 Quiz 2 (20 pts) Cells & Basic Chemistry FORM 1

Key to Biol 1400 Quiz 2 (20 pts) Cells & Basic Chemistry FORM 1 Key to Biol 1400 Quiz 2 (20 pts) Cells & Basic Chemistry FORM 1 MULIPLE CHOICE- Select the best answer and write its letter in the space provided. B 1. A complicated network of protein fibers running through

More information