Immunity through Swarms: Agent-based Simulations of the Human Immune System

Size: px
Start display at page:

Download "Immunity through Swarms: Agent-based Simulations of the Human Immune System"

Transcription

1 Immunity through Swarms: Agent-based Simulations of the Human Immune System Christian Jacob 1,2, Julius Litorco 1, and Leo Lee 1 University of Calgary, Calgary, Alberta, Canada T2N 1N4 1 Department of Computer Science, Faculty of Science 2 Dept. of Biochemistry and Molecular Biology, Faculty of Medicine {jacob, litorcoj}@cpsc.ucalgary.ca jacob/esd/ Abstract. We present a swarm-based, 3-dimensional model of the human immune system and its response to first and second viral antigen exposure. Our model utilizes a decentralized swarm approach with multiple agents acting independently following local interaction rules to exhibit complex emergent behaviours, which constitute externally observable and measurable immune reactions. The two main functional branches of the human immune system, humoral and cell-mediated immunity, are simulated. We model the production of antibodies in response to a viral population; antibody-antigen complexes are formed, which are removed by macrophages; virally infected cells are lysed by cytotoxic T cells. Our system also demonstrates reinforced reaction to a previously encountered pathogen, thus exhibiting realistic memory response. 1 Introduction Major advances in systems biology will increasingly be enabled by the utilization of computers as an integral research tool, leading to new interdisciplinary fields within bioinformatics, computational biology, and biological computing. Innovations in agent-based modelling, computer graphics and specialized visualization technology, such as the CAVE R Automated Virtual Environment, provide biologists with unprecedented tools for research in virtual laboratories [4,8,13]. However, current models of cellular and biomolecular systems have major shortcomings regarding their usability for biological and medical research. Most models do not explicitly take into account that the measurable and observable dynamics of cellular/biomolecular systems result from the interaction of a (usually large) number of agents, such as cytokines, antibodies, lymphocites, or macrophages. With our agent-based models [10,17], simulations and visualizations that introduce swarm intelligence algorithms [2,5] into biomolecular and cellular systems, we develop highly visual, adaptive and user-friendly innovative research tools, which, we think, will gain a much broader acceptance in the biological and life sciences research community thus complementing most of the

2 current, more abstract and computationally more challenging 3 mathematical and computational models [14,3]. We propose a model of the human immune system, as a highly sophisticated network of orchestrated interactions, based on relatively simple rules for each type of immune system agent. Giving these agents the freedom to interact within a confined, 3-dimensional space results in emergent behaviour patterns that resemble the cascades and feedback loops of immune system reactions. This paper is organized as follows. In section 2, we present a brief synopsis of the immune system as it is currently understood in biology. In section 3, we discuss our agent- or swarm-based implementation of the immune system, highlighting the modelled processes and structures. Section 4 gives a step-by-step description of both simulated humoral and cell-mediated immunity in response to a viral antigen. Memory response, which we analyze in more detail in Section 5, shows the validity of our model in reaction to a second exposure to a virus. We conclude with a brief discussion of future applications of our agent-based immune system modelling environment. 2 The Immune System: A Biological Perspective The human body must defend itself against a myriad of intruders. These intruders include potentially dangerous viruses, bacteria, and other pathogens it encounters in the air and in food and water. It must also deal with abnormal cells that have the capability to develop into cancer. Consequently, the human body has evolved two cooperative defense systems that act to counter these threats: (1) a nonspecific defense mechanism, and (2) a specific defense mechanism. The nonspecific defense mechanism does not distinguish one infectious agent from another. This nonspecific system includes two lines of defense which an invader encounters in sequence. The first line of defense is external and is comprised of epithelial tissues that cover and line our bodies (e.g., skin and mucous membranes) and their respective secretions. The second line of nonspecific defense is internal and is triggered by chemical signals. Antimicrobial proteins and phagocytic cells act as effector molecules that indiscriminately attack any invader that penetrates the body s outer barrier. Inflammation is a symptom that can result from deployment of this second line of defense. The specific defense mechanism is better known as the immune system (IS), and is the key subject of our simulations. This represents the body s third line of defense against intruders and comes into play simultaneously with the second line of nonspecific defense. The characteristic that defines this defense mechanism is that it responds specifically to a particular type of invader. This immune response includes the production of antibodies as specific defensive proteins. It also involves the participation of white blood cell derivatives (lymphocytes). 3 For example, many differential equation models of biological systems, such as gene regulatory networks, are very sensitive to initial conditions, result in a large number of equations, and usually require control parameters that have no direct correspondence to measurable quantities within biological systems [3].

3 While invaders are attacked by the inflammatory response, antimicrobial agents, and phagocytes, they inevitably come into contact with cells of the immune system, which mount a defense against specific invaders by developing a particular response against each type of foreign microbe, toxin, or transplanted tissue. Antigen (1 st exposure) Free antigens directly activate engulfed by Macrophage becomes Antigen-presenting cell Antigens displayed by infected cells activate stimulates B cell regulates Helper T cell regulates Cytotoxic T cell gives rise to stimulates Memory Helper T cell stimulates stimulates gives rise to Antigen (2 nd exposure) stimulates Plasma cells Memory B cells Memory T cells Active Cytotoxic T cells secrete Antibodies Defend against extracellular pathogens by binding to antigens and making them easier targets for phagocytes and complement HUMORAL IMMUNITY CELL-MEDIATED IMMUNITY Defend against intracellular pathogens and cancer by binding to and lysing the infected cells or cancer cells Fig. 1. Schematic summary of immune system agents and their interactions in response to a first and second antigen exposure. The humoral and cell-mediated immunity interaction networks are shown on the left and right, respectively. Both immunity responses are mostly mediated and regulated by macrophages and helper T cells. 2.1 Humoral Immunity and Cell-Mediated Immunity The immune system mounts two different types of responses to antigens humoral response and cell-mediated response (Fig. 1). Humoral immunity results in the production of antibodies through plasma cells. The antibodies circulate as soluble proteins in blood plasma and lymph. Cell-mediated immunity depends upon the direct action of certain types of lymphocytes rather than antibodies. The circulating antibodies of the humoral response defend mainly against toxins, free bacteria, and viruses present in body fluids. In contrast, lymphocytes of the cell-mediated response are active against bacteria and viruses inside the host s

4 cells. Cell-mediated immunity is also involved in attacks on transplanted tissue and cancer cells, both of which are perceived as non-self. 2.2 Cells of the Immune System There are two main classes of lymphocytes: B cells, which are involved in the humoral immune response, and T cells, which are involved in the cell-mediated immune response. Lymphocytes, like all blood cells, originate from pluripotent stem cells in the bone marrow. Initially, all lymphocytes are alike but eventually differentiate into the T cells or B cells. Lymphocytes that mature in the bone marrow become B cells, while those that migrate to the thymus develop into T cells. Mature B and T cells are concentrated in the lymph nodes, spleen and other lymphatic organs where the lymphocytes are most likely to encounter antigens. Both B and T cells are equipped with antigen receptors on their plasma membranes. When an antigen binds to a receptor on the surface of a lymphocyte, the lymphocyte is activated and begins to divide and differentiate. This gives rise to effector cells, the cells that actually defend the body in an immune response. With respect to the humoral response, B cells activated by antigen binding give rise to plasma cells that secrete antibodies, which help eliminate a particular antigen (Fig. 1, left side). Cell-mediated response, however, involves cytotoxic T cells (killer T cells) and helper T cells. Cytotoxic T cells kill infected cells and cancer cells. Helper T cells, on the other hand, secrete protein factors (cytokines), which are regulatory molecules that affect neighbouring cells. More specifically, through helper T cells cytokines regulate the reproduction and actions of both B cells and T cells and therefore play a pivotal role in both humoral and cell-mediated responses. Our immune system model incorporates most of these antibody-antigen and cell-cell interactions. 2.3 Antigen-Antibody Interaction Antigens are mostly composed of proteins or large polysaccharides. These molecules are often outer components of the coats of viruses, and the capsules and cell walls of bacteria. Antibodies do not generally recognize an antigen as a whole molecule. Rather, they identify a localized region on the surface of an antigen called an antigenic determinant or epitope. A single antigen may have several effective epitopes thereby stimulating several different B cells to make distinct antibodies against it. Antibodies constitute a class of proteins called immunoglobulins. An antibody does not usually destroy an antigen directly. The binding of antibodies to antigens to form an antigen-antibody complex is the basis of several effector mechanisms. Neutralization is the most common and simplest form of inactivation because the antibody blocks viral binding sites. The antibody will neutralize a virus by attaching to the sites that the virus requires in order to

5 bind to its host cell. Eventually, phagocytic cells destroy the antigen-antibody complex. This effector mechanism is part of our simulation. 4 One of the most important effector mechanisms of the humoral responses is the activation of the complement system by antigen-antibody complexes. The complement system is a group of proteins that acts cooperatively with elements of the nonspecific and specific defense systems. Antibodies often combine with complement proteins, activating the complement proteins to produce lesions in the antigenic membrane, thereby causing lysis of the cell. Opsonization is a variation on this scheme whereby complement proteins or antibodies will attach to foreign cells and thereby stimulate phagocytes to ingest those cells. Cooperation between antibodies and complement proteins with phagocytes, opsonization, and activation of the complement system is simulated in our IS model. Another important cooperative process occurs with macrophages. Macrophages do not specifically target an antigen but are directly involved in the humoral process which produces the antibodies that will act upon a specific antigen. A macrophage that has engulfed an antigen will present it to a helper T cell. This activates the helper T cell which in turn causes B cells to divide and differentiate through cytokines. A clone of memory B cells, plasma cells, and secreted antibodies will be produced as a result (Fig. 1, bottom left). These aspects are also part of our IS model, which is described in the following section. 3 A Biomolecular Swarm Model Our computer implementation 5 of the immune system and its visualization incorporates a swarm-based approach with a 3D visualization (Fig. 2a), where we use modeling techniques similar to our other agent-based simulations of bacterial chemotaxis, the lambda switch, and the lactose operon [9,8,13,4]. Each individual element in the IS simulation is represented as an independent agent governed by (usually simple) rules of interaction. While executing specific actions when colliding with or getting close to other agents, the dynamic elements in the system move randomly in continuous, 3-dimensional space. This is different to other IS simulation counter parts, such as the discrete, 2D cellular automaton-based versions of IMMSIM [11,6]. As illustrated in Figure 3, we represent immune system agents as spheres of different sizes and colours. Each agent keeps track of other agents in the vicinity of its neighbourhood space, which is defined as a sphere with a specific radius. Each agent s next-action step is triggered depending on the types and numbers of agents within this local interaction space (Fig. 2b). Confining all IS agents within a volume does, of course, not take into account that the actual immune system is spread out through a complicated network 4 Another effector mechanism is the agglutination or clumping of antigens by antibodies. The clumps are easier for phagocytic cells to engulf than are single bacteria. A similar mechanism is precipitation of soluble antigens through the cross-linking of numerous antigens to form immobile precipitates that are captured by phagocytes. This aspect is not yet built into our current IS model. 5 We use the BREVE physics-based, multi-agent simulation engine [16].

6 (a) (b) Fig. 2. Interaction space for immune system agents: (a) All interactions between immune system agents are simulated in a confined 3-dimensional space. (b) Actions for each agent are triggered either by direct collision among agents or by the agent concentrations within an agent s spherical neighbourhood space. Lines illustrate which cells are considered neighbours with respect to the highlighted cell. Tissue cells Virus B cell (plasma & memory) Macrophage Helper T cell Killer T cell Fig. 3. The immune system agents as simulated in 3D space: tissue cells (light blue), viruses (red), macrophages (yellow), killer T cells (blue), helper T cells (purple), plasma and memory B cells (green).

7 within the human body, including tonsils, spleen, lymph nodes, and bone marrow; neither do we currently for the sake of keeping our model computationally manageable incorporate the exchange of particles between the lymphatic vessels, blood capillaries, intestinal fluids, and tissue cells. Each agent follows a set of rules that define its actions within the system. As an example, we show the (much simplified) behaviours of macrophages and B cells in Table 1. The simulation system provides each agent with basic services, such as the ability to move, rotate, and determine the presence and position of other agents. A scheduler implements time slicing by invoking each agent s Iterate method, which executes a specific, context-dependent action. These actions are based on the agent s current state, and the state of other agents in its vicinity. Consequently, our simulated agents work in a decentralized fashion with no central control unit to govern the interactions of the agents. Macrophage B Cell if collision with virus: if virus is opsonized: Kill virus. else: Kill virus with prob. p. Create new macrophage. if collision with tissue cell: if cell is infected: if sufficient macrophages: Create new B cell. Create new macrophage. state = passive. if collision with virus: state = active. if collision with virus & active: Increment vir-collision counter. if vir-collision counter > TH: if enough helper T cells: Secrete antibodies. Create new B cell. Table 1. Simplified rules governing the behaviours of macrophages and B cells as examples of immune system agents. 4 Immune Response after Exposure to a Viral Antigen We will now describe the evolution of our simulated immune response after the system is exposed to a viral antigen. Figure 4 illustrates key stages during the simulation. The simulation starts with 80 tissue cells (light blue), two killer T cells (dark blue), a macrophage (yellow), a helper T cell (purple), and a naive B cell (light green). In order to trigger the immune system responses, five viruses (red) are introduced into the simulation space (Fig. 4b). The viruses start infecting tissue cells, which turn red and signal their state of infection by

8 going from light to dark red (Fig. 4c). The viruses replicate inside the infected cells, which eventually lyse and release new copies of the viruses, which, in turn, infect more and more of the tissue cells (Fig. 4d). The increasing concentration of viral antigens and infected tissue cells triggers the reproduction of macrophages (yellow), which consequently stimulate helper T cells (purple) to divide faster (Fig. 4e; also compare Fig. 1). The higher concentration of helper T cells then stimulates more B cells (green) and cytotoxic T cells (killer T cells; dark blue) to become active (Fig. 4f). Whenever active B cells collide with a viral antigen, they produce plasma and memory B cells (dark green) and release antibodies (small green; Fig. 4g). Figure 6 shows a closeup with an antibody-releasing B cell in the center. Viruses that collide with antibodies are opsonized by forming antigen-antibody complexes (white; Fig. 4h), which labels viruses for elimination by macrophages and prevents them from infecting tissue cells. Eventually, all viruses and infected cells have been eliminated (Fig. 5a), with a large number of helper and cytotoxic T cells, macrophages, and antibodies remaining. As all IS agents are assigned a specific life time, the immune system will eventually restore to its initial state, but now with a reservoir of antibodies, which are prepared to fight a second exposure to the now memorized viral antigen (Fig. 5b). The described interactions among the immune system agents are summarized in Figure 8a, which shows the number of viruses and antibodies as they evolve during the simulated humoral and cell-mediated immune response. This graph is the standard way of characterizing specificity and memory in adaptive immunity [7,15,12,1]. After the first antigen exposure the viruses are starting to get eliminated around iteration time = 50, and have vanished from the system at time = 100. The number of antibodies decreases between time step 50 and 100 due to the forming of antigen-antibody complexes, which are eliminated by macrophages. Infected tissue cells are lysed by cytotoxic T cells, which delete all cell-internal viruses. After all viruses have been fought off, a small amount of antibodies remains in the system, which will help to trigger a more intense and faster immune response after a second exposure to the same antigen, which is described in the following section. 5 Immune System Response after Second Exposure to Antigen The selective proliferation of lymphocytes to form clones of effector cells upon first exposure to an antigen constitutes the primary immune response. Between initial exposure to an antigen and maximum production of effector cells, there is a lag period. During this time, the lymphocytes selected by the antigen are differentiating into effector T cells and antibody-producing plasma cells. If the body is exposed to the same antigen at some later time, the response is faster and more prolonged than the primary response. This phenomenon is called the secondary immune response, which we will demonstrate through our simulated immune system model (Fig. 8b).

9 Killer T Helper T Viruses Macrophage Tissue Naïve B (a) Step 0 (b) Step 3 Infected Cells (c) Step 20 (d) Step 42 Macrophages Killer T Helper T Plasma B (e) Step 58 (f) Step 61 Antibodies AA complexes (g) Step 63 (h) Step 74 Fig. 4. Simulated immune system response after first exposure to a viral antigen.

10 Memory B Antibodies (a) Step 94 (b) Step 136 Fig. 5. Simulated immune system response after first exposure to a viral antigen (continued from Fig. 4). Fig. 6. Release of antibodies after collision of an activated B cell with a viral antigen.

11 Time: 0 Time: 40 (a) Step 145 (b) Step 185 Time: 55 Time: 130 (c) Step 200 (d) Step 270 Fig. 7. Faster and more intense response after second exposure to viral antigens. (a) Five viruses are inserted into the system, continuing from Step 136 after the first exposure (Fig. 5b). (b) The production of antibodies now starts earlier (at time = 40, instead of time = 60 for the first antigen exposure). (c) Five times more antibodies are released compared to the first exposure. (d) After 130 time steps the system falls back into a resting state, now with a 10- to 12-fold higher level of antibodies (compare Fig. 8) and newly formed memory B cells. The time steps in the top right corners make it easier to see the increased progression speed of the immune response as compared to the first viral exposure in Figure 4.

12 Virus Count Vs. Antibody Count - Sampling Every 2 Seconds Population Count Antibody Count Virus Count Time (Seconds) (a) (b) Fig. 8. Immunological Memory: The graph shows the simulated humoral immunity response reflected in the number of viruses and antibodies after a first and second exposure to a viral antigen. (a) During the viral antigen exposure the virus is starting to get eliminated around iteration time = 70, and has vanished from the system at time = 90. The number of antibodies decreases between time step 70 and 125 due to the forming of antigen-antibody complexes, which are then eliminated by macrophages. A small amount of antibodies (10) remains in the system. (b) After a second exposure to the viral antigen at t = 145, the antibody production is increased in less than 50 time steps. Consequently, the virus is eliminated more quickly. About 13 times more antibodies (130) remain in the system after this second exposure.

13 The immune system s ability to recognize a previously encountered antigen is called immunological memory. This ability is contingent upon long-lived memory cells. These cells are produced along with the relatively short-lived effector cells of the primary immune response. During the primary response, these memory cells are not active. They do, however, survive for long periods of time and proliferate rapidly when exposed to the same antigen again. The secondary immune response gives rise to a new clone of memory cells as well as to new effector cells. Figure 7 shows a continuation of the immune response simulation of Figure 5b. About 10 time steps later, we introduce five copies of the same virus the system encountered previously. Each virus, which is introduced into the system, receives a random signature s [0, 10]. We keep track of all viruses inserted into the system and can thus reinsert any previous virus, for which antibodies have been formed. Once memory B cells collide with a virus, they produce antibodies with the same signature, so that those antibodies will only respond to this specific virus. Consequently, after a second exposure to the same viral antigen at t = 145, the highest concentration of antibodies is increased by five times (to about 250), only after a lag time of 25 steps (Fig. 8b). Consequently, the virus is eliminated much faster, as more antigen-antibody complexes are formed, which get eliminated quickly by the also increased number of macrophages. Additionally, an increased number of helper and killer T cells contributes to a more effective removal of infected cells (Fig. 7). Not even half the number of viruses can now proliferate through the system, compared to the virus count during the first exposure. After the complete elimination of all viruses, ten to fifteen times more antibodies (about 130) remain in the system after this second exposure. This demonstrates that our agent-based model through emergent behaviour resulting from agent-specific, local interaction rules is capable of simulating key aspects of both humoral and cell mediated immune responses. 6 Conclusions and Future Research From our collaborations with biological and medical researchers, we are more and more convinced that a decentralized swarm approach to modelling the immune system closely approximates the way in which biologists view and think about living systems. Although our simulations have so far only been tested for a relatively small number of (hundreds of) interacting agents, the system is currently being expanded to handle a much larger number of immune system agents and other biomolecular entities (such as cytokines), thus getting closer to more accurate simulations of massively-parallel interaction processes among cells that involve hundreds of thousands of particles. Our visualizations, developed as a 2D projection on a normal computer screen are further enhanced through stereoscopic 3D in a CAVE R immersive environment, as we have already done for a simulation of the lactose operon gene regulatory system [4]. On the other hand, we are also investigating in how far noise and the number of biomolecular and cell agents actually affect the emergent behaviour patterns, which we observe in our simulations and can be measured in vivo in wet-lab experiments.

14 A swarm-based approach affords a measure of modularity, as agents can be added and removed from the system. In addition, completely new agents can be introduced into the simulation. This allows for further aspects of the immune system to be modelled, such as effects of immunization through antibiotics or studies of proviruses (HIV), which are invisible to other IS agents. References 1. A. K. Abbas and A. H. Lichtman. Basic Immunology - Functions and Disorders of the Immune System. W. B. Saunders Company, Philadelphia, E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From Natural to Artificial Systems. Santa Fe Institute Studies in the Sciences of Complexity. Oxford University Press, New York, J. M. Bower and H. Bolouri, editors. Computational Modeling of Genetic and Biochemical Networks. MIT Press, Cambridge, MA, I. Burleigh, G. Suen, and C. Jacob. Dna in action! a 3d swarm-based model of a gene regulatory system. In ACAL 2003, First Australian Conference on Artificial Life, Canberra, Australia, S. Camazine, J.-L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraulaz, and E. Bonabeau. Self-Organization in Biological Systems. Princeton Studies in Complexity. Princeton University Press, Princeton, F. Castiglione, G. Mannella, S. Motta, and G. Nicosia. A network of cellular automata for the simulation of the immune system. International Journal of Modern Physics C, 10(4): , J. Clancy. Basic Concepts in Immunology - A Student s Survival Guide. McGraw- Hill, New York, R. Hoar, J. Penner, and C. Jacob. Transcription and evolution of a virtual bacteria culture. In Congress on Evolutionary Computation, Canberra, Australia, IEEE Press. 9. C. Jacob and I. Burleigh. Biomolecular swarms: An agent-based model of the lactose operon. Natural Computing, (in print). 10. S. Johnson. Emergence: The Connected Lives of Ants, Brains, Cities, and Software. Scribner, New York, S. H. Kleinstein and P. E. Seiden. Simulating the immune system. Computing in Science & Engineering, (July/August):69 77, P. Parham. The Immune System. Garland Publishing, New York, J. Penner, R. Hoar, and C. Jacob. Bacterial chemotaxis in silico. In ACAL 2003, First Australian Conference on Artificial Life, Canberra, Australia, S.L. Salzberg, D.B. Searls, and S. Kasif, editors. Computational Methods in Molecular Biology, volume 32 of New Comprehensive Biochemistry. Elsevier, Amsterdam, L. Sompayrac. How the Immune System Works. Blackwell Science, London, L. Spector, J. Klein, C. Perry, and M. Feinstein. Emergence of collective behavior in evolving populations of flying agents. In E. Cantu-Paz et al., editor, Genetic and Evolutionary Computation Conference (GECCO-2003), pages 61 73, Chicago, IL, Springer-Verlag. 17. S. Wolfram. A New Kind of Science. Wolfram Media, Champaign, IL, 2002.

General Biology. A summary of innate and acquired immunity. 11. The Immune System. Repetition. The Lymphatic System. Course No: BNG2003 Credits: 3.

General Biology. A summary of innate and acquired immunity. 11. The Immune System. Repetition. The Lymphatic System. Course No: BNG2003 Credits: 3. A summary of innate and acquired immunity General iology INNATE IMMUNITY Rapid responses to a broad range of microbes Course No: NG00 Credits:.00 External defenses Invading microbes (pathogens). The Immune

More information

Chapter 22: The Lymphatic System and Immunity

Chapter 22: The Lymphatic System and Immunity Bio40C schedule Lecture Immune system Lab Quiz 2 this week; bring a scantron! Study guide on my website (see lab assignments) Extra credit Critical thinking questions at end of chapters 5 pts/chapter Due

More information

Diseases-causing agents, pathogens, can produce infections within the body.

Diseases-causing agents, pathogens, can produce infections within the body. BIO 212: ANATOMY & PHYSIOLOGY II 1 CHAPTER 16 Lecture: Dr. Lawrence G. Altman www.lawrencegaltman.com Some illustrations are courtesy of McGraw-Hill. LYMPHATIC and IMMUNE Systems Body Defenses Against

More information

Immune System AP SBI4UP

Immune System AP SBI4UP Immune System AP SBI4UP TYPES OF IMMUNITY INNATE IMMUNITY ACQUIRED IMMUNITY EXTERNAL DEFENCES INTERNAL DEFENCES HUMORAL RESPONSE Skin Phagocytic Cells CELL- MEDIATED RESPONSE Mucus layer Antimicrobial

More information

Campbell's Biology: Concepts and Connections, 7e (Reece et al.) Chapter 24 The Immune System Multiple-Choice Questions

Campbell's Biology: Concepts and Connections, 7e (Reece et al.) Chapter 24 The Immune System Multiple-Choice Questions Campbell's Biology: Concepts and Connections, 7e (Reece et al.) Chapter 24 The Immune System 24.1 Multiple-Choice Questions 1) The body's innate defenses against infection include A) several nonspecific

More information

Chapter 13 Lymphatic and Immune Systems

Chapter 13 Lymphatic and Immune Systems The Chapter 13 Lymphatic and Immune Systems 1 The Lymphatic Vessels Lymphoid Organs Three functions contribute to homeostasis 1. Return excess tissue fluid to the bloodstream 2. Help defend the body against

More information

Immune System. Biol 105 Chapter 13

Immune System. Biol 105 Chapter 13 Immune System Biol 105 Chapter 13 Outline Immune System I. Function of the Immune system II. Barrier Defenses III. Nonspecific Defenses A. Immune system cells B. Inflammatory response C. Complementary

More information

Chapter 38- Immune System

Chapter 38- Immune System Chapter 38- Immune System First Line of Defense: Barriers Nonspecific defenses, such as the skin and mucous membranes, are barriers to potential pathogens. In addition to being a physical barrier to pathogens,

More information

I. Lines of Defense Pathogen: Table 1: Types of Immune Mechanisms. Table 2: Innate Immunity: First Lines of Defense

I. Lines of Defense Pathogen: Table 1: Types of Immune Mechanisms. Table 2: Innate Immunity: First Lines of Defense I. Lines of Defense Pathogen: Table 1: Types of Immune Mechanisms Table 2: Innate Immunity: First Lines of Defense Innate Immunity involves nonspecific physical & chemical barriers that are adapted for

More information

11/25/2017. THE IMMUNE SYSTEM Chapter 43 IMMUNITY INNATE IMMUNITY EXAMPLE IN INSECTS BARRIER DEFENSES INNATE IMMUNITY OF VERTEBRATES

11/25/2017. THE IMMUNE SYSTEM Chapter 43 IMMUNITY INNATE IMMUNITY EXAMPLE IN INSECTS BARRIER DEFENSES INNATE IMMUNITY OF VERTEBRATES THE IMMUNE SYSTEM Chapter 43 IMMUNITY INNATE IMMUNITY EXAMPLE IN INSECTS Exoskeleton made of chitin forms the first barrier to pathogens Digestive system is protected by a chitin-based barrier and lysozyme,

More information

I. Critical Vocabulary

I. Critical Vocabulary I. Critical Vocabulary A. Immune System: a set of glands, tissues, cells, and dissolved proteins that combine to defend against non-self entities B. Antigen: any non-self chemical that triggers an immune

More information

The Immune System: Innate and Adaptive Body Defenses Outline PART 1: INNATE DEFENSES 21.1 Surface barriers act as the first line of defense to keep

The Immune System: Innate and Adaptive Body Defenses Outline PART 1: INNATE DEFENSES 21.1 Surface barriers act as the first line of defense to keep The Immune System: Innate and Adaptive Body Defenses Outline PART 1: INNATE DEFENSES 21.1 Surface barriers act as the first line of defense to keep invaders out of the body (pp. 772 773; Fig. 21.1; Table

More information

Immune System. Biol 105 Lecture 16 Chapter 13

Immune System. Biol 105 Lecture 16 Chapter 13 Immune System Biol 105 Lecture 16 Chapter 13 Outline Immune System I. Function of the Immune system II. Barrier Defenses III. Nonspecific Defenses A. Immune system cells B. Inflammatory response C. Complementary

More information

Third line of Defense

Third line of Defense Chapter 15 Specific Immunity and Immunization Topics -3 rd of Defense - B cells - T cells - Specific Immunities Third line of Defense Specific immunity is a complex interaction of immune cells (leukocytes)

More information

Chapter 12: The Lymphatic System

Chapter 12: The Lymphatic System Chapter 12: The Lymphatic System Immune System Composed of many nonspecific and specific defenses Lymphatic System also plays an important role in establishing immunity Lymphatic System Major components

More information

Immune System Notes Innate immunity Acquired immunity lymphocytes, humoral response Skin lysozyme, mucus membrane

Immune System Notes Innate immunity Acquired immunity lymphocytes, humoral response Skin lysozyme, mucus membrane Immune System Notes I. The immune system consists of innate and acquired immunity. A. An animal must defend itself against unwelcome intruders the many potentially dangerous viruses, bacteria, and other

More information

Overview of the Lymphoid System

Overview of the Lymphoid System Overview of the Lymphoid System The Lymphoid System Protects us against disease Lymphoid system cells respond to Environmental pathogens Toxins Abnormal body cells, such as cancers Overview of the Lymphoid

More information

Body Defense Mechanisms

Body Defense Mechanisms BIOLOGY OF HUMANS Concepts, Applications, and Issues Fifth Edition Judith Goodenough Betty McGuire 13 Body Defense Mechanisms Lecture Presentation Anne Gasc Hawaii Pacific University and University of

More information

Defense mechanism against pathogens

Defense mechanism against pathogens Defense mechanism against pathogens Immune System What is immune system? Cells and organs within an animal s body that contribute to immune defenses against pathogens ( ) Bacteria -Major entry points ;open

More information

The Lymphatic System and Immunity. Chapters 20 & 21

The Lymphatic System and Immunity. Chapters 20 & 21 The Lymphatic System and Immunity Chapters 20 & 21 Objectives 1. SC.912.L.14.52 - Explain the basic functions of the human immune system, including specific and nonspecific immune response, vaccines, and

More information

All animals have innate immunity, a defense active immediately upon infection Vertebrates also have adaptive immunity

All animals have innate immunity, a defense active immediately upon infection Vertebrates also have adaptive immunity 1 2 3 4 5 6 7 8 9 The Immune System All animals have innate immunity, a defense active immediately upon infection Vertebrates also have adaptive immunity Figure 43.2 In innate immunity, recognition and

More information

The Immune System. These are classified as the Innate and Adaptive Immune Responses. Innate Immunity

The Immune System. These are classified as the Innate and Adaptive Immune Responses. Innate Immunity The Immune System Biological mechanisms that defend an organism must be 1. triggered by a stimulus upon injury or pathogen attack 2. able to counteract the injury or invasion 3. able to recognise foreign

More information

Topics in Parasitology BLY Vertebrate Immune System

Topics in Parasitology BLY Vertebrate Immune System Topics in Parasitology BLY 533-2008 Vertebrate Immune System V. Vertebrate Immune System A. Non-specific defenses against pathogens 1. Skin - physical barrier a. Tough armor protein KERATIN b. Surface

More information

3. Lymphocyte proliferation (fig. 15.4): Clones of responder cells and memory cells are derived from B cells and T cells.

3. Lymphocyte proliferation (fig. 15.4): Clones of responder cells and memory cells are derived from B cells and T cells. Chapter 15 Adaptive, Specific Immunity and Immunization* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. Specific

More information

Medical Virology Immunology. Dr. Sameer Naji, MB, BCh, PhD (UK) Head of Basic Medical Sciences Dept. Faculty of Medicine The Hashemite University

Medical Virology Immunology. Dr. Sameer Naji, MB, BCh, PhD (UK) Head of Basic Medical Sciences Dept. Faculty of Medicine The Hashemite University Medical Virology Immunology Dr. Sameer Naji, MB, BCh, PhD (UK) Head of Basic Medical Sciences Dept. Faculty of Medicine The Hashemite University Human blood cells Phases of immune responses Microbe Naïve

More information

Third line of Defense. Topic 8 Specific Immunity (adaptive) (18) 3 rd Line = Prophylaxis via Immunization!

Third line of Defense. Topic 8 Specific Immunity (adaptive) (18) 3 rd Line = Prophylaxis via Immunization! Topic 8 Specific Immunity (adaptive) (18) Topics - 3 rd Line of Defense - B cells - T cells - Specific Immunities 1 3 rd Line = Prophylaxis via Immunization! (a) A painting of Edward Jenner depicts a cow

More information

Immune System. Biology 105 Lecture 16 Chapter 13

Immune System. Biology 105 Lecture 16 Chapter 13 Immune System Biology 105 Lecture 16 Chapter 13 Outline: Immune System I. Functions of the immune system II. Barrier defenses III. Non-specific defenses A. Immune system cells B. Inflammatory response

More information

Internal Defense Notes

Internal Defense Notes Internal environment of animals provides attractive area for growth of bacteria, viruses, fungi Harm via: 1. destruction of cells 2. production of toxic chemicals To protect against foreign invaders, humans

More information

محاضرة مناعت مدرس المادة :ا.م. هدى عبدالهادي علي النصراوي Immunity to Infectious Diseases

محاضرة مناعت مدرس المادة :ا.م. هدى عبدالهادي علي النصراوي Immunity to Infectious Diseases محاضرة مناعت مدرس المادة :ا.م. هدى عبدالهادي علي النصراوي Immunity to Infectious Diseases Immunity to infection depends on a combination of innate mechanisms (phagocytosis, complement, etc.) and antigen

More information

The Lymphatic System and Body Defenses

The Lymphatic System and Body Defenses PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College The Lymphatic System and Body Defenses 12PART B Adaptive Defense System: Third Line of Defense Immune

More information

PBS Class #2 Introduction to the Immune System part II Suggested reading: Abbas, pgs , 27-30

PBS Class #2 Introduction to the Immune System part II Suggested reading: Abbas, pgs , 27-30 PBS 803 - Class #2 Introduction to the Immune System part II Suggested reading: Abbas, pgs. 15-25, 27-30 Learning Objectives Compare and contrast the maturation of B and T lymphocytes Compare and contrast

More information

Overview. Barriers help animals defend against many dangerous pathogens they encounter.

Overview. Barriers help animals defend against many dangerous pathogens they encounter. Immunity Overview Barriers help animals defend against many dangerous pathogens they encounter. The immune system recognizes foreign bodies and responds with the production of immune cells and proteins.

More information

Unit 5 The Human Immune Response to Infection

Unit 5 The Human Immune Response to Infection Unit 5 The Human Immune Response to Infection Unit 5-page 1 FOM Chapter 21 Resistance and the Immune System: Innate Immunity Preview: In Chapter 21, we will learn about the branch of the immune system

More information

Chapter 24 The Immune System

Chapter 24 The Immune System Chapter 24 The Immune System The Immune System Layered defense system The skin and chemical barriers The innate and adaptive immune systems Immunity The body s ability to recognize and destroy specific

More information

Chapter 43. Immune System. phagocytosis. lymphocytes. AP Biology

Chapter 43. Immune System. phagocytosis. lymphocytes. AP Biology Chapter 43. Immune System phagocytosis lymphocytes 1 Why an immune system? Attack from outside lots of organisms want you for lunch! animals must defend themselves against unwelcome invaders viruses protists

More information

The Immune System is the Third Line of Defense Against Infection. Components of Human Immune System

The Immune System is the Third Line of Defense Against Infection. Components of Human Immune System Chapter 17: Specific Host Defenses: The Immune Response The Immune Response Immunity: Free from burden. Ability of an organism to recognize and defend itself against specific pathogens or antigens. Immune

More information

Pearson's Comprehensive Medical Assisting Administrative and Clinical Competencies

Pearson's Comprehensive Medical Assisting Administrative and Clinical Competencies Pearson's Comprehensive Medical Assisting Administrative and Clinical Competencies THIRD EDITION CHAPTER 28 The Immune System Lesson 1: The Immune System Lesson Objectives Upon completion of this lesson,

More information

1. Overview of Adaptive Immunity

1. Overview of Adaptive Immunity Chapter 17A: Adaptive Immunity Part I 1. Overview of Adaptive Immunity 2. T and B Cell Production 3. Antigens & Antigen Presentation 4. Helper T cells 1. Overview of Adaptive Immunity The Nature of Adaptive

More information

Immunity and Infection. Chapter 17

Immunity and Infection. Chapter 17 Immunity and Infection Chapter 17 The Chain of Infection Transmitted through a chain of infection (six links) Pathogen: Disease causing microorganism Reservoir: Natural environment of the pathogen Portal

More information

Chapter 35 Active Reading Guide The Immune System

Chapter 35 Active Reading Guide The Immune System Name: AP Biology Mr. Croft Chapter 35 Active Reading Guide The Immune System Section 1 Phagocytosis plays an important role in the immune systems of both invertebrates and vertebrates. Review the process

More information

Blood and Immune system Acquired Immunity

Blood and Immune system Acquired Immunity Blood and Immune system Acquired Immunity Immunity Acquired (Adaptive) Immunity Defensive mechanisms include : 1) Innate immunity (Natural or Non specific) 2) Acquired immunity (Adaptive or Specific) Cell-mediated

More information

Warm-up. Parts of the Immune system. Disease transmission. Disease transmission. Why an immune system? Chapter 43 3/9/2012.

Warm-up. Parts of the Immune system. Disease transmission. Disease transmission. Why an immune system? Chapter 43 3/9/2012. Warm-up Objective: Explain how antigens react with specific lymphocytes to induce immune response and immunological memory. Warm-up: Which of the following would normally contain blood with the least amount

More information

There are 2 major lines of defense: Non-specific (Innate Immunity) and. Specific. (Adaptive Immunity) Photo of macrophage cell

There are 2 major lines of defense: Non-specific (Innate Immunity) and. Specific. (Adaptive Immunity) Photo of macrophage cell There are 2 major lines of defense: Non-specific (Innate Immunity) and Specific (Adaptive Immunity) Photo of macrophage cell Development of the Immune System ery pl neu mφ nk CD8 + CTL CD4 + thy TH1 mye

More information

The Immune System. Specific Immunity

The Immune System. Specific Immunity The Immune System Specific Immunity What You Should Know Immune surveillance A range of white blood cells constantly circulate monitoring the tissues. If tissues become damaged or invaded, cells release

More information

NOTES: CH 43, part 1 The Immune System - Nonspecific & Specific Defenses ( )

NOTES: CH 43, part 1 The Immune System - Nonspecific & Specific Defenses ( ) NOTES: CH 43, part 1 The Immune System - Nonspecific & Specific Defenses (43.1-43.2) The lymphatic system is closely associated with the cardiovascular system. LYMPHATIC PATHWAYS Lymphatic capillaries

More information

2014 Pearson Education, Inc. Exposure to pathogens naturally activates the immune system. Takes days to be effective Pearson Education, Inc.

2014 Pearson Education, Inc. Exposure to pathogens naturally activates the immune system. Takes days to be effective Pearson Education, Inc. The innate immune interact with the adaptive immune system 1. Damage to skin causes bleeding = bradykinin activated, resulting in inflammation 2. Dendritic phagocytose pathogens Adaptive immunity 4. Dendritic

More information

Chapter 24 The Immune System

Chapter 24 The Immune System Chapter 24 The Immune System PowerPoint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Lecture by Edward J. Zalisko Introduction: The Kissing Disease?!?

More information

Prof. Ibtesam Kamel Afifi Professor of Medical Microbiology & Immunology

Prof. Ibtesam Kamel Afifi Professor of Medical Microbiology & Immunology By Prof. Ibtesam Kamel Afifi Professor of Medical Microbiology & Immunology Lecture objectives: At the end of the lecture you should be able to: Enumerate features that characterize acquired immune response

More information

Lymphatic System & Immunity

Lymphatic System & Immunity Lymphatic System & Immunity Arteriole Venule Tissue Blood Lymph cells capilla capillaries ries Lymphatic System -closely related to cardiovascular system -conducting system that carries fluid from extracellular

More information

ANATOMY OF THE IMMUNE SYSTEM

ANATOMY OF THE IMMUNE SYSTEM Immunity Learning objectives Explain what triggers an immune response and where in the body the immune response occurs. Understand how the immune system handles exogenous and endogenous antigen differently.

More information

CHAPTER-VII IMMUNOLOGY R.KAVITHA, M.PHARM, LECTURER, DEPARTMENT OF PHARMACEUTICS, SRM COLLEGE OF PHARMACY, SRM UNIVERSITY, KATTANKULATHUR.

CHAPTER-VII IMMUNOLOGY R.KAVITHA, M.PHARM, LECTURER, DEPARTMENT OF PHARMACEUTICS, SRM COLLEGE OF PHARMACY, SRM UNIVERSITY, KATTANKULATHUR. CHAPTER-VII IMMUNOLOGY R.KAVITHA, M.PHARM, LECTURER, DEPARTMENT OF PHARMACEUTICS, SRM COLLEGE OF PHARMACY, SRM UNIVERSITY, KATTANKULATHUR. The Immune Response Immunity: Free from burden. Ability of an

More information

4) What causes lymph to move? Skeletal muscle contraction; smooth muscle contraction, breathing (like blood moves through veins)

4) What causes lymph to move? Skeletal muscle contraction; smooth muscle contraction, breathing (like blood moves through veins) NPHS Anatomy & Physiology UNIT 10 REVIEW GUIDE Lymphatic System 1) List the three functions of the lymphatic system. transports excess fluid to the bloodstream absorbs fats helps defend the body against

More information

The Lymphatic System and Body Defenses

The Lymphatic System and Body Defenses Essentials of Human Anatomy & Physiology Elaine N. Marieb Seventh Edition Chapter 12 The Lymphatic System and Body Defenses Slides 12.1 12.22 Lecture Slides in PowerPoint by Jerry L. Cook The Lymphatic

More information

1. Lymphatic vessels recover about of the fluid filtered by capillaries. A. ~1% C. ~25% E. ~85% B. ~10% D. ~50%

1. Lymphatic vessels recover about of the fluid filtered by capillaries. A. ~1% C. ~25% E. ~85% B. ~10% D. ~50% BIOL2030 Huaman A&P II -- Exam 3 -- XXXX -- Form A Name: 1. Lymphatic vessels recover about of the fluid filtered by capillaries. A. ~1% C. ~25% E. ~85% B. ~10% D. ~50% 2. Special lymphatic vessels called

More information

Nonspecific External Barriers skin, mucous membranes

Nonspecific External Barriers skin, mucous membranes Immune system Chapter 36 BI 103 Plant-Animal A&P Levels of Defense Against Disease Nonspecific External Barriers skin, mucous membranes Physical barriers? Brainstorm with a partner If these barriers are

More information

Chapter 23 Immunity Exam Study Questions

Chapter 23 Immunity Exam Study Questions Chapter 23 Immunity Exam Study Questions 1. Define 1) Immunity 2) Neutrophils 3) Macrophage 4) Epitopes 5) Interferon 6) Complement system 7) Histamine 8) Mast cells 9) Antigen 10) Antigens receptors 11)

More information

Defense & the Immune System. Immune System Agenda 4/28/2010. Overview. The bigger picture Non specific defenses Specific defenses (Immunity)

Defense & the Immune System. Immune System Agenda 4/28/2010. Overview. The bigger picture Non specific defenses Specific defenses (Immunity) Defense &The Immune System Overview Immune System Agenda The bigger picture Non specific defenses Specific defenses (Immunity) Defense & the Immune System Big Picture Defense Any means of preventing or

More information

Immune System. Before You Read. Read to Learn

Immune System. Before You Read. Read to Learn Immune System 37 section 2 The Immune System Biology/Life Sciences 10.b Students know the role of antibodies in the body s response to infection. Also covers: Biology/Life Sciences 10.a, 10.e, 10.f Components

More information

Adaptive Immunity: Specific Defenses of the Host

Adaptive Immunity: Specific Defenses of the Host 17 Adaptive Immunity: Specific Defenses of the Host SLOs Differentiate between innate and adaptive immunity, and humoral and cellular immunity. Define antigen, epitope, and hapten. Explain the function

More information

KEY CONCEPT Germs cause many diseases in humans.

KEY CONCEPT Germs cause many diseases in humans. 31.1 40.1 Pathogens Infectious Diseases and Human Illness KEY CONCEPT Germs cause many diseases in humans. 31.1 40.1 Pathogens Infectious Diseases and Human Illness Germ theory states that microorganisms

More information

The Adaptive Immune Response. B-cells

The Adaptive Immune Response. B-cells The Adaptive Immune Response B-cells The innate immune system provides immediate protection. The adaptive response takes time to develop and is antigen specific. Activation of B and T lymphocytes Naive

More information

Chapter 17B: Adaptive Immunity Part II

Chapter 17B: Adaptive Immunity Part II Chapter 17B: Adaptive Immunity Part II 1. Cell-Mediated Immune Response 2. Humoral Immune Response 3. Antibodies 1. The Cell-Mediated Immune Response Basic Steps of Cell-Mediated IR 1 2a CD4 + MHC cl.

More information

White Blood Cells (WBCs)

White Blood Cells (WBCs) YOUR ACTIVE IMMUNE DEFENSES 1 ADAPTIVE IMMUNE RESPONSE 2! Innate Immunity - invariant (generalized) - early, limited specificity - the first line of defense 1. Barriers - skin, tears 2. Phagocytes - neutrophils,

More information

The Immune System All animals have innate immunity, a defense active immediately

The Immune System All animals have innate immunity, a defense active immediately The Immune System All animals have innate immunity, a defense active immediately upon infection Vertebrates also have adaptive immunity Figure 43.2 INNATE IMMUNITY (all animals) Recognition of traits shared

More information

Chapter 17. The Lymphatic System and Immunity. Copyright 2010, John Wiley & Sons, Inc.

Chapter 17. The Lymphatic System and Immunity. Copyright 2010, John Wiley & Sons, Inc. Chapter 17 The Lymphatic System and Immunity Immunity Innate Immunity Fast, non-specific and no memory Barriers, ph extremes, Phagocytes & NK cells, fever, inflammation, complement, interferon Adaptive

More information

MCAT Biology - Problem Drill 16: The Lymphatic and Immune Systems

MCAT Biology - Problem Drill 16: The Lymphatic and Immune Systems MCAT Biology - Problem Drill 16: The Lymphatic and Immune Systems Question No. 1 of 10 1. Which of the following statements about pathogens is true? Question #01 (A) Both viruses and bacteria need to infect

More information

LYMPHOCYTES & IMMUNOGLOBULINS. Dr Mere Kende, Lecturer SMHS

LYMPHOCYTES & IMMUNOGLOBULINS. Dr Mere Kende, Lecturer SMHS LYMPHOCYTES & IMMUNOGLOBULINS Dr Mere Kende, Lecturer SMHS Immunity Immune- protection against dangers of non-self/invader eg organism 3 components of immune system 1 st line: skin/mucosa/cilia/hair/saliva/fatty

More information

(b) fluid returns to venous end of capillary due to hydrostatic pressure and osmotic pressure

(b) fluid returns to venous end of capillary due to hydrostatic pressure and osmotic pressure (Slide 1) Lecture Notes: Lymphatic System and Immunity (Body Defenses) I. (Slide 2) Introduction A) General 1) Lymphatic System performs 2 basic functions: 2) Organs of the Lymphatic System (a) lymphatic

More information

3/28/2012. Immune System. Activation of Innate Immunity. Innate (non-specific) Immunity

3/28/2012. Immune System. Activation of Innate Immunity. Innate (non-specific) Immunity Chapter 5 Outline Defense Mechansims Functions of B Lymphocytes Functions of T Lymphocytes Active and Passive Immunity Tumor Immunology Diseases Caused By Immune System Immune System Anatomy - Lymphoid

More information

Endeavour College of Natural Health endeavour.edu.au

Endeavour College of Natural Health endeavour.edu.au Endeavour College of Natural Health endeavour.edu.au BIOH122 Human Biological Science 2 Session 8 Immune System 1 Bioscience Department Endeavour College of Natural Health endeavour.edu.au Session Plan

More information

Cell-mediated response (what type of cell is activated and what gets destroyed?)

Cell-mediated response (what type of cell is activated and what gets destroyed?) The Immune System Reading Guide (Chapter 43) Name Per 1. The immune response in animals can be divided into innate immunity and adaptive immunity. As an overview, complete this figure indicating the divisions

More information

NOTES: CH 43, part 2 Immunity; Immune Disruptions ( )

NOTES: CH 43, part 2 Immunity; Immune Disruptions ( ) NOTES: CH 43, part 2 Immunity; Immune Disruptions (43.3-43.4) Activated B & T Lymphocytes produce: CELL-MEDIATED IMMUNE RESPONSE: involves specialized T cells destroying infected host cells HUMORAL IMMUNE

More information

Fluid movement in capillaries. Not all fluid is reclaimed at the venous end of the capillaries; that is the job of the lymphatic system

Fluid movement in capillaries. Not all fluid is reclaimed at the venous end of the capillaries; that is the job of the lymphatic system Capillary exchange Fluid movement in capillaries Not all fluid is reclaimed at the venous end of the capillaries; that is the job of the lymphatic system Lymphatic vessels Lymphatic capillaries permeate

More information

Immunology for the Rheumatologist

Immunology for the Rheumatologist Immunology for the Rheumatologist Rheumatologists frequently deal with the immune system gone awry, rarely studying normal immunology. This program is an overview and discussion of the function of the

More information

2 - Adaptive Immunity

2 - Adaptive Immunity 2 - Adaptive Immunity The Division of the Immune System - Macrophages are in the tissues, neutrophils migrate through the blood stream - There s a release of a chemical signal which attracts all the cells

More information

Disease causing organisms Resistance Immunity

Disease causing organisms Resistance Immunity Part 1 Disease causing organisms Resistance Immunity Bacteria Most common pathogens Anthrax Cholera Staphylococcus epidermidis bacteria Bacterial diseases Tuberculosis Cholera Bubonic Plague Tetanus Effects

More information

Lymphatic System. Chapter 14. Introduction. Main Channels of Lymphatics. Lymphatics. Lymph Tissue. Major Lymphatic Vessels of the Trunk

Lymphatic System. Chapter 14. Introduction. Main Channels of Lymphatics. Lymphatics. Lymph Tissue. Major Lymphatic Vessels of the Trunk Lymphatic System Chapter 14 Components Lymph is the fluid Vessels lymphatics Structures & organs Functions Return tissue fluid to the bloodstream Transport fats from the digestive tract to the bloodstream

More information

Immune System. How your body goes to war to keep you well

Immune System. How your body goes to war to keep you well Immune System How your body goes to war to keep you well WATCH OUT! Millions of bacteria and viruses are everywhere. Many aim to find a host and invade the body. HOW CAN WE DEFEND AGAINST IT? The Bad Guys

More information

Chapter Pages Transmission

Chapter Pages Transmission Chapter 19.2 Pages 442-448 Transmission Immunity There are three lines of defense: 1 The skin and mucous membranes are a nonspecific barrier to infection. 2 Macrophages attack pathogens that enter the

More information

Adaptive immune responses: T cell-mediated immunity

Adaptive immune responses: T cell-mediated immunity MICR2209 Adaptive immune responses: T cell-mediated immunity Dr Allison Imrie allison.imrie@uwa.edu.au 1 Synopsis: In this lecture we will discuss the T-cell mediated immune response, how it is activated,

More information

Chapter 21: Innate and Adaptive Body Defenses

Chapter 21: Innate and Adaptive Body Defenses Chapter 21: Innate and Adaptive Body Defenses I. 2 main types of body defenses A. Innate (nonspecific) defense: not to a specific microorganism or substance B. Adaptive (specific) defense: immunity to

More information

CH. 24. The Immune System

CH. 24. The Immune System CH. 24 The Immune System The immune systems consists of organs, cells, and molecules that fight infections and protect us from invaders. Pathogens: Bacteria, Viruses, Parasites, Fungi 1. Innate (nonspecific)

More information

Chapter 16 Lymphatic System and Immunity. Lymphatic Pathways. Lymphatic Capillaries. network of vessels that assist in circulating fluids

Chapter 16 Lymphatic System and Immunity. Lymphatic Pathways. Lymphatic Capillaries. network of vessels that assist in circulating fluids Chapter 16 Lymphatic System and Immunity network of vessels that assist in circulating fluids closely associated with the cardiovascular system transports excess fluid away from interstitial spaces transports

More information

2. The normal of the gut, and vagina keep the growth of pathogens in check. 3. in the respiratory tract sweep out bacteria and particles.

2. The normal of the gut, and vagina keep the growth of pathogens in check. 3. in the respiratory tract sweep out bacteria and particles. Chapter 39 Immunity I. Three Lines of Defense A. Surface Barriers to Invasion 1. is an important barrier. 2. The normal of the gut, and vagina keep the growth of pathogens in check. 3. in the respiratory

More information

Chapter 14. Lymphatic System and Immunity

Chapter 14. Lymphatic System and Immunity Chapter 14 Lymphatic System and Immunity 1 Introduction A. The lymphatic system is comprised of a network of vessels that transport body fluids, the cells and chemicals in those vessels and the organs

More information

Physiology Unit 3. ADAPTIVE IMMUNITY The Specific Immune Response

Physiology Unit 3. ADAPTIVE IMMUNITY The Specific Immune Response Physiology Unit 3 ADAPTIVE IMMUNITY The Specific Immune Response In Physiology Today The Adaptive Arm of the Immune System Specific Immune Response Internal defense against a specific pathogen Acquired

More information

35.2 Defenses against Infection

35.2 Defenses against Infection 35.2 Defenses against Infection Key Questions At the end of this section you should be able to answer the following questions: What are the two types of infections? What are examples of each? How does

More information

Lymphatic System. The targets of the immune defenses are infectious organisms such as,, parasites, fungi, and some protists.

Lymphatic System. The targets of the immune defenses are infectious organisms such as,, parasites, fungi, and some protists. Lymphatic System I. Non-specific Defenses The immune system is a body wide network of cells and organs that have evolved to defend the body against attacks by invaders. The targets of the immune defenses

More information

1. Specificity: specific activity for each type of pathogens. Immunity is directed against a particular pathogen or foreign substance.

1. Specificity: specific activity for each type of pathogens. Immunity is directed against a particular pathogen or foreign substance. L13: Acquired or adaptive (specific) immunity The resistance, which absent at the time of first exposure to a pathogen, but develops after being exposed to the pathogen is called acquired immunity. It

More information

PATHOGENS AND DEFENCE AGAINST INFECTIOUS DISEASE. By: Stephanie, Emily, Cem, and Julie

PATHOGENS AND DEFENCE AGAINST INFECTIOUS DISEASE. By: Stephanie, Emily, Cem, and Julie PATHOGENS AND DEFENCE AGAINST INFECTIOUS DISEASE By: Stephanie, Emily, Cem, and Julie Pathogen Pathogen: an organism or virus that causes a disease. Examples: bacteria, fungi, protozoa, virus Disease Cause

More information

Overview: The immune responses of animals can be divided into innate immunity and acquired immunity.

Overview: The immune responses of animals can be divided into innate immunity and acquired immunity. GUIDED READING - Ch. 43 - THE IMMUNE SYSTEM NAME: Please print out these pages and HANDWRITE the answers directly on the printouts. Typed work or answers on separate sheets of paper will not be accepted.

More information

Lymphatic System. Where s your immunity idol?

Lymphatic System. Where s your immunity idol? Lymphatic System Where s your immunity idol? Functions of the Lymphatic System Fluid Balance Drains excess fluid from tissues Lymph contains solutes from plasma Fat Absorption Lymphatic system absorbs

More information

The Lymphatic System and Body Defenses

The Lymphatic System and Body Defenses 12 PART A The Lymphatic System and Body Defenses PowerPoint Lecture Slide Presentation by Jerry L. Cook, Sam Houston University ESSENTIALS OF HUMAN ANATOMY & PHYSIOLOGY EIGHTH EDITION ELAINE N. MARIEB

More information

Blood consists of red and white blood cells suspended in plasma Blood is about 55% plasma and 45% cellular elements Plasma 90% water 10% dissolved

Blood consists of red and white blood cells suspended in plasma Blood is about 55% plasma and 45% cellular elements Plasma 90% water 10% dissolved Bio 100 Guide 21 Blood consists of red and white blood cells suspended in plasma Blood is about 55% plasma and 45% cellular elements Plasma 90% water 10% dissolved inorganic ions, proteins, nutrients,

More information

immunity defenses invertebrates vertebrates chapter 48 Animal defenses --

immunity defenses invertebrates vertebrates chapter 48 Animal defenses -- defenses Animal defenses -- immunity chapter 48 invertebrates coelomocytes, amoebocytes, hemocytes sponges, cnidarians, etc. annelids basophilic amoebocytes, acidophilic granulocytes arthropod immune systems

More information

The Adaptive Immune Responses

The Adaptive Immune Responses The Adaptive Immune Responses The two arms of the immune responses are; 1) the cell mediated, and 2) the humoral responses. In this chapter we will discuss the two responses in detail and we will start

More information

Unit 12: The Lymphatic System and Body Defenses

Unit 12: The Lymphatic System and Body Defenses Unit 12: The Lymphatic System and Body Defenses I. The Lymphatic System A. Consists of two semi-independent parts 1. Lymphatic vessels 2. Lymphoid tissues and organs B. Lymphatic system functions 1. Transports

More information

Understanding basic immunology. Dr Mary Nowlan

Understanding basic immunology. Dr Mary Nowlan Understanding basic immunology Dr Mary Nowlan 1 Immunology Immunology the study of how the body fights disease and infection Immunity State of being able to resist a particular infection or toxin 2 Overview

More information

CELL BIOLOGY - CLUTCH CH THE IMMUNE SYSTEM.

CELL BIOLOGY - CLUTCH CH THE IMMUNE SYSTEM. !! www.clutchprep.com CONCEPT: OVERVIEW OF HOST DEFENSES The human body contains three lines of against infectious agents (pathogens) 1. Mechanical and chemical boundaries (part of the innate immune system)

More information

~ons~ecific Bod~ Defenses and Immunity

~ons~ecific Bod~ Defenses and Immunity ~ons~ecific Bod~ Defenses and Immunity The human body continually attempts to maintain homeostasis by counteracting harmful or disease-producing organisms called pathoqens or the toxins they produce. The

More information