Killer Lymphocytes GIDEON BERKE WILLIAM R. CLARK. Department of Immunology, Weizmann Institute of Science, Rehovot, Israel. and

Size: px
Start display at page:

Download "Killer Lymphocytes GIDEON BERKE WILLIAM R. CLARK. Department of Immunology, Weizmann Institute of Science, Rehovot, Israel. and"

Transcription

1

2 KILLER LYMPHOCYTES

3 Killer Lymphocytes by GIDEON BERKE Department of Immunology, Weizmann Institute of Science, Rehovot, Israel and WILLIAM R. CLARK University of California, Los Angeles, California, U.S.A.

4 A C.I.P. Catalogue record for this book is available from the Library of Congress. ISBN (PB) ISBN (HB) ISBN (e-book) Published by Springer, P.O. Box 17, 3300 AA Dordrecht, The Netherlands. Printed on acid-free paper All Rights Reserved 2007 Springer No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

5 TABLE OF CONTENTS Preface vii Chapter 1 Basic Immunobiology: A Primer 1 Chapter 2 Cytotoxic T Lymphocytes: Generation and Cellular Properties 29 Chapter 3 Cytotoxic T Lymphocytes: Target Cell Recognition and Binding 53 Chapter 4 Cytotoxic T Lymphocytes: Target Cell Killing: Cellular Parameters 71 Chapter 5 Cytotoxic T Lymphocytes: Target Cell Killing: Molecular mechanisms 95 Chapter 6 Innate Cell-mediated Immunity 125 Chapter 7 The Role of Cytotoxicity in Allograft Rejection In Vivo 159 Chapter 8 Cytotoxicity in Immune Defenses Against Intracellular Parasites 179

6 vi Chapter 9 Killer Cells and Cancer 201 Chapter 10 Autoimmunity 217 Chapter 11 Homeostasis, Memory and CTL Vaccines 231 References 245 Index 353

7 PREFACE The existence of a unique kind of immune cell the killer lymphocyte - which destroys other cells in a highly specific manner, has fascinated immunologists for almost half a century. How do these cells, whose precursors have lived in communal harmony with their host, decide that some of their cohabitants must die? And how do they kill them? The definition of killer lymphocytes came from discovery of their roles in a wide range of in vivo phenomena such as transplant rejection, virus infection and its related immunopathologies, and anti-tumor responses. Yet for the most part almost everything we know about these cells has come from studying them in vitro. They have yielded their secrets slowly and reluctantly. To understand fully how they work, geneticists and immunologists had to unravel the major histocompatibility systems of vertebrates, a long and torturous road that provided some of the darkest hours of immunology. The search for antigen-sensing receptors on both T cells and NK cells was scarcely less frustrating. And the holy grail of cellmediated cytotoxicity defining the mechanism by which killer cells take down their adversaries sorely tested the ingenuity, patience and mutual good will of laboratories around the world. These questions have now largely been answered. But do we really understand these cells? We can tame them to a large degree in transplant rejection. It may yet turn out that we can harness their immunotherapeutic potential in treating viral and malignant disease. The pivotal role of CTL induction has become part and parcel of many vaccination schemes. But it has become less clear with time that the dramatic destruction of cells wrought by killer cells in vitro represents their true function in vivo. In writing this book we had several goals in mind. First, we wanted to provide a definitive resource for the subject of cell-mediated cytotoxicity killer lymphocytes. We felt it would be useful to have a single volume that

8 viii Preface traces the history of this field, telling its story in terms of key experiments and ideas that have shaped research into the function and biological meaning of cells that kill other cells. At the same time, we wanted to integrate, where possible, the major themes coursing through this subject in its fifty or so year history. And finally, we felt it is time to assess the evidence for and against a role of killer lymphocytes in vivo. Having worked actively in the field for over thirty years, we were still surprised by how extensive it has become. We estimate admittedly somewhat loosely that well over 100,000 papers have been published on various aspects of cell-mediated cytotoxicity (CMC) since it began. Our goal could not possibly be to cover all of this information. We have tried to identify those papers that were key to the origin of each of the many themes in CMC, and then to identify key recent reviews that allow anyone interested in a given sub-topic to work their way back through the existing literature as suits their needs. We have done our best to keep the number of papers cited to a minimum, consistent with that goal. We apologize in advance to our many friends and colleagues whose many excellent and important papers have not been cited here. All scientific fields are works in progress, and even as we bring this project to a conclusion the field of CMC is morphing in new directions. It may be worth coming back in five years or so to update both new developments and our interpretation of the history of this fascinating field. We hope readers of this book will find it useful, and we especially hope they will feel free to communicate to us their own thoughts on what we have presented, and what we have not. Finally, we would like to acknowledge the valuable assistance of Drs. Dalia Rosen, Judith Gan and Orit Gal-Garber, and Mr. Steven Manch, all of the Weizmann Institute, for invaluable assistance in preparation of this book. Gideon Berke Rehovot gideon.berke@weizmann.ac.il Bill Clark Los Angeles wclark222@cs.rr.com January, 2005

9 Chapter 1 BASIC IMMUNOBIOLOGY: A PRIMER This chapter is intended for those readers whose primary field of interest is not immunology, and for whom some degree of orientation in the basic structure and function of the immune system would be useful. A comprehensive discussion of the immune system is beyond the scope of this book; for that purpose the reader is referred to any of a number of current excellent textbooks and reviews in immunology, such as Paul s Fundamental Immunology 1 or various volumes of Annual Reviews of Immunology. However, for purposes of orientation to those aspects of immunity most relevant to understanding the immunobiology of killer lymphocytes, we offer the following greatly simplified summary. Many of the topics that follow will be dealt with in more detail throughout this book. 1 THE IMMUNE SYSTEM The immune system is composed of a number of interacting organs, tissues and cell types, whose principal function is to protect the host organism from uncontrolled growth of potentially pathogenic microorganisms. The immune system, including killer lymphocytes, may also be involved in suppressing the development of malignancy, but from an evolutionary viewpoint this is likely to be a secondary function. The immune system can also cause harm, through such hypersensitivity reactions as allergy and asthma, through overshoot reactions to intracellular parasites (whether the parasites are harmful or not), and through autoimmune disease. These are presumed to be evolutionarily acceptable costs of an otherwise efficiently protective microbial defense system. And the immune system in 1 Fundamental Immunology, 5th ed.. Lippincott, Williams & Wilkins, 2003.

10 2 Chapter 1 particular killer lymphocytes constitutes the major barrier to potentially life-saving organ transplants. From a functional point of view, it is useful to think of immune reactions as falling into two major categories: innate immune responses, and adaptive immune responses. Innate immune reactions are evolutionarily older, occurring in one form or another in virtually all animals and most if not all plant species. Innate responses are part of the germline inheritance of each organism, and require no further modification to be maximally effective. In general, innate immune reactions in vertebrates rely on recognition of relatively invariant molecular motifs that are, in turn, part of the genetic heritage of potentially harmful microorganisms (Janeway and Medzhitov, 2002). In vertebrate immune systems, various cells have this capacity, in particular dendritic cells (DC), but also macrophages and granulocytes. Among killer lymphocytes, natural killer (NK) cells are considered part of the innate system of defense (Chapter 6). Innate immune responses are highly effective and absolutely essential for survival. Many diseases based on an absence of innate immunity are lethal. The possibility of self-harm from innate immune responses is for the most part neutralized phylogenetically through natural selection. The major shortcoming of innate immune responses is that they cannot respond quickly to a changing pathogenic environment. One wonders how many established plant or animal species, dependent entirely on innate immune defenses (all living organisms other than vertebrates), have disappeared from the planet because of the sudden emergence of a new and lethal (for the affected species) pathogen. The ability to change quickly in response to a changing antigenic environment is the hallmark of adaptive immunity. Adaptive immune responses are based on the principle of ontogenetic generation of essentially unlimited numbers of different receptors with which to probe the antigenic universe. This highly polymorphic receptor repertoire is generated completely randomly, by recombination of a limited number of germline gene fragments. The survival of any particular genetic recombination is dependent on selection by antigen, and a system for negative selection of self-reactive receptors to avoid autoimmunity. Although defects in the adaptive immune system can be lethal, often they are not. 1.1 Anatomy of the immune system The mediators of adaptive immunity in vertebrates consist of the B lymphocytes, which produce antibodies, and T lymphocytes, which include both T helper cells and killer T cell - the cytotoxic T lymphocytes, or CTL. Antibodies are produced in response to the presence, in the extracellular

11 1. Basic Immunobiology: A Primer 3 fluids of the body, of non-self or altered-self biological materials, and are released into the bloodstream, where they trigger a series of reactions culminating in inactivation and/or removal of the non-self material (antigen) from the system. CTL participate in the destruction of self cells compromised by intracellular infection or oncological transformation. Both B-cell and CTL responses are aided by a subset of T lymphocytes called helper T cells, which in addition to their help function are also potent mediators of inflammation. We explore the basic parameters of these reactions in the remainder of this chapter. The major organs of the vertebrate immune system are the bone marrow, the thymus, the spleen and various lymph nodes scattered throughout the body, which comprise both adaptive and innate immune elements. The bone marrow is the locus of hematopoietic stem cells characterized by, among other things, self renewal, and the presence of a surface marker called CD34. (A list of CD designations used to define immune system cells is given in Table 1.1). These stem cells give rise to the cells - called generically white cells or leukocytes - involved in immune responses (Figure 1.1), as well as red blood cells. As such, CD34 cells are critical in bone marrow transplantation, and are used for various strategies in gene therapy for diseases such as AIDS and SCID (severe combined immune deficiency). CD34 cells may also serve as pluripotent adult stem cells for generation of non-lymphoid cells and tissues. Table 1-1. CD designation CD antigen Previous Designation(s) Function(s) CD1 T6; Leu 6 Presentation of non-peptide (lipid) antigens to T cells (, /, NKT) CD2 LFA-2 Intercellular adhesion (with CD58/LFA-3) on NK cells, T cells; activation CD3 OKT3; T3; Leu 4 T-cell receptor signal transduction CD4 OKT4; T4; Leu 3a; L3T4 T-cell coreceptor for MHC class II CD8 OKT8; T8; Lyt2,3; Leu 2 T-cell coreceptor for MHC class I CD11a LFA-1 Intercellular adhesion (with CD54/ICAM- 1) CD16 Leu 11a; Fcγ RIIIA Low affinity Fc receptor on NK cells CD28 T44 T-cell receptor for B7 (CD80, 86) CD30 Ber-H2; Ki-1 TNF-family receptor CD34 gp 105 Adhesion molecule; hematopoietic stem cell marker CD40 Bp50 Growth factor receptor CD54 ICAM-1 Intercellular adhesion (with CD11a) CD56 Intercellular adhesion (immune system ligand unknown CD57 NKH-1; Leu 7 Intercellular adhesion (?) CD58 LFA-3 Intercellular adhesion (with CD2) CD64 Fc RI Mediates ADCC

12 4 Chapter 1 CD antigen Previous Designation(s) Function(s) CD80 B7.1 Ligand for CD28, CTLA-4 CD86 B7.2 Ligand for CD 28, CD95 Fas; APO-1 Mediation of apoptosis CD152 CTLA-4 Negative regulation of T-cell function CD159a NKG2A NK cell signaling (inhibition) CD161 NKR-P1A Regulation of human NK function CD178 Fas ligand CD95L Mediation of apoptosis There are now over two hundred cell-surface markers used to define cell populations within the immune system. These markers were defined by antibodies developed in laboratories around the world, and the initial names for these markers were those chosen by the producing laboratory. It was not unusual for the same marker to have more than one name. In an attempt to bring uniformity to the nomenclature for such markers, an ongoing series of international workshops and conferences on Human Leukocyte Differentiation Antigens are periodically held, in which candidate antiens are tested by multiple laboratories and assigned a CD number ( While these workshops focus on human CD antigens, where identity is clear the same designation is used for mouse antigens as well. A current list of CD designations can also be obtained at Figure 1-1. The origin of B and T lymphocytes. B-cells complete their maturation in bone marrow and seed directly into B cell compartments of lymph nodes and spleen. T-cells complete their maturation in the thymus. Bone marrow is also the site of B-cell maturation. After maturation, the B cells seed into specific regions of the lymph nodes and spleen, where they encounter antigen. Once activated to become plasma cells (the activated,

13 1. Basic Immunobiology: A Primer 5 antibody-producing form of B cells), many of them migrate back to the bone marrow, which provides space for expanded plasma cell replication and antibody production. And finally, bone marrow can also be a site of T cell encounter with antigen (Feurer et al., 2003), although this is probably a minor venue in comparison with lymph nodes and spleen. The thymus is the site of T-cell maturation, the T in fact denoting the role of the thymus in their developmental history. Like B cells, T cells originate in the bone marrow, but early in their life history they translocate to the thymus for their final stages of maturation. In the thymus, the T cells differentiate into killer cells (CD8) and helper cells (CD4) (Germain, 2002), and undergo a series of positive and negative selection steps to fine-tune their ability to distinguish self from non-self. From an immunological point of view, self refers to biological materials derived from normal healthy tissues and cells of the host organism. Non-self may refer to biological material of extra-self origin (whether pathogenic or not); to altered self (self materials that have been mutated, damaged or in some other way altered); or self materials that appear only secondary to processes such as tumorigenesis. This ability to distinguish between self and non-self is largely a property of T lymphocytes. B cells with potential self-reactivity are often present in adult animals, but their ability to react with self components is circumvented by various strategies, such as functional deprivation of T-cell help. 1.2 Lymphocyte circulation The lymph nodes serve as filters for antigenic materials brought to them in lymph fluid, which drains virtually every location in the vertebrate body. The spleen filters antigens only from arterial blood. Cells such as macrophages, follicular dendritic cells and B lymphocytes resident in lymph nodes can entrap these materials. More importantly, particularly for killer cell responses, highly specialized antigen-entrapping cells such as dendritic cells can also capture antigen in various tissues of the body (e.g. at the site of a skin allograft), and transport the antigen via the lymphatic circulation to a regional draining lymph node (Figure 1.2). In either case, T cells then scan the entrapping cells for anything interpreted as non-self and thus a potential threat to the host organism s existence. We will discuss the mechanics of this process, and the ensuing activation of T cells, in greater detail below in Antigen processing and presentation. The spleen plays a role similar to that of the lymph nodes in the entrapment of antigen and as a site for lymphocyte activation. Once activated by antigen, T cells leave the lymph nodes or spleen via efferent lymphatic vessels and circulate throughout the body, looking for the source of the activating antigen.

14 6 Chapter 1 The circulation of lymphocytes and many of the cells with which they interact takes place in both the blood and lymphatic fluid. Lymph fluid is created when plasma leaves capillaries to deliver oxygen and nutrients to body tissues, and to gather waste products excreted by cells. This fluid collects into lymphatic sinuses, which give rise to lymphatic vessels, which in turn coalesce into larger lymphatic trunks that ultimately empty into the bloodstream at the great veins of the neck. Lymphatic vessels drain every region of the body served by blood vessels; failure of the lymphatic drainage system results in local pooling of lymph fluid in tissue spaces (lymph edema). Figure 1-2. Lymphocyte circulation. Antigenic material from a skin allograft is carried by dendritic cells into a draining lymph node, where it interacts with T lymphocytes. Lymphocytes recognizing graft antigens leave the node via the efferent lymphatic and eventually enter the bloodstream and circulate throughout the body until they encounter the graft site. At different points in their life cycle, T cells may travel in either lymph or blood. Newly generated lymphocytes arrive at lymph nodes from the thymus or marrow via arterial blood, and with the aid of surface receptors home to T- or B-cell-specific regions of the nodes. They leave the blood

15 1. Basic Immunobiology: A Primer 7 circulation by squeezing between endothelial cells lining post-capillary venules in the middle and deep zones of the lymph node cortex, which brings them into the lymphatic circulation. Upon activation by antigen, they exit the lymph nodes via the efferent lymphatic vessels, and after passing through varying numbers of downstream lymph nodes, re-enter the blood circulation at the neck. In the antigen-activated state, T cells do not express the surface markers required to interact with post-capillary venules in lymphoid tissues, and thus remain in the blood stream. However, they can interact with chemokine receptors on post-capillary venules at sites of inflammatory reactions, which allows them to leave the blood and enter tissue spaces, where they are once again in the lymphatic circulation. As will be discussed in detail later, some of the activated T cells differentiate into a memory state, and once again express receptors that allow them to take up long-term residence in lymphoid tissue until they encounter cognate antigen again, resulting in their reactivation. As mentioned above, dendritic cells scattered throughout the body are very important in bringing antigen into the lymph nodes, and converting it to a form recognized by T cells. Dendritic cells that have acquired antigen become mobile, and slip away from their tissue-resident sites into the surrounding lymphatic fluid. From there they travel to the nearest downstream lymph node, where they enter T-cell-rich areas and can be examined by T cells. Dendritic cells spend very little time in the blood circulation. 1.3 T cells and their functions T cells are divided into two main functional types: helper T cells and killer T cells (CTL). Helper T cells, distinguished by the presence of the CD4 surface marker, are mainly amplifier cells (Figure 1.3). They release chemical signals (cytokines) used by cells of both the innate and adaptive immune systems to carry out their functions (Table 1.2). B cells, for example, require certain T-helper cell cytokines to mature into antibodyproducing plasma cells. There are also receptors for many of these cytokines on non-lymphoid tissues, including even the brain, suggesting the possibility of two-way communication between the nervous system and the immune system. T-helper cells are often further divided into T h -1 and T h -2 subsets based on the pattern of cytokine production. It is likely that the division into these subsets occurs at the time of initial activation of CD4 cells by antigen.

PBS Class #2 Introduction to the Immune System part II Suggested reading: Abbas, pgs , 27-30

PBS Class #2 Introduction to the Immune System part II Suggested reading: Abbas, pgs , 27-30 PBS 803 - Class #2 Introduction to the Immune System part II Suggested reading: Abbas, pgs. 15-25, 27-30 Learning Objectives Compare and contrast the maturation of B and T lymphocytes Compare and contrast

More information

Adaptive immune responses: T cell-mediated immunity

Adaptive immune responses: T cell-mediated immunity MICR2209 Adaptive immune responses: T cell-mediated immunity Dr Allison Imrie allison.imrie@uwa.edu.au 1 Synopsis: In this lecture we will discuss the T-cell mediated immune response, how it is activated,

More information

Scott Abrams, Ph.D. Professor of Oncology, x4375 Kuby Immunology SEVENTH EDITION

Scott Abrams, Ph.D. Professor of Oncology, x4375 Kuby Immunology SEVENTH EDITION Scott Abrams, Ph.D. Professor of Oncology, x4375 scott.abrams@roswellpark.org Kuby Immunology SEVENTH EDITION CHAPTER 13 Effector Responses: Cell- and Antibody-Mediated Immunity Copyright 2013 by W. H.

More information

Lymphatic System. Chapter 14. Introduction. Main Channels of Lymphatics. Lymphatics. Lymph Tissue. Major Lymphatic Vessels of the Trunk

Lymphatic System. Chapter 14. Introduction. Main Channels of Lymphatics. Lymphatics. Lymph Tissue. Major Lymphatic Vessels of the Trunk Lymphatic System Chapter 14 Components Lymph is the fluid Vessels lymphatics Structures & organs Functions Return tissue fluid to the bloodstream Transport fats from the digestive tract to the bloodstream

More information

Chapter 1. Chapter 1 Concepts. MCMP422 Immunology and Biologics Immunology is important personally and professionally!

Chapter 1. Chapter 1 Concepts. MCMP422 Immunology and Biologics Immunology is important personally and professionally! MCMP422 Immunology and Biologics Immunology is important personally and professionally! Learn the language - use the glossary and index RNR - Reading, Note taking, Reviewing All materials in Chapters 1-3

More information

TCR, MHC and coreceptors

TCR, MHC and coreceptors Cooperation In Immune Responses Antigen processing how peptides get into MHC Antigen processing involves the intracellular proteolytic generation of MHC binding proteins Protein antigens may be processed

More information

Overview of the Lymphoid System

Overview of the Lymphoid System Overview of the Lymphoid System The Lymphoid System Protects us against disease Lymphoid system cells respond to Environmental pathogens Toxins Abnormal body cells, such as cancers Overview of the Lymphoid

More information

Immune response. This overview figure summarizes simply how our body responds to foreign molecules that enter to it.

Immune response. This overview figure summarizes simply how our body responds to foreign molecules that enter to it. Immune response This overview figure summarizes simply how our body responds to foreign molecules that enter to it. It s highly recommended to watch Dr Najeeb s lecture that s titled T Helper cells and

More information

Chapter 22: The Lymphatic System and Immunity

Chapter 22: The Lymphatic System and Immunity Bio40C schedule Lecture Immune system Lab Quiz 2 this week; bring a scantron! Study guide on my website (see lab assignments) Extra credit Critical thinking questions at end of chapters 5 pts/chapter Due

More information

CELL BIOLOGY - CLUTCH CH THE IMMUNE SYSTEM.

CELL BIOLOGY - CLUTCH CH THE IMMUNE SYSTEM. !! www.clutchprep.com CONCEPT: OVERVIEW OF HOST DEFENSES The human body contains three lines of against infectious agents (pathogens) 1. Mechanical and chemical boundaries (part of the innate immune system)

More information

Chapter 13 Lymphatic and Immune Systems

Chapter 13 Lymphatic and Immune Systems The Chapter 13 Lymphatic and Immune Systems 1 The Lymphatic Vessels Lymphoid Organs Three functions contribute to homeostasis 1. Return excess tissue fluid to the bloodstream 2. Help defend the body against

More information

5/1/13. The proportion of thymus that produces T cells decreases with age. The cellular organization of the thymus

5/1/13. The proportion of thymus that produces T cells decreases with age. The cellular organization of the thymus T cell precursors migrate from the bone marrow via the blood to the thymus to mature 1 2 The cellular organization of the thymus The proportion of thymus that produces T cells decreases with age 3 4 1

More information

ACTIVATION OF T LYMPHOCYTES AND CELL MEDIATED IMMUNITY

ACTIVATION OF T LYMPHOCYTES AND CELL MEDIATED IMMUNITY ACTIVATION OF T LYMPHOCYTES AND CELL MEDIATED IMMUNITY The recognition of specific antigen by naïve T cell induces its own activation and effector phases. T helper cells recognize peptide antigens through

More information

Chapter 16 Lymphatic System and Immunity. Lymphatic Pathways. Lymphatic Capillaries. network of vessels that assist in circulating fluids

Chapter 16 Lymphatic System and Immunity. Lymphatic Pathways. Lymphatic Capillaries. network of vessels that assist in circulating fluids Chapter 16 Lymphatic System and Immunity network of vessels that assist in circulating fluids closely associated with the cardiovascular system transports excess fluid away from interstitial spaces transports

More information

Introduction to Immunology Part 2 September 30, Dan Stetson

Introduction to Immunology Part 2 September 30, Dan Stetson Introduction to Immunology Part 2 September 30, 2016 Dan Stetson stetson@uw.edu 441 Lecture #2 Slide 1 of 26 CLASS ANNOUNCEMENT PLEASE NO TREE NUTS IN CLASS!!! (Peanuts, walnuts, almonds, cashews, etc)

More information

Antigen Presentation and T Lymphocyte Activation. Abul K. Abbas UCSF. FOCiS

Antigen Presentation and T Lymphocyte Activation. Abul K. Abbas UCSF. FOCiS 1 Antigen Presentation and T Lymphocyte Activation Abul K. Abbas UCSF FOCiS 2 Lecture outline Dendritic cells and antigen presentation The role of the MHC T cell activation Costimulation, the B7:CD28 family

More information

Cell-mediated response (what type of cell is activated and what gets destroyed?)

Cell-mediated response (what type of cell is activated and what gets destroyed?) The Immune System Reading Guide (Chapter 43) Name Per 1. The immune response in animals can be divided into innate immunity and adaptive immunity. As an overview, complete this figure indicating the divisions

More information

The development of T cells in the thymus

The development of T cells in the thymus T cells rearrange their receptors in the thymus whereas B cells do so in the bone marrow. The development of T cells in the thymus The lobular/cellular organization of the thymus Immature cells are called

More information

chapter 17: specific/adaptable defenses of the host: the immune response

chapter 17: specific/adaptable defenses of the host: the immune response chapter 17: specific/adaptable defenses of the host: the immune response defense against infection & illness body defenses innate/ non-specific adaptable/ specific epithelium, fever, inflammation, complement,

More information

Fluid movement in capillaries. Not all fluid is reclaimed at the venous end of the capillaries; that is the job of the lymphatic system

Fluid movement in capillaries. Not all fluid is reclaimed at the venous end of the capillaries; that is the job of the lymphatic system Capillary exchange Fluid movement in capillaries Not all fluid is reclaimed at the venous end of the capillaries; that is the job of the lymphatic system Lymphatic vessels Lymphatic capillaries permeate

More information

Overview: The immune responses of animals can be divided into innate immunity and acquired immunity.

Overview: The immune responses of animals can be divided into innate immunity and acquired immunity. GUIDED READING - Ch. 43 - THE IMMUNE SYSTEM NAME: Please print out these pages and HANDWRITE the answers directly on the printouts. Typed work or answers on separate sheets of paper will not be accepted.

More information

Immunology for the Rheumatologist

Immunology for the Rheumatologist Immunology for the Rheumatologist Rheumatologists frequently deal with the immune system gone awry, rarely studying normal immunology. This program is an overview and discussion of the function of the

More information

Hematopoiesis. Hematopoiesis. Hematopoiesis

Hematopoiesis. Hematopoiesis. Hematopoiesis Chapter. Cells and Organs of the Immune System Hematopoiesis Hematopoiesis- formation and development of WBC and RBC bone marrow. Hematopoietic stem cell- give rise to any blood cells (constant number,

More information

T-cell activation T cells migrate to secondary lymphoid tissues where they interact with antigen, antigen-presenting cells, and other lymphocytes:

T-cell activation T cells migrate to secondary lymphoid tissues where they interact with antigen, antigen-presenting cells, and other lymphocytes: Interactions between innate immunity & adaptive immunity What happens to T cells after they leave the thymus? Naïve T cells exit the thymus and enter the bloodstream. If they remain in the bloodstream,

More information

T-cell activation T cells migrate to secondary lymphoid tissues where they interact with antigen, antigen-presenting cells, and other lymphocytes:

T-cell activation T cells migrate to secondary lymphoid tissues where they interact with antigen, antigen-presenting cells, and other lymphocytes: Interactions between innate immunity & adaptive immunity What happens to T cells after they leave the thymus? Naïve T cells exit the thymus and enter the bloodstream. If they remain in the bloodstream,

More information

The Immune System: Innate and Adaptive Body Defenses Outline PART 1: INNATE DEFENSES 21.1 Surface barriers act as the first line of defense to keep

The Immune System: Innate and Adaptive Body Defenses Outline PART 1: INNATE DEFENSES 21.1 Surface barriers act as the first line of defense to keep The Immune System: Innate and Adaptive Body Defenses Outline PART 1: INNATE DEFENSES 21.1 Surface barriers act as the first line of defense to keep invaders out of the body (pp. 772 773; Fig. 21.1; Table

More information

Chapter 17. The Lymphatic System and Immunity. Copyright 2010, John Wiley & Sons, Inc.

Chapter 17. The Lymphatic System and Immunity. Copyright 2010, John Wiley & Sons, Inc. Chapter 17 The Lymphatic System and Immunity Immunity Innate Immunity Fast, non-specific and no memory Barriers, ph extremes, Phagocytes & NK cells, fever, inflammation, complement, interferon Adaptive

More information

Immunology - Lecture 2 Adaptive Immune System 1

Immunology - Lecture 2 Adaptive Immune System 1 Immunology - Lecture 2 Adaptive Immune System 1 Book chapters: Molecules of the Adaptive Immunity 6 Adaptive Cells and Organs 7 Generation of Immune Diversity Lymphocyte Antigen Receptors - 8 CD markers

More information

Immunity and Infection. Chapter 17

Immunity and Infection. Chapter 17 Immunity and Infection Chapter 17 The Chain of Infection Transmitted through a chain of infection (six links) Pathogen: Disease causing microorganism Reservoir: Natural environment of the pathogen Portal

More information

LYMPHATIC AND IMMUNE SYSTEMS. Chapter 33

LYMPHATIC AND IMMUNE SYSTEMS. Chapter 33 LYMPHATIC AND IMMUNE SYSTEMS Chapter 33 THE LYMPHATIC SYSTEM The lymphatic system has three main functions Take up excess tissue fluid and return it to the bloodstream Receive fats called lipoproteins

More information

Principles of Adaptive Immunity

Principles of Adaptive Immunity Principles of Adaptive Immunity Chapter 3 Parham Hans de Haard 17 th of May 2010 Agenda Recognition molecules of adaptive immune system Features adaptive immune system Immunoglobulins and T-cell receptors

More information

White Blood Cells (WBCs)

White Blood Cells (WBCs) YOUR ACTIVE IMMUNE DEFENSES 1 ADAPTIVE IMMUNE RESPONSE 2! Innate Immunity - invariant (generalized) - early, limited specificity - the first line of defense 1. Barriers - skin, tears 2. Phagocytes - neutrophils,

More information

Immunology 2017: Lecture 12 handout. Secondary lymphoid organs. Dr H Awad

Immunology 2017: Lecture 12 handout. Secondary lymphoid organs. Dr H Awad Immunology 2017: Lecture 12 handout Secondary lymphoid organs Dr H Awad INTRODUCTION So far we discussed the cells of the immune system and how they recognize their antigens and get stimulated. The number

More information

Clinical Basis of the Immune Response and the Complement Cascade

Clinical Basis of the Immune Response and the Complement Cascade Clinical Basis of the Immune Response and the Complement Cascade Bryan L. Martin, DO, MMAS, FACAAI, FAAAAI, FACOI, FACP Emeritus Professor of Medicine and Pediatrics President, American College of Allergy,

More information

2014 Pearson Education, Inc. Exposure to pathogens naturally activates the immune system. Takes days to be effective Pearson Education, Inc.

2014 Pearson Education, Inc. Exposure to pathogens naturally activates the immune system. Takes days to be effective Pearson Education, Inc. The innate immune interact with the adaptive immune system 1. Damage to skin causes bleeding = bradykinin activated, resulting in inflammation 2. Dendritic phagocytose pathogens Adaptive immunity 4. Dendritic

More information

The Immune System. These are classified as the Innate and Adaptive Immune Responses. Innate Immunity

The Immune System. These are classified as the Innate and Adaptive Immune Responses. Innate Immunity The Immune System Biological mechanisms that defend an organism must be 1. triggered by a stimulus upon injury or pathogen attack 2. able to counteract the injury or invasion 3. able to recognise foreign

More information

ACTIVATION AND EFFECTOR FUNCTIONS OF CELL-MEDIATED IMMUNITY AND NK CELLS. Choompone Sakonwasun, MD (Hons), FRCPT

ACTIVATION AND EFFECTOR FUNCTIONS OF CELL-MEDIATED IMMUNITY AND NK CELLS. Choompone Sakonwasun, MD (Hons), FRCPT ACTIVATION AND EFFECTOR FUNCTIONS OF CELL-MEDIATED IMMUNITY AND NK CELLS Choompone Sakonwasun, MD (Hons), FRCPT Types of Adaptive Immunity Types of T Cell-mediated Immune Reactions CTLs = cytotoxic T lymphocytes

More information

Test Bank for Basic Immunology Functions and Disorders of the Immune System 4th Edition by Abbas

Test Bank for Basic Immunology Functions and Disorders of the Immune System 4th Edition by Abbas Test Bank for Basic Immunology Functions and Disorders of the Immune System 4th Edition by Abbas Chapter 04: Antigen Recognition in the Adaptive Immune System Test Bank MULTIPLE CHOICE 1. Most T lymphocytes

More information

1. Overview of Adaptive Immunity

1. Overview of Adaptive Immunity Chapter 17A: Adaptive Immunity Part I 1. Overview of Adaptive Immunity 2. T and B Cell Production 3. Antigens & Antigen Presentation 4. Helper T cells 1. Overview of Adaptive Immunity The Nature of Adaptive

More information

Introduction to Immunology Lectures 1-3 by Bellur S. Prabhakar. March 13-14, 2007

Introduction to Immunology Lectures 1-3 by Bellur S. Prabhakar. March 13-14, 2007 Introduction to Immunology Lectures 1-3 by Bellur S. Prabhakar. March 13-14, 2007 TheComponents Of The Immune System and Innate Immunity: Ref: Immunobiology-5 th edition. Janeway et al. Chapters-1 & 2.

More information

Advances in Cancer Immunotherapy

Advances in Cancer Immunotherapy Advances in Cancer Immunotherapy Immunology 101 for the Non-Immunologist Arnold H. Zea, PhD azea@lsuhsc.edu Disclosures No relevant financial relationships to disclose This presentation does not contain

More information

Effector T Cells and

Effector T Cells and 1 Effector T Cells and Cytokines Andrew Lichtman, MD PhD Brigham and Women's Hospital Harvard Medical School 2 Lecture outline Cytokines Subsets of CD4+ T cells: definitions, functions, development New

More information

The Lymphatic System and Body Defenses

The Lymphatic System and Body Defenses PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College The Lymphatic System and Body Defenses 12PART B Adaptive Defense System: Third Line of Defense Immune

More information

Immune System AP SBI4UP

Immune System AP SBI4UP Immune System AP SBI4UP TYPES OF IMMUNITY INNATE IMMUNITY ACQUIRED IMMUNITY EXTERNAL DEFENCES INTERNAL DEFENCES HUMORAL RESPONSE Skin Phagocytic Cells CELL- MEDIATED RESPONSE Mucus layer Antimicrobial

More information

1. The scavenger receptor, CD36, functions as a coreceptor for which TLR? a. TLR ½ b. TLR 3 c. TLR 4 d. TLR 2/6

1. The scavenger receptor, CD36, functions as a coreceptor for which TLR? a. TLR ½ b. TLR 3 c. TLR 4 d. TLR 2/6 Allergy and Immunology Review Corner: Cellular and Molecular Immunology, 8th Edition By Abul K. Abbas, MBBS, Andrew H. H. Lichtman, MD, PhD and Shiv Pillai, MBBS, PhD. Chapter 4 (pages 62-74): Innate Immunity

More information

The Lymphatic System and Immunity. Chapters 20 & 21

The Lymphatic System and Immunity. Chapters 20 & 21 The Lymphatic System and Immunity Chapters 20 & 21 Objectives 1. SC.912.L.14.52 - Explain the basic functions of the human immune system, including specific and nonspecific immune response, vaccines, and

More information

MACROPHAGE "MONOCYTES" SURFACE RECEPTORS

MACROPHAGE MONOCYTES SURFACE RECEPTORS LECTURE: 13 Title: MACROPHAGE "MONOCYTES" SURFACE RECEPTORS LEARNING OBJECTIVES: The student should be able to: Describe the blood monocytes (size, and shape of nucleus). Enumerate some of the monocytes

More information

Understanding basic immunology. Dr Mary Nowlan

Understanding basic immunology. Dr Mary Nowlan Understanding basic immunology Dr Mary Nowlan 1 Immunology Immunology the study of how the body fights disease and infection Immunity State of being able to resist a particular infection or toxin 2 Overview

More information

Immunology Lecture 4. Clinical Relevance of the Immune System

Immunology Lecture 4. Clinical Relevance of the Immune System Immunology Lecture 4 The Well Patient: How innate and adaptive immune responses maintain health - 13, pg 169-181, 191-195. Immune Deficiency - 15 Autoimmunity - 16 Transplantation - 17, pg 260-270 Tumor

More information

The Adaptive Immune Responses

The Adaptive Immune Responses The Adaptive Immune Responses The two arms of the immune responses are; 1) the cell mediated, and 2) the humoral responses. In this chapter we will discuss the two responses in detail and we will start

More information

immunity defenses invertebrates vertebrates chapter 48 Animal defenses --

immunity defenses invertebrates vertebrates chapter 48 Animal defenses -- defenses Animal defenses -- immunity chapter 48 invertebrates coelomocytes, amoebocytes, hemocytes sponges, cnidarians, etc. annelids basophilic amoebocytes, acidophilic granulocytes arthropod immune systems

More information

Effector mechanisms of cell-mediated immunity: Properties of effector, memory and regulatory T cells

Effector mechanisms of cell-mediated immunity: Properties of effector, memory and regulatory T cells ICI Basic Immunology course Effector mechanisms of cell-mediated immunity: Properties of effector, memory and regulatory T cells Abul K. Abbas, MD UCSF Stages in the development of T cell responses: induction

More information

Physiology Unit 3. ADAPTIVE IMMUNITY The Specific Immune Response

Physiology Unit 3. ADAPTIVE IMMUNITY The Specific Immune Response Physiology Unit 3 ADAPTIVE IMMUNITY The Specific Immune Response In Physiology Today The Adaptive Arm of the Immune System Specific Immune Response Internal defense against a specific pathogen Acquired

More information

Nonspecific External Barriers skin, mucous membranes

Nonspecific External Barriers skin, mucous membranes Immune system Chapter 36 BI 103 Plant-Animal A&P Levels of Defense Against Disease Nonspecific External Barriers skin, mucous membranes Physical barriers? Brainstorm with a partner If these barriers are

More information

Micr-6005, Current Concepts of Immunology (Rutgers course number: 16:681:543) Spring 2009 Semester

Micr-6005, Current Concepts of Immunology (Rutgers course number: 16:681:543) Spring 2009 Semester Micr-6005, Current Concepts of Immunology (Rutgers course number: 16:681:543) (3 Credits) Spring 2009 Semester Course Director: (732-235-4501, ) Please note that this course is offered once every 2 years.

More information

General Biology. A summary of innate and acquired immunity. 11. The Immune System. Repetition. The Lymphatic System. Course No: BNG2003 Credits: 3.

General Biology. A summary of innate and acquired immunity. 11. The Immune System. Repetition. The Lymphatic System. Course No: BNG2003 Credits: 3. A summary of innate and acquired immunity General iology INNATE IMMUNITY Rapid responses to a broad range of microbes Course No: NG00 Credits:.00 External defenses Invading microbes (pathogens). The Immune

More information

Small Intestine -- Peyer s Patch. Appendix. Afferent Lymphatic High Endothelial Venule. Germinal Center. Cortex Paracortex

Small Intestine -- Peyer s Patch. Appendix. Afferent Lymphatic High Endothelial Venule. Germinal Center. Cortex Paracortex Supplement to The Art of Getting Well How the Immune System Works Anthony di Fabio Copyright 998 All rights reserved by the The Roger Wyburn-Mason and Jack M.Blount Foundation for Eradication of Rheumatoid

More information

Chapter 24 The Immune System

Chapter 24 The Immune System Chapter 24 The Immune System The Immune System Layered defense system The skin and chemical barriers The innate and adaptive immune systems Immunity The body s ability to recognize and destroy specific

More information

Chapter 38- Immune System

Chapter 38- Immune System Chapter 38- Immune System First Line of Defense: Barriers Nonspecific defenses, such as the skin and mucous membranes, are barriers to potential pathogens. In addition to being a physical barrier to pathogens,

More information

Defensive mechanisms include :

Defensive mechanisms include : Acquired Immunity Defensive mechanisms include : 1) Innate immunity (Natural or Non specific) 2) Acquired immunity (Adaptive or Specific) Cell-mediated immunity Humoral immunity Two mechanisms 1) Humoral

More information

Chapter 35 Active Reading Guide The Immune System

Chapter 35 Active Reading Guide The Immune System Name: AP Biology Mr. Croft Chapter 35 Active Reading Guide The Immune System Section 1 Phagocytosis plays an important role in the immune systems of both invertebrates and vertebrates. Review the process

More information

Opening Activity. Make a list of all the diseases and infections you have had.

Opening Activity. Make a list of all the diseases and infections you have had. Opening Activity Make a list of all the diseases and infections you have had. If you have had chicken pox, indicate whether you have had it more than once. Content Objectives I will be able to identify

More information

Chapter 2 (pages 22 33): Cells and Tissues of the Immune System. Prepared by Kristen Dazy, MD, Scripps Clinic Medical Group

Chapter 2 (pages 22 33): Cells and Tissues of the Immune System. Prepared by Kristen Dazy, MD, Scripps Clinic Medical Group Allergy and Immunology Review Corner: Cellular and Molecular Immunology, 8th Edition By Abul K. Abbas, MBBS; Andrew H. H. Lichtman, MD, PhD; and Shiv Pillai, MBBS, PhD. Chapter 2 (pages 22 33): Cells and

More information

Pearson's Comprehensive Medical Assisting Administrative and Clinical Competencies

Pearson's Comprehensive Medical Assisting Administrative and Clinical Competencies Pearson's Comprehensive Medical Assisting Administrative and Clinical Competencies THIRD EDITION CHAPTER 28 The Immune System Lesson 1: The Immune System Lesson Objectives Upon completion of this lesson,

More information

CHAPTER 18: Immune System

CHAPTER 18: Immune System CHAPTER 18: Immune System 1. What are four characteristics of the specific immune system? a. b. c. d. 2. List the two main types of defense mechanisms and briefly describe features of each. 3. Give examples

More information

TEXTBOOK OF IMMUNOLOGY. Arvind Kumar

TEXTBOOK OF IMMUNOLOGY. Arvind Kumar TEXTBOOK OF IMMUNOLOGY Arvind Kumar TexTbook of Immunology TexTbook of Immunology Arvind Kumar The Energy and Resources Institute The Energy and Resources Institute, 2013 ISBN 978-81-7993-380-0 All rights

More information

Chapter 13 Lecture Outline

Chapter 13 Lecture Outline Chapter 13 Lecture Outline See separate PowerPoint slides for all figures and tables preinserted into PowerPoint without notes. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

More information

LESSON 2: THE ADAPTIVE IMMUNITY

LESSON 2: THE ADAPTIVE IMMUNITY Introduction to immunology. LESSON 2: THE ADAPTIVE IMMUNITY Today we will get to know: The adaptive immunity T- and B-cells Antigens and their recognition How T-cells work 1 The adaptive immunity Unlike

More information

Medical Virology Immunology. Dr. Sameer Naji, MB, BCh, PhD (UK) Head of Basic Medical Sciences Dept. Faculty of Medicine The Hashemite University

Medical Virology Immunology. Dr. Sameer Naji, MB, BCh, PhD (UK) Head of Basic Medical Sciences Dept. Faculty of Medicine The Hashemite University Medical Virology Immunology Dr. Sameer Naji, MB, BCh, PhD (UK) Head of Basic Medical Sciences Dept. Faculty of Medicine The Hashemite University Human blood cells Phases of immune responses Microbe Naïve

More information

Attribution: University of Michigan Medical School, Department of Microbiology and Immunology

Attribution: University of Michigan Medical School, Department of Microbiology and Immunology Attribution: University of Michigan Medical School, Department of Microbiology and Immunology License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution

More information

Immunology Basics Relevant to Cancer Immunotherapy: T Cell Activation, Costimulation, and Effector T Cells

Immunology Basics Relevant to Cancer Immunotherapy: T Cell Activation, Costimulation, and Effector T Cells Immunology Basics Relevant to Cancer Immunotherapy: T Cell Activation, Costimulation, and Effector T Cells Andrew H. Lichtman, M.D. Ph.D. Department of Pathology Brigham and Women s Hospital and Harvard

More information

Lymphatic System & Immunity

Lymphatic System & Immunity Lymphatic System & Immunity Arteriole Venule Tissue Blood Lymph cells capilla capillaries ries Lymphatic System -closely related to cardiovascular system -conducting system that carries fluid from extracellular

More information

I. Critical Vocabulary

I. Critical Vocabulary I. Critical Vocabulary A. Immune System: a set of glands, tissues, cells, and dissolved proteins that combine to defend against non-self entities B. Antigen: any non-self chemical that triggers an immune

More information

Title: NATURAL KILLER CELL FUNCTIONS AND SURFACE RECEPTORS

Title: NATURAL KILLER CELL FUNCTIONS AND SURFACE RECEPTORS LECTURE: 14 Title: NATURAL KILLER CELL FUNCTIONS AND SURFACE RECEPTORS LEARNING OBJECTIVES: The student should be able to: Describe the general morphology of the NK-cells. Enumerate the different functions

More information

The Major Histocompatibility Complex (MHC)

The Major Histocompatibility Complex (MHC) The Major Histocompatibility Complex (MHC) An introduction to adaptive immune system before we discuss MHC B cells The main cells of adaptive immune system are: -B cells -T cells B cells: Recognize antigens

More information

ANATOMY OF THE IMMUNE SYSTEM

ANATOMY OF THE IMMUNE SYSTEM Immunity Learning objectives Explain what triggers an immune response and where in the body the immune response occurs. Understand how the immune system handles exogenous and endogenous antigen differently.

More information

Chapter 10 (pages ): Differentiation and Functions of CD4+ Effector T Cells Prepared by Kristen Dazy, MD, Scripps Clinic Medical Group

Chapter 10 (pages ): Differentiation and Functions of CD4+ Effector T Cells Prepared by Kristen Dazy, MD, Scripps Clinic Medical Group FIT Board Review Corner September 2015 Welcome to the FIT Board Review Corner, prepared by Andrew Nickels, MD, and Sarah Spriet, DO, senior and junior representatives of ACAAI's Fellows-In-Training (FITs)

More information

Blood and Immune system Acquired Immunity

Blood and Immune system Acquired Immunity Blood and Immune system Acquired Immunity Immunity Acquired (Adaptive) Immunity Defensive mechanisms include : 1) Innate immunity (Natural or Non specific) 2) Acquired immunity (Adaptive or Specific) Cell-mediated

More information

Chapter 12: The Lymphatic System

Chapter 12: The Lymphatic System Chapter 12: The Lymphatic System Immune System Composed of many nonspecific and specific defenses Lymphatic System also plays an important role in establishing immunity Lymphatic System Major components

More information

Primer on Tumor Immunology. International Society for Biological Therapy of Cancer. C. H. June, M.D. November 10, 2005

Primer on Tumor Immunology. International Society for Biological Therapy of Cancer. C. H. June, M.D. November 10, 2005 Primer on Tumor Immunology International Society for Biological Therapy of Cancer C. H. June, M.D. November 10, 2005 Outline: Primer on Tumor Immunology T Cell Receptors T Cell Biology Tumor immunology

More information

Adaptive Immunity. PowerPoint Lecture Presentations prepared by Mindy Miller-Kittrell, North Carolina State University C H A P T E R

Adaptive Immunity. PowerPoint Lecture Presentations prepared by Mindy Miller-Kittrell, North Carolina State University C H A P T E R CSLO7. Describe functions of host defenses and the immune system in combating infectious diseases and explain how immunizations protect against specific diseases. PowerPoint Lecture Presentations prepared

More information

Prof. Ibtesam Kamel Afifi Professor of Medical Microbiology & Immunology

Prof. Ibtesam Kamel Afifi Professor of Medical Microbiology & Immunology By Prof. Ibtesam Kamel Afifi Professor of Medical Microbiology & Immunology Lecture objectives: At the end of the lecture you should be able to: Enumerate features that characterize acquired immune response

More information

Defense mechanism against pathogens

Defense mechanism against pathogens Defense mechanism against pathogens Immune System What is immune system? Cells and organs within an animal s body that contribute to immune defenses against pathogens ( ) Bacteria -Major entry points ;open

More information

The Adaptive Immune Response. B-cells

The Adaptive Immune Response. B-cells The Adaptive Immune Response B-cells The innate immune system provides immediate protection. The adaptive response takes time to develop and is antigen specific. Activation of B and T lymphocytes Naive

More information

MCAT Biology - Problem Drill 16: The Lymphatic and Immune Systems

MCAT Biology - Problem Drill 16: The Lymphatic and Immune Systems MCAT Biology - Problem Drill 16: The Lymphatic and Immune Systems Question No. 1 of 10 1. Which of the following statements about pathogens is true? Question #01 (A) Both viruses and bacteria need to infect

More information

M.Sc. III Semester Biotechnology End Semester Examination, 2013 Model Answer LBTM: 302 Advanced Immunology

M.Sc. III Semester Biotechnology End Semester Examination, 2013 Model Answer LBTM: 302 Advanced Immunology Code : AS-2246 M.Sc. III Semester Biotechnology End Semester Examination, 2013 Model Answer LBTM: 302 Advanced Immunology A. Select one correct option for each of the following questions:- 2X10=10 1. (b)

More information

Shiv Pillai Ragon Institute, Massachusetts General Hospital Harvard Medical School

Shiv Pillai Ragon Institute, Massachusetts General Hospital Harvard Medical School CTLs, Natural Killers and NKTs 1 Shiv Pillai Ragon Institute, Massachusetts General Hospital Harvard Medical School CTL inducing tumor apoptosis 3 Lecture outline CD8 + Cytotoxic T lymphocytes (CTL) Activation/differentiation

More information

Adaptive Immunity. PowerPoint Lecture Presentations prepared by Mindy Miller-Kittrell, North Carolina State University C H A P T E R

Adaptive Immunity. PowerPoint Lecture Presentations prepared by Mindy Miller-Kittrell, North Carolina State University C H A P T E R PowerPoint Lecture Presentations prepared by Mindy Miller-Kittrell, North Carolina State University C H A P T E R 16 Adaptive Immunity The Body s Third Line of Defense Adaptive Immunity Adaptive immunity

More information

Anatomy. Lymph: Tissue fluid that enters a lymphatic capillary (clear fluid that surrounds new piercings!)

Anatomy. Lymph: Tissue fluid that enters a lymphatic capillary (clear fluid that surrounds new piercings!) Lymphatic System Anatomy Lymphatic vessels: meet up in capillaries of of tissues to collect extra water, and have an end point of meeting up with lymphatic ducts that empty fluid into large veins in the

More information

Mon, Wed, Fri 11:00 AM-12:00 PM. Owen, Judy, Jenni Punt, and Sharon Stranford Kuby-Immunology, 7th. Edition. W.H. Freeman and Co., New York.

Mon, Wed, Fri 11:00 AM-12:00 PM. Owen, Judy, Jenni Punt, and Sharon Stranford Kuby-Immunology, 7th. Edition. W.H. Freeman and Co., New York. Course Title: Course Number: Immunology Biol-341/541 Semester: Fall 2013 Location: HS 268 Time: Instructor: 8:00-9:30 AM Tue/Thur Dr. Colleen M. McDermott Office: Nursing Ed 101 (424-1217) E-mail*: mcdermot@uwosh.edu

More information

Adaptive Immunity: Humoral Immune Responses

Adaptive Immunity: Humoral Immune Responses MICR2209 Adaptive Immunity: Humoral Immune Responses Dr Allison Imrie 1 Synopsis: In this lecture we will review the different mechanisms which constitute the humoral immune response, and examine the antibody

More information

SPECIFIC AIMS. II year (1st semester)

SPECIFIC AIMS. II year (1st semester) II year (1st semester) Scientific Field IMMUNOLOGY AND IMMUNOPATHOLOGY TUTOR ECTS MALISAN F. COORDINATOR MED/04 Immunology and Immunopathology Malisan Florence 5 MED/04 Immunology and Immunopathology Testi

More information

Immunology. T-Lymphocytes. 16. Oktober 2014, Ruhr-Universität Bochum Karin Peters,

Immunology. T-Lymphocytes. 16. Oktober 2014, Ruhr-Universität Bochum Karin Peters, Immunology T-Lymphocytes 16. Oktober 2014, Ruhr-Universität Bochum Karin Peters, karin.peters@rub.de The role of T-effector cells in the immune response against microbes cellular immunity humoral immunity

More information

Dr. Yi-chi M. Kong August 8, 2001 Benjamini. Ch. 19, Pgs Page 1 of 10 TRANSPLANTATION

Dr. Yi-chi M. Kong August 8, 2001 Benjamini. Ch. 19, Pgs Page 1 of 10 TRANSPLANTATION Benjamini. Ch. 19, Pgs 379-399 Page 1 of 10 TRANSPLANTATION I. KINDS OF GRAFTS II. RELATIONSHIPS BETWEEN DONOR AND RECIPIENT Benjamini. Ch. 19, Pgs 379-399 Page 2 of 10 II.GRAFT REJECTION IS IMMUNOLOGIC

More information

Chapter Pages Transmission

Chapter Pages Transmission Chapter 19.2 Pages 442-448 Transmission Immunity There are three lines of defense: 1 The skin and mucous membranes are a nonspecific barrier to infection. 2 Macrophages attack pathogens that enter the

More information

Andrea s SI Session PCB Practice Test Test 3

Andrea s SI Session PCB Practice Test Test 3 Practice Test Test 3 READ BEFORE STARTING PRACTICE TEST: Remember to please use this practice test as a tool to measure your knowledge, and DO NOT use it as your only tool to study for the test, since

More information

Chapter 23 Immunity Exam Study Questions

Chapter 23 Immunity Exam Study Questions Chapter 23 Immunity Exam Study Questions 1. Define 1) Immunity 2) Neutrophils 3) Macrophage 4) Epitopes 5) Interferon 6) Complement system 7) Histamine 8) Mast cells 9) Antigen 10) Antigens receptors 11)

More information

Microbiology 204: Cellular and Molecular Immunology

Microbiology 204: Cellular and Molecular Immunology Microbiology 204: Cellular and Molecular Immunology Class meets MWF 1:00-2:30PM (*exceptions: no class Fri Sept 23, Fri Oct 14, Nov 11, or Wed Nov 23) Lectures are open to auditors and will be live-streamed

More information

Immune system. Aims. Immune system. Lymphatic organs. Inflammation. Natural immune system. Adaptive immune system

Immune system. Aims. Immune system. Lymphatic organs. Inflammation. Natural immune system. Adaptive immune system Aims Immune system Lymphatic organs Inflammation Natural immune system Adaptive immune system Major histocompatibility complex (MHC) Disorders of the immune system 1 2 Immune system Lymphoid organs Immune

More information