BONE MARROW CELLS VERSUS MATURE LYMPHOCYTES AND MONOCYTES CAPACITY OF IMMUNOTOLERANCE INDUCTION IN COBB 500 HYBRIDS

Size: px
Start display at page:

Download "BONE MARROW CELLS VERSUS MATURE LYMPHOCYTES AND MONOCYTES CAPACITY OF IMMUNOTOLERANCE INDUCTION IN COBB 500 HYBRIDS"

Transcription

1 Bulletin UASVM, Veterinary Medicine 65(2)/2008 pissn ; eissn BONE MARROW CELLS VERSUS MATURE LYMPHOCYTES AND MONOCYTES CAPACITY OF IMMUNOTOLERANCE INDUCTION IN COBB 500 HYBRIDS Şereş Monica 1, C. Igna 1, D. Cioca 2, Larisa Schuszler 1 1 University of Agricultural Sciences and Veterinary Medicine of Banat, 119 Calea Aradului, Timisoara, Romania 2 University of Medicine and Pharmacy Victor Babeş Timisoara, Centre of Immunophysiology and Biotechnology seres_monica@yahoo.com Keywords: bone marrow cells, lymphocytes, monocytes, immunotolerance, skin grafts Abstract. The purpose of this study was the comparison between capacity of bone marrow cells on the one hand, and of mature lymphocytes and monocytes on the other hand, to induce immunotolerance by inoculation in COBB 500 hybrids at different embryonic stages. Antigenic material was obtained by aspiration of tibial and femoral bone marrow, respectively by blood sampling from the donor birds (Ross hybrids).we used 240 embryonated eggs: 60 eggs for in ovo inoculation with bone marrow cells suspension in the 5 th day of embryo development and 60 for inoculation in the same way and day with mature lymphocytes and monocytes suspension; the rest of biologic material was inoculated with these suspensions in allantoidal vessel in the 8 th day of the embryo. Seven days after the full-thickness skin grafts transplantation (from the donor birds) the lymphocyte T subsets of the recipient birds were determined by flow cytometry and immunomagnetic sorting. Also, all the skin grafts were periodically monitored for macroscopic characteristics. This experiment demonstrates the superiority of bone marrow cells in immunotolerance induction in birds after inoculation in 5 th day of embryonic development. INTRODUCTION This experimental study represents the first report about the comparison between capacity of bone marrow cells and mature lymphocytes and monocytes to induce immunotolerance in recipient bird and about the inoculation method for triggering this phenomenon. MATERIAL AND METHODS The biologic material was represented by six one year old Ross hybrids (donor birds for antigenic material and for skin grafts) by 240 embryonated eggs (COBB 500 hybrids). The raw antigenic material was obtained by aspiration of tibial and femoral bone marrow, respectively by blood sampling from the donor birds. The antigenic material, suspension of bone marrow cells and mature lymphocytes and monocytes, was obtained by three centrifugations of biological samples after Ficoll-Paque solution addition and PBS dilution.distribution of biologic material regarding to the moment of inoculation and the method used: 60 eggs for in ovo inoculation (fig. 1) with bone marrow cells suspension in the 5 th day of embryonic development and 60 for inoculation in the same way and day with mature lymphocytes and monocytes suspension; the rest of biologic material was inoculated - 60 eggs with bone marrow cells suspension and 60 eggs with mature lymphocytes and monocytes suspension - in allantoidal vessel (fig. 2) of 8 th days embryos. 222

2 Fig.1. In ovo inoculation Fig.2. Inoculation in allantoidal vessel at 8th days embryo Transplantation of the full-thickness allogenic skin graft was made at the age of four weeks, respecting the principles suggested by Swaim, 1993 and Shannon, The subjects were examined periodically, paying attention to the 21 macroscopic characteristics of the skin grafts, making different measurements and taking pictures. One week after transplant, form all individuals were gathered peripheral blood for obtaining the T lymphocytes using the Ficoll-Paque solution for separation. T lymphocytes were labeled with monoclonal antibodies as follows: antibodies anti-cd3 for label T lymphocytes; antibodies anti-cd4 for label T helper lymphocytes; antibodies anti-cd8 for label cytotoxic T cells; antibodies anti-cd44ra for differentiating between memory and naive T cells; antibodies anti-cd28 for differentiating between memory and effector T lymphocytes; and antibodies anti-cd25 for label the eventual activate subset of T cells from subpopulation Treg regulatory T cells. This labeling served in determining the lymphocytes T profile in all groups of recipient birds. By flow cytometry, the cells population labeled in four colors (CD3FITC, CD4PE CD45RAPerCP, and CD28APC for determining the T helper subsets and CD3FITC, CD8PE, CD45RAPerCP, and CD28APC for determining the T cytotoxic subsets) was quantitative analyzed in all groups. The lymphocytes subsets were defined as follows: naive CD4+ helper T cells with phenotype CD3+CD4+CD45RA+CD28+; memory CD4+ helper T cells with phenotype CD3+CD4+CD45RA-CD28+; effector CD4+ helper T cells with phenotype CD3+CD4+CD45RA-CD28-; effector CD4+ helper T cells with phenotype CD3+CD4+ CD45RA+CD28-; naive CD8+ cytotoxic T cells with phenotype CD3+CD8+CD45RA+CD28+; memory CD8+ cytotoxic T cells with phenotype CD3+CD8+CD45RA-CD28+; effector CD8+ cytotoxic T cells with phenotype CD3+CD8+CD45RA-CD28-; and effector CD8+ cytotoxic T cells with phenotype CD3+CD8+CD45RA+CD28-. Immunomagnetic sorting of the lymphocyte T subsets for establishing the Treg subpopulation was made with Dynal immunomagnetic beads coupled with CD3, CD4, and CD8, and after that the subsets were labeled with CD45RA or CD45RO (according to the case), and also with CD28, CD5, and CD25. RESULTS AND DISCUSSIONS We appeal to the inoculation of antigenic material in the 5th and 8th days of embrionary development, knowing that the hematopoietic stem cells from the vitellus membrane migrates in the thymus and the Fabricius bursa, under the influence of some chemo-tactic factors, on days 5-7 of incubation (2, 8, 9) and also knowing that a tardy inoculation is unhelpful for immunotolerance induction (6). These cells get differentiated and develop in bursal follicles until the 12th day of incubation, so that in days appear the first cells that present IgM on the surface of the membrane, capable of tying antigens (2, 8, 9). The lymphocytes that 223

3 present membrane IgG develop a little later, around the hatching time (8, 9). Thus, it can be considered that the embryo is immunocompetent starting with the 14th day of the embrionary development (2, 8, 9). The transplant has been executed at the age of four weeks due to the fact that an earlier intervention, especially during the first week of life, could have led to the acceptance of an incompatible allogenic graft, even in the case of the absence of the induction of the immunotolerance (1). The usage of a donor bird from a different line (Ross hybrid) than the one of the recipients (COBB 500 hybrids) excluded the existence of all the factors that could have induced the complete acceptance or a late rejection, as the total or partial MHC compatibility (3). Results of inoculation with mature lymphocytes and monocytes suspension The 5 th day in ovo inoculation caused the death of all embryos in the interval between 8 and 10 days of incubation. The mechanisms involved must have been a graft versus host (spleen enlargement) one or a traumatic one (injection) because 20% of dead embryo had celosomy. After the inoculation in allantoidal vessel of 8 days embryos we obtained only six viable poultry. The death of the rest of embryo intervened between 14 and 18 days of incubation and lesions (hemorrhagic lesions in liver, spleen and gut, spleen enlargement) suggest the implication of graft versus host mechanisms (9). All the skin grafts transplanted on these poultry were rejected between 7 and 10 days after transplant. In figure 3 is presented one example of macroscopic characteristic evolution in ten days. Fig.3. Macroscopic characteristic of skin graft evolution in ten days: a first day after transplant; b second day; c third day; d fourth day; e seventh day; f tenth day The rejection of the full-thickness skin allografts in the group which was inoculated in 8 th days of embryo development took place in a time interval comparable with the existent data in the speciality literature about allogenic grafts: up to seven days in the case of the total incompatibility of B complex, respectively up to 15 days in the case of the incompatibility only of the complex Rfp-Y (7) or, in opinion of other authors, in days (6, 8, 9). Flow cytometry didn t show a significant decrease in naive T cells subset (CD3 + CD4 + CD45RA + CD28 + for helper T cells and CD3 + CD8 + CD45RA + CD28 + for cytotoxic T cells) and an increase of the memory T lymphocytes (CD3 + CD4 + CD45RA - CD28 + for helper T cells and CD3 + CD8 + CD45RA - CD28 + for cytotoxic T cells), as well as not showing an increase in effector T cells (CD3 + CD4 + CD45RA - CD28 - and CD3 + CD4 + CD45RA + CD28 - for helper T lymphocyte or CD3 + CD8 + CD45RA - CD28 - and CD3 + CD8 + CD45RA + CD28 - for cytotoxic T cells) - fig

4 Fig. 4. Examples of T cells subsets distribution in poultry inoculated in 8 th day of embryonic development with mature lymphocytes and monocytes suspension Results of inoculation with bone marrow cells suspension After the in ovo inoculation in the 5 th day were obtained 13 viable poultry. The death of the rest of embryo intervened in the interval between 7 (with celosomy, suggesting a traumatic mechanism) and 18 days (with no apparent lesions) of incubation. All the skin grafts transplanted on these poultry were rejected between (31%) and days (69%) after transplant. In figure 5 is presented one example of macroscopic characteristic evolution in 27 days. Fig.5. Macroscopic characteristic of skin graft evolution in 27 days: a first day after transplant; b third day; c fifth day; d seventh day; e 11 th day; f 20 th day; g 27 th day Flow cytometry showed a significant decrease in naive T cells subset, together with a significant increase of the memory T lymphocytes, as well as a significant increase in effector T cells (fig. 6). Fig. 6. Examples of T cells subsets distribution in poultry inoculated in 5 th day of embryonic development with bone marrow cells suspension 225

5 Immunomagnetic sorting permitted a more detailed characterization of the CD25 + subsets existing in peripheral blood (fig. 7). Almost all CD25 + cells belong to T helper subpopulation (CD4 + ) suggesting that are T regulatory lymphocytes implicated in immunotolerance induction in embrionary life beside the antigens. Also, the great majority of the CD25 + T cells (98%) are CD28 + suggesting that these belong to the memory subsets and not to the effector subsets. Fig.7. Results of immunomagnetic sorting of T cells subsets After the inoculation in allantoidal vessel in 8 th day embryos we obtained only 11 viable poultry. The death of the rest of embryo intervened in the interval between 12 and 19 days of incubation without apparent lesions. The full-thickness skin grafts evolution and the results of flow cytometry didn t show major differences between this group and the poultry inoculated with mature lymphocytes and monocytes in the same day all the grafts were rejected until 12 days and the comparison of the flow cytometry results demonstrate the similarity in T cells subsets pattern. CONCLUSIONS Mature lymphocytes and monocytes didn t prove themselves to be capable to induce the immunotolerance independently on tardily or early inoculation method used. In addition, the embryos lesions demonstrated that these mature cells generate the graft versus host phenomena. Using bone marrow cells for inoculation in 5 th day of embryos development delayed the skin grafts reject until 27 days; this overrunning by far the data presents in speciality literature about allograft rejection. This aspect, together with the flow cytometry and immunomagnetic sorting results prove the immunotolerance induction. Because the reject was only delayed and not annulated, is required an earlier inoculation or a replacement technique which allows intervention in earlier embrionary stages. The fast reject in poultry inoculated with bone marrow cells in the 8 th day of embrionary development and the minor differences between this group and the one inoculated with 226

6 mature lymphocytes and monocytes in the same day proves that the injection was made when immune system of the embryos was partially operational. BIBLIOGRAPHY 1. Billingham R.E., H.K. Poole, W.K. Silvers, 1961, Transplantation Immunity, Immunological Tolerance, and Chicken x Turkey Interspecific Hybrids, Proceedings of the National Academy of Sciences of the United States of America, 47, 7, Jankovic B.D., Katarina Isakovic, M.L. Lukic, N.L. Vujanovic, Spomenka Petrovic, B. M. Markovic, 1975, Immunological capacity of the chicken embryo, Immunology, 29, Lehtonen L., O. Vainio, T. Veromaa, P. Toivanen, 1989, Tolerance to class I major histocompatibility complex antigens in chicken B cell chimeras. Effect of B cell depletion on transferability of tolerance, European Journal of Immunology, 19, 3, Shannon T.F., 2002, Avian integumentary surgery, Seminar in Avian and Exotic Pet Medicine, 11(3): Swaim S.F., 1993, Skin grafts, in: Text Book of Small Animal Surgery, ed. Slatter D., vol. I, 2nd edition, W.B. Saunders Company, Philadelphia. 6. Şereş Monica, A. Sala, Larisa Schuszler, H. Sărăndan, Roxana Dascalu, M. Sabău, Simona Anghel, I. Checiu, D. Cioca, C. Igna, 2007, Evolution of full-thickness and pinch skin allografts evaluation at Cobb 500 hybrids after immunotolerance induction in the ninth day of embryonary development, Bul. USAMV Cluj-Napoca, vol. 64(1-2), Thraval P., M. Afanassieff, D. Bouret, G. Luneau, E. Esnault, 2003, Role of nonclassical class I genes of the chicken major histocompatibility complex Rfp-Y locus in transplantation immunity, Immunogenetics, 55, 9, Tizard I., 1992, Veterinary Immunology. An Introduction, 4 th Edition, W.B. Saunders Company, Philadelphia. 9. Tizard I, 2008, Veterinary Immunology. An Introduction, 8 th Edition, W.B. Saunders Company, Philadelphia. 227

CHAPTER 3 LABORATORY PROCEDURES

CHAPTER 3 LABORATORY PROCEDURES CHAPTER 3 LABORATORY PROCEDURES CHAPTER 3 LABORATORY PROCEDURES 3.1 HLA TYPING Molecular HLA typing will be performed for all donor cord blood units and patients in the three reference laboratories identified

More information

SEVENTH EDITION CHAPTER

SEVENTH EDITION CHAPTER Judy Owen Jenni Punt Sharon Stranford Kuby Immunology SEVENTH EDITION CHAPTER 16 Tolerance, Autoimmunity, and Transplantation Copyright 2013 by W. H. Freeman and Company Immune tolerance: history * Some

More information

Transplantation. Immunology Unit College of Medicine King Saud University

Transplantation. Immunology Unit College of Medicine King Saud University Transplantation Immunology Unit College of Medicine King Saud University Objectives To understand the diversity among human leukocyte antigens (HLA) or major histocompatibility complex (MHC) To know the

More information

Effector T Cells and

Effector T Cells and 1 Effector T Cells and Cytokines Andrew Lichtman, MD PhD Brigham and Women's Hospital Harvard Medical School 2 Lecture outline Cytokines Subsets of CD4+ T cells: definitions, functions, development New

More information

The Lymphatic System and Body Defenses

The Lymphatic System and Body Defenses PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College The Lymphatic System and Body Defenses 12PART B Adaptive Defense System: Third Line of Defense Immune

More information

Cell-mediated Immunity

Cell-mediated Immunity Cellular & Molecular Immunology Cell-mediated Immunity Nicholas M. Ponzio, Ph.D. Department of Pathology & Laboratory Medicine April 6, 2009 Today s Presentation: Overview Cellular Interactions In Humoral

More information

SUPPLEMENTARY FIGURE 1

SUPPLEMENTARY FIGURE 1 SUPPLEMENTARY FIGURE 1 A LN Cell count (1 ) 1 3 1 CD+ 1 1 CDL lo CD hi 1 CD+FoxP3+ 1 1 1 7 3 3 3 % of cells 9 7 7 % of cells CD+ 3 1 % of cells CDL lo CD hi 1 1 % of CD+ cells CD+FoxP3+ 3 1 % of CD+ T

More information

Principles of Adaptive Immunity

Principles of Adaptive Immunity Principles of Adaptive Immunity Chapter 3 Parham Hans de Haard 17 th of May 2010 Agenda Recognition molecules of adaptive immune system Features adaptive immune system Immunoglobulins and T-cell receptors

More information

The Immune System: Innate and Adaptive Body Defenses Outline PART 1: INNATE DEFENSES 21.1 Surface barriers act as the first line of defense to keep

The Immune System: Innate and Adaptive Body Defenses Outline PART 1: INNATE DEFENSES 21.1 Surface barriers act as the first line of defense to keep The Immune System: Innate and Adaptive Body Defenses Outline PART 1: INNATE DEFENSES 21.1 Surface barriers act as the first line of defense to keep invaders out of the body (pp. 772 773; Fig. 21.1; Table

More information

Effector mechanisms of cell-mediated immunity: Properties of effector, memory and regulatory T cells

Effector mechanisms of cell-mediated immunity: Properties of effector, memory and regulatory T cells ICI Basic Immunology course Effector mechanisms of cell-mediated immunity: Properties of effector, memory and regulatory T cells Abul K. Abbas, MD UCSF Stages in the development of T cell responses: induction

More information

Immunity. Avian Physiology

Immunity. Avian Physiology Immunity Avian Physiology The Perfect World The Real World HELP ME! CHICKEN POX FLU STOMACH UPSET HELP! COLD HELP ME! Immunity Definition The Latin term IMMUNIS means EXEMPT, referring to protection against

More information

1. Overview of Adaptive Immunity

1. Overview of Adaptive Immunity Chapter 17A: Adaptive Immunity Part I 1. Overview of Adaptive Immunity 2. T and B Cell Production 3. Antigens & Antigen Presentation 4. Helper T cells 1. Overview of Adaptive Immunity The Nature of Adaptive

More information

Immune Reconstitution Following Hematopoietic Cell Transplant

Immune Reconstitution Following Hematopoietic Cell Transplant Immune Reconstitution Following Hematopoietic Cell Transplant Patrick J. Kiel, PharmD, BCPS, BCOP Clinical Pharmacy Specialist Indiana University Simon Cancer Center Conflicts of Interest Speaker Bureau

More information

10/18/2012. A primer in HLA: The who, what, how and why. What?

10/18/2012. A primer in HLA: The who, what, how and why. What? A primer in HLA: The who, what, how and why What? 1 First recognized in mice during 1930 s and 1940 s. Mouse (murine) experiments with tumors Independent observations were made in humans with leukoagglutinating

More information

FIT Board Review Corner March 2016

FIT Board Review Corner March 2016 FIT Board Review Corner March 2016 Welcome to the FIT Board Review Corner, prepared by Sarah Spriet, DO, and Tammy Peng, MD, senior and junior representatives of ACAAI's Fellows-In-Training (FITs) to the

More information

CELLULAR KINETICS OF THE ANTI-MRBC RESPONSE IN CHICKENS

CELLULAR KINETICS OF THE ANTI-MRBC RESPONSE IN CHICKENS 19 CELLULAR KINETICS OF THE ANTI-MRBC RESPONSE IN CHICKENS K. Dagg, S. P. Turner and F. Seto Department of Zoology, University of Oklahoma, Norman, Oklahoma The serum hemagglutinin (HA) titers and the

More information

IN UTERO HEMATOPOIETIC STEM CELL TRANSPLANTATION IN CANINES: THE GESTATIONAL WINDOW OF OPPORTUNITY TO MAXIMIZE ENGRAFTMENT

IN UTERO HEMATOPOIETIC STEM CELL TRANSPLANTATION IN CANINES: THE GESTATIONAL WINDOW OF OPPORTUNITY TO MAXIMIZE ENGRAFTMENT IN UTERO HEMATOPOIETIC STEM CELL TRANSPLANTATION IN CANINES: THE GESTATIONAL WINDOW OF OPPORTUNITY TO MAXIMIZE ENGRAFTMENT Karin J. Blakemore, M.D. Division of Maternal-Fetal Medicine The Bone Marrow Transplant

More information

Shiv Pillai Ragon Institute, Massachusetts General Hospital Harvard Medical School

Shiv Pillai Ragon Institute, Massachusetts General Hospital Harvard Medical School CTLs, Natural Killers and NKTs 1 Shiv Pillai Ragon Institute, Massachusetts General Hospital Harvard Medical School CTL inducing tumor apoptosis 3 Lecture outline CD8 + Cytotoxic T lymphocytes (CTL) Activation/differentiation

More information

Children's Hospital of Pittsburgh Annual Progress Report: 2011 Formula Grant

Children's Hospital of Pittsburgh Annual Progress Report: 2011 Formula Grant Children's Hospital of Pittsburgh Annual Progress Report: 2011 Formula Grant Reporting Period July 1, 2012 June 30, 2013 Formula Grant Overview The Children's Hospital of Pittsburgh received $228,401 in

More information

Adaptive immune responses: T cell-mediated immunity

Adaptive immune responses: T cell-mediated immunity MICR2209 Adaptive immune responses: T cell-mediated immunity Dr Allison Imrie allison.imrie@uwa.edu.au 1 Synopsis: In this lecture we will discuss the T-cell mediated immune response, how it is activated,

More information

Supplementary Figure Legends. group) and analyzed for Siglec-G expression utilizing a monoclonal antibody to Siglec-G (clone SH2.1).

Supplementary Figure Legends. group) and analyzed for Siglec-G expression utilizing a monoclonal antibody to Siglec-G (clone SH2.1). Supplementary Figure Legends Supplemental Figure : Naïve T cells express Siglec-G. Splenocytes were isolated from WT B or Siglec-G -/- animals that have not been transplanted (n= per group) and analyzed

More information

XIV. HLA AND TRANSPLANTATION MEDICINE

XIV. HLA AND TRANSPLANTATION MEDICINE XIV. HLA AND TRANSPLANTATION MEDICINE A. Introduction 1. The HLA system includes a complex array of genes and their molecular products that are involved in immune regulation and cellular differentiation.

More information

Immunity 101: The basics

Immunity 101: The basics As published in Research Update Research with Diamond V s Original line of products, including Original XPC, has consistently shown that these products influence the immune system of livestock and poultry.

More information

Cell Mediated Immunity (I) Dr. Aws Alshamsan Department of Pharmaceu5cs Office: AA87 Tel:

Cell Mediated Immunity (I) Dr. Aws Alshamsan Department of Pharmaceu5cs Office: AA87 Tel: Cell Mediated Immunity (I) Dr. Aws Alshamsan Department of Pharmaceu5cs Office: AA87 Tel: 4677363 aalshamsan@ksu.edu.sa Learning Objectives By the end of this lecture you will be able to: 1 Understand

More information

Foundations in Microbiology

Foundations in Microbiology Foundations in Microbiology Fifth Edition Talaro Chapter 15 The Acquisition of Specific Immunity and Its Applications Chapter 15 2 Chapter Overview 1. Development of the Dual Lymphocyte System 2. Entrance

More information

Dr. Yi-chi M. Kong August 8, 2001 Benjamini. Ch. 19, Pgs Page 1 of 10 TRANSPLANTATION

Dr. Yi-chi M. Kong August 8, 2001 Benjamini. Ch. 19, Pgs Page 1 of 10 TRANSPLANTATION Benjamini. Ch. 19, Pgs 379-399 Page 1 of 10 TRANSPLANTATION I. KINDS OF GRAFTS II. RELATIONSHIPS BETWEEN DONOR AND RECIPIENT Benjamini. Ch. 19, Pgs 379-399 Page 2 of 10 II.GRAFT REJECTION IS IMMUNOLOGIC

More information

T Cell Development. Xuefang Cao, MD, PhD. November 3, 2015

T Cell Development. Xuefang Cao, MD, PhD. November 3, 2015 T Cell Development Xuefang Cao, MD, PhD November 3, 2015 Thymocytes in the cortex of the thymus Early thymocytes development Positive and negative selection Lineage commitment Exit from the thymus and

More information

I. Lines of Defense Pathogen: Table 1: Types of Immune Mechanisms. Table 2: Innate Immunity: First Lines of Defense

I. Lines of Defense Pathogen: Table 1: Types of Immune Mechanisms. Table 2: Innate Immunity: First Lines of Defense I. Lines of Defense Pathogen: Table 1: Types of Immune Mechanisms Table 2: Innate Immunity: First Lines of Defense Innate Immunity involves nonspecific physical & chemical barriers that are adapted for

More information

Immunological Aspects of Parasitic Diseases in Immunocompromised Individuals. Taniawati Supali. Department of Parasitology

Immunological Aspects of Parasitic Diseases in Immunocompromised Individuals. Taniawati Supali. Department of Parasitology Immunological Aspects of Parasitic Diseases in Immunocompromised Individuals Taniawati Supali Department of Parasitology 1 Defense mechanism in human Th17 (? ) Acute Chronic Th1 Th 2 Intracellular Treg

More information

Laboratory Clinical Study

Laboratory Clinical Study V. Perez et al. Merial Avian Bulletin 3 (2008) Page 3 to 7 Laboratory Clinical Study Anatomopathological analysis of lymphoid organs and serological analysis of chickens vaccinated with a turkey Herpesvirus

More information

The Generation of Specific Immunity

The Generation of Specific Immunity The Generation of Specific Immunity Antibody structure! Antibodies classified by specificity (antigen, binding site) and class (general structure, function)! Differences in variable regions produce different

More information

Transplant Booklet D Page 1

Transplant Booklet D Page 1 Booklet D Pretest Correct Answers 4. (A) is correct. Technically, performing a hematopoietic stem cell transplant is one of the simplest transplantation procedures. The hematopoietic stem cells are infused

More information

CONTRACTING ORGANIZATION: Johns Hopkins University School of Medicine Baltimore, MD 21205

CONTRACTING ORGANIZATION: Johns Hopkins University School of Medicine Baltimore, MD 21205 AD Award Number: DAMD7---7 TITLE: Development of Artificial Antigen Presenting Cells for Prostate Cancer Immunotherapy PRINCIPAL INVESTIGATOR: Jonathan P. Schneck, M.D., Ph.D. Mathias Oelke, Ph.D. CONTRACTING

More information

Cell and organs of immune system. Chapter 2 Kuby

Cell and organs of immune system. Chapter 2 Kuby Cell and organs of immune system Chapter 2 Kuby Key concepts from last lecture Pathogen Antigen Antibody? B cells (Plasma cells) T cells (Th&Tc) Innate immunity Adaptive immunity Passive immunity Active

More information

Immune system. Aims. Immune system. Lymphatic organs. Inflammation. Natural immune system. Adaptive immune system

Immune system. Aims. Immune system. Lymphatic organs. Inflammation. Natural immune system. Adaptive immune system Aims Immune system Lymphatic organs Inflammation Natural immune system Adaptive immune system Major histocompatibility complex (MHC) Disorders of the immune system 1 2 Immune system Lymphoid organs Immune

More information

April 01, Immune system.notebook

April 01, Immune system.notebook I. First Line of Defense: Skin and Mucus Membranes Non Specific A. Skin Surface 1. dry, dead, thick, secretions 2. sweat and sebaceous glands: antibiotics, lactic acid, RNase B. Mucus (moist and sometimes

More information

Comprehensive evaluation of human immune system reconstitution in NSG. and NSG -SGM3 mouse models toward the development of a novel ONCO-HU

Comprehensive evaluation of human immune system reconstitution in NSG. and NSG -SGM3 mouse models toward the development of a novel ONCO-HU Comprehensive evaluation of human immune system reconstitution in NSG and NSG -SGM3 mouse models toward the development of a novel ONCO-HU xenograft model Aaron Middlebrook, 1 Eileen Snowden, 2 Warren

More information

Long-term persistence of T cell memory in Italian vaccinees

Long-term persistence of T cell memory in Italian vaccinees Long-term persistence of T cell memory in Italian vaccinees Mario (Mago) Clerici Head, Department of Medical Sciences and Biotechnologies Head, Doctorate School in Molecular Medicine University of Milano

More information

Supplemental Table I.

Supplemental Table I. Supplemental Table I Male / Mean ± SEM n Mean ± SEM n Body weight, g 29.2±0.4 17 29.7±0.5 17 Total cholesterol, mg/dl 534.0±30.8 17 561.6±26.1 17 HDL-cholesterol, mg/dl 9.6±0.8 17 10.1±0.7 17 Triglycerides,

More information

Page 4: Antigens: Self-Antigens The body has a vast number of its own antigens called self-antigens. These normally do not trigger immune responses.

Page 4: Antigens: Self-Antigens The body has a vast number of its own antigens called self-antigens. These normally do not trigger immune responses. Common Characteristics of B and T Lymphocytes Graphics are used with permission of Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com). Page 1: Introduction While B and T lymphocytes

More information

Topics in Parasitology BLY Vertebrate Immune System

Topics in Parasitology BLY Vertebrate Immune System Topics in Parasitology BLY 533-2008 Vertebrate Immune System V. Vertebrate Immune System A. Non-specific defenses against pathogens 1. Skin - physical barrier a. Tough armor protein KERATIN b. Surface

More information

Cellular Pathology of immunological disorders

Cellular Pathology of immunological disorders Cellular Pathology of immunological disorders SCBM344 Cellular and Molecular Pathology Witchuda Payuhakrit, Ph.D (Pathobiology) witchuda.pay@mahidol.ac.th Objectives Describe the etiology of immunological

More information

Chapter 3, Part A (Pages 37-45): Leukocyte Migration into Tissues

Chapter 3, Part A (Pages 37-45): Leukocyte Migration into Tissues Allergy and Immunology Review Corner: Chapter 3, Part A (pages 37-45) of Cellular and Molecular Immunology (Seventh Edition), by Abul K. Abbas, Andrew H. Lichtman and Shiv Pillai. Chapter 3, Part A (Pages

More information

What is the immune system? Types of Immunity. Pasteur and rabies vaccine. Historical Role of smallpox. Recognition Response

What is the immune system? Types of Immunity. Pasteur and rabies vaccine. Historical Role of smallpox. Recognition Response Recognition Response Effector memory What is the immune system? Types of Immunity Innate Adaptive Anergy: : no response Harmful response: Autoimmunity Historical Role of smallpox Pasteur and rabies vaccine

More information

ISCT Workshop #7 Perspectives in Cell Selection Immunomagnetic Selection

ISCT Workshop #7 Perspectives in Cell Selection Immunomagnetic Selection ISCT Workshop #7 Perspectives in Cell Selection Immunomagnetic Selection Carolyn A. Keever-Taylor, PhD Medical College of Wisconsin June 7, 2012 History of Available Devices CellPro CEPRATE Avidin/Biotin

More information

Physiology Unit 3. ADAPTIVE IMMUNITY The Specific Immune Response

Physiology Unit 3. ADAPTIVE IMMUNITY The Specific Immune Response Physiology Unit 3 ADAPTIVE IMMUNITY The Specific Immune Response In Physiology Today The Adaptive Arm of the Immune System Specific Immune Response Internal defense against a specific pathogen Acquired

More information

Adaptive (acquired) immunity. Professor Peter Delves University College London

Adaptive (acquired) immunity. Professor Peter Delves University College London Adaptive (acquired) immunity Professor Peter Delves University College London p.delves@ucl.ac.uk Haematopoiesis Haematopoiesis Lymphocytes = adaptive response Recognition of pathogens by adaptive cells,

More information

Analysis of regulatory T cell subsets in the peripheral blood of immunoglobulin A nephropathy (IgAN) patients

Analysis of regulatory T cell subsets in the peripheral blood of immunoglobulin A nephropathy (IgAN) patients Analysis of regulatory T cell subsets in the peripheral blood of immunoglobulin A nephropathy (IgAN) patients S. Yang, B. Chen, J. Shi, F. Chen, J. Zhang and Z. Sun Department of Nephrology, Huaihe Hospital

More information

From the Diagnostic Immunology Laboratories

From the Diagnostic Immunology Laboratories Immunology Laboratories ISSUE 9 SPRING 2012 PAGE 1 Spring Meetings Please stop by and say hello in May at this year s American Society of Pediatric Hematology/Oncology (ASPHO) Annual Meeting in New Orleans

More information

Tolerance, autoimmunity and the pathogenesis of immunemediated inflammatory diseases. Abul K. Abbas UCSF

Tolerance, autoimmunity and the pathogenesis of immunemediated inflammatory diseases. Abul K. Abbas UCSF Tolerance, autoimmunity and the pathogenesis of immunemediated inflammatory diseases Abul K. Abbas UCSF Balancing lymphocyte activation and control Activation Effector T cells Tolerance Regulatory T cells

More information

Transcript-indexed ATAC-seq for immune profiling

Transcript-indexed ATAC-seq for immune profiling Transcript-indexed ATAC-seq for immune profiling Technical Journal Club 22 nd of May 2018 Christina Müller Nature Methods, Vol.10 No.12, 2013 Nature Biotechnology, Vol.32 No.7, 2014 Nature Medicine, Vol.24,

More information

CD90 + Human Dermal Stromal Cells Are Potent Inducers of FoxP3 + Regulatory T Cells

CD90 + Human Dermal Stromal Cells Are Potent Inducers of FoxP3 + Regulatory T Cells CD90 + Human Dermal Stromal Cells Are Potent Inducers of FoxP3 + Regulatory T Cells Karin Pfisterer, Karoline M Lipnik, Erhard Hofer and Adelheid Elbe-Bürger Journal of Investigative Dermatology (2015)

More information

Age Related Changes in T Cell Subsets in Thymus and Spleen of Layer Chicken (Gallus domesticus)

Age Related Changes in T Cell Subsets in Thymus and Spleen of Layer Chicken (Gallus domesticus) Int.J.Curr.Microbiol.App.Sci (217) 6(1): 15-19 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-776 Volume 6 Number 1 (217) pp. 15-19 Journal homepage: http://www.ijcmas.com

More information

VMC-221: Veterinary Immunology and Serology (1+1) Question Bank

VMC-221: Veterinary Immunology and Serology (1+1) Question Bank VMC-221: Veterinary Immunology and Serology (1+1) Objective type Questions Question Bank Q. No. 1 - Fill up the blanks with correct words 1. The British physician, who developed the first vaccine against

More information

Objectives. Abbas Chapter 11: Immunological Tolerance. Question 1. Question 2. Question 3. Definitions

Objectives. Abbas Chapter 11: Immunological Tolerance. Question 1. Question 2. Question 3. Definitions Objectives Abbas Chapter 11: Immunological Tolerance Christina Ciaccio, MD Children s Mercy Hospitals and Clinics February 1, 2010 To introduce the concept of immunologic tolerance To understand what factors

More information

25/10/2017. Clinical Relevance of the HLA System in Blood Transfusion. Outline of talk. Major Histocompatibility Complex

25/10/2017. Clinical Relevance of the HLA System in Blood Transfusion. Outline of talk. Major Histocompatibility Complex Clinical Relevance of the HLA System in Blood Transfusion Dr Colin J Brown PhD FRCPath. October 2017 Outline of talk HLA genes, structure and function HLA and immune complications of transfusion TA-GVHD

More information

Mucosal Immune System

Mucosal Immune System Exam Format 100 points - 60 pts mandatory; 40 points where 4, 10 point questions will be chosen Some open-ended questions, some short answer. Kuby question Cytokines Terminology How do cytokines achieve

More information

Histocompatibility antigens

Histocompatibility antigens Histocompatibility antigens Tuesday 09 November 2010 Telegraph UK Livers grown in the laboratory could eventually solve organ transplant shortage. Made-to-measure organs for transplantation are a step

More information

Defensive mechanisms include :

Defensive mechanisms include : Acquired Immunity Defensive mechanisms include : 1) Innate immunity (Natural or Non specific) 2) Acquired immunity (Adaptive or Specific) Cell-mediated immunity Humoral immunity Two mechanisms 1) Humoral

More information

Immunity. Acquired immunity differs from innate immunity in specificity & memory from 1 st exposure

Immunity. Acquired immunity differs from innate immunity in specificity & memory from 1 st exposure Immunity (1) Non specific (innate) immunity (2) Specific (acquired) immunity Characters: (1) Non specific: does not need special recognition of the foreign cell. (2) Innate: does not need previous exposure.

More information

Immunology Lesson plan for international medical students

Immunology Lesson plan for international medical students Immunology Lesson plan for international medical students Kermanshah University of medical sciences (KUMS) international affairs School of medicine Department of Immunology Lecturers: Dr. Ali Gorgin Karaji

More information

Question 1. Kupffer cells, microglial cells and osteoclasts are all examples of what type of immune system cell?

Question 1. Kupffer cells, microglial cells and osteoclasts are all examples of what type of immune system cell? Abbas Chapter 2: Sarah Spriet February 8, 2015 Question 1. Kupffer cells, microglial cells and osteoclasts are all examples of what type of immune system cell? a. Dendritic cells b. Macrophages c. Monocytes

More information

Immunology and Immunotherapy 101 for the Non-Immunologist

Immunology and Immunotherapy 101 for the Non-Immunologist Immunology and Immunotherapy 101 for the Non-Immunologist Stephen P. Schoenberger, Ph.D La Jolla Institute for Allergy and Immunology & UCSD Moores Cancer Center Disclosures Human Longevity Inc: Salary

More information

The Immune System. Human Body vs. Microbes

The Immune System. Human Body vs. Microbes The Immune System Human Body vs. Microbes Our 1 st Line of Defense... The Integumentary System Skin Mucous membranes Mucous provides a physical barrier preventing microbial access The Invaders... Bacteria

More information

Immunology Lecture 4. Clinical Relevance of the Immune System

Immunology Lecture 4. Clinical Relevance of the Immune System Immunology Lecture 4 The Well Patient: How innate and adaptive immune responses maintain health - 13, pg 169-181, 191-195. Immune Deficiency - 15 Autoimmunity - 16 Transplantation - 17, pg 260-270 Tumor

More information

SPECIFIC AIMS. II year (1st semester)

SPECIFIC AIMS. II year (1st semester) II year (1st semester) Scientific Field IMMUNOLOGY AND IMMUNOPATHOLOGY TUTOR ECTS MALISAN F. COORDINATOR MED/04 Immunology and Immunopathology Malisan Florence 5 MED/04 Immunology and Immunopathology Testi

More information

TRANSPLANT IMMUNOLOGY. Shiv Pillai Ragon Institute of MGH, MIT and Harvard

TRANSPLANT IMMUNOLOGY. Shiv Pillai Ragon Institute of MGH, MIT and Harvard TRANSPLANT IMMUNOLOGY Shiv Pillai Ragon Institute of MGH, MIT and Harvard Outline MHC / HLA Direct vs indirect allorecognition Alloreactive cells: where do they come from? Rejection and Immunosuppression

More information

T cell manipulation of the graft: Yes

T cell manipulation of the graft: Yes T cell manipulation of the graft: Yes J.H. Frederik Falkenburg Department of Hematology L M U C Allogeneic Hematopoietic Stem Cell Transplantation (SCT) for non-malignant disorders: no need for anti-tumor

More information

IMMUNITY AND DISEASE II

IMMUNITY AND DISEASE II IMMUNITY AND DISEASE II A. Evolution of the immune system. 1. Figure 1--57.25, p. 1167 from Raven and Johnson Biology 6 th ed. shows how the immune system evolved. Figure 1. How the immune system evolved.

More information

M.Sc. III Semester Biotechnology End Semester Examination, 2013 Model Answer LBTM: 302 Advanced Immunology

M.Sc. III Semester Biotechnology End Semester Examination, 2013 Model Answer LBTM: 302 Advanced Immunology Code : AS-2246 M.Sc. III Semester Biotechnology End Semester Examination, 2013 Model Answer LBTM: 302 Advanced Immunology A. Select one correct option for each of the following questions:- 2X10=10 1. (b)

More information

Body Defense Mechanisms

Body Defense Mechanisms BIOLOGY OF HUMANS Concepts, Applications, and Issues Fifth Edition Judith Goodenough Betty McGuire 13 Body Defense Mechanisms Lecture Presentation Anne Gasc Hawaii Pacific University and University of

More information

SUPPLEMENT Supplementary Figure 1: (A) (B)

SUPPLEMENT Supplementary Figure 1: (A) (B) SUPPLEMENT Supplementary Figure 1: CD4 + naïve effector T cells (CD4 effector) were labeled with CFSE, stimulated with α-cd2/cd3/cd28 coated beads (at 2 beads/cell) and cultured alone or cocultured with

More information

NK cell flow cytometric assay In vivo DC viability and migration assay

NK cell flow cytometric assay In vivo DC viability and migration assay NK cell flow cytometric assay 6 NK cells were purified, by negative selection with the NK Cell Isolation Kit (Miltenyi iotec), from spleen and lymph nodes of 6 RAG1KO mice, injected the day before with

More information

Supplementary Data. Treg phenotype

Supplementary Data. Treg phenotype Supplementary Data Additional Experiment An additional experiment was performed using cryopreserved peripheral blood mononuclear cells (PBMC) derived from five renal cell carcinoma (RCC) patients [see

More information

MATERIALS AND METHODS. Neutralizing antibodies specific to mouse Dll1, Dll4, J1 and J2 were prepared as described. 1,2 All

MATERIALS AND METHODS. Neutralizing antibodies specific to mouse Dll1, Dll4, J1 and J2 were prepared as described. 1,2 All MATERIALS AND METHODS Antibodies (Abs), flow cytometry analysis and cell lines Neutralizing antibodies specific to mouse Dll1, Dll4, J1 and J2 were prepared as described. 1,2 All other antibodies used

More information

G-CSF-primed autologous and allogeneic bone marrow for transplantation in clinical oncology. Cell content and immunological characteristics

G-CSF-primed autologous and allogeneic bone marrow for transplantation in clinical oncology. Cell content and immunological characteristics Journal of Physics: Conference Series PAPER OPEN ACCESS G-CSF-primed autologous and allogeneic bone marrow for transplantation in clinical oncology. Cell content and immunological characteristics To cite

More information

IMMUNOLOGY. Source, Isolate, Culture, And Analyze Immune Cells. Scientists Helping Scientists

IMMUNOLOGY. Source, Isolate, Culture, And Analyze Immune Cells. Scientists Helping Scientists IMMUNOLOGY Source, Isolate, Culture, And Analyze Immune Cells Scientists Helping Scientists WWW.STEMCELL.COM TABLE OF CONTENTS Tools For Your Immunology Research 4 Primary Cells: It All Starts with The

More information

Immune system. Lecture(8 ) Dr.Baha,Hamdi.AL-Amiedi Ph.D.Microbiology

Immune system. Lecture(8 ) Dr.Baha,Hamdi.AL-Amiedi Ph.D.Microbiology Immune system Lecture(8 ) Dr.Baha,Hamdi.AL-Amiedi Ph.D.Microbiology Immune system :The Immune system comprise a network cells with each other cooperates directly to reach the effectors mechanism. and defense

More information

General Overview of Immunology. Kimberly S. Schluns, Ph.D. Associate Professor Department of Immunology UT MD Anderson Cancer Center

General Overview of Immunology. Kimberly S. Schluns, Ph.D. Associate Professor Department of Immunology UT MD Anderson Cancer Center General Overview of Immunology Kimberly S. Schluns, Ph.D. Associate Professor Department of Immunology UT MD Anderson Cancer Center Objectives Describe differences between innate and adaptive immune responses

More information

Lines of Defense. Immunology, Immune Response, and Immunological Testing. Immunology Terminology

Lines of Defense. Immunology, Immune Response, and Immunological Testing. Immunology Terminology Immunology, Immune Response, and Immunological Testing Lines of Defense If the First and Second lines of defense fail, then the Third line of defense is activated. B and T lymphocytes undergo a selective

More information

Determinants of Immunogenicity and Tolerance. Abul K. Abbas, MD Department of Pathology University of California San Francisco

Determinants of Immunogenicity and Tolerance. Abul K. Abbas, MD Department of Pathology University of California San Francisco Determinants of Immunogenicity and Tolerance Abul K. Abbas, MD Department of Pathology University of California San Francisco EIP Symposium Feb 2016 Why do some people respond to therapeutic proteins?

More information

Clinical Relevance of the HLA System in Blood Transfusion. Dr Colin J Brown PhD FRCPath. October 2017

Clinical Relevance of the HLA System in Blood Transfusion. Dr Colin J Brown PhD FRCPath. October 2017 Clinical Relevance of the HLA System in Blood Transfusion Dr Colin J Brown PhD FRCPath. October 2017 Outline of talk HLA genes, structure and function HLA and immune complications of transfusion TA-GVHD

More information

NATURAL KILLER T CELLS EBOOK

NATURAL KILLER T CELLS EBOOK 08 April, 2018 NATURAL KILLER T CELLS EBOOK Document Filetype: PDF 90.41 KB 0 NATURAL KILLER T CELLS EBOOK Natural killer T cells (NK T cells) are a type of lymphocyte, or white blood cell. Natural killer

More information

Infectious Bursal Disease, Immunosuppression and the role of VAXXITEK HVT+ IBD

Infectious Bursal Disease, Immunosuppression and the role of VAXXITEK HVT+ IBD Research note Infectious Bursal Disease, Immunosuppression and the role of VAXXITEK HVT+ IBD Grogan K. 1 1 Poultry Chicken Scratch, LLC, 30019 Dacula GA United States of America [from Hoerr F.J., 2010,

More information

Immunology. Teamwork 437. Lecture (3): Cell Mediated Immunity. Color index: IMPORTANT Definition Explanations + notes Extra (or gray)

Immunology. Teamwork 437. Lecture (3): Cell Mediated Immunity. Color index: IMPORTANT Definition Explanations + notes Extra (or gray) IMMUNOLOGY TEAM 437 Immunology Teamwork 437 Lecture (3): Cell Mediated Immunity Color index: IMPORTANT Definition Explanations + notes Extra (or gray) Objectives To describe antigen recognition by T cells.

More information

immunity produced by an encounter with an antigen; provides immunologic memory. active immunity clumping of (foreign) cells; induced by crosslinking

immunity produced by an encounter with an antigen; provides immunologic memory. active immunity clumping of (foreign) cells; induced by crosslinking active immunity agglutination allografts immunity produced by an encounter with an antigen; provides immunologic memory. clumping of (foreign) cells; induced by crosslinking of antigenantibody complexes.

More information

BLOOD PHYSIOLOGY. White Blood Cells (WBC) Dr Nervana Mostafa

BLOOD PHYSIOLOGY. White Blood Cells (WBC) Dr Nervana Mostafa BLOOD PHYSIOLOGY White Blood Cells (WBC) Dr Nervana Mostafa 1 Lecture content. 1 Eosinophils and Basophilophils formation, maturation and function. 2. 3. 4. 5 Monocytes and macrophage formation, maturation

More information

7/6/2009. The study of the immune system and of diseases that occur as a result of inappropriate or inadequate actions of the immune system.

7/6/2009. The study of the immune system and of diseases that occur as a result of inappropriate or inadequate actions of the immune system. Diseases of Immunity 2009 CL Davis General Pathology Paul W. Snyder, DVM, PhD Purdue University Acknowledgements Pathologic Basis of Veterinary Disease, 4 th Ed Veterinary Immunology, An Introduction 8

More information

IMMUNOBIOLOGY OF TRANSPLANTATION. Wasim Dar

IMMUNOBIOLOGY OF TRANSPLANTATION. Wasim Dar IMMUNOBIOLOGY OF TRANSPLANTATION Wasim Dar Immunobiology of Transplantation Overview Transplantation: A complex immunologic process Contributions Innate Immunity Adaptive immunity T Cells B Cells HLA Consequences

More information

BD Flow Cytometry Reagents Multicolor Panels Designed for Optimal Resolution with the BD LSRFortessa X-20 Cell Analyzer

BD Flow Cytometry Reagents Multicolor Panels Designed for Optimal Resolution with the BD LSRFortessa X-20 Cell Analyzer Multicolor Panels Designed for Optimal Resolution with the BD LSRFortessa X-2 Cell Analyzer Proper multicolor panel design takes into account fluorochrome brightness, antigen density, co-expression, and

More information

Manipulation of T Cells in the Thnsplant Inoculum

Manipulation of T Cells in the Thnsplant Inoculum International Journal of Cell Cloning 4: 122-126 Suppl 1 (1986) Manipulation of T Cells in the Thnsplant Inoculum J. Kersey Bone Marrow Transplantation Program, University of Minnesota, Minneapolis, MN,

More information

Setting The setting was secondary care. The economic analysis was carried out in Canada.

Setting The setting was secondary care. The economic analysis was carried out in Canada. Allogeneic stem cell transplantation: an economic comparison of bone marrow, peripheral blood, and cord blood technologies Jacobs P, Hailey D, Turner R, MacLean N Record Status This is a critical abstract

More information

MCAT Biology - Problem Drill 16: The Lymphatic and Immune Systems

MCAT Biology - Problem Drill 16: The Lymphatic and Immune Systems MCAT Biology - Problem Drill 16: The Lymphatic and Immune Systems Question No. 1 of 10 1. Which of the following statements about pathogens is true? Question #01 (A) Both viruses and bacteria need to infect

More information

all of the above the ability to impart long term memory adaptive immunity all of the above bone marrow none of the above

all of the above the ability to impart long term memory adaptive immunity all of the above bone marrow none of the above 1. (3 points) Immediately after a pathogen enters the body, it faces the cells and soluble proteins of the innate immune system. Which of the following are characteristics of innate immunity? a. inflammation

More information

Chapter 22: The Lymphatic System and Immunity

Chapter 22: The Lymphatic System and Immunity Bio40C schedule Lecture Immune system Lab Quiz 2 this week; bring a scantron! Study guide on my website (see lab assignments) Extra credit Critical thinking questions at end of chapters 5 pts/chapter Due

More information

FcγRIIIA (CD16)-expressing monocytes mediate the depletion of tumor-infiltrating Tregs via ipilimumab-dependent ADCC in melanoma patients

FcγRIIIA (CD16)-expressing monocytes mediate the depletion of tumor-infiltrating Tregs via ipilimumab-dependent ADCC in melanoma patients FcγRIIIA (CD16)-expressing monocytes mediate the depletion of tumor-infiltrating Tregs via ipilimumab-dependent ADCC in melanoma patients Emanuela Romano Department of Oncology University of Lausanne and

More information

Mon, Wed, Fri 11:00 AM-12:00 PM. Owen, Judy, Jenni Punt, and Sharon Stranford Kuby-Immunology, 7th. Edition. W.H. Freeman and Co., New York.

Mon, Wed, Fri 11:00 AM-12:00 PM. Owen, Judy, Jenni Punt, and Sharon Stranford Kuby-Immunology, 7th. Edition. W.H. Freeman and Co., New York. Course Title: Course Number: Immunology Biol-341/541 Semester: Fall 2013 Location: HS 268 Time: Instructor: 8:00-9:30 AM Tue/Thur Dr. Colleen M. McDermott Office: Nursing Ed 101 (424-1217) E-mail*: mcdermot@uwosh.edu

More information

Passenger Lymphocyte Syndrome (case presentation) Dr. Namal Bandara Kings College Hospital

Passenger Lymphocyte Syndrome (case presentation) Dr. Namal Bandara Kings College Hospital Passenger Lymphocyte Syndrome (case presentation) Dr. Namal Bandara Kings College Hospital Case history 24year Female Known Patient with Wilsons Disease DBD donor Liver Transplantation done on 15/08/2016

More information

General Biology. A summary of innate and acquired immunity. 11. The Immune System. Repetition. The Lymphatic System. Course No: BNG2003 Credits: 3.

General Biology. A summary of innate and acquired immunity. 11. The Immune System. Repetition. The Lymphatic System. Course No: BNG2003 Credits: 3. A summary of innate and acquired immunity General iology INNATE IMMUNITY Rapid responses to a broad range of microbes Course No: NG00 Credits:.00 External defenses Invading microbes (pathogens). The Immune

More information

Manuscript: OX40 signaling is involved in the autoactivation of CD4 + CD28 - T cells and contributes to pathogenesis of autoimmune arthritis

Manuscript: OX40 signaling is involved in the autoactivation of CD4 + CD28 - T cells and contributes to pathogenesis of autoimmune arthritis Manuscript: OX40 signaling is involved in the autoactivation of CD4 + CD28 - T cells and contributes to pathogenesis of autoimmune arthritis Vincent Laufer Rheumatology JC October 17 Disclosures NIH 2

More information