The two-signal requirement for T cell activation

Size: px
Start display at page:

Download "The two-signal requirement for T cell activation"

Transcription

1 Mechanisms of unresponsiveness: Peripheral tolerance in B cells (II): Anergy The two-signal requirement for T cell activation Immunogenic signaling Acute antigens L LPS Chronic antigens Tolerogenic signaling Signal 1 Microbial antigen presented by MHC BCR Ca 2+ NFκB TLR4 BCR Ca 2+ Fcγ2b NFκB TLR4 Signal 2 Costimulatory Receptor (8) Growth genes Inhibitory genes The role of co-stimulation in T cell activation Regulation of T cell homeostasis during immune responses Antigen recognition T cell response Resting : (costimulatordeficient) : increased expression of costimulators, secretion of cytokines 8 of Innate immune response 8 No response T cell proliferation And differentiation Magnitude of T cell response T cell activation T cell expansion 8 CTLA-4 T cells express CTLA-4 Apoptosis T cells are deprived of antigen and other stimuli Time after antigen exposure Anergy Surviving memory cells Role of cytokines in suppression of cell-mediated immune responses Antigen recognition IL-12 Naïve T cell T cell proliferation and differentiation Effector T cells (T H 1) Effector functions of T cells macrophages Immunosurveillance: Tumors which Evolve in Lymphocyte Deficient Hosts are Rejected in Mice 100% RAG-/- Tumor Incidence 0% Tumor (Sarcoma) Incidence is Increased in MCA-treated Lymphocyte Deficient Mice Cytokines produced by suppressor T cells IL-10 inhibits Functions of s: IL-12 secretion, expression TGF-β inhibits T cell proliferation inhibits action of IL-10, TGF-β inhibit macrophage activation Tumor Size Tumor: origin RAG-/- origin Tumors which developed in RAG-/- hosts are REJECTED in Recipients Suppressor T cells Host: RAG-/- 1

2 Immune Surveillance: Tumor Expression of IFNγ Receptor is Required for Lymphocyte-Mediated Tumor Rejection Tumor Size 100% Tumor Incidence after MCA Treatment 0% IFNγR-/- Host: RAG-/ Transplanted tumor IFNγR -/- IFNγR -/- IFNγR-/- transfected transfected with IFNγR with IFNγR CTL 8 CD8 ClassI +peptide Dendritic IMMUNE RECOGNITION Class II + peptide Ag Processing/ presentation of peptides Cross-Priming: Induction of Anti-tumor T cell response IL-2 TH1 L Endocytosis/ phagocytosis Provide T H 1 or 2 Help for B cell Ab Responses Tumor Effector Mechanisms CD8 CTL Can Recognize Class I peptide Complex and Induce Tumor Lysis and Apoptosis Granule exocytosis: Perforin/granzyme CD8 CTL Effector Mechanisms s are -Mediated Effectors TNF (+ other TNF-family members) NO, O2, proteases TH1 L Tumor Class I + peptide Fas -FasL Class II + peptide Cytokine- Mediated GM-CSF TNF Effector Mechanisms Antibody Bound Targets Induce Myeloid Tumor Cytotoxicity Through Fc Receptors +/or Complement Receptors ADCC, phagocytosis, release of inflammatory mediators (NO, O2, proteases, TNF, etc.,) Tumor C3b Tumor Evasion: Two Separate Problems Tumor antigens are not recognized by immune response-poorly immunogenic (Immunologically ignorant). Tumors are resistant to or inhibit immune cytotoxic responses. (active suppression either dampen priming or avoid/inhibit/resist effector cell function). 2

3 Strategies for induction of anti-tumor Immune Responses -Passive- Adoptive transfer of T cells: Antigenic specific T cell clonesrequires HLA-restricted customized therapy or cytokine-enhanced antigen-non-specific T cells (LAK cells). Has worked for EBV lymphoproliferative disorders. Model of Innate Recognition and Initiation of the Adaptive Antitumor Immune Response Monoclonal and engineered antibodies: 1. Humanized/chimeric mabs: Herceptin (anti-her2), Rituxan (anti-0), anti-idiotype (custom therapy), anti-egfr (Erbitux), CAMPATH (anti-cd52), anti-vegf (targets neovasculature, Avastin). 2. Immune conjugates ( smart bombs ) mab-toxin (Mylotarg: anti- CD33 calicheamicin), mab-chemo, mab-isotope (anti-0 Zevalin and Bexxar). danger = invasion (inflam. response) + stress ligands of NKG2D Amplification of innate and link to adaptive response Apoptosis provides antigen delivery to DCs Elimination by adaptive response Monoclonal Antibody Therapeutics in Cancer Functions of Th1 and Th2 cells Type Function Helpful Harmful Rituxan (anti-0) High response rate in B cell lymphoma (>70%). Synergy with chemotherapy or XRT. Recognizes B cell marker regulating B cell activation. Induces growth arrest/apoptosis in vitro. Herceptin (anti-her2) Lower response rate in breast cancer (15%). Synergy with chemo (60%) or XRT. Recognizes EGF-like receptor regulating cellular proliferation (ERBB2). Induces growth arrest/apoptosis in vitro. Th1 IL-2 TNFα Th2 IL-5 IL-6 IL-10 Activate macr ophages, dendritic cells DTH B cell help down-regulate Th1 class swi tching Tb, fungi, Leishmania and other intracell ular bacteria Cleara nce of antigens/ toxins Helmi nths MS Thyroiditis RA IDDM Scler oderma poison ivy Aller gy Autoantibody SLE Immunopathophysiology of Diabetes Immunopathology of MS + T cells and dying, MHC class II Myelin + oligodendrocyte Perivascular infiltrate of + T cells and s Dendritic cell/ DR3, DR4,,DQ8/gad, insulin peptide + (TH2 ) L L + (TH0 ) IL-12 FasL perforin CD8+ CTL L TH1 + T Fc R /dendritic cell IL-1, TNF, LT, NO, PGE-2 Oligodendrocytes naked axon (plaque)?anti-insulin, B GAD ab anti- Mog?Antibody mediated injury β islet cells β cell death 3

4 IL-2R IL-2 + T + T B MHC class II Pathophysiology of Scleroderma α,β SmIg SmIg α,β IL-2,, IL-5, IL-6 Plasma DR/peptide Dermal fibroblast IL-1, TNF, TGF-β Fibroblast proliferation Fibrosis PGE 2, collagen Anti-scl 70, Ro, La and RFs SLE pathogenesis Genetic susceptibility: Complex polygenic Genes Involved: MHC class II Complement deficiency Multiple non-mhc (unknown) X-chromosomal (unknown) Other genetic influences? Environmental triggers (drugs, microbes?) Self-antigen driven + T cell Driving force Autoreactive to self peptides Autoreactive B cells IgG autoantibody Production Autoantibody-mediated Disease Two major mechanisms of antibodymediated tissue injury operating in SLE Serum Sickness develops after injection of soluble foreign antigens Type of antibody induced injury Immune complex formation and deposition Mechanism of injury Ag/Ab complexes deposit in vessel walls, causing inflammation by activation of complement cascade and activation of FcR on phagocytes, mesangial cells, NK cells Clinical consequences glomerulonephritis Dermatitis Serositis (arthritis, pleuritis, pericarditis) Diffuse vasculitis Disease: Vasculitis Glomerulitis Arthritis Pleuritis Pericarditis Dermatitis Direct binding to and lysis of cells Antibody binds to and kills cells by activating the complement attack complex or interacting with FcR ex pressing phagocytes or NK cells Hemolytic anemia Thrombocytopenia Leukopenia Aplastic anemia Why do SLE patients make autoantibodies? Why do SLE patients make autoantibodies? (1) Anti-self immunity: abrogation of self tolerance SLE might be the result of insufficient elimination of autoreactive T cell clones in the thymus or periphery. This might result in such autoreactive T cells being released into the peripheral circulation and causing the autoimmune features of the disease (2) Hidden antigens The nuclear and cytoplasmic antigens that are associated with autoimmunity are not commonly exposed to the immune system. If such antigens (dsdna, for example) are liberated during cellular turnover, they may incite an immune response. Thereafter, further release of such antigens might form the nidus for IC (3) Cross reactivity SLE might be a disease caused by an unknown pathogen such as a virus or a bacterium. The interaction of pathogen derived peptides with a susceptible HLA haplotype may elicit "autoimmune" diseases by activating pathogenic T cells. Such a pathogen has not been identified in SLE, but no feature of the disease suggests that this could not be the etiology. (4) Abnormal regulation: failure of suppression SLE might arise as a consequence of abnormalities in regulatory + or CD8+ T cells. 4

5 Evidence that T cells are important in the development of SLE The pathogenic anti-dna antibodies in SLE are high affinity IgG molecules. Because it is known that class switching to IgG as well as somatic mutation and affinity maturation requires T cells we infer that anti-dna antibody-producing B cells are expanded in SLE by a process that mimics the normal + T cell-dependent responses, involving common mechanisms of somatic mutation, affinity maturation, and IgM to IgG class switching. The MHC class II restriction and the known association of DR2 and DR3 with susceptibility to SLE also strongly point to a predominant role + T cells in the induction of autoimmunity in SLE. Finally, animal models of SLE are effectively treated with molecules which block key functions of + T cells. MHC/self-peptide MHC/Vβ Vβx + Vβx T cell Induction of + TH1 mediated autoimmunity: A paradigm for the pathogenesis of rheumatoid arthritis, multiple sclerosis and type I diabetes Vβx autoreactive + Vβx TH1 cell (1) expansion of +, autoreactive TH1 cells specific for autoantigens (2) migration and infiltration of these self reactive + TH1 cells into tissues and induction of inflammation and autoimmunity (3) induction of regulatory cells and cytokines which control the growth and activation of the pathogenic autoreactive + T cells + TH1 T- Interactions Induce Synovial Proliferation and L DR4/peptide Fc Receptor IL-1, TNF, TGFβ Synovial Proliferation Rheumatoid factor (RF) BONE RESORBTION inflammation Synthesis of PGE-2, Collagenase, IL-1 Dendritic cell/ + (TH2 ) DR4/RA peptide Plasma Immunopathophysiology of Rheumatoid Arthritis Vasculitis + (TH0 ) IL-12 Sm Ig Inflammation RA antigen B Rheumatoid factor (RF) Synovia l fibrobla st (1) Synthesis of PGE-2, Collagenase, IL-1 (2) synovial cell proliferation TH1 + T L RF Fc R IL-1, TNF, TGFβ PGE-2, collagenase chemokines Osteoclast activation Endothelial cell Bone and hypothalamus cartilage destruction Fever Rheumatoid Factors and Immune Complexes Augment the of s + TH1 IL-1 L DR4/peptide Fc Receptor Rheumatoid factor (RF) Rheumatoid factor (RF) or immune complexes Increased synthesis of IL-1, TNF, TGF-β, IL-6, PGE 2 and Collagenase TNF, IL-1 and RANK-L activate osteoclasts to induce bone resorption Soluble RANK Receptor (osteoprotegerin) Precursor Osteoclast + T RANK-L Soluble RANK-L RANK TNF Osteoclast TNFR TNF IL-1 PGE 2 Mφ/dendritic cell MHC class II Bone Resorption 5

6 Mechanisms of action of drugs used to treat RA Spondyloarthritis Diseases (a) Block T- interaction antibodies to MHC class II, or the (b) Decrease T cell activation cyclosporine, anti-cd3, anti-8, anti-cd80 (), anti-l, CTLA-4 agonist (e) Inhibit products of T/macrophages NSAIDs, TNF receptor inhibitors, IL-1 receptor inhibitors (c) Prevent T cell, B cell or synovial cell proliferation Methotrexate, immuran, cytoxan (d) Inhibit T cell or function steroids, gold, penicillamine 2. Genetic:- Susceptibility to develop disease is associated with inheritance of certain MHC class I alleles, notably HLA-B27 3. Pathogenesis:- CD8 T cells are centrally implicated while T cells or B cells are not essential as shown by MHC class I HLA associations, plus: Occur at increased prevalence in those with advanced AIDS No Autoantibodies Seronegative CD8 T cells activated, clonally expanded and sometimes show antigen drive in sites of inflammation Spondylitis Diseases Ankylosing spondylitis Reiter s syndrome / reactive arthritis Psoriatic arthritis Undifferentiated spondyloarthritis Enteropathic arthritis (ulcerative colitis, regional enteritis) Spondyloarthritis Diseases 2. Genetic:- Susceptibility to develop disease is associated with inheritance of certain MHC class I alleles, notably HLA-B27 3. Pathogenesis:- CD8 T cells are centrally implicated while T cells or B cells are not essential as shown by MHC class I HLA associations, plus: Occur at increased prevalence in those with advanced AIDS No Autoantibodies Seronegative CD8 T cells activated, clonally expanded and sometimes show antigen drive in sites of inflammation Spondylitis Diseases Ankylosing spondylitis Reiter s syndrome / reactive arthritis Psoriatic arthritis Undifferentiated spondyloarthritis Enteropathic arthritis (ulcerative colitis, regional enteritis) Reiter s syndrome-reactive arthritis -Mechanism Disruption of tolerance of autoreactive CD8 T cells likely occurs through a combination of mechanisms: Molecular mimicry - Older theory T cell clones involved in attack on microorganisms expand and initiate attack on cells expressing target proteins that contain peptides that mimic the amino acid sequence found in the microorganisms Provision of co-stimulatory signals by activated dendritic cells and macrophages in initial immune response to infection disrupts anergic or unreactive state of T cells CD8 T cells express NK and other receptors that foster the activation of these cells by danger signals recognized by innate immune system receptors 6

7 CD8 T-cell Cognitive Recognition Synovial or Tendon Fibroblast Self Antigenic Peptide MHC class I Molecule Fibroblast Periosteal new bone formation CD8 T-cell and Clonal Expansion Rx Methotrexate Angiogenesis Lining & Infiltrating Monocyte / macrophage Rx TNF-α blockers and CD8 T Recruitment Synoviocyte Proliferation and Alteration in Gene Expression Inflammation, Destruction & Fibrosis 7

Amino acid sequences in the β chain HLA- DRB*0401 molecules dictate susceptibility to RA Amino Acids in the Shared Epitope

Amino acid sequences in the β chain HLA- DRB*0401 molecules dictate susceptibility to RA Amino Acids in the Shared Epitope MHC/self-peptide MHC/Vβ TCR Vβx + Vβx T cell Induction of + TH1 mediated autoimmunity: A paradigm for the pathogenesis of rheumatoid arthritis, multiple sclerosis and APC type I diabetes TCR Vβx Activated

More information

Requirements in the Development of an Autoimmune Disease Amino Acids in the Shared Epitope

Requirements in the Development of an Autoimmune Disease Amino Acids in the Shared Epitope + T cell MHC/self-peptide MHC/Vβ Induction of + T H 1 mediated autoimmunity: A paradigm for the pathogenesis of rheumatoid arthritis, multiple sclerosis and type I diabetes APC Activated autoreactive +

More information

Immunological Tolerance

Immunological Tolerance Immunological Tolerance Introduction Definition: Unresponsiveness to an antigen that is induced by exposure to that antigen Tolerogen = tolerogenic antigen = antigen that induces tolerance Important for

More information

Immune responses in autoimmune diseases

Immune responses in autoimmune diseases Immune responses in autoimmune diseases Erika Jensen-Jarolim Dept. of Pathophysiology Medical University Vienna CCHD Lecture January 24, 2007 Primary immune organs: Bone marrow Thymus Secondary: Lymph

More information

Immune Regulation and Tolerance

Immune Regulation and Tolerance Immune Regulation and Tolerance Immunoregulation: A balance between activation and suppression of effector cells to achieve an efficient immune response without damaging the host. Activation (immunity)

More information

T Cell Effector Mechanisms I: B cell Help & DTH

T Cell Effector Mechanisms I: B cell Help & DTH T Cell Effector Mechanisms I: B cell Help & DTH Ned Braunstein, MD The Major T Cell Subsets p56 lck + T cells γ δ ε ζ ζ p56 lck CD8+ T cells γ δ ε ζ ζ Cα Cβ Vα Vβ CD3 CD8 Cα Cβ Vα Vβ CD3 MHC II peptide

More information

Cross-presentation. Tumor Immunology. The Good News/Bad News Story. Tumor Immunity (Clynes)

Cross-presentation. Tumor Immunology. The Good News/Bad News Story. Tumor Immunity (Clynes) Cross-presentation CD8 Tolerance DC X Exogenous pathway In draining LN Immunity CD4 Virus X Innate activator- danger signals Tumor Immunology Does it exist? i.e., does the immune system recognize and eradicate

More information

Immunology Lecture 4. Clinical Relevance of the Immune System

Immunology Lecture 4. Clinical Relevance of the Immune System Immunology Lecture 4 The Well Patient: How innate and adaptive immune responses maintain health - 13, pg 169-181, 191-195. Immune Deficiency - 15 Autoimmunity - 16 Transplantation - 17, pg 260-270 Tumor

More information

Immunology for the Rheumatologist

Immunology for the Rheumatologist Immunology for the Rheumatologist Rheumatologists frequently deal with the immune system gone awry, rarely studying normal immunology. This program is an overview and discussion of the function of the

More information

Cellular Pathology of immunological disorders

Cellular Pathology of immunological disorders Cellular Pathology of immunological disorders SCBM344 Cellular and Molecular Pathology Witchuda Payuhakrit, Ph.D (Pathobiology) witchuda.pay@mahidol.ac.th Objectives Describe the etiology of immunological

More information

What is Autoimmunity?

What is Autoimmunity? Autoimmunity What is Autoimmunity? Robert Beatty MCB150 Autoimmunity is an immune response to self antigens that results in disease. The immune response to self is a result of a breakdown in immune tolerance.

More information

What is Autoimmunity?

What is Autoimmunity? Autoimmunity What is Autoimmunity? Robert Beatty MCB150 Autoimmunity is an immune response to self antigens that results in disease. The immune response to self is a result of a breakdown in immune tolerance.

More information

Central tolerance. Mechanisms of Immune Tolerance. Regulation of the T cell response

Central tolerance. Mechanisms of Immune Tolerance. Regulation of the T cell response Immunoregulation: A balance between activation and suppression that achieves an efficient immune response without damaging the host. Mechanisms of Immune Tolerance ACTIVATION (immunity) SUPPRESSION (tolerance)

More information

Mechanisms of Immune Tolerance

Mechanisms of Immune Tolerance Immunoregulation: A balance between activation and suppression that achieves an efficient immune response without damaging the host. ACTIVATION (immunity) SUPPRESSION (tolerance) Autoimmunity Immunodeficiency

More information

Diseases of Immunity 2017 CL Davis General Pathology. Paul W. Snyder, DVM, PhD Experimental Pathology Laboratories, Inc.

Diseases of Immunity 2017 CL Davis General Pathology. Paul W. Snyder, DVM, PhD Experimental Pathology Laboratories, Inc. Diseases of Immunity 2017 CL Davis General Pathology Paul W. Snyder, DVM, PhD Experimental Pathology Laboratories, Inc. Autoimmunity Reflects a loss of immunologic tolerance Mechanisms Auto-antibodies

More information

The Adaptive Immune Responses

The Adaptive Immune Responses The Adaptive Immune Responses The two arms of the immune responses are; 1) the cell mediated, and 2) the humoral responses. In this chapter we will discuss the two responses in detail and we will start

More information

Self-tolerance. Lack of immune responsiveness to an individual s own tissue antigens. Central Tolerance. Peripheral tolerance

Self-tolerance. Lack of immune responsiveness to an individual s own tissue antigens. Central Tolerance. Peripheral tolerance Autoimmunity Self-tolerance Lack of immune responsiveness to an individual s own tissue antigens Central Tolerance Peripheral tolerance Factors Regulating Immune Response Antigen availability Properties

More information

CANCER IMMUNOPATHOLOGY. Eryati Darwin Faculty of Medicine Andalas University

CANCER IMMUNOPATHOLOGY. Eryati Darwin Faculty of Medicine Andalas University CANCER IMMUNOPATHOLOGY Eryati Darwin Faculty of Medicine Andalas University Padang 18 Mei 2013 INTRODUCTION Tumor: cells that continue to replicate, fail to differentiate into specialized cells, and become

More information

ACTIVATION AND EFFECTOR FUNCTIONS OF CELL-MEDIATED IMMUNITY AND NK CELLS. Choompone Sakonwasun, MD (Hons), FRCPT

ACTIVATION AND EFFECTOR FUNCTIONS OF CELL-MEDIATED IMMUNITY AND NK CELLS. Choompone Sakonwasun, MD (Hons), FRCPT ACTIVATION AND EFFECTOR FUNCTIONS OF CELL-MEDIATED IMMUNITY AND NK CELLS Choompone Sakonwasun, MD (Hons), FRCPT Types of Adaptive Immunity Types of T Cell-mediated Immune Reactions CTLs = cytotoxic T lymphocytes

More information

Principles of Adaptive Immunity

Principles of Adaptive Immunity Principles of Adaptive Immunity Chapter 3 Parham Hans de Haard 17 th of May 2010 Agenda Recognition molecules of adaptive immune system Features adaptive immune system Immunoglobulins and T-cell receptors

More information

T-cell activation T cells migrate to secondary lymphoid tissues where they interact with antigen, antigen-presenting cells, and other lymphocytes:

T-cell activation T cells migrate to secondary lymphoid tissues where they interact with antigen, antigen-presenting cells, and other lymphocytes: Interactions between innate immunity & adaptive immunity What happens to T cells after they leave the thymus? Naïve T cells exit the thymus and enter the bloodstream. If they remain in the bloodstream,

More information

T-cell activation T cells migrate to secondary lymphoid tissues where they interact with antigen, antigen-presenting cells, and other lymphocytes:

T-cell activation T cells migrate to secondary lymphoid tissues where they interact with antigen, antigen-presenting cells, and other lymphocytes: Interactions between innate immunity & adaptive immunity What happens to T cells after they leave the thymus? Naïve T cells exit the thymus and enter the bloodstream. If they remain in the bloodstream,

More information

Adaptive immune responses: T cell-mediated immunity

Adaptive immune responses: T cell-mediated immunity MICR2209 Adaptive immune responses: T cell-mediated immunity Dr Allison Imrie allison.imrie@uwa.edu.au 1 Synopsis: In this lecture we will discuss the T-cell mediated immune response, how it is activated,

More information

ACTIVATION OF T LYMPHOCYTES AND CELL MEDIATED IMMUNITY

ACTIVATION OF T LYMPHOCYTES AND CELL MEDIATED IMMUNITY ACTIVATION OF T LYMPHOCYTES AND CELL MEDIATED IMMUNITY The recognition of specific antigen by naïve T cell induces its own activation and effector phases. T helper cells recognize peptide antigens through

More information

Tumor Immunity (Clynes)

Tumor Immunity (Clynes) Tumor Immunology Does it exist? i.e., does the immune system recognize and eradicate cancer cells? Is there any evidence for immunological surveillance (Burnett and Thomas)? How can the immune system recognize

More information

MOLECULAR IMMUNOLOGY Manipulation of immune response Autoimmune diseases & the pathogenic mechanism

MOLECULAR IMMUNOLOGY Manipulation of immune response Autoimmune diseases & the pathogenic mechanism MOLECULAR IMMUNOLOGY Manipulation of immune response Autoimmune diseases & the pathogenic mechanism SCHMAIEL SHIRDEL CONTENT 2 Introduction Autoimmune diseases Classification Involved components Autoimmune

More information

Tumor Immunity (Clynes)

Tumor Immunity (Clynes) Tumor Immunology Does it exist? i.e., does the immune system recognize and eradicate cancer cells? Is there any evidence for immunological surveillance (Burnett and Thomas)? How can the immune system recognize

More information

CELL BIOLOGY - CLUTCH CH THE IMMUNE SYSTEM.

CELL BIOLOGY - CLUTCH CH THE IMMUNE SYSTEM. !! www.clutchprep.com CONCEPT: OVERVIEW OF HOST DEFENSES The human body contains three lines of against infectious agents (pathogens) 1. Mechanical and chemical boundaries (part of the innate immune system)

More information

HYPERSENSITIVITY REACTIONS D R S H O AI B R AZ A

HYPERSENSITIVITY REACTIONS D R S H O AI B R AZ A HYPERSENSITIVITY REACTIONS D R S H O AI B R AZ A HYPERSENSITIVITY REACTIONS Are exaggerated immune response upon antigenic stimulation Individuals who have been previously exposed to an antigen are said

More information

Immunology Basics Relevant to Cancer Immunotherapy: T Cell Activation, Costimulation, and Effector T Cells

Immunology Basics Relevant to Cancer Immunotherapy: T Cell Activation, Costimulation, and Effector T Cells Immunology Basics Relevant to Cancer Immunotherapy: T Cell Activation, Costimulation, and Effector T Cells Andrew H. Lichtman, M.D. Ph.D. Department of Pathology Brigham and Women s Hospital and Harvard

More information

Cellular Immune response. Jianzhong Chen, Ph.D Institute of immunology, ZJU

Cellular Immune response. Jianzhong Chen, Ph.D Institute of immunology, ZJU Cellular Immune response Jianzhong Chen, Ph.D Institute of immunology, ZJU Concept of adaptive immune response T cell-mediated adaptive immune response I. Concept of immune response A collective and coordinated

More information

How the Innate Immune System Profiles Pathogens

How the Innate Immune System Profiles Pathogens How the Innate Immune System Profiles Pathogens Receptors on macrophages, neutrophils, dendritic cells for bacteria and viruses Broad specificity - Two main groups of bacteria: gram positive, gram-negative

More information

Scott Abrams, Ph.D. Professor of Oncology, x4375 Kuby Immunology SEVENTH EDITION

Scott Abrams, Ph.D. Professor of Oncology, x4375 Kuby Immunology SEVENTH EDITION Scott Abrams, Ph.D. Professor of Oncology, x4375 scott.abrams@roswellpark.org Kuby Immunology SEVENTH EDITION CHAPTER 13 Effector Responses: Cell- and Antibody-Mediated Immunity Copyright 2013 by W. H.

More information

SINGLE CHOICE. 5. The gamma invariant chain binds to this molecule during its intracytoplasmic transport. A TCR B BCR C MHC II D MHC I E FcγR

SINGLE CHOICE. 5. The gamma invariant chain binds to this molecule during its intracytoplasmic transport. A TCR B BCR C MHC II D MHC I E FcγR A Name: Group: SINGLE CHOICE 1. Which is the most important ligand of TLR5? A endospore B flagellin C polysaccharide capsule D DNA E pilus 2. The antibody-binding site is formed primarily by... A the constant

More information

Third line of Defense

Third line of Defense Chapter 15 Specific Immunity and Immunization Topics -3 rd of Defense - B cells - T cells - Specific Immunities Third line of Defense Specific immunity is a complex interaction of immune cells (leukocytes)

More information

Tumors arise from accumulated genetic mutations. Tumor Immunology (Cancer)

Tumors arise from accumulated genetic mutations. Tumor Immunology (Cancer) Tumor Immunology (Cancer) Tumors arise from accumulated genetic mutations Robert Beatty MCB150 Mutations Usually have >6 mutations in both activation/growth factors and tumor suppressor genes. Types of

More information

Defensive mechanisms include :

Defensive mechanisms include : Acquired Immunity Defensive mechanisms include : 1) Innate immunity (Natural or Non specific) 2) Acquired immunity (Adaptive or Specific) Cell-mediated immunity Humoral immunity Two mechanisms 1) Humoral

More information

Darwinian selection and Newtonian physics wrapped up in systems biology

Darwinian selection and Newtonian physics wrapped up in systems biology Darwinian selection and Newtonian physics wrapped up in systems biology Concept published in 1957* by Macfarland Burnet (1960 Nobel Laureate for the theory of induced immune tolerance, leading to solid

More information

SEVENTH EDITION CHAPTER

SEVENTH EDITION CHAPTER Judy Owen Jenni Punt Sharon Stranford Kuby Immunology SEVENTH EDITION CHAPTER 16 Tolerance, Autoimmunity, and Transplantation Copyright 2013 by W. H. Freeman and Company Immune tolerance: history * Some

More information

Third line of Defense. Topic 8 Specific Immunity (adaptive) (18) 3 rd Line = Prophylaxis via Immunization!

Third line of Defense. Topic 8 Specific Immunity (adaptive) (18) 3 rd Line = Prophylaxis via Immunization! Topic 8 Specific Immunity (adaptive) (18) Topics - 3 rd Line of Defense - B cells - T cells - Specific Immunities 1 3 rd Line = Prophylaxis via Immunization! (a) A painting of Edward Jenner depicts a cow

More information

Determinants of Immunogenicity and Tolerance. Abul K. Abbas, MD Department of Pathology University of California San Francisco

Determinants of Immunogenicity and Tolerance. Abul K. Abbas, MD Department of Pathology University of California San Francisco Determinants of Immunogenicity and Tolerance Abul K. Abbas, MD Department of Pathology University of California San Francisco EIP Symposium Feb 2016 Why do some people respond to therapeutic proteins?

More information

Physiology Unit 3. ADAPTIVE IMMUNITY The Specific Immune Response

Physiology Unit 3. ADAPTIVE IMMUNITY The Specific Immune Response Physiology Unit 3 ADAPTIVE IMMUNITY The Specific Immune Response In Physiology Today The Adaptive Arm of the Immune System Specific Immune Response Internal defense against a specific pathogen Acquired

More information

Tolerance, autoimmunity and the pathogenesis of immunemediated inflammatory diseases. Abul K. Abbas UCSF

Tolerance, autoimmunity and the pathogenesis of immunemediated inflammatory diseases. Abul K. Abbas UCSF Tolerance, autoimmunity and the pathogenesis of immunemediated inflammatory diseases Abul K. Abbas UCSF Balancing lymphocyte activation and control Activation Effector T cells Tolerance Regulatory T cells

More information

I. Defense Mechanisms Chapter 15

I. Defense Mechanisms Chapter 15 10/24/11 I. Defense Mechanisms Chapter 15 Immune System Lecture PowerPoint Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Defense Mechanisms Protect against

More information

All animals have innate immunity, a defense active immediately upon infection Vertebrates also have adaptive immunity

All animals have innate immunity, a defense active immediately upon infection Vertebrates also have adaptive immunity 1 2 3 4 5 6 7 8 9 The Immune System All animals have innate immunity, a defense active immediately upon infection Vertebrates also have adaptive immunity Figure 43.2 In innate immunity, recognition and

More information

The T cell receptor for MHC-associated peptide antigens

The T cell receptor for MHC-associated peptide antigens 1 The T cell receptor for MHC-associated peptide antigens T lymphocytes have a dual specificity: they recognize polymporphic residues of self MHC molecules, and they also recognize residues of peptide

More information

Effector T Cells and

Effector T Cells and 1 Effector T Cells and Cytokines Andrew Lichtman, MD PhD Brigham and Women's Hospital Harvard Medical School 2 Lecture outline Cytokines Subsets of CD4+ T cells: definitions, functions, development New

More information

COURSE: Medical Microbiology, PAMB 650/720 - Fall 2008 Lecture 16

COURSE: Medical Microbiology, PAMB 650/720 - Fall 2008 Lecture 16 COURSE: Medical Microbiology, PAMB 650/720 - Fall 2008 Lecture 16 Tumor Immunology M. Nagarkatti Teaching Objectives: Introduction to Cancer Immunology Know the antigens expressed by cancer cells Understand

More information

The Immune System. by Dr. Carmen Rexach Physiology Mt San Antonio College

The Immune System. by Dr. Carmen Rexach Physiology Mt San Antonio College The Immune System by Dr. Carmen Rexach Physiology Mt San Antonio College What is the immune system? defense system found in vertebrates Two categories Nonspecific specific provides protection from pathogens

More information

chapter 17: specific/adaptable defenses of the host: the immune response

chapter 17: specific/adaptable defenses of the host: the immune response chapter 17: specific/adaptable defenses of the host: the immune response defense against infection & illness body defenses innate/ non-specific adaptable/ specific epithelium, fever, inflammation, complement,

More information

Autoimmunity. Autoimmunity arises because of defects in central or peripheral tolerance of lymphocytes to selfantigens

Autoimmunity. Autoimmunity arises because of defects in central or peripheral tolerance of lymphocytes to selfantigens Autoimmunity Autoimmunity arises because of defects in central or peripheral tolerance of lymphocytes to selfantigens Autoimmune disease can be caused to primary defects in B cells, T cells and possibly

More information

Objectives. Abbas Chapter 11: Immunological Tolerance. Question 1. Question 2. Question 3. Definitions

Objectives. Abbas Chapter 11: Immunological Tolerance. Question 1. Question 2. Question 3. Definitions Objectives Abbas Chapter 11: Immunological Tolerance Christina Ciaccio, MD Children s Mercy Hospitals and Clinics February 1, 2010 To introduce the concept of immunologic tolerance To understand what factors

More information

TCR, MHC and coreceptors

TCR, MHC and coreceptors Cooperation In Immune Responses Antigen processing how peptides get into MHC Antigen processing involves the intracellular proteolytic generation of MHC binding proteins Protein antigens may be processed

More information

[AUTOIMMUNITY] July 14, 2013

[AUTOIMMUNITY] July 14, 2013 This sheet includes only the extra notes. Slide 5,6: [AUTOIMMUNITY] July 14, 2013 Autoimmunity is the condition or case where the immune system is activated by self antigensand when the immune system no

More information

General Overview of Immunology. Kimberly S. Schluns, Ph.D. Associate Professor Department of Immunology UT MD Anderson Cancer Center

General Overview of Immunology. Kimberly S. Schluns, Ph.D. Associate Professor Department of Immunology UT MD Anderson Cancer Center General Overview of Immunology Kimberly S. Schluns, Ph.D. Associate Professor Department of Immunology UT MD Anderson Cancer Center Objectives Describe differences between innate and adaptive immune responses

More information

1. The scavenger receptor, CD36, functions as a coreceptor for which TLR? a. TLR ½ b. TLR 3 c. TLR 4 d. TLR 2/6

1. The scavenger receptor, CD36, functions as a coreceptor for which TLR? a. TLR ½ b. TLR 3 c. TLR 4 d. TLR 2/6 Allergy and Immunology Review Corner: Cellular and Molecular Immunology, 8th Edition By Abul K. Abbas, MBBS, Andrew H. H. Lichtman, MD, PhD and Shiv Pillai, MBBS, PhD. Chapter 4 (pages 62-74): Innate Immunity

More information

LESSON 2: THE ADAPTIVE IMMUNITY

LESSON 2: THE ADAPTIVE IMMUNITY Introduction to immunology. LESSON 2: THE ADAPTIVE IMMUNITY Today we will get to know: The adaptive immunity T- and B-cells Antigens and their recognition How T-cells work 1 The adaptive immunity Unlike

More information

Immunology. T-Lymphocytes. 16. Oktober 2014, Ruhr-Universität Bochum Karin Peters,

Immunology. T-Lymphocytes. 16. Oktober 2014, Ruhr-Universität Bochum Karin Peters, Immunology T-Lymphocytes 16. Oktober 2014, Ruhr-Universität Bochum Karin Peters, karin.peters@rub.de The role of T-effector cells in the immune response against microbes cellular immunity humoral immunity

More information

Immune tolerance, autoimmune diseases

Immune tolerance, autoimmune diseases Immune tolerance, autoimmune diseases Immune tolerance Central: negative selection during thymic education deletion of autoreactive B-lymphocytes in bone marrow Positive selection in the thymus Negative

More information

Attribution: University of Michigan Medical School, Department of Microbiology and Immunology

Attribution: University of Michigan Medical School, Department of Microbiology and Immunology Attribution: University of Michigan Medical School, Department of Microbiology and Immunology License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution

More information

Allergy and Immunology Review Corner: Chapter 19 of Immunology IV: Clinical Applications in Health and Disease, by Joseph A. Bellanti, MD.

Allergy and Immunology Review Corner: Chapter 19 of Immunology IV: Clinical Applications in Health and Disease, by Joseph A. Bellanti, MD. Allergy and Immunology Review Corner: Chapter 19 of Immunology IV: Clinical Applications in Health and Disease, by Joseph A. Bellanti, MD. Chapter 19: Tolerance, Autoimmunity, and Autoinflammation Prepared

More information

Chapter 17B: Adaptive Immunity Part II

Chapter 17B: Adaptive Immunity Part II Chapter 17B: Adaptive Immunity Part II 1. Cell-Mediated Immune Response 2. Humoral Immune Response 3. Antibodies 1. The Cell-Mediated Immune Response Basic Steps of Cell-Mediated IR 1 2a CD4 + MHC cl.

More information

Tumor Immunology. Wirsma Arif Harahap Surgical Oncology Consultant

Tumor Immunology. Wirsma Arif Harahap Surgical Oncology Consultant Tumor Immunology Wirsma Arif Harahap Surgical Oncology Consultant 1) Immune responses that develop to cancer cells 2) Escape of cancer cells 3) Therapies: clinical and experimental Cancer cells can be

More information

AUTOIMMUNITY CLINICAL CORRELATES

AUTOIMMUNITY CLINICAL CORRELATES AUTOIMMUNITY CLINICAL CORRELATES Pamela E. Prete, MD, FACP, FACR Section Chief, Rheumatology VA Healthcare System, Long Beach, CA Professor of Medicine, Emeritus University of California, Irvine Colonel

More information

AUTOIMMUNITY TOLERANCE TO SELF

AUTOIMMUNITY TOLERANCE TO SELF AUTOIMMUNITY CLINICAL CORRELATES Pamela E. Prete, MD, FACP, FACR Section Chief, Rheumatology VA Healthcare System, Long Beach, CA Professor of Medicine, Emeritus University of California, Irvine Colonel

More information

Disruption of Healthy Tissue by the Immune Response Autoimmune diseases: Inappropriate immune response against self-components

Disruption of Healthy Tissue by the Immune Response Autoimmune diseases: Inappropriate immune response against self-components Chapter 13 Disruption of Healthy Tissue by the Immune Response Autoimmune diseases: Inappropriate immune response against self-components Humoral imm 胞外 胞內 CMI: CD8 T Self Ag Self(Auto) antigen (encoded

More information

Autoimmune Diseases. Betsy Kirchner CNP The Cleveland Clinic

Autoimmune Diseases. Betsy Kirchner CNP The Cleveland Clinic Autoimmune Diseases Betsy Kirchner CNP The Cleveland Clinic Disclosures (financial) No relevant disclosures Learning Objectives Explain the pathophysiology of autoimmune disease Discuss safe administration

More information

C. Incorrect! MHC class I molecules are not involved in the process of bridging in ADCC.

C. Incorrect! MHC class I molecules are not involved in the process of bridging in ADCC. Immunology - Problem Drill 13: T- Cell Mediated Immunity Question No. 1 of 10 1. During Antibody-dependent cell mediated cytotoxicity (ADCC), the antibody acts like a bridge between the specific antigen

More information

Adaptive Immune System

Adaptive Immune System Short Course on Immunology Adaptive Immune System Bhargavi Duvvuri Ph.D IIIrd Year (Immunology) bhargavi@yorku.ca Supervisor Dr.Gillian E Wu Professor, School of Kinesiology and Health Sciences York University,

More information

Microbiology 204: Cellular and Molecular Immunology

Microbiology 204: Cellular and Molecular Immunology Microbiology 204: Cellular and Molecular Immunology Class meets MWF 1:00-2:30PM (*exceptions: no class Fri Sept 23, Fri Oct 14, Nov 11, or Wed Nov 23) Lectures are open to auditors and will be live-streamed

More information

Tolerance 2. Regulatory T cells; why tolerance fails. Abul K. Abbas UCSF. FOCiS

Tolerance 2. Regulatory T cells; why tolerance fails. Abul K. Abbas UCSF. FOCiS 1 Tolerance 2. Regulatory T cells; why tolerance fails Abul K. Abbas UCSF FOCiS 2 Lecture outline Regulatory T cells: functions and clinical relevance Pathogenesis of autoimmunity: why selftolerance fails

More information

Bachelor of Chinese Medicine ( ) AUTOIMMUNE DISEASES

Bachelor of Chinese Medicine ( ) AUTOIMMUNE DISEASES Bachelor of Chinese Medicine (2002 2003) BCM II Dr. EYT Chan February 6, 2003 9:30 am 1:00 pm Rm 134 UPB AUTOIMMUNE DISEASES 1. Introduction Diseases may be the consequence of an aberrant immune response,

More information

The Immune System All animals have innate immunity, a defense active immediately

The Immune System All animals have innate immunity, a defense active immediately The Immune System All animals have innate immunity, a defense active immediately upon infection Vertebrates also have adaptive immunity Figure 43.2 INNATE IMMUNITY (all animals) Recognition of traits shared

More information

Cell Mediated Immunity CELL MEDIATED IMMUNITY. Basic Elements of Cell Mediated Immunity (CMI) Antibody-dependent cell-mediated cytotoxicity (ADCC)

Cell Mediated Immunity CELL MEDIATED IMMUNITY. Basic Elements of Cell Mediated Immunity (CMI) Antibody-dependent cell-mediated cytotoxicity (ADCC) Chapter 16 CELL MEDIATED IMMUNITY Cell Mediated Immunity Also known as Cellular Immunity or CMI The effector phase T cells Specificity for immune recognition reactions TH provide cytokines CTLs do the

More information

M.Sc. III Semester Biotechnology End Semester Examination, 2013 Model Answer LBTM: 302 Advanced Immunology

M.Sc. III Semester Biotechnology End Semester Examination, 2013 Model Answer LBTM: 302 Advanced Immunology Code : AS-2246 M.Sc. III Semester Biotechnology End Semester Examination, 2013 Model Answer LBTM: 302 Advanced Immunology A. Select one correct option for each of the following questions:- 2X10=10 1. (b)

More information

Immunology. Lecture- 8

Immunology. Lecture- 8 Immunology Lecture- 8 Immunological Disorders Immunodeficiency Autoimmune Disease Hypersensitivities Immunodeficiency 1. Immunodeficiency --> abnormal production or function of immune cells, phagocytes,

More information

Immune surveillance hypothesis (Macfarlane Burnet, 1950s)

Immune surveillance hypothesis (Macfarlane Burnet, 1950s) TUMOR-IMMUNITÄT A.K. Abbas, A.H. Lichtman, S. Pillai (6th edition, 2007) Cellular and Molecular Immunology Saunders Elsevier Chapter 17, immunity to tumors Immune surveillance hypothesis (Macfarlane Burnet,

More information

Effector mechanisms of cell-mediated immunity: Properties of effector, memory and regulatory T cells

Effector mechanisms of cell-mediated immunity: Properties of effector, memory and regulatory T cells ICI Basic Immunology course Effector mechanisms of cell-mediated immunity: Properties of effector, memory and regulatory T cells Abul K. Abbas, MD UCSF Stages in the development of T cell responses: induction

More information

Adaptive Immunity: Humoral Immune Responses

Adaptive Immunity: Humoral Immune Responses MICR2209 Adaptive Immunity: Humoral Immune Responses Dr Allison Imrie 1 Synopsis: In this lecture we will review the different mechanisms which constitute the humoral immune response, and examine the antibody

More information

IMMUNITY AND DISEASE II

IMMUNITY AND DISEASE II IMMUNITY AND DISEASE II A. Evolution of the immune system. 1. Figure 1--57.25, p. 1167 from Raven and Johnson Biology 6 th ed. shows how the immune system evolved. Figure 1. How the immune system evolved.

More information

MAF Shalaby Prof. Rheumatology Al Azhar University, Cairo, Egypt.

MAF Shalaby Prof. Rheumatology Al Azhar University, Cairo, Egypt. MAF Shalaby Prof. Rheumatology Al Azhar University, Cairo, Egypt. AUTOIMMUNE DISEASE RA SLE VASCULITIS RELAPSING POLYCHONDRITIS SS DM/PM SJOGREN S SYNDROME RHEUMATOID ARTHRITIS Classically immune mediated

More information

The Adaptive Immune Response. T-cells

The Adaptive Immune Response. T-cells The Adaptive Immune Response T-cells T Lymphocytes T lymphocytes develop from precursors in the thymus. Mature T cells are found in the blood, where they constitute 60% to 70% of lymphocytes, and in T-cell

More information

Time course of immune response

Time course of immune response Time course of immune response Route of entry Route of entry (cont.) Steps in infection Barriers to infection Mf receptors Facilitate engulfment Glucan, mannose Scavenger CD11b/CD18 Allows immediate response

More information

Title: NATURAL KILLER CELL FUNCTIONS AND SURFACE RECEPTORS

Title: NATURAL KILLER CELL FUNCTIONS AND SURFACE RECEPTORS LECTURE: 14 Title: NATURAL KILLER CELL FUNCTIONS AND SURFACE RECEPTORS LEARNING OBJECTIVES: The student should be able to: Describe the general morphology of the NK-cells. Enumerate the different functions

More information

FOCiS. Lecture outline. The immunological equilibrium: balancing lymphocyte activation and control. Immunological tolerance and immune regulation -- 1

FOCiS. Lecture outline. The immunological equilibrium: balancing lymphocyte activation and control. Immunological tolerance and immune regulation -- 1 1 Immunological tolerance and immune regulation -- 1 Abul K. Abbas UCSF FOCiS 2 Lecture outline Principles of immune regulation Self-tolerance; mechanisms of central and peripheral tolerance Inhibitory

More information

T cell-mediated immunity

T cell-mediated immunity T cell-mediated immunity Overview For microbes within phagosomes in phagocytes.cd4+ T lymphocytes (TH1) Activate phagocyte by cytokines studies on Listeria monocytogenes For microbes infecting and replicating

More information

Immune system. Self/non-self recognition. Memory. The state of protection from infectious disease. Acceptance vs rejection

Immune system. Self/non-self recognition. Memory. The state of protection from infectious disease. Acceptance vs rejection Immune system The state of protection from infectious disease Self/non-self recognition 自我 非我 Acceptance vs rejection Memory 疫苗 2 Microbes Commensal Microbes 共生菌 Normal flora: usually confined to certain

More information

The Lymphatic System and Body Defenses

The Lymphatic System and Body Defenses PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College The Lymphatic System and Body Defenses 12PART B Adaptive Defense System: Third Line of Defense Immune

More information

T Lymphocyte Activation and Costimulation. FOCiS. Lecture outline

T Lymphocyte Activation and Costimulation. FOCiS. Lecture outline 1 T Lymphocyte Activation and Costimulation Abul K. Abbas, MD UCSF FOCiS 2 Lecture outline T cell activation Costimulation, the B7:CD28 family Inhibitory receptors of T cells Targeting costimulators for

More information

Antigen Presentation and T Lymphocyte Activation. Abul K. Abbas UCSF. FOCiS

Antigen Presentation and T Lymphocyte Activation. Abul K. Abbas UCSF. FOCiS 1 Antigen Presentation and T Lymphocyte Activation Abul K. Abbas UCSF FOCiS 2 Lecture outline Dendritic cells and antigen presentation The role of the MHC T cell activation Costimulation, the B7:CD28 family

More information

PLAN. Réponses B thymodépendantes et thymoindépendantes. B cell development and classification. B cell activation. Thymodependent B(2) cell response

PLAN. Réponses B thymodépendantes et thymoindépendantes. B cell development and classification. B cell activation. Thymodependent B(2) cell response Réponses B thymodépendantes et thymoindépendantes PLAN B cell development and classification B cell activation Thymodependent B(2) cell response BMC 423 (IF) - 2007 Antonino Nicoletti Thymo-independent

More information

Autoimmune diseases, their pathogenic mechanisms and treatment of unwanted immune responses (Janeway s Immunobiology)

Autoimmune diseases, their pathogenic mechanisms and treatment of unwanted immune responses (Janeway s Immunobiology) Autoimmune diseases, their pathogenic mechanisms and treatment of unwanted immune responses (Janeway s Immunobiology) Picture source: https://www.klini kum.uniheidelberg.de/fil eadmin/pressest elle/pm_neu/20

More information

Bihong Zhao, M.D, Ph.D Department of Pathology

Bihong Zhao, M.D, Ph.D Department of Pathology Bihong Zhao, M.D, Ph.D Department of Pathology 04-28-2009 Is tumor self or non-self? How are tumor antigens generated? What are they? How does immune system respond? Introduction Tumor Antigens/Categories

More information

Autoimmunity Origins. Horror autotoxicus: Literally, the horror of self-toxicity.

Autoimmunity Origins. Horror autotoxicus: Literally, the horror of self-toxicity. Autoimmunity Autoimmunity Origins Horror autotoxicus: Literally, the horror of self-toxicity. A term coined by the German immunologist Paul Ehrlich (1854-1915) to describe the body's innate aversion to

More information

T cell maturation. T-cell Maturation. What allows T cell maturation?

T cell maturation. T-cell Maturation. What allows T cell maturation? T-cell Maturation What allows T cell maturation? Direct contact with thymic epithelial cells Influence of thymic hormones Growth factors (cytokines, CSF) T cell maturation T cell progenitor DN DP SP 2ry

More information

Page # Lecture 8: Immune Dysfunction - Immunopathology. Four Types of Hypersensitivity. Friend of Foe? Autoimmune disease Immunodeficiency

Page # Lecture 8: Immune Dysfunction - Immunopathology. Four Types of Hypersensitivity. Friend of Foe? Autoimmune disease Immunodeficiency Lecture 8: Immune Dysfunction - Immunopathology Autoimmune disease Immunodeficiency Allergy and Asthma Graft rejection and Lupus Friend of Foe? Four Types of Hypersensitivity Allergic Responses - Type

More information

Blood and Immune system Acquired Immunity

Blood and Immune system Acquired Immunity Blood and Immune system Acquired Immunity Immunity Acquired (Adaptive) Immunity Defensive mechanisms include : 1) Innate immunity (Natural or Non specific) 2) Acquired immunity (Adaptive or Specific) Cell-mediated

More information

Innate immunity. Abul K. Abbas University of California San Francisco. FOCiS

Innate immunity. Abul K. Abbas University of California San Francisco. FOCiS 1 Innate immunity Abul K. Abbas University of California San Francisco FOCiS 2 Lecture outline Components of innate immunity Recognition of microbes and dead cells Toll Like Receptors NOD Like Receptors/Inflammasome

More information

The Immune System: Innate and Adaptive Body Defenses Outline PART 1: INNATE DEFENSES 21.1 Surface barriers act as the first line of defense to keep

The Immune System: Innate and Adaptive Body Defenses Outline PART 1: INNATE DEFENSES 21.1 Surface barriers act as the first line of defense to keep The Immune System: Innate and Adaptive Body Defenses Outline PART 1: INNATE DEFENSES 21.1 Surface barriers act as the first line of defense to keep invaders out of the body (pp. 772 773; Fig. 21.1; Table

More information

Chapter 10 (pages ): Differentiation and Functions of CD4+ Effector T Cells Prepared by Kristen Dazy, MD, Scripps Clinic Medical Group

Chapter 10 (pages ): Differentiation and Functions of CD4+ Effector T Cells Prepared by Kristen Dazy, MD, Scripps Clinic Medical Group FIT Board Review Corner September 2015 Welcome to the FIT Board Review Corner, prepared by Andrew Nickels, MD, and Sarah Spriet, DO, senior and junior representatives of ACAAI's Fellows-In-Training (FITs)

More information