Imaging Genetics: Heritability, Linkage & Association
|
|
- Preston Stanley
- 1 years ago
- Views:
Transcription
1 Imaging Genetics: Heritability, Linkage & Association David C. Glahn, PhD Olin Neuropsychiatry Research Center & Department of Psychiatry, Yale University July 17, 2011
2 Memory Activation & APOE ε4 Risk gene for Alzheimer s 16 APOE ε4 14 APOE ε3 Bookheimer et al., N Engl J Med, 2000
3 Fear Response & Serotonin Transporter Gene (SLC6A4) Hariri et al., Science, 2002
4 Human Genome 23 Chromosomes ~20-25,000 genes ~3 billion base pairs
5 Approaches to Genotyping Candidate genes: genotype only markers in genes potentially related to the trait. Pro: fast and easy, may be able to be more thorough with a higher density of markers Con: must get lucky in choice of genes, lower potential for something really novel Genome screen: genotype anonymous markers spanning the genome at regular intervals Pro: can identify previously unknown genes, covers all of the possibilities Con: slower and more expensive, may have lower marker density which could translate to less power
6 Questions for the Study of Complex Trait Genetics 1) Is this trait influenced by genetic factors? How strong are these genetic influences? 2) Which traits are influenced by the same genes? 3) Where are the genes that influence a trait? 4) What are the specific genes that influence the trait? 5) What specific genetic variants influence the trait and how do they interact with each other and with the environment?
7 Question 1: Heritability Is this trait influenced by genetic factors? How strong are these genetic influences?
8 Defining Heritability Phenotype (P) = Genotype (G) + Environment (E)
9 Variance Decomposition σp=σg +σe σg=σa +σd µ σ 2 µ ^= Σx i / n σ^ 2 = Σ(x - µ) ^ 2 / n Almasy & Blangero, Am J Hum Genet, σe =σc +σeu σ 2 p = total phenotypic 2 = genetic σ g σ e 2 = environmental 2 = additive genetic σ a σ 2 d = dominance
10 Narrow-Sense Heritability (h 2 ) Heritability (h 2 ): the proportion of the phenotypic variance in a trait attributable to the additive effects of genes. 2 h 2 = σ a σ 2 p
11 Conceptualizing Heritability Heritability estimates vary between 0 and 1 0, genetic factors do not influence trait variance 1, trait variance is completely under genetic control If h 2 =0.5, then 50% of phenotypic variation is due to genetic variation. Not that the trait is 50% caused by genetics Stronger heritability does not imply simple genetics
12 Estimating Heritability with Twins Falconer s Method h 2 =2*(r MZ -r DZ ) r MZ = correlation between monozygotic co-twins r DZ = correlation between dizygotic co-twins
13 Variance Component Approach Modeling the Phenotype: p =µ+σβ i x i + µ Population mean a +d +e β Regression coefficients x Scaled covariates a Additive genetic effects d Dominance genetic effects e Random environmental effects
14 Simple Kinship Matrix Dad 1 2 Mom 3 D M D 1 0 ½ ½ ½ M 0 1 ½ ½ ½ 1 ½ ½ 1 ½ ½ 2 ½ ½ ½ 1 ½ 3 ½ ½ ½ ½ 1
15 Kinship Matrix ½ ½ ½ ½ 4 ½ ½ 0 1 ¼ ½ ½ ¼ 1
16 Gray-Matter Thickness Heritability Thompson et al., Nat Neuro, MZ / 10 DZ pairs
17 Gray-Matter Thickness Heritability Kremen et al., NeuroImage, MZ / 92 DZ pairs
18 Cortical Thickness & Surface Area Winkler et al., NeuroImage, family members
19 White-Matter Tracts (DTI) h 2 Kochunov et al., NeuroImage, family members
20 White-Matter Hyperintensity h 2 Total Cranial: 0.91 Brain Parenchyma: 0.92 WMH: 0.73 Carmelli et al., Stroke, MZ / 71 DZ pairs
21 Task Based fmri Heritability Koten et al., Science, MZ pairs / 10 sibs
22 Resting State fmri Heritability h 2 = Glahn et al., Proc Nat Sci USA, family members
23 Limitations of Heritability Estimates 1. Heritability is a population level parameter, summarizing the strength of genetic influences on variation in a trait among members of the population. It doesn t tell you anything about particular individuals. 2. Heritability is an aggregate of the effects of multiple genes. It tells you nothing about how many genes influence a phenotype. A high heritability is not necessarily better if it is due to many, many genes.
24 Question 2: Pleiotropy Which traits are influenced by the same genes?
25 Levels of Pleiotropy No Pleiotropy Trait 1 Trait 2 Partial Pleiotropy Trait 1 Trait 2 Full Pleiotropy Trait 1 Trait 2
26 Genetic Correlation (Pleiotropy) Genetic correlation (ρ g ): a measure of the overlap in genetic effects between traits. ρ g varies from -1 to 1 0 = no pleiotropy; -1 or 1 = complete pleiotropy
27 Cortical Thickness & Surface Area Schmitt et al., Cerebral Cortex, MZ / 47 DZ / 228 others Winkler et al., NeuroImage, family members
28 Cortical Thinning & IQ ρ g = 1.0/1.0 ρ g = 1.0/0.7 Brans et al., J Neurosci, MZ / 84 DZ pairs
29 White Matter Tracts & Working Memory Superior longitudinal fasciculus Spatial DRT: ρ g = Karlsgodt et al., J Neurosci, family members
30 Question 3: Localization Where are the genes that influence a trait?
31 Two Common Methods for Gene Localization Linkage analyses: test for co-segregation of phenotype and genotype within families - a function of physical connections of genes on chromosomes Association analyses: test for deviations of phenotype-genotype combinations from that predicted by their separate frequencies - a function of linkage disequilibrium created by population history
32 Association Studies Pro: Can be done with unrelated individuals. Statistical methods easy and fast. May be able to detect loci of smaller effect with a given sample size. Con: Requires disequilibrium, which may not be present, making power difficult to estimate. Susceptible to allelic heterogeneity.
33 Genome Wide Association Tests for correlation between genotype and phenotype Association analyses work when: 1) your genotyped marker is a functional polymorphism 2) your genotyped marker is in disequilibrium with a functional polymorphism Currently: 700K to 1.5Mil SNPs
34 Linkage Disequilibrium (LD) Linkage disequilibrium is the non-random association of alleles at two or more loci LD = the population frequency of allelic combinations the expected combinations from random formation of haplotypes Level of LD is influenced by a number of factors including genetic linkage, selection, the rate of recombination, the rate of mutation, genetic drift, non-random mating, and population structure. LD is unpredictable
35 Association, LD & Haplotypes Unlikely that functional variants are typed Association studies are dependent on LD between a genotyped marker and a functional variant. May change with complete sequencing
36 Multiple testing: p-values A p-value of 0.05 implies that 5% of the time we will reject the null hypothesis (i.e. conclude that we have an association) when the null hypothesis is actually correct If we test 100 SNPs and each time we use a p- value of 0.05 as our cutoff for significance, we would expect 5 of those SNPs to be significant (p < 0.05) just by chance
37 Multiple testing The simplest correction is the Bonferroni: multiply each p-value by the total number of tests, or divide the significance threshold required by the number of tests (0.05 / #). For 550K SNPs, requires p=1.2x10-7 This maintains an experiment-wide significance threshold, but may be too conservative when the tests are correlated, as they might be if some of the markers tested are in LD with each other.
38 Cortical Thickness GWA Association found at rs (p=4.0x10-10), chr 13q31, near SLIT- & NTRK-like family, member 6. SLITRKs are expressed predominantly in neural tissues and have neurite-modulating activity. Associated with Tourette's Syndrome Glahn et al., ACNP, 2009
39 Temporal Lobe GWA n=742 rs p=1.3x10-7 rs P=3.1x10-7 Stein et al., NeuroImage, 2010
40 Stein et al., NeuroImage, 2010 VBM & GWA
41 Limitations of Association A QTL may be in equilibrium with the other polymorphisms surrounding it. Disequilibrium need not be present. Since LD need not be present, negative association results have implications only for the marker you have tested, lack of association does not exclude the gene or region. Population Stratification: If the sample contains multiple populations that differ in the trait of interest, any locus whose allele frequencies differ between the populations will show association
42 Example: Hypertension AB AB AB AA AA AA AB AB African Americans 70% A, 30% B AB AB BB BB AA AA AB AB European Americans 50% A, 50% B
43 Example: Hypertension AB AB AA AB Affected 64% A, 36% B AB AA AB AA AB AB BB BB AA AA AB AB Unaffected 56% A, 44% B
44 Minimizing Limitations of Association 1. Match cases and controls carefully or try to obtain subjects from a single well defined population. 2. Use one of a variety of statistical approaches designed to deal with population stratification (e.g. TDT, genomic control)
45 Linkage Studies Pro: Power to find a gene can be more easily quantified. Guaranteed to work if the sample size is large enough. Not influenced by allelic heterogeneity. Con: Need a large sample of related individuals. Large enough may be too large to be practical.
46 Genetic Linkage Defined Genetic loci that are physically close to one another tend to stay together during meiosis. Independent assortment occurs when the genes on different chromosomes are separated by a great enough distance on the same chromosome that recombination occurs at least half of the time. An exception to independent assortment develops when genes appear near one another on the same chromosome. When genes occur on the same chromosome, they are usually inherited as a single unit. Genes inherited in this way are said to be linked, and are referred to as "linkage groups.
47 Measuring Linkage: Lod Score LOD = log 10 (probability of birth sequence with a given linkage value/probability of birth sequence with no linkage) LOD = log 10 ((1-θ) NR x θ R )/0.5 NR+R NR denotes the number of non-recombinant offspring, R denotes the number of recombinant offspring. Theta = recombinant fraction= R / (NR + R) A LOD score >=3.0 is considered evidence for linkage A LOD score of 3 indicates 1000 to 1 odds that the linkage being observed did not occur by chance A LOD score <=-2.0 is considered evidence to exclude linkage
48 Linkage with White-Matter Hyperintensitites Bivariate linkage for subcortical & ependymal HWM volumes (log of odds=2.12) on chr 1 at 288 cm. Kochunov et al., Stroke, family members
49 Linkage with White-Matter Hyperintensitites/Blood Pressure LOD Kochunov et al., Stroke, family members
50 Linkage vs. Association Association: you re testing for an excess of a specific combination of alleles at two loci. The same alleles must be traveling together at a population level. Detects effects of common variants. Linkage: you re testing for an excess of the parental type. That parental type (i.e. the alleles traveling together) could be different in every family (i.e. linkage equilibrium) and you would still get linkage. Can detect cumulative effect of multiple variants (including rare variants).
51 Determining Linkage Power The power to map a QTL in a human linkage study is a function of: 1. locus-specific heritability (genetic signalto-noise ratio) 2. Sample size 3. Pedigree size and complexity
52 Sample size required for 80% power to detect linkage to a QTL at a LOD of 3
53 Question 4: Identification What specific genes influence the trait?
54 Identifying a Causal Gene Once a significant QTL is identified, additional genetic tests are needed to determine the exact identity of the gene Association: identifies a genomic region of ~500kb (250kb to either side of the association) determined by the general extent of linkage disequilibrium Linkage: detect the cumulative additive genetic signal of all functional variants within a much larger genomic region (e.g Mb)
55 VPS13A: A Candidate Gene for Brain Structure/Function VPS13A is a 73 exon gene localizing to chromosome 9q21 Involved in choreaacanthocytosis Schizophrenia OCD Frontal lobe functioning 3174 amino acid protein Bellis et al., ASHB, 2009
56 Association Analysis: VPS13A SNPs and Frontal Lobe Volume rs rs Bellis et al., ASHB, 2009
57 Take Home Message This may be the most important thing I say in this lecture. There is no one size fits all in genetic analysis of complex traits. Laura Almasy
58 Coffee Break
Neuroimaging and Genetics
Neuroimaging and Genetics Carrie E. Bearden, Ph.D. Departments of Psychiatry and Biobehavioral Sciences and Psychology Semel Institute for Neuroscience and Human Behavior University of California, Los
MULTIFACTORIAL DISEASES. MG L-10 July 7 th 2014
MULTIFACTORIAL DISEASES MG L-10 July 7 th 2014 Genetic Diseases Unifactorial Chromosomal Multifactorial AD Numerical AR Structural X-linked Microdeletions Mitochondrial Spectrum of Alterations in DNA Sequence
Genetics and Pharmacogenetics in Human Complex Disorders (Example of Bipolar Disorder)
Genetics and Pharmacogenetics in Human Complex Disorders (Example of Bipolar Disorder) September 14, 2012 Chun Xu M.D, M.Sc, Ph.D. Assistant professor Texas Tech University Health Sciences Center Paul
Discontinuous Traits. Chapter 22. Quantitative Traits. Types of Quantitative Traits. Few, distinct phenotypes. Also called discrete characters
Discontinuous Traits Few, distinct phenotypes Chapter 22 Also called discrete characters Quantitative Genetics Examples: Pea shape, eye color in Drosophila, Flower color Quantitative Traits Phenotype is
Comparing heritability estimates for twin studies + : & Mary Ellen Koran. Tricia Thornton-Wells. Bennett Landman
Comparing heritability estimates for twin studies + : & Mary Ellen Koran Tricia Thornton-Wells Bennett Landman January 20, 2014 Outline Motivation Software for performing heritability analysis Simulations
Roadmap. Inbreeding How inbred is a population? What are the consequences of inbreeding?
1 Roadmap Quantitative traits What kinds of variation can selection work on? How much will a population respond to selection? Heritability How can response be restored? Inbreeding How inbred is a population?
Problem set questions from Final Exam Human Genetics, Nondisjunction, and Cancer
Problem set questions from Final Exam Human Genetics, Nondisjunction, and ancer Mapping in humans using SSRs and LOD scores 1. You set out to genetically map the locus for color blindness with respect
Complex Multifactorial Genetic Diseases
Complex Multifactorial Genetic Diseases Nicola J Camp, University of Utah, Utah, USA Aruna Bansal, University of Utah, Utah, USA Secondary article Article Contents. Introduction. Continuous Variation.
Lecture 1 Mendelian Inheritance
Genes Mendelian Inheritance Lecture 1 Mendelian Inheritance Jurg Ott Gregor Mendel, monk in a monastery in Brünn (now Brno in Czech Republic): Breeding experiments with the garden pea: Flower color and
Tutorial on Genome-Wide Association Studies
Tutorial on Genome-Wide Association Studies Assistant Professor Institute for Computational Biology Department of Epidemiology and Biostatistics Case Western Reserve University Acknowledgements Dana Crawford
B-4.7 Summarize the chromosome theory of inheritance and relate that theory to Gregor Mendel s principles of genetics
B-4.7 Summarize the chromosome theory of inheritance and relate that theory to Gregor Mendel s principles of genetics The Chromosome theory of inheritance is a basic principle in biology that states genes
Genetic association analysis incorporating intermediate phenotypes information for complex diseases
University of Iowa Iowa Research Online Theses and Dissertations Fall 2011 Genetic association analysis incorporating intermediate phenotypes information for complex diseases Yafang Li University of Iowa
Genetics of common disorders with complex inheritance Bettina Blaumeiser MD PhD
Genetics of common disorders with complex inheritance Bettina Blaumeiser MD PhD Medical Genetics University Hospital & University of Antwerp Programme Day 6: Genetics of common disorders with complex inheritance
Introduction of Genome wide Complex Trait Analysis (GCTA) Presenter: Yue Ming Chen Location: Stat Gen Workshop Date: 6/7/2013
Introduction of Genome wide Complex Trait Analysis (GCTA) resenter: ue Ming Chen Location: Stat Gen Workshop Date: 6/7/013 Outline Brief review of quantitative genetics Overview of GCTA Ideas Main functions
GENOME-WIDE ASSOCIATION STUDIES
GENOME-WIDE ASSOCIATION STUDIES SUCCESSES AND PITFALLS IBT 2012 Human Genetics & Molecular Medicine Zané Lombard IDENTIFYING DISEASE GENES??? Nature, 15 Feb 2001 Science, 16 Feb 2001 IDENTIFYING DISEASE
Figure 1: Transmission of Wing Shape & Body Color Alleles: F0 Mating. Figure 1.1: Transmission of Wing Shape & Body Color Alleles: Expected F1 Outcome
I. Chromosomal Theory of Inheritance As early cytologists worked out the mechanism of cell division in the late 1800 s, they began to notice similarities in the behavior of BOTH chromosomes & Mendel s
Genetics of Behavior (Learning Objectives)
Genetics of Behavior (Learning Objectives) Recognize that behavior is multi-factorial with genetic components Understand how multi-factorial traits are studied. Explain the terms: incidence, prevalence,
INTRODUCTION TO GENETIC EPIDEMIOLOGY (EPID0754) Prof. Dr. Dr. K. Van Steen
INTRODUCTION TO GENETIC EPIDEMIOLOGY (EPID0754) Prof. Dr. Dr. K. Van Steen DIFFERENT FACES OF GENETIC EPIDEMIOLOGY 1 Basic epidemiology 1.a Aims of epidemiology 1.b Designs in epidemiology 1.c An overview
Heritability. The concept
Heritability The concept What is the Point of Heritability? Is a trait due to nature or nurture? (Genes or environment?) You and I think this is a good point to address, but it is not addressed! What is
Human population sub-structure and genetic association studies
Human population sub-structure and genetic association studies Stephanie A. Santorico, Ph.D. Department of Mathematical & Statistical Sciences Stephanie.Santorico@ucdenver.edu Global Similarity Map from
Today s Topics. Cracking the Genetic Code. The Process of Genetic Transmission. The Process of Genetic Transmission. Genes
Today s Topics Mechanisms of Heredity Biology of Heredity Genetic Disorders Research Methods in Behavioral Genetics Gene x Environment Interactions The Process of Genetic Transmission Genes: segments of
Tutorial on Genome-Wide Association Studies
Tutorial on Genome-Wide Association Studies Assistant Professor Institute for Computational Biology Department of Epidemiology and Biostatistics Case Western Reserve University Acknowledgements Dana Crawford
MOLECULAR EPIDEMIOLOGY Afiono Agung Prasetyo Faculty of Medicine Sebelas Maret University Indonesia
MOLECULAR EPIDEMIOLOGY GENERAL EPIDEMIOLOGY General epidemiology is the scientific basis of public health Descriptive epidemiology: distribution of disease in populations Incidence and prevalence rates
Patterns of Inheritance
1 Patterns of Inheritance Bio 103 Lecture Dr. Largen 2 Topics Mendel s Principles Variations on Mendel s Principles Chromosomal Basis of Inheritance Sex Chromosomes and Sex-Linked Genes 3 Experimental
Multifactorial Inheritance
S e s s i o n 6 Medical Genetics Multifactorial Inheritance and Population Genetics J a v a d J a m s h i d i F a s a U n i v e r s i t y o f M e d i c a l S c i e n c e s, Novemb e r 2 0 1 7 Multifactorial
Clinical Genetics & Dementia
Clinical Genetics & Dementia Dr Nayana Lahiri Consultant in Clinical Genetics & Honorary Senior Lecturer Nayana.lahiri@nhs.net Aims of the Session To appreciate the potential utility of family history
Patterns of Heredity - Genetics - Sections: 10.2, 11.1, 11.2, & 11.3
Patterns of Heredity - Genetics - Sections: 10.2, 11.1, 11.2, & 11.3 Genetics = the study of heredity by which traits are passed from parents to offspring Page. 227 Heredity = The passing of genes/traits
GARRY R. CUTTING, MD PROFESSOR OF MEDICAL GENETICS DIRECTOR OF THE DNA DIAGNOSTIC LABORATORY THE JOHNS HOPKINS UNIVERSITY BALTIMORE, MARYLAND
GARRY R. CUTTING, MD PROFESSOR OF MEDICAL GENETICS DIRECTOR OF THE DNA DIAGNOSTIC LABORATORY THE JOHNS HOPKINS UNIVERSITY BALTIMORE, MARYLAND MODIFIERS OF CYSTIC FIBROSIS LUNG FUNCTION MEASURES IN CF PATIENTS
Mendelian Inheritance. Jurg Ott Columbia and Rockefeller Universities New York
Mendelian Inheritance Jurg Ott Columbia and Rockefeller Universities New York Genes Mendelian Inheritance Gregor Mendel, monk in a monastery in Brünn (now Brno in Czech Republic): Breeding experiments
Genome - Wide Linkage Mapping
Biological Sciences Initiative HHMI Genome - Wide Linkage Mapping Introduction This activity is based on the work of Dr. Christine Seidman et al that was published in Circulation, 1998, vol 97, pgs 2043-2048.
It is shown that maximum likelihood estimation of
The Use of Linear Mixed Models to Estimate Variance Components from Data on Twin Pairs by Maximum Likelihood Peter M. Visscher, Beben Benyamin, and Ian White Institute of Evolutionary Biology, School of
An Introduction to Quantitative Genetics
An Introduction to Quantitative Genetics Mohammad Keramatipour MD, PhD Keramatipour@tums.ac.ir ac ir 1 Mendel s work Laws of inheritance Basic Concepts Applications Predicting outcome of crosses Phenotype
Lecture 6 Practice of Linkage Analysis
Lecture 6 Practice of Linkage Analysis Jurg Ott http://lab.rockefeller.edu/ott/ http://www.jurgott.org/pekingu/ The LINKAGE Programs http://www.jurgott.org/linkage/linkagepc.html Input: pedfile Fam ID
Genetic basis of inheritance and variation. Dr. Amjad Mahasneh. Jordan University of Science and Technology
Genetic basis of inheritance and variation Dr. Amjad Mahasneh Jordan University of Science and Technology Segment 1 Hello and welcome everyone. My name is Amjad Mahasneh. I teach molecular biology at Jordan
Mendel. The pea plant was ideal to work with and Mendel s results were so accurate because: 1) Many. Purple versus flowers, yellow versus seeds, etc.
Mendel A. Mendel: Before Mendel, people believed in the hypothesis. This is analogous to how blue and yellow paints blend to make. Mendel introduced the hypothesis. This deals with discrete units called
Separation Anxiety Disorder and Adult Onset Panic Attacks Share a Common Genetic Diathesis
Separation Anxiety Disorder and Adult Onset Panic Attacks Share a Common Genetic Diathesis Roxann Roberson-Nay, PhD Virginia Commonwealth University Department of Psychiatry The SAD PD link Don Klein proposed
Global variation in copy number in the human genome
Global variation in copy number in the human genome Redon et. al. Nature 444:444-454 (2006) 12.03.2007 Tarmo Puurand Study 270 individuals (HapMap collection) Affymetrix 500K Whole Genome TilePath (WGTP)
SSN SBPM Workshop Exam One. Short Answer Questions & Answers
SSN SBPM Workshop Exam One Short Answer Questions & Answers 1. Describe the effects of DNA damage on the cell cycle. ANS : DNA damage causes cell cycle arrest at a G2 checkpoint. This arrest allows time
LTA Analysis of HapMap Genotype Data
LTA Analysis of HapMap Genotype Data Introduction. This supplement to Global variation in copy number in the human genome, by Redon et al., describes the details of the LTA analysis used to screen HapMap
Led him to formulate 3 principles of heredity based on his pea plant experimentation...
Mendel s Work (cont d)... His observations made him believe that information passed from parents to their young as packages he called units or factors...the factors for one trait are inherited as a unit...an
See pedigree info on extra sheet 1. ( 6 pts)
Biol 321 Quiz #2 Spring 2010 40 pts NAME See pedigree info on extra sheet 1. ( 6 pts) Examine the pedigree shown above. For each mode of inheritance listed below indicate: E = this mode of inheritance
During the hyperinsulinemic-euglycemic clamp [1], a priming dose of human insulin (Novolin,
ESM Methods Hyperinsulinemic-euglycemic clamp procedure During the hyperinsulinemic-euglycemic clamp [1], a priming dose of human insulin (Novolin, Clayton, NC) was followed by a constant rate (60 mu m
Population Genetics 4: Assortative mating
opulation Genetics 4: Assortative mating Mating system Random ositive assortment Negative assortment Inbreeding Mate choice is independent of both phenotype and genotype Mate choice is based on similarity
Inbreeding and Inbreeding Depression
Inbreeding and Inbreeding Depression Inbreeding is mating among relatives which increases homozygosity Why is Inbreeding a Conservation Concern: Inbreeding may or may not lead to inbreeding depression,
Lecture 13: May 24, 2004
Lecture 13: May 24, 2004 CH14: Mendel and the gene idea *particulate inheritance parents pass on discrete heritable units *gene- unit of inheritance which occupies a specific chromosomal location (locus)
WHAT S IN THIS LECTURE?
What is meant by the term monogenic? WHAT S IN THIS LECTURE? WHAT S MENDEL S PRINCIPLE OF SEGREGATION? What s probability got to do with this? WHAT S MENDEL S PRINCIPLE OF INDEPENDENT ASSORTMENT? 1 FROM
Ch. 23 The Evolution of Populations
Ch. 23 The Evolution of Populations 1 Essential question: Do populations evolve? 2 Mutation and Sexual reproduction produce genetic variation that makes evolution possible What is the smallest unit of
Name Class Date. KEY CONCEPT The chromosomes on which genes are located can affect the expression of traits.
Section 1: Chromosomes and Phenotype KEY CONCEPT The chromosomes on which genes are located can affect the expression of traits. VOCABULARY carrier sex-linked gene X chromosome inactivation MAIN IDEA:
Chapter 7: Pedigree Analysis B I O L O G Y
Name Date Period Chapter 7: Pedigree Analysis B I O L O G Y Introduction: A pedigree is a diagram of family relationships that uses symbols to represent people and lines to represent genetic relationships.
The Chromosomal Basis Of Inheritance
The Chromosomal Basis Of Inheritance Chapter 15 Objectives Explain the chromosomal theory of inheritance and its discovery. Explain why sex-linked diseases are more common in human males than females.
Downloaded from Chapter 5 Principles of Inheritance and Variation
Chapter 5 Principles of Inheritance and Variation Genetics: Genetics is a branch of biology which deals with principles of inheritance and its practices. Heredity: It is transmission of traits from one
By Mir Mohammed Abbas II PCMB 'A' CHAPTER CONCEPT NOTES
Chapter Notes- Genetics By Mir Mohammed Abbas II PCMB 'A' 1 CHAPTER CONCEPT NOTES Relationship between genes and chromosome of diploid organism and the terms used to describe them Know the terms Terms
Class XII Chapter 5 Principles of Inheritance and Variation Biology
Question 1: Mention the advantages of selecting pea plant for experiment by Mendel. Mendel selected pea plants to carry out his study on the inheritance of characters from parents to offspring. He selected
Unit 5: Genetics Guided Notes
1 Unit 5: Genetics Guided Notes Basic Mendelian Genetics Before Gregor Mendel 1) When Mendel started his work, most people believed in the blending theory of inheritance. (Inheritance, Heredity, and Genetics
Missing Heritablility How to Analyze Your Own Genome Fall 2013
Missing Heritablility 02-223 How to Analyze Your Own Genome Fall 2013 Heritability Heritability: the propor>on of observed varia>on in a par>cular trait (as height) that can be agributed to inherited gene>c
Guided Notes: Simple Genetics
Punnett Squares Guided Notes: Simple Genetics In order to determine the a person might inherit, we use a simple diagram called a o Give us of an offspring having particular traits Pieces of the Punnett
The Modern Genetics View
Inheritance Mendelian Genetics The Modern Genetics View Alleles are versions of a gene Gene for flower color Alleles for purple or white flowers Two alleles per trait 2 chromosomes, each with 1 gene The
Recently researchers in psychosomatic medicine have witnessed
Genetics in Psychosomatic Medicine: Research Designs and Statistical Approaches JEANNE M. MCCAFFERY, PHD, HAROLD SNIEDER, PHD, YANBIN DONG, MD, PHD, AND ECO DE GEUS, PHD It has become increasingly clear
Identification of heritable genetic risk factors for bladder cancer through genome-wide association studies (GWAS)
BCAN 2014 August 9, 2014 Identification of heritable genetic risk factors for bladder cancer through genome-wide association studies (GWAS) Ludmila Prokunina-Olsson, PhD Investigator Laboratory of Translational
Effect of Genetic Heterogeneity and Assortative Mating on Linkage Analysis: A Simulation Study
Am. J. Hum. Genet. 61:1169 1178, 1997 Effect of Genetic Heterogeneity and Assortative Mating on Linkage Analysis: A Simulation Study Catherine T. Falk The Lindsley F. Kimball Research Institute of The
Life-Span Development Thirteenth Edition
Life-Span Development Thirteenth Edition Natural Selection and Adaptive Behavior Natural Selection: an evolutionary process by which those individuals of a species that are best adapted are the ones that
Chapter 15 - The Chromosomal Basis of Inheritance. A. Bergeron +AP Biology PCHS
Chapter 15 - The Chromosomal Basis of Inheritance A. Bergeron +AP Biology PCHS Do Now - Predicting Unpredictable Genotypes As an inexperienced (albeit precocious) gardener, I am always looking to maximize
Lecture Outline. Darwin s Theory of Natural Selection. Modern Theory of Natural Selection. Changes in frequencies of alleles
1. Basics of Natural Selection Lecture Outline 2. How to test for the key components of natural selection a. Variation b. Heritability c. Can the trait respond to selection? d. What are the selective forces?
Identifying the Zygosity Status of Twins Using Bayes Network and Estimation- Maximization Methodology
Identifying the Zygosity Status of Twins Using Bayes Network and Estimation- Maximization Methodology Yicun Ni (ID#: 9064804041), Jin Ruan (ID#: 9070059457), Ying Zhang (ID#: 9070063723) Abstract As the
Statistical Tests for X Chromosome Association Study. with Simulations. Jian Wang July 10, 2012
Statistical Tests for X Chromosome Association Study with Simulations Jian Wang July 10, 2012 Statistical Tests Zheng G, et al. 2007. Testing association for markers on the X chromosome. Genetic Epidemiology
MENDELIAN GENETICS. Punnet Squares and Pea Plants
MENDELIAN GENETICS Punnet Squares and Pea Plants Introduction Mendelian laws of inheritance are statements about the way certain characteristics are transmitted from one generation to another in an organism.
Genetics PPT Part 1 Biology-Mrs. Flannery
Genetics PPT Part Biology-Mrs. Flannery In an Abbey Garden Mendel studied garden peas because they were easy to grow, came in many readily distinguishable varieties, had easily visible traits are easily
Chapter 18 Genetics of Behavior. Chapter 18 Human Heredity by Michael Cummings 2006 Brooks/Cole-Thomson Learning
Chapter 18 Genetics of Behavior Behavior Most human behaviors are polygenic and have significant environmental influences Methods used to study inheritance include Classical methods of linkage and pedigree
Mendelian Genetics. Gregor Mendel. Father of modern genetics
Mendelian Genetics Gregor Mendel Father of modern genetics Objectives I can compare and contrast mitosis & meiosis. I can properly use the genetic vocabulary presented. I can differentiate and gather data
Mendel and Genetics. Mr. Nagel Meade High School
Mendel and Genetics Mr. Nagel Meade High School What is inheritance? Question? Inheritance: Passing on traits by transmitting them from parents to offspring How does it relate to you personally? Why does
MENDEL S LAWS AND MONOHYBRID CROSSES. Day 1 UNIT 6 : GENETICS
MENDEL S LAWS AND MONOHYBRID CROSSES Day 1 UNIT 6 : GENETICS Bell-Ringer One of the accepted scientific theories describing the origin of life on Earth is known as chemical evolution. According to this
Unit 8.1: Human Chromosomes and Genes
Unit 8.1: Human Chromosomes and Genes Biotechnology. Gene Therapy. Reality or fiction? During your lifetime, gene therapy may be mainstream medicine. Here we see a representation of the insertion of DNA
Introduction to Genetics
Introduction to Genetics Remember DNA RNA Protein Traits DNA contains the code for proteins (protein synthesis remember?) Proteins determine our traits Gregor Mendel 1822-1884 Father of Genetics Studied
Answers to Practice Items
nswers to Practice Items Question 1 TEKS 6E In this sequence, two extra G bases appear in the middle of the sequence (after the fifth base of the original). This represents an insertion. In this sequence,
Solutions to Genetics Unit Exam
Solutions to Genetics Unit Exam Question 1 You are working with an ornamental fish that shows two color phenotypes, red or white. The color is controlled by a single gene. These fish are hermaphrodites
Genetics. by their offspring. The study of the inheritance of traits is called.
Genetics DNA contains the genetic code for the production of. A gene is a part of DNA, which has enough bases to make for many different proteins. These specific proteins made by a gene decide the of an
Lecture 17: Human Genetics. I. Types of Genetic Disorders. A. Single gene disorders
Lecture 17: Human Genetics I. Types of Genetic Disorders A. Single gene disorders B. Multifactorial traits 1. Mutant alleles at several loci acting in concert C. Chromosomal abnormalities 1. Physical changes
Advanced IPD meta-analysis methods for observational studies
Advanced IPD meta-analysis methods for observational studies Simon Thompson University of Cambridge, UK Part 4 IBC Victoria, July 2016 1 Outline of talk Usual measures of association (e.g. hazard ratios)
The Making of the Fittest: Natural Selection in Humans
MENDELIAN GENETICS, PROBABILITY, PEDIGREES, AND CHI-SQUARE STATISTICS INTRODUCTION Hemoglobin is a protein found in red blood cells that transports oxygen throughout the body. The hemoglobin protein consists
Genetics of extreme body size evolution in mice from Gough Island
Genetics of extreme body size evolution in mice from Gough Island Karl Broman Biostatistics & Medical Informatics, UW Madison kbroman.org github.com/kbroman @kwbroman bit.ly/apstats2017 This is a collaboration
PopGen4: Assortative mating
opgen4: Assortative mating Introduction Although random mating is the most important system of mating in many natural populations, non-random mating can also be an important mating system in some populations.
GENETIC INFLUENCES ON APPETITE AND CHILDREN S NUTRITION
GENETIC INFLUENCES ON APPETITE AND CHILDREN S NUTRITION DR CLARE LLEWELLYN Lecturer in Behavioural Obesity Research Health Behaviour Research Centre, University College London Tuesday 8 th November, 2016
Genetics Mutations 2 Teacher s Guide
Genetics Mutations 2 Teacher s Guide 1.0 Summary Mutations II is an extension activity, which reviews and enhances the previous Core activities. We recommend that it follow Mutations and X-Linkage. This
Does Mendel s work suggest that this is the only gene in the pea genome that can affect this particular trait?
Mongenic Traits, Probability and Independent Assortment Genetical Jargon Demystified In typical genetical parlance the hereditary factor that determines the round/wrinkled seed difference as referred to
VOCABULARY somatic cell autosome fertilization gamete sex chromosome diploid homologous chromosome sexual reproduction meiosis
SECTION 6.1 CHROMOSOMES AND MEIOSIS Study Guide KEY CONCEPT Gametes have half the number of chromosomes that body cells have. VOCABULARY somatic cell autosome fertilization gamete sex chromosome diploid
HEREDITARY INFLUENCES ON DEVELOPMENT
HEREDITARY INFLUENCES ON DEVELOPMENT HEREDITARY INFLUENCES ON DEVELOPMENT Genotype: genes that one inherits Phenotype: how one s genotype is expressed in observable or measurable characteristics PRINCIPLES
Genetics Unit Exam. Number of progeny with following phenotype Experiment Red White #1: Fish 2 (red) with Fish 3 (red) 100 0
Genetics Unit Exam Question You are working with an ornamental fish that shows two color phenotypes, red or white. The color is controlled by a single gene. These fish are hermaphrodites meaning they can
IN SILICO EVALUATION OF DNA-POOLED ALLELOTYPING VERSUS INDIVIDUAL GENOTYPING FOR GENOME-WIDE ASSOCIATION STUDIES OF COMPLEX DISEASE.
IN SILICO EVALUATION OF DNA-POOLED ALLELOTYPING VERSUS INDIVIDUAL GENOTYPING FOR GENOME-WIDE ASSOCIATION STUDIES OF COMPLEX DISEASE By Siddharth Pratap Thesis Submitted to the Faculty of the Graduate School
Human Genetics 542 Winter 2017 Syllabus
Human Genetics 542 Winter 2017 Syllabus Monday, Wednesday, and Friday 9 10 a.m. 5915 Buhl Course Director: Tony Antonellis Module I: Mapping and characterizing simple genetic diseases Jan 4 th Wed Mapping
Power Calculation for Testing If Disease is Associated with Marker in a Case-Control Study Using the GeneticsDesign Package
Power Calculation for Testing If Disease is Associated with Marker in a Case-Control Study Using the GeneticsDesign Package Weiliang Qiu email: weiliang.qiu@gmail.com Ross Lazarus email: ross.lazarus@channing.harvard.edu
Principles of Genetics Biology 204 Marilyn M. Shannon, M.A.
Principles of Genetics Biology 204 Marilyn M. Shannon, M.A. Introduction Nature versus nurture is a topic often informally discussed. Are world-class musicians that good because they inherited the right
Non-Mendelian Genetics
Non-Mendelian Genetics Complete dominance Law of segregation Law of independent assortment One gene one trait Mendelian Genetics Codominance Incomplete dominance Multiple alleles Pleiotropy Epistasis Polygenic
Patterns in Inheritance. Chapter 10
Patterns in Inheritance Chapter 10 What you absolutely need to know Punnett Square with monohybrid and dihybrid cross Heterozygous, homozygous, alleles, locus, gene Test cross, P, F1, F2 Mendel and his
Biology. Chapter 13. Observing Patterns in Inherited Traits. Concepts and Applications 9e Starr Evers Starr. Cengage Learning 2015
Biology Concepts and Applications 9e Starr Evers Starr Chapter 13 Observing Patterns in Inherited Traits Cengage Learning 2015 Cengage Learning 2015 After completing today s activities, students should
With the rapid advances in molecular biology, the near
Theory and Practice in Quantitative Genetics Daniëlle Posthuma 1, A. Leo Beem 1, Eco J. C. de Geus 1, G. Caroline M. van Baal 1, Jacob B. von Hjelmborg 2, Ivan Iachine 3, and Dorret I. Boomsma 1 1 Department
MENDELIAN GENETICS. Law of Dominance: Law of Segregation: GAMETE FORMATION Parents and Possible Gametes: Gregory Mendel:
MENDELIAN GENETICS Gregory Mendel: Heredity: Cross: X P1 Generation: F1 Generation: F2 Generation: Gametes: Dominant: Recessive: Genotype: Phenotype: Law of Dominance: Genes: Alleles: Law of Segregation:
Mendelian Genetics. 7.3 Gene Linkage and Mapping Genes can be mapped to specific locations on chromosomes.
7 Extending CHAPTER Mendelian Genetics GETTING READY TO LEARN Preview Key Concepts 7.1 Chromosomes and Phenotype The chromosomes on which genes are located can affect the expression of traits. 7.2 Complex
Friday, January 4. Bell Work:
Friday, January 4 Bell Work: Red green colorblindness is an X linked trait and is recessive. A male who is normal marries a woman who is a carrier, what is the phenotypic ratio of their offspring? 1 Genetic