ORIGINAL CONTRIBUTION. Neuromyelitis Optica Brain Lesions Localized at Sites of High Aquaporin 4 Expression

Size: px
Start display at page:

Download "ORIGINAL CONTRIBUTION. Neuromyelitis Optica Brain Lesions Localized at Sites of High Aquaporin 4 Expression"

Transcription

1 ORIGINAL CONTRIBUTION Neuromyelitis Optica Brain Lesions Localized at Sites of High Aquaporin 4 Expression Sean J. Pittock, MD; Brian G. Weinshenker, MD; Claudia F. Lucchinetti, MD; Dean M. Wingerchuk, MD; John R. Corboy, MD; Vanda A. Lennon, MD, PhD Background: Neuromyelitis optica (NMO) IgG is a specific autoantibody marker for NMO. It binds selectively to aquaporin 4 (AQP4), which is highly concentrated in astrocytic foot processes at the blood-brain barrier and is not restricted to optic nerve and spinal cord. Although it is conventionally believed that the brain is spared, brain imaging abnormalities are not uncommon in patients with NMO. Objective: To investigate the location of brain lesions that are distinctive for NMO with respect to the localization of AQP4 in mammalian brain. Design: Observational, retrospective case series. Setting: Clinical serologic cohort of patients tested for NMO-IgG for whom brain MRI images were available. Patients: We identified 120 patients seropositive for NMO-IgG for whom brain magnetic resonance images were available. Main Outcome Measure: Magnetic resonance imaging abnormalities. Results: In 8 patients we observed recurring and distinctive magnetic resonance imaging abnormalities in the hypothalamic and periventricular areas that corresponded to brain regions of high AQP4 expression. Conclusion: The distribution of NMO-characteristic brain lesions corresponds to sites of high AQP4 expression. Arch Neurol. 2006;63: Author Affiliations: Departments of Neurology (Drs Pittock, Weinshenker, Lucchinetti, and Lennon), Laboratory Medicine and Pathology (Drs Pittock and Lennon), and Immunology (Dr Lennon), Mayo Clinic College of Medicine, Rochester, Minn; Department of Neurology, Mayo Clinic, Scottsdale, Ariz (Dr Wingerchuk); and University of Colorado Denver and Health Sciences Center and Department of Neurology, Denver Veteran s Affairs Medical Center, Denver (Dr Corboy). NEUROMYELITIS OPTICA (NMO) is a severe demyelinating disease recognized principally by its propensity to selectively affect optic nerves and the spinal cord, causing recurrent attacks of blindness and paralysis. 1 The 1999 diagnostic criteria of Wingerchuk et al 1 required fulfillment of 3 absolute criteria for a diagnosis of NMO: optic neuritis, acute myelitis, and no symptoms that implicated other central nervous system (CNS) structures. The criteria additionally required fulfillment of at least 1 of 3 major or 2 of 3 minor supportive criteria. Major supportive criteria were (1) brain magnetic resonance imaging (MRI) at onset of disease either normal or not fulfilling multiple sclerosis (MS) imaging criteria; (2) individual spinal cord MRI T2- weighted lesions that accompany myelitis and extend across 3 or more vertebral segments; and (3) cerebrospinal fluid leukocyte count that exceeds 50 white blood cells per microliter or 5 neutrophils per cubic millimeter, typically in the context of an acute attack. Minor supportive criteria were (1) bilateral optic neuritis, (2) severe residual visual loss, and (3) severe fixed postattack weakness. 1 The serum autoantibody NMO-IgG was reported as a biomarker of NMO in It is detected by indirect immunofluorescence assay on a substrate of mouse CNS tissue. Neuromyelitis optica IgG binds selectively to the mercurial-insensitive water channel protein aquaporin 4 (AQP4), which is concentrated in astrocytic foot processes at the blood-brain barrier. 3 Aquaporin 4 is the predominant water channel in the brain and has an important role in brain water homeostasis. 4 It is also expressed, to a limited extent, in the stomach, kidney, lung, skeletal muscle, and inner ear. 4 Although abundant in optic nerve and spinal cord, AQP4 is found throughout the brain. 4-7 Immunohistochemical studies show intense AQP4 immunoreactivity in the astrocytic end feet that abut capillaries and pia in the brain and spinal cord, the glial lamellae of the supraoptic nucleus in the hypothalamus, and the basolateral membranes of ependymal cells. 4,7 Consistent with its location in the CNS, AQP4 is involved in the development, function, and integrity of the interface between the brain and blood and between the brain and cerebrospinal fluid. 8 Despite traditional views that the lesions of NMO are restricted to optic nerves and spinal cord, recent MRI studies 9 have revealed evidence of brain lesions in 60% of patients who, except for brain MRI findings, fulfill the 1999 criteria of Wingerchuk 964

2 Patient 4 Patient 1 Patient 5 Patient 2 Patient 6 Patient 3 Figure 1. Representative magnetic resonance images (MRIs) show localization of brain lesions in periependymal regions that are known to have high aquaporin 4 expression (white dots on midline sagittal section diagram). 4 Dashed black lines represent anatomical level (axial [patients 1-3] and coronal [patient 6]) of MRIs as they relate to the diagram. White arrows indicate abnormality of fluid-attenuated inversion recovery (FLAIR) or T2 signal. Patient 1 had FLAIR signal abnormality around the third ventricle with extension into the hypothalamus; patient 2 had FLAIR signal abnormality around the fourth ventricle; patient 3 had T2 signal abnormality in periaqueductal and peri fourth ventricular distribution; patient 4 had FLAIR signal abnormality in periependymal regions surrounding the lateral ventricles (including the fornix and a longitudinal signal abnormality extending into the lower brainstem from a contiguous lesion in the upper cervical cord); patient 5 had FLAIR signal abnormalities in the thalamus, hypothalamus, and optic chiasm, extending into the superior cerebellar peduncle and tissue surrounding the fourth ventricle, and in a subpial location in the cerebellar hemispheres; and patient 6 had FLAIR signal abnormality in tissue surrounding the fourth ventricle with extension into cerebellar peduncles. et al 1 for the diagnosis of NMO. Most imaged lesions are nonspecific. Occasional lesions resemble those regarded as typical of MS. Of pertinence to this report, some patients have distinctive lesions in the hypothalamus or brainstem that are atypical of MS. 9,10 We and others have recognized a reiterative pattern of signal abnormality that appears to be characteristic of, if not specific to, NMO or its spectrum disorders These lesions, apparent on MRI, predominantly involve the hypothalamus and occasionally extend to brain tissues that surround the third and fourth ventricles. In this observational study, we describe these lesions and report their location with respect to the reported localization of the AQP4 water channel protein in mammalian brain. METHODS During serologic evaluation for NMO-IgG, we identified 120 seropositive patients for whom brain MRIs were available for review. Of these 120 patients, 89 fulfilled the criteria of Wingerchuk et al 1 for the diagnosis of NMO, except for the requirement of a normal brain MRI at onset and absence of symptoms outside optic nerves and spinal cord. We have recently described the frequency and characteristics of MRI head abnormalities in 60 patients with NMO 9 ; 41 of these 60 patients were NMO-IgG seropositive and are included in the 89 patients with NMO from this current study. The remaining 31 of the 120 seropositive study patients had relapsing, recurrent, longitudinally extensive transverse my- 965

3 Figure 2. Serial axial sections of brain from patient 7 at the level of lateral ventricles (image 1) through the third ventricle, diencephalon (images 2 and 3), midbrain (image 4), and pons (images 5 and 6). The fluid-attenuated inversion recovery signal abnormality is contiguous throughout the periventricular and periependymal tissues and involves the hypothalamus. White dots indicate areas of high aquaporin 4 expression in the periependymal regions, which correspond to regions of magnetic resonance imaging abnormalities (arrows). elitis (LETM) without optic neuritis. This type of myelitis is the most sensitive and specific clinical characteristic of NMOrelated disorders. 12 Furthermore, patients with LETM who are seropositive for NMO-IgG are at high risk of relapse or the development of NMO. 13 Brain MRI in 8 of these 120 patients revealed the reiterative and distinctive signal pattern abnormality that is the subject of this communication. Figure 1 and Figure 2 show representative images from 7 patients, with reference to a diagram indicating brain regions that express AQP4 protein highly (midline sagittal brain section). 4-7 RESULTS Clinical and demographic findings for the 8 patients are listed in Table 1. These 8 patients represented 6 of the 89 patients with NMO (patients 2-5, 7, and 8) and 2 of 31 patients with relapsing LETM (patients 1 and 6). Patient 6, who had no clinical symptoms or signs of optic neuritis, had a delayed visual evoked response consistent with subclinical optic neuropathy. The MRIs (Figure 1) from patients 1 through 6 (Table 2) illustrate the distribution of the NMO brain lesions we consider characteristic of NMO. Patient 7 had extensive signal abnormality on both T2 and fluid-attenuated inversion recovery with prominent periventricular signal abnormality in serial axial images from lower pons to lateral ventricles (Figure 2). White dots indicate the location of AQP4 protein in high concentration (based on published immunohistochemical studies of rodent and human brain 4-7 ). Patient 8, ascertained serologically but not evaluated clinically at Mayo Clinic, had MRIs of the head reported on by our neuroradiology department as follows: There was periventricular enhancement around the left occipital horn and along the left anterior callosal body ; these images were not available for inclusion in this report. 966

4 Table 1. Clinical Characteristics of 8 Patients With NMO and Brain Lesions Patient No./Sex/ Age at Onset, y/race No. of ON Attacks No. of LETM Attacks Initial Head MRI Results Time From Onset to Abnormal Imaging Result, mo Symptoms Other Than ON 1/F/48/As 0 3 Abnormal Unknown Transient encephalopathy confusional amnestic syndrome 2/F/18/W 2 6 Normal 29 Complex partial seizures 3/M/5/W* 1 3 Abnormal 4 Transient diplopia, upbeat and gaze-evoked nystagmus 4/F/34/W 3 2 Normal 96 Diplopia without objective findings 5/F/13/H* 3 6 Normal 6 Nausea 6/F/34/W 0 2 Normal 12 Dysarthria, diplopia, left facial numbness 7/F/38/AA* 2 2 Normal 14 None 8/M/35/W 3 5 Normal 54 Vertigo Abbreviations: AA, African American; As, Asian; H, Hispanic; LETM, longitudinally extensive transverse myelitis ( 3 vertebral segments); MRI, magnetic resonance imaging; NMO, neuromyelitis optica; ON, optic neuritis; W, white. *Described previously. 9 Prolonged visual evoked potentials bilaterally. The MRI performed at 29 months showed nonspecific foci of signal abnormality in the deep white matter; images shown in the figure were taken 88 months after disease onset. Table 2. MRI Characteristics of 8 Patients With NMO and Brain Lesions Patient No./Sex/ Age at Onset, y/race Hypothalamus Thalamus Brainstem Region of Head MRI Signal Abnormalities Lateral Fourth 1/F/48/As 2/F/18/W 3/M/5/W* 4/F/34/W E E (fornix) ± 5/F/13/H* 6/F/34/W E 7/F/38/AA* 8/M/35/W E E Third Abbreviations: AA, African American; As, Asian; E, enhancing; H, Hispanic; MRI, magnetic resonance imaging; NMO, neuromyelitis optica; ON, optic neuritis; W, white;, present;, absent. *Described previously. 9 Extending into the cerebellar peduncles. COMMENT The beneficial effects of plasmapheresis 14 and anti Bcell therapy (rituximab) 15 in patients with acute NMO are consistent with NMO being an autoantibodymediated disease. Although its pathogenicity is not yet proved, NMO-IgG has proved to be a sensitive and specific marker for a spectrum of NMO-related disorders, including relapsing myelitis 2,13 and relapsing optic neuritis. 2 Neuromyelitis optica IgG has been shown to interact specifically with the AQP4 water channel protein in vitro. 3 The distribution of AQP4 at glial-fluid interfaces in the mouse spinal cord 16 coincides with sites of NMO-IgG 2 binding and is similar to the pattern of immunoglobulin and complement deposition in lesions of autopsy and biopsy spinal cord specimens of patients who have active acute-stage NMO. 17 These observations support our hypothesis that AQP4-IgG plays a pathogenic role in NMO. The anatomical and cellular distribution of AQP4 in mammalian tissues, including brain and spinal cord, has been investigated extensively. 4-8,16 Venero et al 18 reported high AQP4 messenger RNA expression in periventricular organs of rodent brain. An immunolocalization study 19 performed with normal human brain tissue demonstrated restriction of AQP4 to astroglial cell membranes, particularly in subpial and subependymal zones around the ventricles, as observed in other mammals. 4-7 Although most brain lesions encountered in patients with NMO are nonspecific, lesions in the brainstem and hypothalamus appear to be relatively characteristic for NMO Vernant et al 20 described 8 Antillean women with an NMO-like illness of whom 3 had endocrinopathies with MRI lesions in the hypophysis and inferior hypothalamus. In addition to our 3 cases with NMO and MRI evidence of hypothalamic involvement, 9 Poppe et al 10 described 2 patients who presented with otherwise classic NMO and developed clinical manifestations of hypothalamic dysfunction with lesions that involved the hypothalamus as the sole parenchymal lesions in the brain. In consideration of these reports and the recently discovered serologic marker NMO-IgG, Wingerchuk and colleagues 21 have proposed revised diagnostic criteria for definite NMO. These criteria require optic neuritis, myelitis, and at least 2 of 3 supportive criteria: (1) MRI evidence of a contiguous spinal cord lesion 3 or more vertebral 967

5 segments in length, (2) brain MRI nondiagnostic for MS at the onset of disease, and (3) detection of NMO-IgG in serum. These revised criteria acknowledge that both clinical and subclinical evidence of brain involvement are compatible with a diagnosis of NMO. In support of a broader definition of an NMO-spectrum disorder, Weinshenker and colleagues have documented that 40% of patients who present with a single episode of LETM are seropositive for NMO-IgG and that seropositivity predicts high risk of a relapse of transverse myelitis or subsequent development of optic neuritis (fulfilling criteria for a definite diagnosis of NMO). 13 We now recognize NMO- IgG seropositive patients with recurrent LETM as having a limited form of NMO. This was our rationale for including patients with either NMO or NMO spectrum disorders as subjects of this report. The MRI brain lesions that are characteristic of NMO occur adjacent to the ventricular system at any level but are more commonly found around the third and fourth ventricle and the aqueduct of Sylvius than around the lateral ventricles. The corpus callosum is sometimes involved. The distribution of these characteristic NMO brain lesions mirrors the periventricular and hypothalamic localization of AQP4. It is not yet known and remains to be demonstrated experimentally whether inflammatory sequelae follow the binding of NMO-IgG to AQP4. We anticipate that detailed immunohistochemical studies of autopsy or biopsy brain tissue specimens from patients with NMO, as well as imaging and immunopathologic studies of CNS tissues in animals immunized with AQP4 (or injected with NMO-IgG), will establish the extent of brain tissue involvement beyond the optic nerves. In contrast to the severe clinical manifestations of lesions that involve optic nerves and spinal cord in patients with NMO, the brain lesions described in this report were minimally or not symptomatic and were observed to resolve in some patients. It is conceivable that focal accumulations of water may account for the MRI abnormalities we report, consistent with the critical role of AQP4 in sustaining brain water homeostasis. 4,6 To our knowledge, this is the first report to correlate a distinctive radiologic pattern with a putative autoantigen. Accepted for Publication: February 28, Correspondence: Sean J. Pittock, MD, Department of Neurology, Mayo Clinic, 200 First St SW, Rochester, MN (Pittock.sean@mayo.edu). Author Contributions: Study concept and design: Pittock, Weinshenker, Lucchinetti, Wingerchuk, and Lennon. Acquisition of data: Pittock, Weinshenker, and Corboy. Analysis and interpretation of data: Pittock, Lucchinetti, and Wingerchuk. Drafting of the manuscript: Pittock. Critical revision of the manuscript for important intellectual content: Pittock, Weinshenker, Lucchinetti, Wingerchuk, Corboy, and Lennon. Administrative, technical, and material support: Pittock and Lennon. Study supervision: Pittock and Weinshenker. Financial Disclosure: Dr Lennon is a named inventor on a patent application filed by Mayo Foundation for Medical Education and Research that relates to AQP4 as the NMO autoantigen. Funding/Support: This study was supported by the Mayo Foundation. Acknowledgment: We thank Eduardo Benarroch, MD, for valuable discussion and the many physicians who provided clinical and radiologic information for patients in whose serum we detected NMO-IgG. We especially thank Richard Hull, MD, for providing clinical and imaging information on one of the patients described in this article. We appreciate the assistance of Denice Bredlow and the technical expertise of the members of the Neuroimmunology Laboratory, Mayo Clinic, Rochester, Minn. REFERENCES 1. Wingerchuk DM, Hogancamp WF, O Brien PC, Weinshenker BG. The clinical course of neuromyelitis optica (Devic s syndrome). Neurology. 1999;53: Lennon VA, Wingerchuk DM, Kryzer TJ, et al. A serum autoantibody marker of neuromyelitis optica. Lancet. 2004;364: Lennon VA, Kryzer TJ, Pittock SJ, et al. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med. 2005;202: Amiry-Moghaddam M, Ottersen OP. The molecular basis of water transport in the brain. Nat Rev Neurosci. 2003;4: Nielsen S, Nagelhus EA, Amiry-Moghaddam M, et al. Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci. 1997;17: Jung JS, Bhat RV, Preston GM, et al. Molecular characterization of an aquaporin cdna from brain: candidate osmoreceptor and regulator of water balance. Proc Natl Acad Sci U S A. 1994;91: Frigeri A, Gropper MA, Turck CW, Verkman AS. Immunolocalization of the mercurialinsensitive water channel and glycerol intrinsic protein in epithelial cell plasma membranes. Proc Natl Acad Sci U S A. 1995;92: Nicchia GP, Nico B, Camassa LMA, et al. The role of aquaporin-4 in the bloodbrain barrier development and integrity: studies in animal and cell culture models. Neuroscience. 2004;129: Pittock SJ, Lennon VA, Krecke K, Wingerchuk DM, Lucchinetti CF, Weinshenker BG. Brain abnormalities in patients with neuromyelitis optica (NMO). Arch Neurol. 2006;63: Poppe AY, Lapierre Y, Melancon D, et al. Neuromyelitis optica with hypothalamic involvement. Mult Scler. 2005;11: Nakashima I, Fujihara K, Miyazawa I, et al. Clinical and MRI features of 14 Japanese MS patients with NMO-IgG [published online ahead of print February 27, 2006]. J Neurol Neurosurg Psychiatry. doi: /jnnp Accessed February 27, Wingerchuk D, Pittock S, Lennon V, et al. Neuromyelitis optica diagnostic criteria revisited: validation and incorporation of the NMO-IgG serum autoantibody [abstract]. Neurology. 2005;64(suppl 1):A Weinshenker BG, Wingerchuk DM, Vukusic S, et al. Neuromyelitis optica IgG predicts relapse following longitudinally extensive transverse myelitis. Ann Neurol. 2006;59: Keegan M, Pineda AA, McClelland RL, et al. Plasma exchange for severe attacks of CNS demyelination: predictors of response. Neurology. 2002;58: Cree BA, Lamb S, Morgan K, et al. An open label study of the effects of rituximab in neuromyelitis optica. Neurology. 2005;64: Oshio K, Binder DK, Yang B, et al. Expression of aquaporin water channels in mouse spinal cord. Neuroscience. 2004;127: Lucchinetti CF, Mandler RN, McGavern D, et al. A role for humoral mechanisms in the pathogenesis of Devic s neuromyelitis optica. Brain. 2002;125: Venero JL, Vizuete ML, Ilundain AA, et al. Detailed localization of aquaporin-4 messenger RNA in the CNS: preferential expression in periventricular organs. Neuroscience. 1999;94: Aoki K, Uchihara T, Tsuchiya K, et al. Enhanced expression of aquaporin-4 in human brain with infarction. Acta Neuropathol (Berl). 2003;106: Vernant JC, Cabre P, Smadja D, et al. Recurrent optic neuromyelitis with endocrinopathies: a new syndrome. Neurology. 1997;48: Wingerchuk DM, Lennon VA, Pittock SJ, et al. Revised diagnostic criteria for neuromyelitis optica. Neurology. In press. 968

Neuromyelitis optica (NMO), or Devic s disease, is a rare

Neuromyelitis optica (NMO), or Devic s disease, is a rare Case Report Neuromyelitis Optica (NMO) Abstract NMO is a is a rare entity which involves the central nervous system acting as an inflammatory process by attacking the optic nerve (ON) and longitudinally

More information

Magnetic Resonance Imaging of Neuromyelitis Optica (Devic s Syndrome)

Magnetic Resonance Imaging of Neuromyelitis Optica (Devic s Syndrome) J Radiol Sci 2012; 37: 45-50 Magnetic Resonance Imaging of Neuromyelitis Optica (Devic s Syndrome) Chien-Chuan Huang Tai-Yuan Chen Tai-Ching Wu Yu-Kun Tsui Te-Chang Wu Wen-Sheng Tzeng Chien-Jen Lin Department

More information

Patologie infiammatorie encefaliche e midollari

Patologie infiammatorie encefaliche e midollari Patologie infiammatorie encefaliche e midollari Maria Laura Stromillo Department of Medicine, Surgery and Neuroscience Inflammatory disorders of the CNS NMOSD ADEM Multiple Sclerosis Neuro-Myelitis Optica

More information

RSR RSR RSR RSR RSR. ElisaRSR AQP4 Ab RSR. Aquaporin-4 Autoantibody Assay Kit

RSR RSR RSR RSR RSR. ElisaRSR AQP4 Ab RSR. Aquaporin-4 Autoantibody Assay Kit To aid diagnosis of Neuromyelitis Optica (NMO) and NMO spectrum disorder (NMOSD) To confirm diagnosis before initial treatment of patients with demyelinating inflammatory disease NMO, NMOSD and AQP4 Elisa

More information

Actualização no diagnóstico e tratamento das doenças desmielinizantes na infância. Silvia Tenembaum

Actualização no diagnóstico e tratamento das doenças desmielinizantes na infância. Silvia Tenembaum Actualização no diagnóstico e tratamento das doenças desmielinizantes na infância Silvia Tenembaum Acquired CNS inflammatory/demyelinating disorders: Background information More frequent in children than

More information

Wingerchuk et al, Neurol, 2006

Wingerchuk et al, Neurol, 2006 Current Understanding of Neuromyelitis Optica Jacqueline A. Leavitt, M.D. Mayo Clinic Rochester, MN I have no financial disclosures 46 y/o F Pain in R temple worse with head movements, resolved in days

More information

Neuromyelitis Optica Spectrum Disorder (NMOSD): Brain MRI findings in patients at our institution and literature review.

Neuromyelitis Optica Spectrum Disorder (NMOSD): Brain MRI findings in patients at our institution and literature review. Neuromyelitis Optica Spectrum Disorder (NMOSD): Brain MRI findings in patients at our institution and literature review. Poster No.: C-0817 Congress: ECR 2014 Type: Educational Exhibit Authors: G. I. MICHELIN,

More information

New Insights on Optic Neuritis in Young People

New Insights on Optic Neuritis in Young People Cronicon OPEN ACCESS EC OPHTHALMOLOGY Case Study New Insights on Optic Neuritis in Young People Sergio Carmona 1, Sandra Barbosa 1 and Maria Laura Ortube 2 * 1 Department of Neuro-ophthalmology, Hospital

More information

Neuromyelitis Optica: A Case Report

Neuromyelitis Optica: A Case Report Pediatr Neonatol 2010;51(6):347 352 CASE REPORT Neuromyelitis Optica: A Case Report Wei-Chia Chia 1, Jian-Nan Wang 1, Ming-Chi Lai 2 * 1 Department of Family Medicine, Chi-Mei Medical Center, Yong Kang

More information

Autologous Hematopoietic Stem Cell Transplantation for the Treatment of Neuromyelitis Optica in Singapore

Autologous Hematopoietic Stem Cell Transplantation for the Treatment of Neuromyelitis Optica in Singapore Case Reports 26 Autologous Hematopoietic Stem Cell Transplantation for the Treatment of Neuromyelitis Optica in Singapore Koh Yeow Hoay, Pavanni Ratnagopal Abstract Introduction: Neuromyelitis optica (NMO)

More information

Loss of Aquaporin-4 in Active Perivascular Lesions in Neuromyelitis Optica: A Case Report

Loss of Aquaporin-4 in Active Perivascular Lesions in Neuromyelitis Optica: A Case Report Tohoku J. Exp. Med., 2006, Loss 209, of Aquaporin-4 269-275 in the Lesions of Neuromyelitis Optica 269 Loss of Aquaporin-4 in Active Perivascular Lesions in Neuromyelitis Optica: A Case Report Case Report

More information

Professor Yasser Metwally. Neuromyelitis optica. EPIDEMIOLOGY

Professor Yasser Metwally. Neuromyelitis optica.  EPIDEMIOLOGY 180 Professor Yasser Metwally Neuromyelitis optica www.yassermetwally.com N EPIDEMIOLOGY Afro-Caribbean, and South American descent implying underlying genetic mechanisms in the expression of demyelinating

More information

The role of anti-aquaporin-4 antibody in Asian patients with multiple sclerosis: Confusions and controversies

The role of anti-aquaporin-4 antibody in Asian patients with multiple sclerosis: Confusions and controversies Neurology Asia 2007; 12 : 135 139 VIEWS AND REVIEW The role of anti-aquaporin-4 antibody in Asian patients with multiple sclerosis: Confusions and controversies HT Chong, *AG Kermode, CT Tan Department

More information

Heterogeneity of Demyelinating Disease: Definitions and Overlap Overview

Heterogeneity of Demyelinating Disease: Definitions and Overlap Overview Heterogeneity of Demyelinating Disease: Definitions and Overlap Overview Brian Weinshenker, MD, FRCP(C) Disclosures Royalties related to patent for discovery of NMO-IgG licensed to RSR Ltd; Oxford University

More information

Severe visual loss due to optic neuritis (ON) is the most

Severe visual loss due to optic neuritis (ON) is the most Ocular Oscillations in the Neuromyelitis Optica Spectrum Rabih Hage, Jr, MD, Harold Merle, MD, Séverine Jeannin, MD, Philippe Cabre, MD Abstract: Four French West Indian women complained of oscillopsia

More information

Research Article Optic Nerve and Spinal Cord Are the Major Lesions in Each Relapse of Japanese Multiple Sclerosis

Research Article Optic Nerve and Spinal Cord Are the Major Lesions in Each Relapse of Japanese Multiple Sclerosis International Scholarly Research Network ISRN Neurology Volume 211, Article ID 9476, 4 pages doi:1.542/211/9476 Research Article Optic Nerve and Spinal Cord Are the Major Lesions in Each Relapse of Japanese

More information

Sawada J, Orimoto R, Misu T, Katayama T, Aizawa H, Asanome A, Takahashi K, Saito T, Anei R, Kamada K, Miyokawa N, Takahashi T, Fujihara K, Hasebe N.

Sawada J, Orimoto R, Misu T, Katayama T, Aizawa H, Asanome A, Takahashi K, Saito T, Anei R, Kamada K, Miyokawa N, Takahashi T, Fujihara K, Hasebe N. Mult Scler (2014.9) 20(10):1413-1416. A case of pathology-proven neuromyelitis optica spectrum disorder with Sjögren syndrome manifesting aphasia and apraxia due to a localized cerebral white matter lesion.

More information

MRI Imaging of Neuromyelitis Optica

MRI Imaging of Neuromyelitis Optica July 2009 MRI Imaging of Neuromyelitis Optica Jenna Nolan, Harvard Medical School Year III Gillian Lieberman, MD Our Patient: Initial Presentation J.H. is a 29 year-old woman who presents with acute vision

More information

MRI and differential diagnosis in patients suspected of having MS

MRI and differential diagnosis in patients suspected of having MS Andrea Falini Italy MRI and differential diagnosis in patients suspected of having MS IMPROVING THE PATIENT S LIFE THROUGH MEDICAL EDUCATION www.excemed.org Outline of presentation - Diagnostic criteria

More information

MRI features and anti-aqp4 antibody status in Idiopathic inflammatory demyelinating CNS disease (IIDCD) in Thai patients

MRI features and anti-aqp4 antibody status in Idiopathic inflammatory demyelinating CNS disease (IIDCD) in Thai patients Neurology Asia 2013; 18(1) : 73 81 MRI features and anti-aqp4 antibody status in Idiopathic inflammatory demyelinating CNS disease (IIDCD) in Thai patients 1 Naraporn Prayoonwiwat MD, 2 Orasa Chawalparit

More information

Idiopathic Inflammatory Demyelinating Diseases of the Brainstem

Idiopathic Inflammatory Demyelinating Diseases of the Brainstem Idiopathic Inflammatory Demyelinating Diseases of the Brainstem 1 A. Rovira-Cañellas, 2 A. Rovira-Gols, 1 J. Sastre-Garriga, 1 C. Auger, 1 J. Munuera, 1 X. Montalban 1 Hospital Vall d Hebron, Barcelona.

More information

NMO-IgG: A specific biomarker for neuromyelitis optica

NMO-IgG: A specific biomarker for neuromyelitis optica Disease Markers 22 (2006) 197 206 197 IOS Press NMO-IgG: A specific biomarker for neuromyelitis optica Brian G. Weinshenker a,, Dean M. Wingerchuk d, Sean J. Pittock a,b, Claudia F. Lucchinetti a and Vanda

More information

ORIGINAL CONTRIBUTION. Painful Tonic Spasm in Neuromyelitis Optica. Incidence, Diagnostic Utility, and Clinical Characteristics

ORIGINAL CONTRIBUTION. Painful Tonic Spasm in Neuromyelitis Optica. Incidence, Diagnostic Utility, and Clinical Characteristics ORIGINAL CONTRIBUTION Painful Tonic Spasm in Neuromyelitis Optica Incidence, Diagnostic Utility, and Clinical Characteristics Sung-Min Kim, MD; Min Jin Go, MS; Jung-Joon Sung, MD, PhD; Kyung Seok Park,

More information

MYELITIS. A Mochan Neurology

MYELITIS. A Mochan Neurology MYELITIS A Mochan Neurology ATM MS LETM NMOSD ATM LETM MS NMOSD Acute Transverse Myelitis Longitudinally Extensive Transverse Myelitis Multiple Sclerosis Neuromyelitis Optica Spectrum Disorders ATM ADEM

More information

ORIGINAL CONTRIBUTION

ORIGINAL CONTRIBUTION ORIGINAL CONTRIBUTION Neuromyelitis Optica Treatment Analysis of 3 s Denis Bernardi Bichuetti, MD; Enedina Maria Lobato de Oliveira, MD, PhD; Daniel May Oliveira, MD; Nilton Amorin de Souza, MD; Alberto

More information

NMO IgG (Aquaporin-4) autoantibodies in immune-mediated optic neuritis

NMO IgG (Aquaporin-4) autoantibodies in immune-mediated optic neuritis NMO IgG (Aquaporin-4) autoantibodies in immune-mediated optic neuritis A Petzold, Sean J Pittock, Vanda Lennon, Cosimo Maggiore, B G Weinshenker, Gordon T Plant To cite this version: A Petzold, Sean J

More information

Ocular Oscillations and Transient Oscillopsia in Neuromyelitis Optica

Ocular Oscillations and Transient Oscillopsia in Neuromyelitis Optica Elmer ress Case Report J Neurol Res. 2014;4(5-6):145-149 Ocular Oscillations and Transient Oscillopsia in Neuromyelitis Optica Nitin Nema a, c, Abha Verma a, Urvija Choudhary a, Pramod Sakhi b Abstract

More information

ORIGINAL CONTRIBUTION

ORIGINAL CONTRIBUTION ORIGINAL CONTRIBUTION Markedly Elevated Soluble Intercellular Adhesion Molecule 1, Soluble Vascular Cell Adhesion Molecule 1 Levels, and Blood-Brain Barrier Breakdown in Neuromyelitis Optica Akiyuki Uzawa,

More information

Neuromyelitis optica and neuromyelitis optica-igg seropositivity in Saudis with demyelinating diseases of the central nervous system

Neuromyelitis optica and neuromyelitis optica-igg seropositivity in Saudis with demyelinating diseases of the central nervous system Neurology Asia 2014; 19(3) : 295 300 Neuromyelitis optica and neuromyelitis optica-igg seropositivity in Saudis with demyelinating diseases of the central nervous system 1,2 Ali M Al-Khathaami FRCPC, 2

More information

Neuromyelitis optica (NMO) is characterized as a

Neuromyelitis optica (NMO) is characterized as a Neuromyelitis optica (NMO) is characterized as a severe, relapsing inflammatory disease resulting in vision loss and impaired mobility. As with multiple sclerosis, clinical symptoms result from demyelination

More information

NIH Public Access Author Manuscript Arch Neurol. Author manuscript; available in PMC 2012 July 1.

NIH Public Access Author Manuscript Arch Neurol. Author manuscript; available in PMC 2012 July 1. NIH Public Access Author Manuscript Published in final edited form as: Arch Neurol. 2011 July ; 68(7): 870 878. doi:10.1001/archneurol.2011.34. Beneficial Plasma Exchange Response in CNS Inflammatory Demyelination

More information

MRI in Differential Diagnosis. CMSC, June 2, Jill Conway, MD, MA, MSCE

MRI in Differential Diagnosis. CMSC, June 2, Jill Conway, MD, MA, MSCE MRI in Differential Diagnosis CMSC, June 2, 2016 Jill Conway, MD, MA, MSCE Director, Carolinas MS Center Clerkship Director, UNCSOM-Charlotte Campus Charlotte, NC Disclosures Speaking, consulting, and/or

More information

Title Neuromyelitis Optica in Japanese Author(s) TANAKA, Yuji Citation [Internal Medicine] vol.[50] no.[ Issue Date 2011 Rights The Japanese Society of Internal 内科学会 ) Version 出版社版 (publisher version)

More information

Myelitis. Case 2. History. Examination. Mahtab Ghadiri

Myelitis. Case 2. History. Examination. Mahtab Ghadiri Case 2 Myelitis Mahtab Ghadiri History A 42-year-old man presented to the emergency department with altered sensation in the lower limbs and difficulty ambulating. He first noted paresthesia in his feet

More information

The use of AQP4-antibody testing in diagnosis Thai patients with neuromyelitis optica

The use of AQP4-antibody testing in diagnosis Thai patients with neuromyelitis optica Neurology Asia 2014; 19(4) : 375 385 The use of AQP4-antibody testing in diagnosis Thai patients with neuromyelitis optica 1,2 Sasitorn Siritho MD, 3 Metha Apiwattanakul MD, 1 Naraporn Prayoonwiwat MD

More information

Multiple sclerosis in Japan: Nationwide surveys over 30 years

Multiple sclerosis in Japan: Nationwide surveys over 30 years Neurology Asia 28; 13 : 131 143 Multiple sclerosis in Japan: Nationwide surveys over 3 years Jun-ichi Kira, Takaaki Ishizu, Manabu Osoegawa, and The Research Committee of Neuroimmunological Diseases Department

More information

NMOSD: CURRENT AND EMERGING THERAPIES AND STRATEGIES

NMOSD: CURRENT AND EMERGING THERAPIES AND STRATEGIES NMOSD: CURRENT AND EMERGING THERAPIES AND STRATEGIES Dean M. Wingerchuk, MD, MSc, FRCP(C) Mayo Clinic Scottsdale, AZ Neuromyelitis optica (NMO; Devic s syndrome) consists of optic neuritis and transverse

More information

COPYRIGHT 2012 THE TRANSVERSE MYELITIS ASSOCIATION. ALL RIGHTS RESERVED

COPYRIGHT 2012 THE TRANSVERSE MYELITIS ASSOCIATION. ALL RIGHTS RESERVED The Transverse Myelitis Association...advocating for those with acute disseminated encephalomyelitis, neuromyelitis optica, optic neuritis and transverse myelitis ACUTE DISSEMINATED ENCEPHALOMYELITIS (ADEM)

More information

Clinical improvement in a patient with neuromyelitis optica following therapy with the anti-il-6 receptor monoclonal antibody tocilizumab

Clinical improvement in a patient with neuromyelitis optica following therapy with the anti-il-6 receptor monoclonal antibody tocilizumab Mod Rheumatol (13) 3:87 831 DOI 1.17/s1165-1-715-9 CASE REPORT Clinical improvement in a patient with neuromyelitis optica following therapy with the anti-il-6 receptor monoclonal antibody tocilizumab

More information

Autoantibodies targeting astrocytic aquaporin-4 (AQP4) ALIMENTARY TRACT

Autoantibodies targeting astrocytic aquaporin-4 (AQP4) ALIMENTARY TRACT CLINICAL GASTROENTEROLOGY AND HEPATOLOGY 2013;11:240 245 ALIMENTARY TRACT Intractable Nausea and Vomiting From Autoantibodies Against a Brain Water Channel RAFFAELE IORIO,* CLAUDIA F. LUCCHINETTI, VANDA

More information

ORIGINAL CONTRIBUTION. The Natural History of Recurrent Optic Neuritis

ORIGINAL CONTRIBUTION. The Natural History of Recurrent Optic Neuritis ORIGINAL CONTRIBUTION The Natural History of Recurrent Optic Neuritis Istvan Pirko, MD; Lori K. Blauwet, MD; Timothy G. Lesnick, MSc; Brian G. Weinshenker, MD, FRCP(C) Background: Optic neuritis (ON) may

More information

Thashi Chang 1,2* and Milinda Withana 2

Thashi Chang 1,2* and Milinda Withana 2 Chang and Withana BMC Research Notes (2015) 8:36 DOI 10.1186/s13104-015-0991-5 CASE REPORT Open Access Gaze palsy, hypogeusia and a probable association with miscarriage of pregnancy - the expanding clinical

More information

Common Pitfalls in Multiple Sclerosis and CNS Demyelinating Diseases

Common Pitfalls in Multiple Sclerosis and CNS Demyelinating Diseases Common Pitfalls in Multiple Sclerosis and CNS Demyelinating Diseases Case-Based Learning Common Pitfalls in Multiple Sclerosis and CNS Demyelinating Diseases Case-Based Learning Mayo Clinic College of

More information

Blood Brain Barrier Disruption is More Severe in Neuromyelitis Optica than in Multiple Sclerosis and Correlates with Clinical Disability

Blood Brain Barrier Disruption is More Severe in Neuromyelitis Optica than in Multiple Sclerosis and Correlates with Clinical Disability The Journal of International Medical Research 2012; 40: 1483 1491 Blood Brain Barrier Disruption is More Severe in Neuromyelitis Optica than in Multiple Sclerosis and Correlates with Clinical Disability

More information

Myelitis. Myelitis. Multiple Sclerosis (MS) Acute demyelinating syndrome (ADS) Indictions for spinal cord MRI in MS.

Myelitis. Myelitis. Multiple Sclerosis (MS) Acute demyelinating syndrome (ADS) Indictions for spinal cord MRI in MS. Myelitis Myelitis Majda M Thurnher Professor of Radiology Medical University of Vienna University Hospital Vienna Department of Biomedical Imaging and Image-Guided Therapy Vienna Austria Acute demyelinating

More information

VOLUME 27, NUMERO 1 DECEMBRE 2011 NEUROR ADIOLOGY MUHC MNH VOLUME 27, NUMBER 1 DECEMBER 2011

VOLUME 27, NUMERO 1 DECEMBRE 2011 NEUROR ADIOLOGY MUHC MNH VOLUME 27, NUMBER 1 DECEMBER 2011 VOLUME 27, NUMERO 1 DECEMBRE 2011 NEUROR ADIOLOGY MUHC MNH VOLUME 27, NUMBER 1 DECEMBER 2011 IN THIS ISSUE The new NEURO logo Sandra McPherson Devic s disease Roberta La Piana, Maria Cortés and Donatella

More information

1 MS Lesions in T2-Weighted Images

1 MS Lesions in T2-Weighted Images 1 MS Lesions in T2-Weighted Images M.A. Sahraian, E.-W. Radue 1.1 Introduction Multiple hyperintense lesions on T2- and PDweighted sequences are the characteristic magnetic resonance imaging (MRI) appearance

More information

Late-onset neuromyelitis optica spectrum disorder in AQP4-seropositive patients in a Chinese population

Late-onset neuromyelitis optica spectrum disorder in AQP4-seropositive patients in a Chinese population Mao et al. BMC Neurology (2015) 15:160 DOI 10.1186/s12883-015-0417-y RESEARCH ARTICLE Open Access Late-onset neuromyelitis optica spectrum disorder in AQP4-seropositive patients in a Chinese population

More information

Neuromyelitis optica mimics the morphology of spinal cord tumors

Neuromyelitis optica mimics the morphology of spinal cord tumors The Turkish Journal of Pediatrics 2016; 58: 309-314 Case Report Neuromyelitis optica mimics the morphology of spinal cord tumors İlknur Erol 1, Murat Özkale 2, Tülin Savaş 1, Özlem Alkan 3, Melih Çekinmez

More information

Pediatric acute demyelinating encephalomyelitis in Denmark: a nationwide population-based study

Pediatric acute demyelinating encephalomyelitis in Denmark: a nationwide population-based study Pediatric acute demyelinating encephalomyelitis in Denmark: a nationwide population-based study Magnus Spangsberg Boesen November, 2016 Supervisors: P. Born, P. Uldall, M. Blinkenberg, M. Magyari, F. Sellebjerg

More information

Function of aquaporin in the brain and brain edema

Function of aquaporin in the brain and brain edema Nagoya Med. J., 199 Function of aquaporin in the brain and brain edema KAZUYA SOBUE Department of Anesthesiology and Medical crisis Management, Nagoya City University Graduate School of Medical Sciences

More information

Salintip Kunadison MD, Chaiwiwat Tungkasereerak MD, Surin Saetang MD, Pawut Mekawichai MD

Salintip Kunadison MD, Chaiwiwat Tungkasereerak MD, Surin Saetang MD, Pawut Mekawichai MD Neurology Asia 2018; 23(1) : 55 59 Comparison of clinical features between aquaporin-4 antibody seropositive and seronegative patients in neuromyelitis optica and neuromyelitis optica spectrum disorder

More information

Magnetic Resonance Imaging in the Acquired Demyelinating Disorders: A Pediatric Cohort Study

Magnetic Resonance Imaging in the Acquired Demyelinating Disorders: A Pediatric Cohort Study Journal of Pharmacy and Pharmacology 6 (2018) 20-31 doi: 10.17265/2328-2150/2018.01.003 D DAVID PUBLISHING Magnetic Resonance Imaging in the Acquired Demyelinating Disorders: A Pediatric Cohort Study Santa

More information

Title: Recurrent myelitis after allogeneic stem cell transplantation. Report of two cases.

Title: Recurrent myelitis after allogeneic stem cell transplantation. Report of two cases. Author's response to reviews Title: Recurrent myelitis after allogeneic stem cell transplantation. Report of two cases. Authors: Martin Voss (Martin.Voss@kgu.de) Felix Bischof (Felix.Bischof@uni-tuebingen.de)

More information

Atypical presentations of neuromyelitis optica

Atypical presentations of neuromyelitis optica View and review Arq Neuropsiquiatr 2011;69(5):824-828 Atypical presentations of neuromyelitis optica Douglas Sato 1,2, Kazuo Fujihara 3 ABSTRACT Neuromyelitis optica (NMO) is an inflammatory disease of

More information

The Use of Serum Glial Fibrillary Acidic Protein Measurements in the Diagnosis of Neuromyelitis Optica Spectrum Optic Neuritis

The Use of Serum Glial Fibrillary Acidic Protein Measurements in the Diagnosis of Neuromyelitis Optica Spectrum Optic Neuritis The Use of Serum Glial Fibrillary Acidic Protein Measurements in the Diagnosis of Neuromyelitis Optica Spectrum Optic Neuritis Mithu Storoni 1,2 *, Axel Petzold 1,3, Gordon T. Plant 1,2 1 The National

More information

Anaesthesia recommendations for patients suffering from Neuromyelitis optica spectrum disorder

Anaesthesia recommendations for patients suffering from Neuromyelitis optica spectrum disorder orphananesthesia Anaesthesia recommendations for patients suffering from Neuromyelitis optica spectrum disorder Disease name: Neuromyelitis optica spectrum disorder ICD 10: G36.0 Synonyms: Devic's Disease,

More information

Setting the Scene: Neuromyelitis Optica epidemiology, population variability, subgroups: relapsing/monophasic, Ab +ve/-ve, NMO/SD, treated/untreated

Setting the Scene: Neuromyelitis Optica epidemiology, population variability, subgroups: relapsing/monophasic, Ab +ve/-ve, NMO/SD, treated/untreated UK Nationally Commissioned NMO team Setting the Scene: Neuromyelitis Optica epidemiology, population variability, subgroups: relapsing/monophasic, Ab +ve/-ve, NMO/SD, treated/untreated Jackie Palace Disclosures

More information

Devic s syndrome: a case report WarumpornLimuntachai. Medical Student in Emergency Department, Ramathibodi Hospital, Bangkok, Thailand

Devic s syndrome: a case report WarumpornLimuntachai. Medical Student in Emergency Department, Ramathibodi Hospital, Bangkok, Thailand Devic s syndrome: a case report WarumpornLimuntachai Medical Student in Emergency Department, Ramathibodi Hospital, Bangkok, Thailand Abstract Objective: to report a case of Devic s syndrome, emphasizing

More information

Objective: To assess the evidence for diagnostic tests and therapies for transverse myelitis (TM) and make evidence-based recommendations.

Objective: To assess the evidence for diagnostic tests and therapies for transverse myelitis (TM) and make evidence-based recommendations. Published Ahead of Print on December 7, 2011 as 10.1212/WNL.0b013e31823dc535 SPECIAL ARTICLE Evidence-based guideline: Clinical evaluation and treatment of transverse myelitis Report of the Therapeutics

More information

MRI diagnostic criteria for multiple sclerosis: an update

MRI diagnostic criteria for multiple sclerosis: an update MRI diagnostic criteria for multiple sclerosis: an update Poster No.: C-0285 Congress: ECR 2013 Type: Educational Exhibit Authors: L. Valls Masot, A. M. Quiles Granado, J. Puig Alcántara, L. RamióTorrentà,

More information

Neurological update: MOG antibody disease

Neurological update: MOG antibody disease https://doi.org/10.1007/s00415-018-9122-2 NEUROLOGICAL UPDATE Neurological update: MOG antibody disease Ray Wynford Thomas 1,2 Anu Jacob 3 Valentina Tomassini 1,2,4 Received: 17 August 2018 / Revised:

More information

The Etiological Spectrum of Acute Sensory Myelitis

The Etiological Spectrum of Acute Sensory Myelitis Open Access pissn 1738-6586 / eissn 2005-5013 / J Clin Neurol 2015;11(3):227-233 / http://dx.doi.org/10.3988/jcn.2015.11.3.227 ORIGINAL ARTICLE Jae-Won Hyun a,c Jee Young Kim b Kyung Gyu Choi a Ho Jin

More information

Disease of Myelin. Reid R. Heffner, MD Distinguished Teaching Professor Emeritus Department of Pathology and Anatomy January 9, 2019

Disease of Myelin. Reid R. Heffner, MD Distinguished Teaching Professor Emeritus Department of Pathology and Anatomy January 9, 2019 Disease of Myelin Reid R. Heffner, MD Distinguished Teaching Professor Emeritus Department of Pathology and Anatomy January 9, 2019 1 I HAVE NO CONFLICTS OF INTEREST OR DISCLOSURES TO DECLARE. I HAVE NO

More information

PMH: No medications; Immunizations UTD No hospitalizations or surgeries Speech Delay. Birth Hx: 24 WGA, NICU x6 months

PMH: No medications; Immunizations UTD No hospitalizations or surgeries Speech Delay. Birth Hx: 24 WGA, NICU x6 months HPI: 6 months of weakness and parathesias- originally in both feet x 2-3 months, then resolved. Now with parathesias and weakness in fingers x 1 week. Seen by podiatrist and given custom in-soles 1 month

More information

Student Lab #: Date. Lab: Gross Anatomy of Brain Sheep Brain Dissection Organ System: Nervous Subdivision: CNS (Central Nervous System)

Student Lab #: Date. Lab: Gross Anatomy of Brain Sheep Brain Dissection Organ System: Nervous Subdivision: CNS (Central Nervous System) Lab: Gross Anatomy of Brain Sheep Brain Dissection Organ System: Nervous Subdivision: CNS (Central Nervous System) Student Lab #: Date 1 Objectives: 1. Learn the main components making up a motor neuron.

More information

THE FIRST DESCRIPTION OF BIlateral

THE FIRST DESCRIPTION OF BIlateral CLINICAL SCIENCES Clinical Course of Optic Neuritis in Patients With Relapsing Neuromyelitis Optica Regina Maria Papais-Alvarenga, MD, MSc, PhD; Sandro Carvalho Carellos, MD, MSc; Marcos Papais Alvarenga,

More information

An overview of NMO Spectrum Disorder and the diagnostic utility of anti-nmo antibodies

An overview of NMO Spectrum Disorder and the diagnostic utility of anti-nmo antibodies The Hong Kong College of Pathologists, Incorporated in Hong Kong with Limited Liability Volume 13, Issue 1 January 2018 Editorial note: NMOSD is an immune mediated demyelinating disease. Though its clinical

More information

Soliris in NMOSD Phase 3 PREVENT Study Topline Results September 24, 2018

Soliris in NMOSD Phase 3 PREVENT Study Topline Results September 24, 2018 Soliris in NMOSD Phase 3 PREVENT Study Topline Results September 24, 2018 Forward-Looking Statements This presentation contains forward-looking statements within the meaning of the Private Securities Litigation

More information

Sheep Brain Dissection

Sheep Brain Dissection Sheep Brain Dissection Mammalian brains have many features in common. Human brains may not be available, so sheep brains often are dissected as an aid to understanding the mammalian brain since he general

More information

Interactive Cases: Demyelinating Diseases and Mimics. Disclosures. Case 1 25 yo F with nystagmus; look for tumor 4/14/2017

Interactive Cases: Demyelinating Diseases and Mimics. Disclosures. Case 1 25 yo F with nystagmus; look for tumor 4/14/2017 Interactive Cases: Demyelinating Diseases and Mimics Disclosures None Brad Wright, MD 27 March 2017 Case 1 25 yo F with nystagmus; look for tumor What do you suspect? A. Demyelinating disease B. Malignancy

More information

BIOL Dissection of the Sheep and Human Brain

BIOL Dissection of the Sheep and Human Brain BIOL 2401 Dissection of the Sheep and Human Brain Laboratory Objectives After completing this lab, you should be able to: Identify the main structures in the sheep brain and to compare them with those

More information

Pediatric MS MRI Study Methodology

Pediatric MS MRI Study Methodology General Pediatric MS MRI Study Methodology SCAN PREPARATION axial T2-weighted scans and/or axial FLAIR scans were obtained for all subjects when available, both T2 and FLAIR scans were scored. In order

More information

Clinical Study The Diagnostic and Prognostic Value of Neurofilament Heavy Chain Levels in Immune-Mediated Optic Neuropathies

Clinical Study The Diagnostic and Prognostic Value of Neurofilament Heavy Chain Levels in Immune-Mediated Optic Neuropathies Multiple Sclerosis International Volume 0, Article ID 780, 5 pages doi:0.55/0/780 Clinical Study The Diagnostic and Prognostic Value of Neurofilament Heavy Chain Levels in Immune-Mediated Optic Neuropathies

More information

Difficult Diagnosis: Case History. 7 months prior, she happened to have undergone a C-spine MRI after a car accident

Difficult Diagnosis: Case History. 7 months prior, she happened to have undergone a C-spine MRI after a car accident Relevant Disclosures: None Difficult Diagnosis: Recent Advances in Neurology 2013 Jeffrey M. Gelfand, MD Assistant Professor UCSF Neuroinflammation and MS Center UCSF Department of Neurology Case History

More information

Brain, Cranial Nerves, and Spinal Cord

Brain, Cranial Nerves, and Spinal Cord Bio101 Laboratory 13 Neuron/Spinal Cord Histology Brain Anatomy Ear & Eye Anatomy 1 Brain, Cranial Nerves, and Spinal Cord Objectives for today s lab Become familiar with the gross anatomy of the brain

More information

Role of MRI in acute disseminated encephalomyelitis

Role of MRI in acute disseminated encephalomyelitis Original Research Article Role of MRI in acute disseminated encephalomyelitis Shashvat Modiya 1*, Jayesh Shah 2, C. Raychaudhuri 3 1 1 st year resident, 2 Associate Professor, 3 HOD and Professor Department

More information

Brain Meninges, Ventricles and CSF

Brain Meninges, Ventricles and CSF Brain Meninges, Ventricles and CSF Lecture Objectives Describe the arrangement of the meninges and their relationship to brain and spinal cord. Explain the occurrence of epidural, subdural and subarachnoid

More information

Opticospinal multiple sclerosis in Japanese

Opticospinal multiple sclerosis in Japanese Neurology Asia 2008; 13 : 167 173 Opticospinal multiple sclerosis in Japanese Jun-ichi Kira, Takuya Matsushita, Noriko Isobe, Takaaki Ishizu Department of Neurology, Neurological Institute, Graduate School

More information

Accepted Manuscript. Comparison of costs and outcomes of patients presenting with a rare brainstem syndrome. Devin E. Prior, Vijay Renga

Accepted Manuscript. Comparison of costs and outcomes of patients presenting with a rare brainstem syndrome. Devin E. Prior, Vijay Renga Accepted Manuscript Comparison of costs and outcomes of patients presenting with a rare brainstem syndrome Devin E. Prior, Vijay Renga PII: S2405-6502(18)30036-4 DOI: https://doi.org/10.1016/j.ensci.2018.11.004

More information

Review Article Neuromyelitis Optica: An Antibody-Mediated Disorder of the Central Nervous System

Review Article Neuromyelitis Optica: An Antibody-Mediated Disorder of the Central Nervous System Neurology Research International Volume 2012, Article ID 460825, 13 pages doi:10.1155/2012/460825 Review Article Neuromyelitis Optica: An Antibody-Mediated Disorder of the Central Nervous System Jiwon

More information

Chronic Lymphocytic Inflammation with Pontine Perivascular Enhancement Responsive to Steroids (CLIPPERS) with Limbic Encephalitis

Chronic Lymphocytic Inflammation with Pontine Perivascular Enhancement Responsive to Steroids (CLIPPERS) with Limbic Encephalitis doi: 10.2169/internalmedicine.8533-16 Intern Med Advance Publication http://internmed.jp CASE REPORT Chronic Lymphocytic Inflammation with Pontine Perivascular Enhancement Responsive to Steroids (CLIPPERS)

More information

Introduction to the Central Nervous System: Internal Structure

Introduction to the Central Nervous System: Internal Structure Introduction to the Central Nervous System: Internal Structure Objective To understand, in general terms, the internal organization of the brain and spinal cord. To understand the 3-dimensional organization

More information

Helpful Information for evaluation of new neurological symptoms in patients receiving TYSABRI

Helpful Information for evaluation of new neurological symptoms in patients receiving TYSABRI Helpful Information for evaluation of new neurological symptoms in patients receiving TYSABRI This information is provided as an educational resource for healthcare providers and should be considered current

More information

Original Article Risk factors for pneumonia complication in Neuromyelitis optica spectrum disorders

Original Article Risk factors for pneumonia complication in Neuromyelitis optica spectrum disorders Int J Clin Exp Med 2018;11(6):6113-6118 www.ijcem.com /ISSN:1940-5901/IJCEM0063991 Original Article Risk factors for pneumonia complication in Neuromyelitis optica spectrum disorders Bingjun Zhang 1*,

More information

Assessment of Patients with Neuromyelitis Optica Spectrum Disorder Using EQ-5D

Assessment of Patients with Neuromyelitis Optica Spectrum Disorder Using EQ-5D Assessment of Patients with Neuromyelitis Optica Spectrum Disorder Using EQ-5D Maureen A. Mealy, PhD(c), RN; Audra Boscoe, PhD; Jaime Caro, MDCM; Michael Levy, MD, PhD From the Department of Neurology,

More information

Syndrome of inappropriate antidiuretic hormone secretion associated with seronegative neuromyelitis optica spectrum disorder

Syndrome of inappropriate antidiuretic hormone secretion associated with seronegative neuromyelitis optica spectrum disorder Case Report Kidney Res Clin Pract 36:100-104, 2017(1) pissn: 2211-9132 eissn: 2211-9140 https://doi.org/10.23876/j.krcp.2017.36.1.100 Kidney Research and Clinical Practice Syndrome of inappropriate antidiuretic

More information

Dissection of the Sheep Brain

Dissection of the Sheep Brain Dissection of the Sheep Brain Laboratory Objectives After completing this lab, you should be able to: 1. Identify the main structures in the sheep brain and to compare them with those of the human brain.

More information

Gross Organization I The Brain. Reading: BCP Chapter 7

Gross Organization I The Brain. Reading: BCP Chapter 7 Gross Organization I The Brain Reading: BCP Chapter 7 Layout of the Nervous System Central Nervous System (CNS) Located inside of bone Includes the brain (in the skull) and the spinal cord (in the backbone)

More information

TOXIC AND NUTRITIONAL DISORDER MODULE

TOXIC AND NUTRITIONAL DISORDER MODULE TOXIC AND NUTRITIONAL DISORDER MODULE Objectives: For each of the following entities the student should be able to: 1. Describe the etiology/pathogenesis and/or pathophysiology, gross and microscopic morphology

More information

ACTIVITY 7: NERVOUS SYSTEM HISTOLOGY, BRAIN, CRANIAL NERVES

ACTIVITY 7: NERVOUS SYSTEM HISTOLOGY, BRAIN, CRANIAL NERVES ACTIVITY 7: NERVOUS SYSTEM HISTOLOGY, BRAIN, CRANIAL NERVES LABORATORY OBJECTIVES: 1. Histology: Identify structures indicated on three different slides or images of nervous system tissue. These images

More information

Blood Supply of the CNS

Blood Supply of the CNS Blood Supply of the CNS Lecture Objectives Describe the four arteries supplying the CNS. Follow up each artery to its destination. Describe the circle of Willis and its branches. Discuss the principle

More information

The Incidence and Prevalence of Neuromyelitis Optica

The Incidence and Prevalence of Neuromyelitis Optica The Incidence and Prevalence of Neuromyelitis Optica A Systematic Review Ruth Ann Marrie, MD, PhD; Caroline Gryba, BSc Interest in neuromyelitis optica (NMO) has increased substantially over the last few

More information

NEW DIAGNOSTIC CRITERIA FOR MULTIPLE SCLEROSIS

NEW DIAGNOSTIC CRITERIA FOR MULTIPLE SCLEROSIS NEW DIAGNOSTIC CRITERIA FOR MULTIPLE SCLEROSIS Jeffrey A. Cohen, MD Director, Experimental Therapeutics Mellen MS Center Neurological Institute Cleveland Clinic 2018 Regional MS Summit 30 June 2018 Disclosures

More information

Organization of The Nervous System PROF. SAEED ABUEL MAKAREM

Organization of The Nervous System PROF. SAEED ABUEL MAKAREM Organization of The Nervous System PROF. SAEED ABUEL MAKAREM Objectives By the end of the lecture, you should be able to: List the parts of the nervous system. List the function of the nervous system.

More information

Patient with vertigo, dizziness and depression

Patient with vertigo, dizziness and depression Clinical Case - Test Yourself Neuro/Head and Neck Radiology Patient with vertigo, dizziness and depression Michael Mantatzis, Paraskevi Argyropoulou, Panos Prassopoulos Radiology Department, Democritus

More information

White matter diseases affecting the corpus callosum; demyelinating and metabolic diseases

White matter diseases affecting the corpus callosum; demyelinating and metabolic diseases White matter diseases affecting the corpus callosum; demyelinating and metabolic diseases Poster No.: C-0199 Congress: ECR 2011 Type: Educational Exhibit Authors: J. H. Yoo; Seoul/KR Keywords: Neuroradiology

More information

Neuroimmunology testing services

Neuroimmunology testing services Neuroimmunology testing services Neuroimmunology Quest Diagnostics is your source for neuroimmunological testing with expanded offerings for several autoimmune neurological disorders Neuroimmunology is

More information

Autoimmune Aquaporin-4 Channelopathy Presented with Psychiatric Symptoms: A Case Report

Autoimmune Aquaporin-4 Channelopathy Presented with Psychiatric Symptoms: A Case Report Autoimmune Aquaporin-4 Channelopathy Presented with Psychiatric Symptoms: A Anjiao Peng¹, Jiangwen Cai² Wanlin Lai¹, Lin Zhang¹, Xiangmiao Qiu¹, Xi Zhu¹, Shixu He¹, Lei Chen¹, ABSTRACT Background:The discovery

More information

Multiple Sclerosis vs Acute Disseminated Encephalomyelitis in Childhood

Multiple Sclerosis vs Acute Disseminated Encephalomyelitis in Childhood Multiple Sclerosis vs Acute Disseminated Encephalomyelitis in Childhood Steven David Brass, MD, Zografos Caramanos, BA, Carlos Santos, MD, Marie-Emmanuelle Dilenge, MD, Yves Lapierre, MD, and Bernard Rosenblatt,

More information