Pediatric MS MRI Study Methodology

Size: px
Start display at page:

Download "Pediatric MS MRI Study Methodology"

Transcription

1 General Pediatric MS MRI Study Methodology SCAN PREPARATION axial T2-weighted scans and/or axial FLAIR scans were obtained for all subjects when available, both T2 and FLAIR scans were scored. In order to minimize biasing, T2 images were assessed for all patients, then FLAIR images for all patients, and finally T2 and FLAIR images were viewed in combination images were viewed on a dedicated dual high-resolution monitor (1600 x 1200 pixel resolution, Barco Manufacturing Company, Belgium) scans were retrieved from CD and viewed using efilm Lite version (efilm Medical Inc., Toronto) screen layout was arranged to accommodate eight sequential axial images (four images on each of the high-resolution monitors) scans were assessed from the most inferior image to the most superior image when possible, all accessory information was stripped from images prior to scoring. This was not possible for films that had be scanned into the PACs system windowing was used to improve lesion differentiation. No predefined windowing parameters were used LESION COUNTING Size once lesions were identified on an image, the location and size of the lesion was noted and annotated on the images using the efilm annotation tool lesion size was defined as the maximal linear expanse in either the axial (X-Y plane) or longitudinal plane (Z plane) a calibrated measurement tool was used to define lesion size on axial images slice thickness and spacing were used to determine estimated maximal expanse in the longitudinal plane (see Figure 1) Example: for a slice thickness of 5 mm and an interslice spacing of 2.5 mm, a lesion that was seen on two contiguous slices was considered to be a minimum of 7.5 mm (~2.5 mm of inferior slice mm interslice spacing + ~2.5 mm of superior slice) in the 1

2 A B 5 mm 2.5 mm 5 mm 2.5 mm 5 mm A B C 15 mm (2.5 mm mm + 5 mm mm mm) C 7.5 mm (2.5 mm mm mm) Figure 1: Pictorial explanation of lesion thickness in the longitudinal (Z-plane). (Left) Three sequential slices from an axial FLAIR image from a patient with multiple sclerosis labeled A, B, and C moving from superior to inferior. White boxes are regions represented in the diagram on the right. Note that within the boxes there is one lesion in the right frontal juxtacortical white matter that extends from slice C to slice B, an another lesion in the left frontal subcortical white matter that extends through all slices represented. (Right) Diagrammatic 3D representations of inset areas on MR scans on left. Slice thickness is 5 mm and interslice spacing is 2.5 mm. The lesion in the right frontal lobe spanned only two slices. Its minimum longitudinal expanse would be 7.5 mm (as depicted above). The lesion in the left frontal lobe spanned all three slices, and therefore its minimum expanse would have to be at least 15 mm. 2

3 longitudinal plane; a lesion spanning three contiguous slices would be a minimum of 15 mm (2.5 mm of inferior slice mm interslice spacing + 5 mm intervening slice mm interslice spacing mm superior slice), etc. lesions were only counted as relevant if they were greater than two millimeters in maximum diameter lesions greater than two millimeters in diameter were categorized as outlined in detail below (see Category section) lesion size was recorded as 3-10 mm, and then in 10 mm centiles: mm, mm, mm, and greater than 40 mm Continuity on axial images, lesions were considered contiguous if they could not be separated by a band of normal appearing tissue of at least 1 pixel in width variability in intra-lesional intensity did not influence lesion counting (i.e., if there was an area of bright T2 signal within a slighter paler lesion, it was not counted as two lesions) (see Figure 2) in the longitudinal plane, lesions were considered contiguous if they could be followed in sequential images all individual lesions were examined carefully in both the axial and longitudinal plane to ensure that at no point were they in direct contact with what may have appeared to be a separate lesion (i.e., if they touch at any point, they are counted as one and measured in the their maximum dimension) (see Figure 2) Lesion Categorization GENERAL total lesion count refers to the total number of individual lesions on each sequence (T2 or FLAIR) categorical lesion count refers to the total number of lesions belonging to any of the categories defined below (see Categories section) in order to obtain an accurate total lesion count without double counting, lesions that belonged to multiple categories only contributed towards the total lesion count in the category that best described where the majority (>50%) of bulk of the lesion fell Example: if the majority of the lesion was found in the caudate head, but a portion touched the internal capsule, only its deep grey nuclei component was counted towards the total lesion count 3

4 A Discrete Lesions A Confluen t Lesion B B Discrete Lesion Confluen t Lesion Figure 2: Diagrammatic explanation of lesion continuity. (Left) Two sequential axial FLAIR images from a patient with multiple sclerosis labeled A and B. White boxes represent portion of scan depicted to the right. Within the box on scan A, four discrete lesions would be counted. Within the box on scan B, two discrete lesions would be counted; one homogeneous juxtacortical lesion and one large, heterogeneous, subcortical white matter lesion. Intralesional areas of hyperintensity cannot be defined as discrete lesions as they are surrounded by tissue of abnormal signal. (Right) Diagrammatic representations of brain tissue outlined by the white boxes on the MR images to the left. In slice A, there appears to be four discrete lesions when viewed solely in the axial plane. However, when viewed in the longitudinal plane, it is obvious that all of these lesions are actually part of the large, heterogeneous, confluent lesion from slice B. Therefore, since the lesions are contiguous on the axial plane in slice B, and contiguous in the longitudinal axis between slices A and B, they are all counted as one lesion. Note, there is a separate discrete lesion on slice B. 4

5 in order to classify lesion distribution accurately, lesions belonging to multiple categories were noted to be part of each category (e.g., internal and deep grey nuclei) and thus, contributed to the categorical lesion count, but not towards the total lesion count Example: for the lesion described above that involved both the caudate head and the internal capsule, it would be counted as a deep grey lesion for the purposes of calculating total lesion load, but it would also be included as a lesion in both the deep grey and internal capsule categories, and thus contribute to the categorical lesion count for each category lesions in nerves are not included CATEGORIES Periventricular any area that abuts a ventricle (including lateral, third, fourth, cerebral aqueduct) may include gray or white matter this category cannot be combined with deep white matter Juxtacortical White Matter any supratentorial white matter abutting the cortical ribbon of grey matter this category cannot be combined with deep white matter Deep White Matter any supratentorial white matter that is not juxtacortical and not periventricular excludes white matter comprising the corpus callosum Internal Capsule please refer to Figure 3 for details white matter between lentiform nucleus, laterally, and the caudate head and thalamus medially anterior border is a line drawn from the Figure 3: Boundaries of the internal capsule. Anterior boundaries are denoted in red, posterior in blue. Black dotted lines denote lateral boundaries. (Image from University of California website) 5

6 most anterior portion of the caudate head to the most anterior tip of the putamen posterior border is a line drawn from the posterior tip of the putamen to the posterolateral portion of the thalamus does not count towards total lesion count subcategory of deep white matter Corpus Callosum please see Figure 4 for details inferior margin inferior margins of the genu and splenium superior margin contiguous ribbon of cingulate grey lining the interhemispheric A fissure B C anterior and posterior margins line drawn from anterior/posterior tip of the lateral ventricle perpendicular to the long axis of the callosal fibres and then extending to the cortical grey ribbon D E F Figure 4: Multiple axial slices of a T1-weighted image depicting the boundaries of the corpus callosum. Images are in sequential order from inferior to superior (A-F). Red lines depict the anterior boundaries. Blue lines depict the posterior boundaries. Green dotted lines represent the long axis of the callosal fibres. Black dotted lines (image E) depict the lateral borders. 6

7 lateral margin (only utilized when lateral ventricles are no longer visualized) medial margin of the lateral ventricle extrapolated from its location on the most superior axial image showing the lateral ventricles Cortical Grey any supratentorial grey cortical grey matter does not include hippocampus Deep Grey Nuclei include the following structures: caudate, putamen, globus pallidus, thalamus, hypothalamus, mamillary bodies, hippocampus, amygdala, and claustrum Brainstem extends from most inferior aspect of the medulla (dictated by the presence of the pyramids) to the most superior portion of the midbrain (last slice showing red nucleus) encompasses both grey and white matter cerebellar and cerebral peduncles are included Cerebellar entire cerebellum (cerebellar cortices, dentate nuclei, vermis, flocculus, nodulus) excluding cerebellar peduncles no differentiation between white and grey lesions Supratentorial includes subcortical white, juxtacortical, internal capsule, corpus callosum, cortical grey, and deep grey nuclei Infratentorial includes brainstem and cerebellum Size Categories SMALL lesions < 1 cm in the axial dimension and <1.5 cm in the longitudinal dimension includes o axial 3-5 mm/longitudinal mm o axial 3-5 mm/longitudinal mm o axial 6-10 mm/longitudinal mm o axial 6-10 mm/longitudinal mm 7

8 M EDIUM lesions 1-2 cm in the axial dimension, and in the dimension includes o axial 3-5 mm/longitudinal mm o axial 6-10/longitudinal mm o axial mm/longitudinal 3-10 mm o axial mm/longitudinal mm o axial mm/longitudinal mm LARGE lesions > 2 cm in the axial dimension or >2.5 cm in the longitudinal dimension includes o axial 3-5 mm/longitudinal mm o axial 3-5 mm/longitudinal >30 mm o axial 6-10/longitudinal mm o axial 6-10/longitudinal >30 mm o axial mm/longitudinal mm o axial mm/longitudinal >30 mm o axial mm/longitudinal 3-10 mm o axial mm/longitudinal mm o axial mm/longitudinal mm o axial mm/longitudinal mm o axial mm/longitudinal >30 mm o axial mm/longitudinal 3-10 mm o axial mm/longitudinal mm o axial mm/longitudinal mm o axial mm/longitudinal mm o axial mm/longitudinal >30 mm o axial >40 mm/longitudinal 3-10 mm o axial >40 mm/longitudinal mm o axial >40 mm/longitudinal mm o axial >40 mm/longitudinal mm o axial >40 mm/longitudinal >30 mm Contact: dcallen@mcmaster.ca 8

Regional and Lobe Parcellation Rhesus Monkey Brain Atlas. Manual Tracing for Parcellation Template

Regional and Lobe Parcellation Rhesus Monkey Brain Atlas. Manual Tracing for Parcellation Template Regional and Lobe Parcellation Rhesus Monkey Brain Atlas Manual Tracing for Parcellation Template Overview of Tracing Guidelines A) Traces are performed in a systematic order they, allowing the more easily

More information

Sectional Anatomy Head Practice Problems

Sectional Anatomy Head Practice Problems 1. Which of the following is illustrated by #3? (Fig. 5-42) A) maxillary sinus B) vomer C) septal cartilage D) perpendicular plate of ethmoid bone 2. What number illustrates the cornea? (Fig. 5-42) A)

More information

Introduction to the Central Nervous System: Internal Structure

Introduction to the Central Nervous System: Internal Structure Introduction to the Central Nervous System: Internal Structure Objective To understand, in general terms, the internal organization of the brain and spinal cord. To understand the 3-dimensional organization

More information

TRANSVERSE SECTION PLANE Scalp 2. Cranium. 13. Superior sagittal sinus

TRANSVERSE SECTION PLANE Scalp 2. Cranium. 13. Superior sagittal sinus TRANSVERSE SECTION PLANE 1 1. Scalp 2. Cranium 3. Superior sagittal sinus 4. Dura mater 5. Falx cerebri 6. Frontal lobes of the cerebrum 7. Middle meningeal artery 8. Cortex, grey matter 9. Cerebral vessels

More information

Chapter 3. Structure and Function of the Nervous System. Copyright (c) Allyn and Bacon 2004

Chapter 3. Structure and Function of the Nervous System. Copyright (c) Allyn and Bacon 2004 Chapter 3 Structure and Function of the Nervous System 1 Basic Features of the Nervous System Neuraxis: An imaginary line drawn through the center of the length of the central nervous system, from the

More information

Telencephalon (Cerebral Hemisphere)

Telencephalon (Cerebral Hemisphere) Telencephalon (Cerebral Hemisphere) OUTLINE The Cortex - Lobes, Sulci & Gyri - Functional Subdivisions - Limbic Lobe & Limbic System The Subcortex - Basal Ganglia - White Matter (Internal Capsule) - Relations

More information

Fig.1: A, Sagittal 110x110 mm subimage close to the midline, passing through the cingulum. Note that the fibers of the corpus callosum run at a

Fig.1: A, Sagittal 110x110 mm subimage close to the midline, passing through the cingulum. Note that the fibers of the corpus callosum run at a Fig.1 E Fig.1:, Sagittal 110x110 mm subimage close to the midline, passing through the cingulum. Note that the fibers of the corpus callosum run at a slight angle are through the plane (blue dots with

More information

PROPERTY OF ELSEVIER SAMPLE CONTENT - NOT FINAL. Gross Anatomy and General Organization of the Central Nervous System

PROPERTY OF ELSEVIER SAMPLE CONTENT - NOT FINAL. Gross Anatomy and General Organization of the Central Nervous System 3 Gross Anatomy and General Organization of the Central Nervous System C h a p t e r O u t l i n e The Long Axis of the CNS Bends at the Cephalic Flexure Hemisecting a Brain Reveals Parts of the Diencephalon,

More information

Essentials of Clinical MR, 2 nd edition. 14. Ischemia and Infarction II

Essentials of Clinical MR, 2 nd edition. 14. Ischemia and Infarction II 14. Ischemia and Infarction II Lacunar infarcts are small deep parenchymal lesions involving the basal ganglia, internal capsule, thalamus, and brainstem. The vascular supply of these areas includes the

More information

Dissection of the Sheep Brain

Dissection of the Sheep Brain Physiological Psychology Laboratory Manual 1 Dissection of the Sheep Brain Purpose In this exercise students will further reinforce their knowledge of the anatomy of the sheep brain. This laboratory exercise

More information

1 MS Lesions in T2-Weighted Images

1 MS Lesions in T2-Weighted Images 1 MS Lesions in T2-Weighted Images M.A. Sahraian, E.-W. Radue 1.1 Introduction Multiple hyperintense lesions on T2- and PDweighted sequences are the characteristic magnetic resonance imaging (MRI) appearance

More information

DISSECTION OF THE SHEEP'S BRAIN

DISSECTION OF THE SHEEP'S BRAIN Sheep Brain Dissection Guide Page 1 DISSECTION OF THE SHEEP'S BRAIN Introduction The purpose of the sheep brain dissection is to familiarize you with the threedimensional structure of the brain and teach

More information

CEREBRUM Dr. Jamila Elmedany Dr. Essam Eldin Salama

CEREBRUM Dr. Jamila Elmedany Dr. Essam Eldin Salama CEREBRUM Dr. Jamila Elmedany Dr. Essam Eldin Salama Objectives At the end of the lecture, the student should be able to: List the parts of the cerebral hemisphere (cortex, medulla, basal nuclei, lateral

More information

CNS Imaging. Dr Amir Monir, MD. Lecturer of radiodiagnosis.

CNS Imaging. Dr Amir Monir, MD. Lecturer of radiodiagnosis. CNS Imaging Dr Amir Monir, MD Lecturer of radiodiagnosis www.dramir.net Types of radiological examinations you know Plain X ray X ray with contrast GIT : barium (swallow, meal, follow through, enema) ERCP

More information

Brainstem. By Dr. Bhushan R. Kavimandan

Brainstem. By Dr. Bhushan R. Kavimandan Brainstem By Dr. Bhushan R. Kavimandan Development Ventricles in brainstem Mesencephalon cerebral aqueduct Metencephalon 4 th ventricle Mylencephalon 4 th ventricle Corpus callosum Posterior commissure

More information

Medical Neuroscience Tutorial Notes

Medical Neuroscience Tutorial Notes Medical Neuroscience Tutorial Notes Blood Supply to the Brain MAP TO NEUROSCIENCE CORE CONCEPTS 1 NCC1. The brain is the body's most complex organ. LEARNING OBJECTIVES After study of the assigned learning

More information

PSY 302: CHAPTER 3 NOTES THE BRAIN (PART II) - 9/5/17. By: Joseline

PSY 302: CHAPTER 3 NOTES THE BRAIN (PART II) - 9/5/17. By: Joseline PSY 302: CHAPTER 3 NOTES THE BRAIN (PART II) - 9/5/17 By: Joseline Left 3 MAJOR FISSURES : 2HEMISPHERES Right Lateral Ventricle Central Fissure Third Ventricle Sulcus Lateral Fissure Gyros Fissure- Fissures

More information

Gross Morphology of the Brain

Gross Morphology of the Brain Gross Morphology of the Brain Done by : Marah Marahleh & Razan Krishan *slides in bold Principal Parts of the Brain Cerebrum : largest part of the brain Diencephalon Thalamus & hypothalamus Cerebellum

More information

ANATOMY & PHYSIOLOGY DISSECTION OF THE SHEEP BRAIN LAB GROUP:

ANATOMY & PHYSIOLOGY DISSECTION OF THE SHEEP BRAIN LAB GROUP: ANATOMY & PHYSIOLOGY DISSECTION OF THE SHEEP BRAIN LAB GROUP: Introduction The purpose of the sheep brain dissection is to familiarize you with the three dimensional structure of the brain and teach you

More information

The Nervous system is divided into 2 major divisions: 1) Central Nervous System (CNS): found within bones & consists of:

The Nervous system is divided into 2 major divisions: 1) Central Nervous System (CNS): found within bones & consists of: The Nervous system is divided into 2 major divisions: 1) Central Nervous System (CNS): found within bones & consists of: - The Brain: within the skull, composed of cerebrum, cerebellum and brain stem.

More information

LIMBIC SYSTEM. Dr. Amani A. Elfaki Associate Professor Department of Anatomy

LIMBIC SYSTEM. Dr. Amani A. Elfaki Associate Professor Department of Anatomy LIMBIC SYSTEM Dr. Amani A. Elfaki Associate Professor Department of Anatomy Learning Objectives Define the limbic system Identify the parts of the limbic system Describe the circulation of the limbic system

More information

Dissection of the Sheep Brain

Dissection of the Sheep Brain Dissection of the Sheep Brain Laboratory Objectives After completing this lab, you should be able to: 1. Identify the main structures in the sheep brain and to compare them with those of the human brain.

More information

10/3/2016. T1 Anatomical structures are clearly identified, white matter (which has a high fat content) appears bright.

10/3/2016. T1 Anatomical structures are clearly identified, white matter (which has a high fat content) appears bright. H2O -2 atoms of Hydrogen, 1 of Oxygen Hydrogen just has one single proton and orbited by one single electron Proton has a magnetic moment similar to the earths magnetic pole Also similar to earth in that

More information

Announcement. Danny to schedule a time if you are interested.

Announcement.  Danny to schedule a time if you are interested. Announcement If you need more experiments to participate in, contact Danny Sanchez (dsanchez@ucsd.edu) make sure to tell him that you are from LIGN171, so he will let me know about your credit (1 point).

More information

BRAIN STEM AND CEREBELLUM..

BRAIN STEM AND CEREBELLUM.. Lecture Title: BRAIN STEM AND CEREBELLUM.. (CNS Block, Radiology) Dr. Hamdy Hassan Ass.Prof. Consultant Radiology Department KKHU King Saud University Lecture Objectives.. Students at the end of the lecture

More information

Attenuation value in HU From -500 To HU From -10 To HU From 60 To 90 HU. From 200 HU and above

Attenuation value in HU From -500 To HU From -10 To HU From 60 To 90 HU. From 200 HU and above Brain Imaging Common CT attenuation values Structure Air Fat Water Brain tissue Recent hematoma Calcifications Bone Brain edema and infarction Normal liver parenchyma Attenuation value in HU From -500

More information

Located below tentorium cerebelli within posterior cranial fossa. Formed of 2 hemispheres connected by the vermis in midline.

Located below tentorium cerebelli within posterior cranial fossa. Formed of 2 hemispheres connected by the vermis in midline. The Cerebellum Cerebellum Located below tentorium cerebelli within posterior cranial fossa. Formed of 2 hemispheres connected by the vermis in midline. Gray matter is external. White matter is internal,

More information

The Central Nervous System I. Chapter 12

The Central Nervous System I. Chapter 12 The Central Nervous System I Chapter 12 The Central Nervous System The Brain and Spinal Cord Contained within the Axial Skeleton Brain Regions and Organization Medical Scheme (4 regions) 1. Cerebral Hemispheres

More information

Biological Bases of Behavior. 3: Structure of the Nervous System

Biological Bases of Behavior. 3: Structure of the Nervous System Biological Bases of Behavior 3: Structure of the Nervous System Neuroanatomy Terms The neuraxis is an imaginary line drawn through the spinal cord up to the front of the brain Anatomical directions are

More information

Leah Militello, class of 2018

Leah Militello, class of 2018 Leah Militello, class of 2018 Objectives 1. Describe the general organization of cerebral hemispheres. 2. Describe the locations and features of the different functional areas of cortex. 3. Understand

More information

Neuroanatomy lecture (1)

Neuroanatomy lecture (1) Neuroanatomy lecture (1) Introduction: Neuroanatomy has two parts: the central and peripheral nervous system. The central nervous system is composed of brain and spinal cord. The brain has the following

More information

BIOL Dissection of the Sheep and Human Brain

BIOL Dissection of the Sheep and Human Brain BIOL 2401 Dissection of the Sheep and Human Brain Laboratory Objectives After completing this lab, you should be able to: Identify the main structures in the sheep brain and to compare them with those

More information

Human Brain and Senses October 13, 2008 Page 1. Examination of the Human Brain

Human Brain and Senses October 13, 2008 Page 1. Examination of the Human Brain Human Brain and Senses October 13, 2008 Page 1 Examination of the Human Brain With only a few hours today we can only begin to scratch the surface of a complex subject like neuroanatomy. The purpose of

More information

Brainstem. Steven McLoon Department of Neuroscience University of Minnesota

Brainstem. Steven McLoon Department of Neuroscience University of Minnesota Brainstem Steven McLoon Department of Neuroscience University of Minnesota 1 Course News Change in Lab Sequence Week of Oct 2 Lab 5 Week of Oct 9 Lab 4 2 Goal Today Know the regions of the brainstem. Know

More information

Lab 2. we will look into several angled horizontal sections ( orbitomeatal plane ) i.e passing from the orbit into the ear

Lab 2. we will look into several angled horizontal sections ( orbitomeatal plane ) i.e passing from the orbit into the ear we will look into several angled horizontal sections ( orbitomeatal plane ) i.e passing from the orbit into the ear Figure I page 76 : looking at the key on the left side this section passed through the

More information

Brain anatomy and artificial intelligence. L. Andrew Coward Australian National University, Canberra, ACT 0200, Australia

Brain anatomy and artificial intelligence. L. Andrew Coward Australian National University, Canberra, ACT 0200, Australia Brain anatomy and artificial intelligence L. Andrew Coward Australian National University, Canberra, ACT 0200, Australia The Fourth Conference on Artificial General Intelligence August 2011 Architectures

More information

BASAL GANGLIA. Dr JAMILA EL MEDANY

BASAL GANGLIA. Dr JAMILA EL MEDANY BASAL GANGLIA Dr JAMILA EL MEDANY OBJECTIVES At the end of the lecture, the student should be able to: Define basal ganglia and enumerate its components. Enumerate parts of Corpus Striatum and their important

More information

Ch 13: Central Nervous System Part 1: The Brain p 374

Ch 13: Central Nervous System Part 1: The Brain p 374 Ch 13: Central Nervous System Part 1: The Brain p 374 Discuss the organization of the brain, including the major structures and how they relate to one another! Review the meninges of the spinal cord and

More information

PRESERVE: How intensively should we treat blood pressure in established cerebral small vessel disease? Guide to assessing MRI scans

PRESERVE: How intensively should we treat blood pressure in established cerebral small vessel disease? Guide to assessing MRI scans PRESERVE: How intensively should we treat blood pressure in established cerebral small vessel disease? Guide to assessing MRI scans Inclusion Criteria Clinical syndrome Patients must have clinical evidence

More information

Prof. Saeed Abuel Makarem & Dr.Sanaa Alshaarawy

Prof. Saeed Abuel Makarem & Dr.Sanaa Alshaarawy Prof. Saeed Abuel Makarem & Dr.Sanaa Alshaarawy 1 Objectives By the end of the lecture, you should be able to: Describe the anatomy and main functions of the thalamus. Name and identify different nuclei

More information

For more information about how to cite these materials visit

For more information about how to cite these materials visit Author(s): Peter Hitchcock, PH.D., 2009 License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution Non-commercial Share Alike 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

More information

Anatomy and Physiology (Bio 220) The Brain Chapter 14 and select portions of Chapter 16

Anatomy and Physiology (Bio 220) The Brain Chapter 14 and select portions of Chapter 16 Anatomy and Physiology (Bio 220) The Brain Chapter 14 and select portions of Chapter 16 I. Introduction A. Appearance 1. physical 2. weight 3. relative weight B. Major parts of the brain 1. cerebrum 2.

More information

Patologie infiammatorie encefaliche e midollari

Patologie infiammatorie encefaliche e midollari Patologie infiammatorie encefaliche e midollari Maria Laura Stromillo Department of Medicine, Surgery and Neuroscience Inflammatory disorders of the CNS NMOSD ADEM Multiple Sclerosis Neuro-Myelitis Optica

More information

Slide 1. Slide 2. Slide 3. Tomography vs Topography. Computed Tomography (CT): A simplified Topographical review of the Brain. Learning Objective

Slide 1. Slide 2. Slide 3. Tomography vs Topography. Computed Tomography (CT): A simplified Topographical review of the Brain. Learning Objective Slide 1 Computed Tomography (CT): A simplified Topographical review of the Brain Jon Wheiler, ACNP-BC Slide 2 Tomography vs Topography Tomography: A technique for displaying a representation of a cross

More information

A&P 1 Brain & Cranial Nerves Guide - Lab Exercises

A&P 1 Brain & Cranial Nerves Guide - Lab Exercises A&P 1 Brain & Cranial Nerves Guide - Lab Exercises Please make sure you read the entire set of instructions on Dissection the Sheep Brain before beginning to cut. Also, please do not forget to go over

More information

BIO 210 CHAPTER 13. The Central Nervous System SUPPLEMENT 2. PowerPoint by John McGill Supplemental Notes by Beth Wyatt CEREBELLUM

BIO 210 CHAPTER 13. The Central Nervous System SUPPLEMENT 2. PowerPoint by John McGill Supplemental Notes by Beth Wyatt CEREBELLUM BIO 210 CHAPTER 13 The Central Nervous System SUPPLEMENT 2 PowerPoint by John McGill Supplemental Notes by Beth Wyatt CEREBELLUM Second Largest Division of the Brain Lies Below the Posterior Portion of

More information

Stanley Pruisinger 1980's

Stanley Pruisinger 1980's Neuroanatomy Prion disease cerebellum chapter b/c cerebellar ataxia here as a warning for obvious reasons. Creutzfeldt - Jakob Disease (CJD) "Spongiform" (brain turns to sponge) Jews in Lybia who ate

More information

Gross Organization I The Brain. Reading: BCP Chapter 7

Gross Organization I The Brain. Reading: BCP Chapter 7 Gross Organization I The Brain Reading: BCP Chapter 7 Layout of the Nervous System Central Nervous System (CNS) Located inside of bone Includes the brain (in the skull) and the spinal cord (in the backbone)

More information

-Zeina Assaf. -Omar Odeh. - Maha Beltagy

-Zeina Assaf. -Omar Odeh. - Maha Beltagy -3 -Zeina Assaf -Omar Odeh - Maha Beltagy 1 P a g e The Inferior Surface Of The Brain The inferior surface of the brain is divide by the stem of the lateral fissure into 2 parts : The orbital surface and

More information

I. Anatomy of the Brain A. Cranial Meninges and Ventricles of the Brain 1. Meninges a. Dura mater 1) Endosteal/Periosteal Layer - Outer 2) Meningeal

I. Anatomy of the Brain A. Cranial Meninges and Ventricles of the Brain 1. Meninges a. Dura mater 1) Endosteal/Periosteal Layer - Outer 2) Meningeal I. Anatomy of the Brain A. Cranial Meninges and Ventricles of the Brain 1. Meninges a. Dura mater 1) Endosteal/Periosteal Layer - Outer 2) Meningeal Layer - Inner 3) Falx cerebri a) Superior sagittal sinus

More information

Chapter 14: The Brain and Cranial Nerves. Copyright 2009, John Wiley & Sons, Inc.

Chapter 14: The Brain and Cranial Nerves. Copyright 2009, John Wiley & Sons, Inc. Chapter 14: The Brain and Cranial Nerves Development of the Brain Three to four-week embryo: prosencephalon, mesencephalon and rhombencephalon. Five-week embryo: telencephalon (cerebrum), diencephalon

More information

Nsci 2100: Human Neuroanatomy 2017 Examination 3

Nsci 2100: Human Neuroanatomy 2017 Examination 3 Name KEY Lab Section Nsci 2100: Human Neuroanatomy 2017 Examination 3 On this page, write your name and lab section. On your bubble answer sheet, enter your name (last name, space, first name), internet

More information

Cerebellum. Steven McLoon Department of Neuroscience University of Minnesota

Cerebellum. Steven McLoon Department of Neuroscience University of Minnesota Cerebellum Steven McLoon Department of Neuroscience University of Minnesota 1 Anatomy of the Cerebellum The cerebellum has approximately half of all the neurons in the central nervous system. The cerebellum

More information

Brain and Cranial Nerves (Ch. 15) Human Anatomy lecture. caudal = toward the spinal cord)

Brain and Cranial Nerves (Ch. 15) Human Anatomy lecture. caudal = toward the spinal cord) Insight: Some cranial nerve disorders Brain and Cranial Nerves (Ch. 15) Human Anatomy lecture I. Overview (Directional terms: rostral = toward the forehead caudal = toward the spinal cord) A. 3 Major parts

More information

{Important Notes} *visual association Cortex lesion Visual agnosia: able to see but unable to understand.

{Important Notes} *visual association Cortex lesion Visual agnosia: able to see but unable to understand. {Important Notes} *visual association Cortex lesion Visual agnosia: able to see but unable to understand. *Lateral to medial: Posterior ramus of the lateral fissure Insula lentiform nucleus Thalamus 3

More information

Embryonic Brain Development

Embryonic Brain Development Chapter 14 The Brain and Cranial Nerves Largest organ in the body? Brain functions in sensations, memory, emotions, decision making, behavior 19-1 19-2 Embryonic Brain Development Principal Parts of the

More information

Nature Neuroscience doi: /nn Supplementary Figure 1. Characterization of viral injections.

Nature Neuroscience doi: /nn Supplementary Figure 1. Characterization of viral injections. Supplementary Figure 1 Characterization of viral injections. (a) Dorsal view of a mouse brain (dashed white outline) after receiving a large, unilateral thalamic injection (~100 nl); demonstrating that

More information

Brainstem. Amadi O. Ihunwo, PhD School of Anatomical Sciences

Brainstem. Amadi O. Ihunwo, PhD School of Anatomical Sciences Brainstem Amadi O. Ihunwo, PhD School of Anatomical Sciences Lecture Outline Constituents Basic general internal features of brainstem External and Internal features of Midbrain Pons Medulla Constituents

More information

The neurvous system senses, interprets, and responds to changes in the environment. Two types of cells makes this possible:

The neurvous system senses, interprets, and responds to changes in the environment. Two types of cells makes this possible: NERVOUS SYSTEM The neurvous system senses, interprets, and responds to changes in the environment. Two types of cells makes this possible: the neuron and the supporting cells ("glial cells"). Neuron Neurons

More information

Basal Nuclei (Ganglia)

Basal Nuclei (Ganglia) Doctor said he will not go deep within these slides because we will take them in physiology, so he will explain the anatomical structures, and he will go faster in the functions sheet in yellow Basal Nuclei

More information

I: To describe the pyramidal and extrapyramidal tracts. II: To discuss the functions of the descending tracts.

I: To describe the pyramidal and extrapyramidal tracts. II: To discuss the functions of the descending tracts. Descending Tracts I: To describe the pyramidal and extrapyramidal tracts. II: To discuss the functions of the descending tracts. III: To define the upper and the lower motor neurons. 1. The corticonuclear

More information

Neuroanatomy. Dr. Maha ELBeltagy. Assistant Professor of Anatomy Faculty of Medicine The University of Jordan

Neuroanatomy. Dr. Maha ELBeltagy. Assistant Professor of Anatomy Faculty of Medicine The University of Jordan Neuroanatomy Dr. Maha ELBeltagy Assistant Professor of Anatomy Faculty of Medicine The University of Jordan 2018 Prof Yousry 10/15/17 Types of brain fibers THE WHITE MATTER OF THE BRAIN The white matter

More information

Development of Brain Stem, Cerebellum and Cerebrum

Development of Brain Stem, Cerebellum and Cerebrum Development of Brain Stem, Cerebellum and Cerebrum The neural tube cranial to the 4th pair of somites develop into the brain. 3 dilatations and 2 flexures form at the cephalic end of the neural tube during

More information

Anatomy Lab (1) Theoretical Part. Page (2 A) Page (2B)

Anatomy Lab (1) Theoretical Part. Page (2 A) Page (2B) Anatomy Lab (1) This sheet only includes the extra notes for the lab handout regarding the theoretical part, as for the practical part it includes everything the doctor mentioned. Theoretical Part Page

More information

brain MRI for neuropsychiatrists: what do you need to know

brain MRI for neuropsychiatrists: what do you need to know brain MRI for neuropsychiatrists: what do you need to know Christoforos Stoupis, MD, PhD Department of Radiology, Spital Maennedorf, Zurich & Inselspital, University of Bern, Switzerland c.stoupis@spitalmaennedorf.ch

More information

Principles Arteries & Veins of the CNS LO14

Principles Arteries & Veins of the CNS LO14 Principles Arteries & Veins of the CNS LO14 14. Identify (on cadaver specimens, models and diagrams) and name the principal arteries and veins of the CNS: Why is it important to understand blood supply

More information

Overview of the Nervous System (some basic concepts) Steven McLoon Department of Neuroscience University of Minnesota

Overview of the Nervous System (some basic concepts) Steven McLoon Department of Neuroscience University of Minnesota Overview of the Nervous System (some basic concepts) Steven McLoon Department of Neuroscience University of Minnesota 1 Coffee Hour Tuesday (Sept 11) 10:00-11:00am Friday (Sept 14) 8:30-9:30am Surdyk s

More information

Neuromyelitis Optica Spectrum Disorder (NMOSD): Brain MRI findings in patients at our institution and literature review.

Neuromyelitis Optica Spectrum Disorder (NMOSD): Brain MRI findings in patients at our institution and literature review. Neuromyelitis Optica Spectrum Disorder (NMOSD): Brain MRI findings in patients at our institution and literature review. Poster No.: C-0817 Congress: ECR 2014 Type: Educational Exhibit Authors: G. I. MICHELIN,

More information

High spatial resolution reveals excellent detail in pediatric neuro imaging

High spatial resolution reveals excellent detail in pediatric neuro imaging Publication for the Philips MRI Community Issue 46 2012/2 High spatial resolution reveals excellent detail in pediatric neuro imaging Achieva 3.0T with 32-channel SENSE Head coil has become the system

More information

CEREBRUM. Dr. Jamila EL Medany

CEREBRUM. Dr. Jamila EL Medany CEREBRUM Dr. Jamila EL Medany Objectives At the end of the lecture, the student should be able to: List the parts of the cerebral hemisphere (cortex, medulla, basal nuclei, lateral ventricle). Describe

More information

Model 3-50B or 3-88 III VIII. Olfactory Nerve. Optic Nerve. Oculomotor Nerve. Trochlear Nerve. Trigeminal Nerve. Abducens Nerve.

Model 3-50B or 3-88 III VIII. Olfactory Nerve. Optic Nerve. Oculomotor Nerve. Trochlear Nerve. Trigeminal Nerve. Abducens Nerve. Model 3-50B or 3-88 I Olfactory Nerve II Optic Nerve Oculomotor Nerve III IV Trochlear Nerve Trigeminal Nerve V VI Abducens Nerve Glossopharyngeal Nerve IX VII Facial Nerve VIII Vestibocochlear Nerve or

More information

Blood Supply. Allen Chung, class of 2013

Blood Supply. Allen Chung, class of 2013 Blood Supply Allen Chung, class of 2013 Objectives Understand the importance of the cerebral circulation. Understand stroke and the types of vascular problems that cause it. Understand ischemic penumbra

More information

I T IS well known that aneurysms occur at

I T IS well known that aneurysms occur at The Lateral Perforating Branches of the Anterior and Middle Cerebral Arteries* HARRY A. KAPLAN, M.D. Division of Neurosurgery, Seton Hall College of Medicine, and Jersey City Medical Center, Jersey City,

More information

For Emergency Doctors. Dr Suzanne Smallbane November 2011

For Emergency Doctors. Dr Suzanne Smallbane November 2011 For Emergency Doctors Dr Suzanne Smallbane November 2011 A: Orbit B: Sphenoid Sinus C: Temporal Lobe D: EAC E: Mastoid air cells F: Cerebellar hemisphere A: Frontal lobe B: Frontal bone C: Dorsum sellae

More information

Forebrain Brain Structures Limbic System. Brain Stem Midbrain Basil Ganglia. Cerebellum Reticular Formation Medulla oblongata

Forebrain Brain Structures Limbic System. Brain Stem Midbrain Basil Ganglia. Cerebellum Reticular Formation Medulla oblongata Brain structures (1) Cut out the following cards (2) Identify the three major divisions of the brain (as defined by your book). Initially, try this without any form of aid such as your textbook. (3) Organize

More information

Medical Neuroscience Tutorial

Medical Neuroscience Tutorial Pain Pathways Medical Neuroscience Tutorial Pain Pathways MAP TO NEUROSCIENCE CORE CONCEPTS 1 NCC1. The brain is the body's most complex organ. NCC3. Genetically determined circuits are the foundation

More information

M555 Medical Neuroscience Lab 1: Gross Anatomy of Brain, Crainal Nerves and Cerebral Blood Vessels

M555 Medical Neuroscience Lab 1: Gross Anatomy of Brain, Crainal Nerves and Cerebral Blood Vessels M555 Medical Neuroscience Lab 1: Gross Anatomy of Brain, Crainal Nerves and Cerebral Blood Vessels Anatomical Directions Terms like dorsal, ventral, and posterior provide a means of locating structures

More information

Stroke School for Internists Part 1

Stroke School for Internists Part 1 Stroke School for Internists Part 1 November 4, 2017 Dr. Albert Jin Dr. Gurpreet Jaswal Disclosures I receive a stipend for my role as Medical Director of the Stroke Network of SEO I have no commercial

More information

Lecture 4 The BRAINSTEM Medulla Oblongata

Lecture 4 The BRAINSTEM Medulla Oblongata Lecture 4 The BRAINSTEM Medulla Oblongata Introduction to brainstem 1- Medulla oblongata 2- Pons 3- Midbrain - - - occupies the posterior cranial fossa of the skull. connects the narrow spinal cord

More information

Student Lab #: Date. Lab: Gross Anatomy of Brain Sheep Brain Dissection Organ System: Nervous Subdivision: CNS (Central Nervous System)

Student Lab #: Date. Lab: Gross Anatomy of Brain Sheep Brain Dissection Organ System: Nervous Subdivision: CNS (Central Nervous System) Lab: Gross Anatomy of Brain Sheep Brain Dissection Organ System: Nervous Subdivision: CNS (Central Nervous System) Student Lab #: Date 1 Objectives: 1. Learn the main components making up a motor neuron.

More information

Composed of gray matter and arranged in raised ridges (gyri), grooves (sulci), depressions (fissures).

Composed of gray matter and arranged in raised ridges (gyri), grooves (sulci), depressions (fissures). PSYC1020 Neuro and Pysc Notes Structure Description Major Functions Brainstem Stemlike portion of the brain, continuous with diencephalon above and spinal cord below. Composed of midbrain, pons, medulla

More information

Copy Right- Hongqi ZHANG-Department of Anatomy-Fudan University. Systematic Anatomy. Nervous system Telencephalon. Dr.Hongqi Zhang ( 张红旗 )

Copy Right- Hongqi ZHANG-Department of Anatomy-Fudan University. Systematic Anatomy. Nervous system Telencephalon. Dr.Hongqi Zhang ( 张红旗 ) Systematic Anatomy Nervous system Telencephalon Dr.Hongqi Zhang ( 张红旗 ) Email: zhanghq58@126.com 1 The Telencephalon Gray matter Cortex Basilar nuclei White matter-medulla Lateral ventricles General introduction

More information

Department of Human Anatomy GUIDELINES. nuclei. The lateral ventricles. White substance of cerebral hemispheres. course 1

Department of Human Anatomy GUIDELINES. nuclei. The lateral ventricles. White substance of cerebral hemispheres. course 1 Department of Human Anatomy GUIDELINES Academic discipline Human Anatomy Module 2 Content module 11 Study subject The olfactory brain. Basal nuclei. The lateral ventricles. White substance of cerebral

More information

The Nervous System: Sensory and Motor Tracts of the Spinal Cord

The Nervous System: Sensory and Motor Tracts of the Spinal Cord 15 The Nervous System: Sensory and Motor Tracts of the Spinal Cord PowerPoint Lecture Presentations prepared by Steven Bassett Southeast Community College Lincoln, Nebraska Introduction Millions of sensory

More information

The human brain weighs roughly 1.5 kg and has an average volume of 1130 cm 3. A sheep s brain weighs in however at kg.

The human brain weighs roughly 1.5 kg and has an average volume of 1130 cm 3. A sheep s brain weighs in however at kg. Sheep Brain Dissection Objectives: 1. List and describe the principal structures of the sheep brain 2. Identify important parts of the sheep brain in a preserved specimen Materials: Dissection tools, lab

More information

Professor Dr.Muhammad Ajmal Dr.Tehmina Nazir. HOLY FAMILY HOSPITAL Rawalpindi

Professor Dr.Muhammad Ajmal Dr.Tehmina Nazir. HOLY FAMILY HOSPITAL Rawalpindi Professor Dr.Muhammad Ajmal Dr.Tehmina Nazir HOLY FAMILY HOSPITAL Rawalpindi SCHEME OF PRESENTATION PLAIN X-RAYS CT SCAN MRI CONCLUSION IMAGING MODALITIES PLAIN X-RAYS CT SCAN MRI OCCIPITOMENTAL/WATER

More information

Unit 12a: The Nervous System The Brain. MDL231 Principle of Anatomy

Unit 12a: The Nervous System The Brain. MDL231 Principle of Anatomy Unit 12a: The Nervous System The Brain MDL231 Principle of Anatomy The Brain - Overview Cerebrum T PP H midbrain Cerebellum pons m.o. Brain stem medulla oblongata (M.O.) pons midbrain (mesencephalon) Diencephalon

More information

ACTIVITY 7: NERVOUS SYSTEM HISTOLOGY, BRAIN, CRANIAL NERVES

ACTIVITY 7: NERVOUS SYSTEM HISTOLOGY, BRAIN, CRANIAL NERVES ACTIVITY 7: NERVOUS SYSTEM HISTOLOGY, BRAIN, CRANIAL NERVES LABORATORY OBJECTIVES: 1. Histology: Identify structures indicated on three different slides or images of nervous system tissue. These images

More information

Copy Right- Hongqi ZHANG-Department of Anatomy-Fudan University. Systematic Anatomy. Nervous system Cerebellum. Dr.Hongqi Zhang ( 张红旗 )

Copy Right- Hongqi ZHANG-Department of Anatomy-Fudan University. Systematic Anatomy. Nervous system Cerebellum. Dr.Hongqi Zhang ( 张红旗 ) Systematic Anatomy Nervous system Cerebellum Dr.Hongqi Zhang ( 张红旗 ) Email: zhanghq58@126.com 1 The Cerebellum Cerebellum evolved and developed with the complication of animal movement. Key points about

More information

Sheep Brain Dissection

Sheep Brain Dissection Sheep Brain Dissection Mammalian brains have many features in common. Human brains may not be available, so sheep brains often are dissected as an aid to understanding the mammalian brain since he general

More information

SWI including phase and magnitude images

SWI including phase and magnitude images On-line Table: MRI imaging recommendation and summary of key features Sequence Pathologies Visible Key Features T1 volumetric high-resolution whole-brain reformatted in axial, coronal, and sagittal planes

More information

By Dr. Saeed Vohra & Dr. Sanaa Alshaarawy

By Dr. Saeed Vohra & Dr. Sanaa Alshaarawy By Dr. Saeed Vohra & Dr. Sanaa Alshaarawy 1 By the end of the lecture, students will be able to : Distinguish the internal structure of the components of the brain stem in different levels and the specific

More information

Blood supply to the brain Blood brain barrier isolates neural tissue from general circulation

Blood supply to the brain Blood brain barrier isolates neural tissue from general circulation The Brain and Cranial Nerves Objectives Name the major regions of the brain and describe their functions. Discuss the formation, circulation, and functions of the CSF. List the main components of the medulla

More information

NEURO IMAGING OF ACUTE STROKE

NEURO IMAGING OF ACUTE STROKE 1 1 NEURO IMAGING OF ACUTE STROKE ALICIA RICHARDSON, MSN, RN, ACCNS-AG, ANVP-BC WENDY SMITH, MA, RN, MBA, SCRN, FAHA LYNN HUNDLEY, APRN, CNRN, CCNS, ANVP-BC 2 2 1 DISCLOSURES Alicia Richardson: Stryker

More information

Chapter 18: The Brain & Cranial Nerves. Origin of the Brain

Chapter 18: The Brain & Cranial Nerves. Origin of the Brain Chapter 18: The Brain & Cranial Nerves BIO 218 Fall 2015 Origin of the Brain The brain originates from a structure called the neural tube, which arises during a developmental stage called neurulation.

More information

The human brain. of cognition need to make sense gives the structure of the brain (duh). ! What is the basic physiology of this organ?

The human brain. of cognition need to make sense gives the structure of the brain (duh). ! What is the basic physiology of this organ? The human brain The human brain! What is the basic physiology of this organ?! Understanding the parts of this organ provides a hypothesis space for its function perhaps different parts perform different

More information

Diffusion-Weighted and Conventional MR Imaging Findings of Neuroaxonal Dystrophy

Diffusion-Weighted and Conventional MR Imaging Findings of Neuroaxonal Dystrophy AJNR Am J Neuroradiol 25:1269 1273, August 2004 Diffusion-Weighted and Conventional MR Imaging Findings of Neuroaxonal Dystrophy R. Nuri Sener BACKGROUND AND PURPOSE: Neuroaxonal dystrophy is a rare progressive

More information

P. Hitchcock, Ph.D. Department of Cell and Developmental Biology Kellogg Eye Center. Wednesday, 16 March 2009, 1:00p.m. 2:00p.m.

P. Hitchcock, Ph.D. Department of Cell and Developmental Biology Kellogg Eye Center. Wednesday, 16 March 2009, 1:00p.m. 2:00p.m. Normal CNS, Special Senses, Head and Neck TOPIC: CEREBRAL HEMISPHERES FACULTY: LECTURE: READING: P. Hitchcock, Ph.D. Department of Cell and Developmental Biology Kellogg Eye Center Wednesday, 16 March

More information

The Neuroscience of Music in Therapy

The Neuroscience of Music in Therapy Course Objectives The Neuroscience of Music in Therapy Unit I. Learn Basic Brain Information Unit II. Music in the Brain; Why Music Works Unit III. Considerations for Populations a. Rehabilitation b. Habilitation

More information

For more information about how to cite these materials visit

For more information about how to cite these materials visit Author(s): Peter Hitchcock, PH.D., 2009 License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution Non-commercial Share Alike 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

More information