ORIGINAL CONTRIBUTION. T2 Hypointensity in the Deep Gray Matter of Patients With Multiple Sclerosis

Size: px
Start display at page:

Download "ORIGINAL CONTRIBUTION. T2 Hypointensity in the Deep Gray Matter of Patients With Multiple Sclerosis"

Transcription

1 ORIGINAL CONTRIBUTION T2 Hypointensity in the Deep Gray Matter of Patients With Multiple Sclerosis A Quantitative Magnetic Resonance Imaging Study Rohit Bakshi, MD; Ralph H. B. Benedict, PhD; Robert A. Bermel, BA; Shelton D. Caruthers, PhD; Srinivas R. Puli, MD; Christopher W. Tjoa; Andrew J. Fabiano, BS; Lawrence Jacobs, MD Context: While gray matter T2 hypointensity in multiple sclerosis (MS) has been associated with physical disability and clinical course, previous studies have relied on visual magnetic resonance imaging (MRI) assessments. Objective: To quantitatively determine if T2 hypointensity is associated with conventional MRI and clinical findings in MS. Design: Case-control study. Setting: University-affiliated community-based hospital. Subjects: Sixty patients with MS and 50 controls. Main Outcome Measures: T2 intensities of the substantia nigra, red nucleus, thalamus, putamen, globus pallidus, and caudate; third ventricular width; total brain T1 (hypointense) and T2 (hyperintense) lesion volumes; Expanded Disability Status Scale (physical disability) score; and disease course. Results: Deep gray matter T2 hypointensity was present in patients with MS in all structures (P.005) except for the substantia nigra. T2 hypointensity was associated with third ventricle enlargement and higher T2 but not T1 plaque load. The regression model predicting third ventricle width included caudate T2 hypointensity (P=.006). The model predicting T2 lesion load included globus pallidus T2 hypointensity (P=.001). Caudate T2 hypointensity was the only variable associated with disability score in regression modeling (P=.03). All T2 hypointensities differentiated the secondary progressive from the relapsing-remitting clinical courses. The final model (P.001) predicting clinical course retained T2 hypointensity of the thalamus, caudate, and putamen but not MRI plaques or atrophy. Conclusions: Gray matter T2 hypointensity in MS is associated with brain atrophy and is a stronger predictor of disability and clinical course than are conventional MRI findings. While longitudinal studies are warranted, these results suggest that pathologic iron deposition is a surrogate marker of the destructive disease process. Arch Neurol. 2002;59:62-68 From the Departments of Neurology (Drs Bakshi, Benedict, and Jacobs), Psychiatry, and Psychology (Dr Benedict), University at Buffalo, State University of New York; Departments of Neurology (Drs Bakshi, Benedict, and Jacobs) and Imaging Services (Dr Bakshi), Kaleida Health; Buffalo Neuroimaging Analysis Center and Jacobs Neurologic Institute (Drs Bakshi, Puli, and Jacobs, and Messrs Bermel, Tjoa, and Fabiano), Buffalo, NY; and Philips Medical Systems, Best, the Netherlands (Dr Caruthers). HYPERINTENSE white matter lesions on T2-weighted magnetic resonance imaging (MRI) scans (T2WI) are useful in diagnosing multiple sclerosis (MS) in the brain 1 and spinal cord 2 and can assess disease activity in treatment trials. 3 However, bright T2WI lesions are nonspecific in defining the wide range of pathologic changes in the white matter of patients with MS 4 and may be insensitive to microscopic disease. 5 While gadolinium contrast enhancement on T1- weighted images may indicate blood-brain barrier disruption, it is transient, variable, and may not accurately predict long-term sequelae. 6 Both hyperintense and enhancing lesions show poor correlations with clinical findings in MS and provide incomplete assessments of therapies. 7 Multiple sclerosis is increasingly thought of as a globally destructive disease process. 8,9 Pathologic 10 and positron emission tomography imaging studies 11 indicate that cortical and subcortical gray matter involvement is common in MS. 12 Recently we showed that hypointensity on T2WI (purported iron deposition) occurred commonly in the subcortical gray matter of patients with MS and was associated with physical disability, disease duration, disease course, brain MRI lesion load, and brain atrophy. 13,14 These and other studies 15,16 of T2 hypointensity in MS used qualitative (visual) rating systems that limited the findings. In the present study, we performed a computer-assisted quantitative MRI study of T2 hypointensity in patients with MS and controls. We compared the degree of T2 hypointensity with 62

2 SUBJECTS AND METHODS SUBJECTS Sixty patients clinically confirmed to have MS 17 and 50 controls were scanned with the same MRI unit at a tertiary care facility. None of the patients with MS had other major medical illnesses, were younger than 20 years or older than 60 years, used corticosteroids within 4 weeks, or had a history of substance abuse. Forty-two patients had the relapsingremitting and 18 had the secondary progressive MS clinical disease course. 18 Physical disability was assessed by the Expanded Disability Status Scale (EDSS) within 1 week of the MRI by a single experienced neurologist blind to the MRI findings. 19 Scores ranged from 0 to 8.0 (mean±sd, 3.7±1.9). The duration of MS ranged from 0.5 to 38 years (mean±sd, 10.6±9.4 years). The average number of lifetime courses of high-dose intravenous methylprednisolone taken by all 60 patients with MS was 1.8. Four (7%) were receiving bimonthly intravenous methylprednisolone for disease progression. Controls included normal volunteers recruited from hospital staff and consecutive patients referred to the MRI center for dizziness, headaches, and seizure disorder, who had normal neurologic and MRI findings. An experienced observer reviewed the scans of controls to ensure normal findings and discarded 3 controls due to the presence of bright lesions on T2-weighted images (53 control scans screened, 50 retained). Visual determination of gray matter T2 intensity was not used to exclude control scans. Patients with MS and controls were sex-matched (68% women and 70% women, respectively) and age-matched (mean±sd age, 42±9 years and 42±10 years, respectively) (P.9). MAGNETIC RESONANCE IMAGING Fast spin-echo T2WI (repetition time [TR]/echo time [TE]/ number of signal averages [NSA]=2300/120/2; 6-mm slice thickness; 0.6 mm slice gap; echo train length 18), fast spinecho fluid-attenuated inversion-recovery (FLAIR) images (TR/ TE/NSA/inversion time=8000/120/2/2200; 5-mm slice thickness; interleaved; echo train length 20), and T1-weighted images (TR/TE/NSA=585/20/1, 5-mm slice thickness, interleaved) were obtained in the axial plane on an ACS-NT MRI scanner (Philips Medical Systems, Best, the Netherlands). The in-plane spatial resolution was approximately 1 1 mm. The FLAIR protocol was detailed previously. 20 Images were transferred to Sun workstations (Sun Microsystems, Moutainview, Calif) on which images were analyzed quantitatively at the Buffalo Neuroimaging Analysis Center (Buffalo, NY). A trained observer who was blind to clinical information performed the quantitative MRI analysis. Based on a localization technique, 21 standardized circular regions-of-interest (ROIs) were placed on T2WI in the substantia nigra pars compacta, substantia nigra pars reticulata, red nucleus, anterior thalamus, posterior thalamus, head of the caudate nucleus, and in the cerebrospinal fluid (CSF) of the right lateral ventricular body. To sample the structure while minimizing partial volume effects, the ROIs were 2-mm in diameter for the substantia nigra pars reticulata, pars compacta, and red nucleus and were 5 mm for the other structures. Since the lateral ventricular size varied among subjects, the largest circular ROI (not exceeding 5 mm) was placed in the ventricle without including the adjacent parenchyma or choroid plexus. Freehand ROIs were also manually traced for the putamen and globus pallidus. One axial slice was used for each measurement (the slice showing the largest part of the structure). Care was taken to avoid placing small hyperintensities (MS plaques or perivascular spaces) into ROIs. To correct for potential interscan variations in system scaling and gain, mean signal intensity in each ROI was divided by mean signal intensity of lateral ventricular CSF as adapted from Pujol et al. 22 Because T2 intensity was expressed as a ratio to the right lateral ventricular CSF, it is important to note that absolute right vs left CSF intensities did not differ in patients (P=.44) or controls (P=.26), and neither right (P=.44) nor left (P=.27) absolute CSF intensities differed between the groups. The data from the anterior and posterior thalami ROIs were averaged to produce a value for the thalamus. The data from the substantia nigra pars reticulata and pars compacta ROIs were averaged to produce a value for the substantia nigra. Separate measurements were taken from each hemisphere, which were then collapsed across both hemispheres by calculating the mean in each ROI (to reduce the number of statistical variables). We assessed the validity of right/left collapsing of the variables and assessed the symmetry of the gray matter signal changes. The Pearson correlation values between right and left T2 intensities were 0.92 for the caudate, 0.88 for the thalamus and putamen, 0.90 for the red nucleus, 0.87 for the substantia nigra, and 0.92 for the globus pallidus. Continued on next page clinical findings and other established quantitative MRI markers of MS, including brain atrophy and plaque load. RESULTS Univariate comparisons indicated that T2 hypointensity was widespread throughout the deep gray matter in patients with MS before and after adjusting for age, affecting the caudate, putamen, globus pallidus, thalamus, and red nucleus (P.005) (Table ). The magnitude of hypointensity was largest in the globus pallidus, caudate, and putamen (6% to 7% lower than controls, P.001) (Table). Representative MRIs of T2 hypointensity in patients with MS vs controls are shown in Figure 2. The substantia nigra was the only structure that did not show abnormal T2 hypointensity in patients with MS compared with controls. Third ventricular width was larger in patients with MS (mean±sd, 4.0±2.4) than in controls (2.2±1.0) (P.05), indicating central atrophy in patients with MS. 25 Within the MS group, T2 hypointensities in deep gray matter structures were associated with higher third ventricle width and higher T2 lesion volume. The regression model predicting third ventricle width included T2 hypointensity of the caudate (partial r with age= 0.36; P=.006; R 2 =0.23). The model predicting total T2 lesion load included T2 hypointensity of the globus pallidus (partial r with age= 0.41; P=.001; R 2 =0.18). In 63

3 Paired sample t tests showed no significant right vs left difference for the caudate, thalamus, and red nucleus. While the putamen, substantia nigra, and globus pallidus showed significant right vs left differences in T2 intensities, the effect sizes were quite small: 0.3 or less (effect sizes=difference between means divided by pooled SDs). Thus, in general, the T2 intensity in the gray matter ROIs showed symmetry in the MS group. After collapsing the ROIs, a total of 6 ROIs were used for further analysis (substantia nigra, red nucleus, thalamus, caudate, putamen, globus pallidus). The typical ROI placement in a patient with MS is shown in Figure 1. The fast spin-echo T2 sequence was used in the analysis of T2 hypointensity. Previous studies analyzing iron deposition have used conventional spin-echo to detect T2 shortening In this study, we used fast spin-echo T2 because of the faster scanning time and increased clinical utility in the evaluation of patients with MS (see Comment section). The total T2 hyperintense parenchymal plaque lesion load was determined by manual tracing of lesions on FLAIR images and was the sum of the volume of each lesion seen on each FLAIR axial slice (area multiplied by slice thickness, nongapped images); artifacts and other normal hyperintensities seen in the normal population on FLAIR images were avoided. 20 To assess central atrophy, third ventricular width was measured from FLAIR images using our previously established method. 25 The analysis of gray matter and CSF T2 intensity, T2 hyperintense lesion volume, and third ventricular width was performed using EasyVision software (Release 2.1.2; Philips Medical Systems, Best, the Netherlands). Since hypointense T1 lesions are difficult to delineate manually, the analysis of T1 lesion volume was performed using a semiautomated edge finding and local thresholding technique (Java Image, Version 1.0; Xinapse Systems, Leicester, England [ The operator clicks on the edge of hypointense area and the program examines a region 5 5 pixels around the mouse click and computes the maximum intensity gradient within the region. The pixel with the highest intensity gradient is then used as the starting point for contour following, thus outlining the region where the intensity is locally lower than at the starting pixel. RELIABILITY The same individual reanalyzed the MRI scans of 10 randomly chosen patients with MS at least 2 weeks after the initial analysis. Intraobserver coefficients of variation for the T2 intensity measurements ranged from 1.0% to 2.7% as follows: caudate, 1.2% (right)/1.6% (left); anterior thalamus, 2.1%/1.2%; posterior thalamus, 1.5%/2.2%; red nucleus, 1.4%/1.8%; substantia nigra-pars reticulata, 2.4%/ 2.7%; pars compacta, 1.3%/1.8%; putamen, 1.3%/1.1%; globus pallidus, 1.0%/1.0%; ventricular CSF, 1.2%. The intraobserver coefficients of variation were 1.2% for total T2 hyperintense parenchymal lesion volume, 1.7% for total T1 hypointense parenchymal lesion volume, and 5.7% for third ventricular width. A second trained observer analyzed the same 10 patients for gray matter and CSF T2 intensity; the interobserver coefficients of variation ranged from 0.6% to 2.9%. To test the stability of the T2 intensity measurement technique, 2 healthy volunteers, aged 26 (man) and 31 (woman) years, each underwent the MRI protocol twice (1 week apart). The scan/rescan intrasubject coefficients of variation for the various gray matter intensities ranged from 1.2% to 2.5%. ANALYSIS Group differences were assessed by independent sample t tests. The Pearson r statistic was used for correlations between continuous variables and the Spearman rank correlation test was used to compare continuous data with ordinal ratings. We used a conservative threshold for statistical significance (P.01) in all univariate comparisons and controlled for multiple correlations via regression models. Within the MS group, linear and logistic regression models were used to predict conventional MRI findings (total hyperintense parenchymal lesion volume, third ventricular width) and clinical parameters (EDSS, disease duration, relapsingremitting [secondary progressive] clinical course) using only T2 intensity measures as predictors that differed significantly between patients with MS and controls (ie, abnormal T2 hypointensity). All models controlled for age by entering age in block 1 and holding age in the final model. Otherwise, each model used a forward stepwise selection procedure, with P to enter.05 and P to exit.10. Two types of analyses were performed. First, regression models with individual gray matter ROI T2 intensities were fitted to detect significant predictors of total T1 or T2 parenchymal lesion volume, third ventricular width, or clinical parameters while controlling only for age. Second, total T1 and T2 parenchymal lesion volume and third ventricular width were added to the clinical parameter models. contrast, T2 hypointensities were not significantly associated with T1 lesion load. The regression model predicting disease duration retained only T1 lesion load (partial r with age=0.32; P=.01; R 2 =0.43). When third ventricular width, T1, and T2 lesion load were removed from the analysis, there were no significant T2 hypointensity predictors retained in the model. Within the MS group, Spearman rank correlations between EDSS score and MRI variables were as follows: caudate, r = 0.26; thalamus, r = 0.01; red nucleus, r= 0.03; putamen, r= 0.05; globus pallidus, r= 0.10; substantia nigra, r = 0.23; whole-brain hyperintense T2 lesion volume, r=0.23; whole-brain hypointense T1 lesion volume, r=0.20; third ventricular width, r=0.30. Caudate T2 hypointensity was retained in the model predicting EDSS (partial r with age= 0.27; P=.03; R 2 =0.47). Putamen T2 hypointensity was also retained in step 3 of the analysis but the unique variance contributed by this predictor was provided by a positive correlation and the partial r with age only was not significant. The model predicting EDSS included no general MRI measures, indicating that caudate T2 hypointensity was a stronger predictor of EDSS than were third ventricular width, T2 lesion volume, and T1 lesion volume. All T2 hypointensities were significantly associated with the secondary progressive course after age adjustment. T2 hypointensity in the thalamus (P=.02) was 64

4 PUT SNPR SNPC RN GP A B CAUD ANT THAL CSF POST THAL C D Figure 1. Region of interest (ROI) placement method shown on representative T2-weighted magnetic resonance imaging scans. Circular ROIs were standardized sizes (see Subjects and Methods section) chosen to maximize signal-to-noise ratio while minimizing partial volume effects. Freehand ROIs were traced manually. Both right and left hemispheres were assessed for each ROI, which were then collapsed (see Subjects and Methods section). A, Substantia nigra pars reticulata (SNPR), substantia nigra pars compacta (SNPC), red nucleus (RN). B, Putamen (PUT) and globus pallidus (GP), manually traced. C, Head of caudate (CAUD), anterior thalamus (ANT THAL), posterior thalamus (POST THAL). D, Posterior lateral ventricular cerebrospinal fluid (CSF). the strongest predictor of secondary progressive (vs relapsing-remitting) disease course among the T2 hypointensity ROIs and general MRI measures. In the final model (R 2 =0.46; P.001), T2 intensity of the caudate and putamen were also retained but there were no general measures included. Thus, gray matter T2 hypointensity was a stronger predictor of secondary progressive vs relapsingremitting disease course than were third ventricular width, T2 lesion load, and T1 lesion load. COMMENT This quantitative study shows that abnormal hypointensity on T2-weighted images (BT2 [ black T2 ]) is present in MS, occurs throughout the deep gray matter, and is associated with clinical and MRI markers of disease severity. BT2 is associated with brain atrophy and is a stronger predictor of disability and clinical course than are conventional MRI findings. Our findings extend previous studies that were based on visual (qualitative) assessments of BT A previous study of 47 patients with MS, using an ordinal rating scale to measure BT2, found that 25 patients with MS had abnormal hypointensity in the thalamus and putamen. 15 The degree of hypointensity was correlated with the degree of T2 white matter plaques (also rated visually). Another group 16 used visual rating of BT2 and reported mild hypointensity in the thalamus (not in the putamen or brainstem). They used the cortical gray matter as a visual standard of normal T2 intensity but the cortical gray matter may also develop BT2 in patients with MS, 13,26 so it is not a reliable standard of reference. Previous studies may have been limited by sample size, lack of a quantitative approach, or both. In our recent study of BT2 in 114 patients with MS, we used a visual rating and found that BT2 was commonly detected in the basal ganglia and thalamus and was 65

5 Gray Matter T2 Hypointensity in Patients With Multiple Sclerosis (MS) vs Controls Patients With MS, Mean (SD)* (n = 60) Controls, Mean (SD)* (n = 50) Difference, Patients With MS vs Controls, % P Value Head of caudate 0.45 (0.04) 0.48 (0.04) Putamen 0.38 (0.03) 0.41 (0.04) Globus pallidus 0.30 (0.03) 0.32 (0.03) Thalamus 0.37 (0.03) 0.39 (0.03) Red nucleus 0.30 (0.03) 0.31 (0.03) Substantia nigra 0.32 (0.03) 0.33 (0.03) *Gray matter T2 hypointensity values are normalized (ratio to the signal intensity in the ventricular cerebrospinal fluid). Means in MS group control group/control group = 100%. t Test. related to disease duration, physical disability, clinical course, MRI lesions, and atrophy. 13,14 The present study confirmed that BT2 occurs in patients with MS in previously recognized areas (ie, the basal ganglia, thalamus) and also in the brainstem (red nucleus). The degree of BT2 showed a stronger relationship to physical disability and clinical course than did T1 plaque load, T2 plaque load, or central atrophy. This suggests that BT2 reflects important disease effects relating to brain function. These same gray matter structures showed hypometabolism on positron emission tomography scans of patients with MS. 11 BT2 in MS has not yet been correlated with pathologic findings, but it is probably due to pathologic iron deposition. 15 It is not known whether pathologic iron accumulation is a secondary process (related to neurodegeneration), a primary process contributing to injury, or both. Previous studies have implicated disturbed iron homeostasis in MS. Iron accumulates in reactive microglia, microglia, and macrophages in the brains of patients with MS and ferritin levels are elevated in the CSF of patients with progressive disease. 27,28 The normal pattern of transferrin and ferritin binding was impaired and hemosiderin and ferritin deposits were identified in the brains of patients with MS. 15,29 Increased chelatable iron can cause neurotoxicity by transferring electrons to molecular oxygen to produce free radicals. 30 Iron deposition has been described in a host of neurodegenerative diseases and aging, in which BT2 is also observed by MRI, 21-23,31,32 suggesting a common theme underlying a variety of neurologic conditions. Blood-brain barrier dysfunction (increased delivery), disrupted clearance of iron byproducts, or dysregulation of brain iron transport proteins may play a role in iron deposition, 31 potentially offering new therapeutic opportunities in MS. While BT2 is most likely due to iron deposition, other possibilities include magnetization transfer effects, diffusional changes, and tissue oxygenation differences. If cellular structure is degraded and the free diffusion constant rises, fast spin-echo T2WI could theoretically show reduced signal. However, fast spin-echo is relatively insensitive to diffusion effects compared with echoplanar techniques. Using the moderate echo train length in the present study, diffusion effects would likely be minimized (if detectable). Deoxyhemoglobin causes T2 shortening while oxyhemoglobin causes T2 prolongation on heavily weighted T2WI. Thus, if patients with MS have higher ratios of deoxyhemoglobin to oxyhemoglobin in gray matter than controls, this might lead to relative T2 hypointensity. A pathologic correlation of the T2 hypointensity on MRI is warranted to confirm that iron deposition is the cause. BT2 was related to third ventricular width, a marker of central brain atrophy that was previously shown to increase in patients with MS during a 2-year period and to predict physical disability. 25 In a recent study, we showed that BT2 was related to third ventricular enlargement and cortical atrophy but the data were obtained visually. 14 In the present study, our quantitative approach confirms that BT2 is associated with third ventricular width, suggesting a relationship between iron deposition and atrophy in MS. This might relate to neuronal loss and abnormal iron accumulation caused by tissue destruction or ironmediated neurotoxicity. The presence of BT2 in the deep gray matter and its relationship to brain atrophy in the brains of patients with MS supports a degenerative disease process. BT2 was related to the severity of total T2 plaque volume. In a previous study we showed that visually rated BT2 was related to T2 lesion load and showed a less robust relationship to T1 lesion load. 14 The present study confirms that BT2 is related to total brain T2 lesion load but not T1 lesion load. Hypointense T1 lesions in MS represent areas of severe irreversible tissue loss in most instances, 4 and less commonly, transient changes. Hyperintense T2 lesions are much more nonspecific and may include a wide range of pathologic changes, such as Wallerian degeneration. 33 One possible explanation for the correlation of BT2 with bright T2 lesions but not with dark T1 lesions is the contribution of tract degeneration, which will prolong T2 but not T1 relaxation time. 33 Consistent with this hypothesis, BT2 showed a close association with brain atrophy in a previous study. 14 However, BT2 was not related to gadolinium enhancement. 14 These data suggest that iron deposition is a marker of the global disease process. However future studies should determine if longitudinal changes in BT2 occur to a degree that could serve as a sensitive surrogate disease marker. The reason for the general symmetry of BT2 in MS is not entirely clear. Multiple sclerosis is increasingly recognized as a global (whole-brain) disease process that ex- 66

6 A B C D E F G H I J K L Figure 2. Four representative subjects illustrating the deep gray matter T2 hypointensity in multiple sclerosis (MS). A-F, 3 patients with MS in A 55-year-old healthy female control in G-L. A and B, A 43-year-old man with secondary progressive MS and moderate physical disability (Expanded Disability Status Scale [EDSS] score 3.5). Note the hypointensity of the red nuclei (arrow) in comparison with the normal control scan (G). In figure B, note the hypointensity of the thalami and lenticular nuclei and enlargement of the third ventricle (central atrophy) compared with normal control scan (H). C and D, A 33-year-old woman with relapsing-remitting MS and an EDSS score of 3.5. Note the hypointensity of the thalami, putamen, and globus pallidus compared with normal control scans (I, J). E and F, A 28-year-old man with secondary progressive MS and moderate to severe physical disability (EDSS score 6.5). Note the hypointensity of the caudate nuclei (arrows) compared with the normal control scans (K, L). tends beyond focal white matter plaques to include pathologic changes in normal-appearing white matter, 5,8,9 tract degeneration, 33 diffuse brain atrophy, 25,34 and widespread hypometabolism. 11,12 Thus, conventional MRI plaques (which may appear asymmetric) are probably only the tip of the iceberg in appreciating disease effects. Focal T1 hypointensities were not associated with BT2 in the current study. Other important disease processes that are only weakly associated with foci of demyelination may be present in the brain, such as axonal injury, atrophy, and pathologic iron deposition. Thus, global and focal disease effects may be related but different. We used fast spin-echo T2 since this is more practical to implement than conventional spin-echo and has increased sensitivity for MS plaque detection. 35 However, conventional spin-echo is more sensitive to the susceptibility effects of iron. 36 Future studies should compare the 2 spin-echo methods and gradient echo methods in detecting BT2 in MS. 37 We used a method of estimating T2 relaxation time by calculating intensity as a ratio to the intensity of CSF, a method shown to accurately reflect T2 relaxation times in iron-containing gray matter structures. 22 It could be argued that CSF changes related to MS could invalidate the use of CSF T2 intensity as a standard of reference for gray matter T2 intensity. However, the typical protein elevations in the CSF of patients with MS do not rise to a threshold that affects T2 relaxation time, 38 and there was no difference in the absolute intensity of CSF between MS and controls in our study. Direct measurement of T2 relaxation time is con- 67

7 sidered the gold standard for quantitation of iron concentration in gray matter and should be used in future studies to extend the present findings. 21,22,23,38 Accepted for publication August 30, Author Contributions: Study concept and design (Drs Bakshi, Benedict, Caruthers, Jacobs); data interpretation (Drs Bakshi, Benedict, and Caruthers); drafting of the manuscript (Dr Bakshi); data analysis and editing of the manuscript (Dr Benedict, and Caruthers); acquisition of data and technical support (Messers Bermel, Tjoa, and Fabiano); critical revision (Drs Benedict, Caruthers, Jacobs); supervision (Drs Caruthers, Jacobs); and obtaining funding (Drs Bakshi, Jacobs). This research was supported by grant NIH-NINDS 1 K23 NS from the National Institutes of Health, Bethesda, Md (Dr Bakshi), University at Buffalo State University of New York Pilot Project Program Grant (Dr Bakshi), American Academy of Neurology Student Interest in Neurology Summer Scholarship, Minneapolis, Minn (Mr Bermel), Alpha Omega Alpha Medical Student Research Fellowship, Menlo Park, Calif (Mr Bermel) and University at Buffalo State University of New York Medical Student Research Fellowship (Mr Bermel). This work was presented in part at the annual meeting of the Americas Committee for Treatment and Research in Multiple Sclerosis, Boston, Mass, October 15, 2000; the annual meeting of the American Academy of Neurology, Philadelphia,Pa,May9,2001;andtheannualmeetingoftheAmerican Neurological Association, Chicago, Ill, October 1, We thank Mark Horsfield, PhD, for developing and installing the neuroimaging analysis software. We are grateful to Jack Simon, MD, PhD, for critically reviewing the manuscript. Corresponding author and reprints: Rohit Bakshi, MD, Buffalo Neuroimaging Analysis Center, 100 High St, Suite E-2, Buffalo, NY ( rbakshi@buffalo.edu). REFERENCES 1. Fazekas F, Barkhof F, Filippi M, et al. The contribution of magnetic resonance imaging to the diagnosis of multiple sclerosis. Neurology. 1999;53: Bakshi R, Kinkel PR, Mechtler LL, et al. Magnetic resonance imaging findings in 22 cases of myelitis: comparison between patients with and without multiple sclerosis. Eur J Neurol. 1998;5: Filippi M, Horsfield MA, Ader HJ, et al. Guidelines for using quantitative measures of brain magnetic resonance imaging abnormalities in monitoring the treatment of multiple sclerosis. Ann Neurol. 1998;43: van Walderveen MA, Kamphorst W, Scheltens P, et al. Histopathologic correlate of hypointense lesions on T1-weighted spin-echo MRI in multiple sclerosis. Neurology. 1998;50: Loevner LA, Grossman RI, Cohen JA, Lexa FJ, Kessler D, Kolson DL. Microscopic disease in normal appearing white matter on conventional MR images in patients with multiple sclerosis: assessment with magnetization-transfer measurements. Radiology. 1995;196: Kappos L, Moeri D, Radue EW, et al. Predictive value of gadolinium-enhanced magnetic resonance imaging for relapse rate and changes in disability or impairment in multiple sclerosis: a meta-analysis. Lancet. 1999;353: Barkhof F. MRI in multiple sclerosis: correlation with expanded disability status scale (EDSS). Mult Scler. 1999;5: Lassmann H. Neuropathology in multiple sclerosis: new concepts. Mult Scler. 1998;4: Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mort S, Bo L. Axonal transection in the lesions of multiple sclerosis. N Engl J Med. 1998;338: Kidd D, Barkhof F, McConnell R, Algra PR, Allen IV, Revesz T. Cortical lesions in multiple sclerosis. Brain. 1999;122: Bakshi R, Miletich RS, Kinkel PR, Emmet ML, Kinkel WR. High-resolution fluorodeoxyglucose positron emission tomography shows both global and regional cerebral hypometabolism in multiple sclerosis. J Neuroimaging. 1998;8: Blinkenberg M, Jensen CV, Holm S, Paulson OB, Sorensen PS. A longitudinal study of cerebral glucose metabolism, MRI, and disability in patients with MS. Neurology. 1999;53: Bakshi R, Shaikh ZA, Janardhan V. MRI T2 shortening ( black T2 ) in multiple sclerosis: frequency, location, and clinical correlation. Neuroreport. 2000;11: Bakshi R, Dmochowski J, Shaikh ZA, Jacobs L. Gray matter T2 hypointensity is related to plaques and atrophy in the brains of multiple sclerosis patients. J Neurol Sci. 2001;185: Drayer B, Burger P, Hurwitz B, Dawson D, Cain J. Reduced signal intensity on MR images of thalamus and putamen in multiple sclerosis: increased iron content? AJR Am J Roentgenol. 1987;149: Grimaud J, Millar J, Thorpe JW, Moseley IF, McDonald WI, Miller DH. Signal intensity on MRI of basal ganglia in multiple sclerosis. J Neurol Neurosurg Psychiatry. 1995;59: Poser CM, Paty DW, Scheinberg L, et al. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol. 1983;13: Lublin FD, Reingold SC, for the National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Defining the clinical course of multiple sclerosis: results of an international survey. Neurology. 1996;46: Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983;33: Bakshi R, Caruthers SD, Janardhan V, Wasay M. Intraventricular CSF pulsation artifact on fast fluid-attenuated inversion-recovery MR images: analysis of 100 consecutive normal studies. AJNR Am J Neuroradiol. 2000;21: Vymazal J, Righini A, Brooks RA, et al. T1 and T2 in the brain of healthy subjects, patients with Parkinson disease, and patients with multiple system atrophy: relation to iron content. Radiology. 1999;211: Pujol J, Junque C, Vendrell P, et al. Biological significance of iron-related magnetic resonance imaging changes in the brain. Arch Neurol. 1992;49: Ryvlin P, Broussolle E, Piollet H, Viallet F, Khalfallah Y, Chazot G. Magnetic resonance imaging evidence of decreased putamenal iron content in idiopathic Parkinson s disease. Arch Neurol. 1995;52: Imon Y, Yamaguchi S, Katayama S, et al. A decrease in cerebral cortex intensity on T2-weighted images with ageing images of normal subjects. Neuroradiology. 1998;40: Simon JH, Jacobs LD, Campion MK, et al. A longitudinal study of brain atrophy in relapsing multiple sclerosis. Neurology. 1999;53: Russo C, Smoker WRK, Kubal W. Cortical and subcortical T2 shortening in multiple sclerosis. AJNR Am J Neuroradiol. 1996;18: LeVine SL, Lynch SG, Ou CN, Wulser MJ, Tam E, Boo N. Ferritin, transferrin, and iron concentrations in the cerebrospinal fluid of multiple sclerosis patients. Brain Res. 1999;821: LeVine SL. Iron deposits in multiple sclerosis and Alzheimer s disease brains. Brain Res. 1997;760: Craelius W, Migdal MW, Luessenhop CP, Sugar A, Mihalakis I. Iron deposits surrounding multiple sclerosis plaques. Arch Pathol Lab Med. 1982;106: Gutteridge JMC. Iron and oxygen radicals in brain. Ann Neurol. 1992;32(suppl): S16-S Qian ZM, Shen X. Brain iron transport and neurodegeneration. Trends Molec Med. 2001;7: Kamran S, Bakshi R. MRI in chronic toluene abuse: low signal in the cerebral cortex on T2-weighted images. Neuroradiology. 1998;40: Simon JH, Kinkel RP, Jacobs L, et al. A Wallerian degeneration pattern in patients at high risk for MS. Neurology. 2000;54: Bakshi R, Benedict RHB, Bermel RA, Jacobs L. Regional brain atrophy is associated with physical disability in multiple sclerosis: semiquantitative MRI and relationship to clinical findings. J Neuroimaging. 2001;11: Gawne-Cain ML, O Riordan JI, Coles A, Newell B, Thompson AJ, Miller DH. MRI lesion volume measurement in multiple sclerosis and its correlation with disability: a comparison of fast fluid attenuated inversion recovery (fflair) and spin echo sequences. J Neurol Neurosurg Psychiatry. 1998;64: Incesu L, Gunes M, Akan H, Selcuk MB. MRI of the intracerebral lesions at 0.5 Tesla: comparison of fast spin-echo and conventional spin-echo sequences. Comput Med Imaging Graph. 1996;20: Fellner F, Schmitt R, Trenkler J, et al. True proton density and T2-weighted turbo spin-echo sequences for routine MRI of the brain. Neuroradiology. 1994;36: Schenker C, Meier D, Wichmann W, Boesiger P, Valavanis A. Age distribution and iron dependency of the T2 relaxation time in the globus pallidus and putamen. Neuroradiology. 1993;5:

SHORTLY AFTER ITS FIRST DEpiction

SHORTLY AFTER ITS FIRST DEpiction OBSERVATION Seven-Tesla Magnetic Resonance Imaging New Vision of Microvascular Abnormalities in Multiple Sclerosis Yulin Ge, MD; Vahe M. Zohrabian, MD; Robert I. Grossman, MD Background: Although the role

More information

MRI dynamics of brain and spinal cord in progressive multiple sclerosis

MRI dynamics of brain and spinal cord in progressive multiple sclerosis J7ournal of Neurology, Neurosurgery, and Psychiatry 1 996;60: 15-19 MRI dynamics of brain and spinal cord in progressive multiple sclerosis 1 5 D Kidd, J W Thorpe, B E Kendall, G J Barker, D H Miller,

More information

Relevance of Hypointense Lesions on Fast Fluid- Attenuated Inversion Recovery MR Images as a Marker of Disease Severity in Cases of Multiple Sclerosis

Relevance of Hypointense Lesions on Fast Fluid- Attenuated Inversion Recovery MR Images as a Marker of Disease Severity in Cases of Multiple Sclerosis AJNR Am J Neuroradiol 20:813 820, May 1999 Relevance of Hypointense Lesions on Fast Fluid- Attenuated Inversion Recovery MR Images as a Marker of Disease Severity in Cases of Multiple Sclerosis Marco Rovaris,

More information

Whole-Brain Atrophy in Multiple Sclerosis Measured by Automated versus Semiautomated MR Imaging Segmentation

Whole-Brain Atrophy in Multiple Sclerosis Measured by Automated versus Semiautomated MR Imaging Segmentation AJNR Am J Neuroradiol 25:985 996, June/July 2004 Whole-Brain Atrophy in Multiple Sclerosis Measured by Automated versus Semiautomated MR Imaging Segmentation Jitendra Sharma, Michael P. Sanfilipo, Ralph

More information

NIH Public Access Author Manuscript Arch Neurol. Author manuscript; available in PMC 2008 November 5.

NIH Public Access Author Manuscript Arch Neurol. Author manuscript; available in PMC 2008 November 5. NIH Public Access Author Manuscript Published in final edited form as: Arch Neurol. 2008 June ; 65(6): 812 816. doi:10.1001/archneur.65.6.812. 7T MRI: New Vision of Microvascular Abnormalities in Multiple

More information

The Low Sensitivity of Fluid-Attenuated Inversion-Recovery MR in the Detection of Multiple Sclerosis of the Spinal Cord

The Low Sensitivity of Fluid-Attenuated Inversion-Recovery MR in the Detection of Multiple Sclerosis of the Spinal Cord The Low Sensitivity of Fluid-Attenuated Inversion-Recovery MR in the Detection of Multiple Sclerosis of the Spinal Cord Mark D. Keiper, Robert I. Grossman, John C. Brunson, and Mitchell D. Schnall PURPOSE:

More information

A Comparison of MR Imaging with Fast-FLAIR, HASTE-FLAIR, and EPI-FLAIR Sequences in the Assessment of Patients with Multiple Sclerosis

A Comparison of MR Imaging with Fast-FLAIR, HASTE-FLAIR, and EPI-FLAIR Sequences in the Assessment of Patients with Multiple Sclerosis AJNR Am J Neuroradiol 20:1931 1938, November/December 1999 A Comparison of MR Imaging with Fast-FLAIR, HASTE-FLAIR, and EPI-FLAIR Sequences in the Assessment of Patients with Multiple Sclerosis Massimo

More information

Half-Fourier Acquisition Single-Shot Turbo Spin-Echo (HASTE) MR: Comparison with Fast Spin-Echo MR in Diseases of the Brain

Half-Fourier Acquisition Single-Shot Turbo Spin-Echo (HASTE) MR: Comparison with Fast Spin-Echo MR in Diseases of the Brain Half-Fourier Acquisition Single-Shot Turbo Spin-Echo (HASTE) MR: Comparison with Fast Spin-Echo MR in Diseases of the Brain Mahesh R. Patel, Roman A. Klufas, Ronald A. Alberico, and Robert R. Edelman PURPOSE:

More information

ORIGINAL CONTRIBUTION. Determinants of Cerebral Atrophy Rate at the Time of Diagnosis of Multiple Sclerosis. imaging (MRI) provides

ORIGINAL CONTRIBUTION. Determinants of Cerebral Atrophy Rate at the Time of Diagnosis of Multiple Sclerosis. imaging (MRI) provides ORIGINAL CONTRIBUTION Determinants of Cerebral Atrophy Rate at the Time of Diagnosis of Multiple Sclerosis Bas Jasperse, MD; Arjan Minneboo, MD; Vincent de Groot, MD; Nynke F. Kalkers, MD, PhD; Paul E.

More information

1 MS Lesions in T2-Weighted Images

1 MS Lesions in T2-Weighted Images 1 MS Lesions in T2-Weighted Images M.A. Sahraian, E.-W. Radue 1.1 Introduction Multiple hyperintense lesions on T2- and PDweighted sequences are the characteristic magnetic resonance imaging (MRI) appearance

More information

MRI in MS. MRI in multiple sclerosis. MS T2 Lesions: Pathology. Brain lesions Morphology Matters. Sagittal FLAIR Morphology Matters

MRI in MS. MRI in multiple sclerosis. MS T2 Lesions: Pathology. Brain lesions Morphology Matters. Sagittal FLAIR Morphology Matters MRI in multiple sclerosis MRI in MS Rohit Bakshi, MD, MA Breakstone Professor of Neurology & Radiology Director, Laboratory for Neuroimaging Research Senior Neurologist, MS Center Brigham & Women s Hospital

More information

Intraventricular CSF Pulsation Artifact on Fast Fluid-Attenuated Inversion-Recovery MR Images: Analysis of 100 Consecutive Normal Studies

Intraventricular CSF Pulsation Artifact on Fast Fluid-Attenuated Inversion-Recovery MR Images: Analysis of 100 Consecutive Normal Studies AJNR Am J Neuroradiol 21:503 508, March 2000 Intraventricular CSF Pulsation Artifact on Fast Fluid-Attenuated Inversion-Recovery MR Images: Analysis of 100 Consecutive Normal Studies Rohit Bakshi, Shelton

More information

Multiple sclerosis (MS) is an inflammatory disease of the central nervous. Magnetic Resonance Imaging in Multiple Sclerosis

Multiple sclerosis (MS) is an inflammatory disease of the central nervous. Magnetic Resonance Imaging in Multiple Sclerosis DIAGNOSIS AND MANAGEMENT UPDATE Magnetic Resonance Imaging in Multiple Sclerosis Salvatore Q. Napoli, MD, * Rohit Bakshi, MD * *Partners, Multiple Sclerosis Center, Boston, MA, Center for Neurological

More information

Amyotrophic lateral sclerosis (ALS) is a motor neuron disease

Amyotrophic lateral sclerosis (ALS) is a motor neuron disease ORIGINL RESERCH S. Ngai Y.M. Tang L. Du S. Stuckey Hyperintensity of the Precentral Gyral Subcortical White Matter and Hypointensity of the Precentral Gyrus on Fluid-ttenuated Inversion Recovery: Variation

More information

ORIGINAL CONTRIBUTION. Infratentorial Lesions Predict Long-term Disability in Patients With Initial Findings Suggestive of Multiple Sclerosis

ORIGINAL CONTRIBUTION. Infratentorial Lesions Predict Long-term Disability in Patients With Initial Findings Suggestive of Multiple Sclerosis ORIGINAL CONTRIBUTION Infratentorial Lesions Predict Long-term Disability in Patients With Initial Findings Suggestive of Multiple Sclerosis Arjan Minneboo, MD; Frederick Barkhof, MD; Chris H. Polman,

More information

Study of the CNS. Bent O. Kjos' Richard L. Ehman Michael Brant-Zawadzki William M. Kelly David Norman Thomas H. Newton

Study of the CNS. Bent O. Kjos' Richard L. Ehman Michael Brant-Zawadzki William M. Kelly David Norman Thomas H. Newton 271 Reproducibility of Relaxation Times and Spin Density Calculated from Routine MR Imaging Sequences: Clinical Study of the CNS Bent O. Kjos' Richard L. Ehman Michael Brant-Zawadzki William M. Kelly David

More information

Multiple sclerosis (MS) is a disabling chronic demyelinating disease

Multiple sclerosis (MS) is a disabling chronic demyelinating disease Diagn Interv Radiol 2010; 16:106 111 Turkish Society of Radiology 2010 NEURORADIOLOGY ORIGINAL ARTICLE Imaging of active multiple sclerosis plaques: efficiency of contrast-enhanced magnetization transfer

More information

Supplementary Online Content

Supplementary Online Content Supplementary Online Content Schlaeger R, Papinutto N, Zhu AH, et al. Association between thoracic spinal cord gray matter atrophy and disability in multiple sclerosis. JAMA Neurol. Published online June

More information

Brain tissue and white matter lesion volume analysis in diabetes mellitus type 2

Brain tissue and white matter lesion volume analysis in diabetes mellitus type 2 Brain tissue and white matter lesion volume analysis in diabetes mellitus type 2 C. Jongen J. van der Grond L.J. Kappelle G.J. Biessels M.A. Viergever J.P.W. Pluim On behalf of the Utrecht Diabetic Encephalopathy

More information

Magnetization-Transfer Histogram Analysis of the Cervical Cord in Patients with Multiple Sclerosis

Magnetization-Transfer Histogram Analysis of the Cervical Cord in Patients with Multiple Sclerosis AJNR Am J Neuroradiol 20:1803 1808, November/December 1999 Magnetization-Transfer Histogram Analysis of the Cervical Cord in Patients with Multiple Sclerosis Marco Bozzali, Maria A. Rocca, Giuseppe Iannucci,

More information

10/3/2016. T1 Anatomical structures are clearly identified, white matter (which has a high fat content) appears bright.

10/3/2016. T1 Anatomical structures are clearly identified, white matter (which has a high fat content) appears bright. H2O -2 atoms of Hydrogen, 1 of Oxygen Hydrogen just has one single proton and orbited by one single electron Proton has a magnetic moment similar to the earths magnetic pole Also similar to earth in that

More information

Long-Term Changes of Magnetization Transfer Derived Measures from Patients with Relapsing-Remitting and Secondary Progressive Multiple Sclerosis

Long-Term Changes of Magnetization Transfer Derived Measures from Patients with Relapsing-Remitting and Secondary Progressive Multiple Sclerosis AJNR Am J Neuroradiol 20:821 827, May 1999 Long-Term Changes of Magnetization Transfer Derived Measures from Patients with Relapsing-Remitting and Secondary Progressive Multiple Sclerosis Maria A. Rocca,

More information

Quantitative divusion weighted magnetic resonance imaging, cerebral atrophy, and disability in multiple sclerosis

Quantitative divusion weighted magnetic resonance imaging, cerebral atrophy, and disability in multiple sclerosis 318 Division of Clinical Neurology, Faculty of Medicine, University Hospital, Queen s Medical Centre, Nottingham NG7 2UH, UK M Wilson X Lin B P Turner L D Blumhardt Division of Academic Radiology P S Morgan

More information

Magnetic Resonance Imaging. Basics of MRI in practice. Generation of MR signal. Generation of MR signal. Spin echo imaging. Generation of MR signal

Magnetic Resonance Imaging. Basics of MRI in practice. Generation of MR signal. Generation of MR signal. Spin echo imaging. Generation of MR signal Magnetic Resonance Imaging Protons aligned with B0 magnetic filed Longitudinal magnetization - T1 relaxation Transverse magnetization - T2 relaxation Signal measured in the transverse plane Basics of MRI

More information

Essentials of Clinical MR, 2 nd edition. 14. Ischemia and Infarction II

Essentials of Clinical MR, 2 nd edition. 14. Ischemia and Infarction II 14. Ischemia and Infarction II Lacunar infarcts are small deep parenchymal lesions involving the basal ganglia, internal capsule, thalamus, and brainstem. The vascular supply of these areas includes the

More information

MR Imaging with the CCSVI or Haacke protocol

MR Imaging with the CCSVI or Haacke protocol MR Imaging with the CCSVI or Haacke protocol Reports from the Haacke protocol are often made available to the patients. The report consists of four major components: 1. anatomical images of major neck

More information

ABSTRACT Background In patients with isolated syndromes that are clinically suggestive of multiple sclerosis,

ABSTRACT Background In patients with isolated syndromes that are clinically suggestive of multiple sclerosis, A LONGITUDINAL STUDY OF ABNORMALITIES ON MRI AND DISABILITY FROM MULTIPLE SCLEROSIS PETER A. BREX, M.D., OLGA CICCARELLI, M.D., JONATHON I. O RIORDAN, M.D., MICHAEL SAILER, M.D., ALAN J. THOMPSON, M.D.,

More information

High Signal Intensity of the Infundibular Stalk on Fluid-Attenuated Inversion Recovery MR

High Signal Intensity of the Infundibular Stalk on Fluid-Attenuated Inversion Recovery MR High Signal Intensity of the Infundibular Stalk on Fluid-Attenuated Inversion Recovery MR Yutaka Araki, Ryuichirou Ashikaga, Satoru Takahashi, Jun Ueda, and Osamu Ishida PURPOSE: To determine the MR imaging

More information

T he spinal cord is frequently affected, both pathologically

T he spinal cord is frequently affected, both pathologically 51 PAPER Increasing cord atrophy in early relapsing-remitting multiple sclerosis: a 3 year study W Rashid, G R Davies, D T Chard, C M Griffin, D R Altmann, R Gordon, A J Thompson, D H Miller... See end

More information

Association of asymptomatic spinal cord lesions and atrophy with disability. 5 years after a clinically isolated syndrome

Association of asymptomatic spinal cord lesions and atrophy with disability. 5 years after a clinically isolated syndrome Association of asymptomatic spinal cord lesions and atrophy with disability 5 years after a clinically isolated syndrome WJ Brownlee 1, DR Altmann 1,2, P Alves Da Mota 1, JK Swanton 1, KA Miszkiel 3, CAM

More information

MRI in Multiple Sclerosis Features of Cerebral Atrophy with special focus on Multiple Sclerosis. E.W. Radue K. Bendfeldt Till Sprenger

MRI in Multiple Sclerosis Features of Cerebral Atrophy with special focus on Multiple Sclerosis. E.W. Radue K. Bendfeldt Till Sprenger MRI in Multiple Sclerosis Features of Cerebral Atrophy with special focus on Multiple Sclerosis E.W. Radue K. Bendfeldt Till Sprenger Medical Image Analysis Center University Hospital Basel www. miac.ch

More information

Use of MRI Technology in Determining Prognosis and Tracking Therapeutic Benefit in Multiple Sclerosis

Use of MRI Technology in Determining Prognosis and Tracking Therapeutic Benefit in Multiple Sclerosis Use of MRI Technology in Determining Prognosis and Tracking Therapeutic Benefit in Multiple Sclerosis Timothy Vollmer, MD Associate Professor of Neurology Yale School of Medicine New Haven, Connecticut

More information

PRESERVE: How intensively should we treat blood pressure in established cerebral small vessel disease? Guide to assessing MRI scans

PRESERVE: How intensively should we treat blood pressure in established cerebral small vessel disease? Guide to assessing MRI scans PRESERVE: How intensively should we treat blood pressure in established cerebral small vessel disease? Guide to assessing MRI scans Inclusion Criteria Clinical syndrome Patients must have clinical evidence

More information

ORIGINAL CONTRIBUTION. Multiple Sclerosis Lesions and Irreversible Brain Tissue Damage

ORIGINAL CONTRIBUTION. Multiple Sclerosis Lesions and Irreversible Brain Tissue Damage ORIGINAL CONTRIBUTION Multiple Sclerosis Lesions and Irreversible Brain Tissue Damage A Comparative Ultrahigh-Field Strength Magnetic Resonance Imaging Study Tim Sinnecker; Paul Mittelstaedt; Jan Dörr,

More information

ORIGINAL CONTRIBUTION. Magnetization Transfer Magnetic Resonance Imaging and Clinical Changes in Patients With Relapsing-Remitting Multiple Sclerosis

ORIGINAL CONTRIBUTION. Magnetization Transfer Magnetic Resonance Imaging and Clinical Changes in Patients With Relapsing-Remitting Multiple Sclerosis ORIGINAL CONTRIBUTION Magnetization Transfer Magnetic Resonance Imaging and Clinical Changes in Patients With Relapsing-Remitting Multiple Sclerosis Celia Oreja-Guevara, MD; Arnaud Charil, MSc; Domenico

More information

Role of MRI in acute disseminated encephalomyelitis

Role of MRI in acute disseminated encephalomyelitis Original Research Article Role of MRI in acute disseminated encephalomyelitis Shashvat Modiya 1*, Jayesh Shah 2, C. Raychaudhuri 3 1 1 st year resident, 2 Associate Professor, 3 HOD and Professor Department

More information

SPINAL MAGNETIC RESONANCE IMAGING INTERPRETATION

SPINAL MAGNETIC RESONANCE IMAGING INTERPRETATION CLINICAL VIGNETTE 2017; 3:2 SPINAL MAGNETIC RESONANCE IMAGING INTERPRETATION Editor-in-Chief: Idowu, Olufemi E. Neurological surgery Division, Department of Surgery, LASUCOM/LASUTH, Ikeja, Lagos, Nigeria.

More information

ORIGINAL CONTRIBUTION. Axonal Injury and Overall Tissue Loss Are Not Related in Primary Progressive Multiple Sclerosis

ORIGINAL CONTRIBUTION. Axonal Injury and Overall Tissue Loss Are Not Related in Primary Progressive Multiple Sclerosis ORIGINAL CONTRIBUTION Axonal Injury and Overall Tissue Loss Are Not Related in Primary Progressive Multiple Sclerosis Marco Rovaris, MD; Antonio Gallo, MD; Andrea Falini, MD; Beatrice Benedetti, MD; Paolo

More information

Increase in the Iron Content of the Substantia Nigra and Red Nucleus in Multiple Sclerosis and Clinically Isolated Syndrome: A 7 Tesla MRI Study

Increase in the Iron Content of the Substantia Nigra and Red Nucleus in Multiple Sclerosis and Clinically Isolated Syndrome: A 7 Tesla MRI Study CME JOURNAL OF MAGNETIC RESONANCE IMAGING 00:00 00 (2014) Original Research Increase in the Iron Content of the Substantia Nigra and Red Nucleus in Multiple Sclerosis and Clinically Isolated Syndrome:

More information

ORIGINAL CONTRIBUTION. Reliability of Classifying Multiple Sclerosis Disease Activity Using Magnetic Resonance Imaging in a Multiple Sclerosis Clinic

ORIGINAL CONTRIBUTION. Reliability of Classifying Multiple Sclerosis Disease Activity Using Magnetic Resonance Imaging in a Multiple Sclerosis Clinic ORIGINAL CONTRIBUTION Reliability of Classifying Multiple Sclerosis Disease Activity Using Magnetic Resonance Imaging in a Multiple Sclerosis Clinic Ebru Erbayat Altay, MD; Elizabeth Fisher, PhD; Stephen

More information

Although most lesions associated with demyelinating

Although most lesions associated with demyelinating ORIGINAL RESEARCH Y. Ge J.H. Jensen H. Lu J.A. Helpern L. Miles M. Inglese J.S. Babb J. Herbert R.I. Grossman Quantitative Assessment of Iron Accumulation in the Deep Gray Matter of Multiple Sclerosis

More information

Magnetic resonance imaging (MRI) is an

Magnetic resonance imaging (MRI) is an Fluid-Attenuated Inversion Recovery Signal Intensity as a Predictor of Gadolinium Enhancement in Relapsing- Remitting Multiple Sclerosis Mihail Guranda, MD; Marco Essig, MD, PhD; Ariane Poulin, MD; Reza

More information

Magnetic resonance imaging (MR!) provides

Magnetic resonance imaging (MR!) provides 0 Wallerian Degeneration of the Pyramidal Tract in Capsular Infarction Studied by Magnetic Resonance Imaging Jesiis Pujol, MD, Josep L. Marti-Vilalta, MD, Carme Junqu6, PhD, Pere Vendrell, PhD, Juan Fernandez,

More information

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative ORIGINAL RESEARCH E. Matsusue S. Sugihara S. Fujii T. Kinoshita T. Nakano E. Ohama T. Ogawa Cerebral Cortical and White Matter Lesions in Amyotrophic Lateral Sclerosis with Dementia: Correlation with MR

More information

MR Advance Techniques. Cardiac Imaging. Class III

MR Advance Techniques. Cardiac Imaging. Class III MR Advance Techniques Cardiac Imaging Class III Black Blood Imaging & IR Blue= O2 poor blood Red=O2 rich blood Inversion pulses can produce black blood imaging in GRE pulse sequences. Specially on the

More information

Diffusion-Weighted and Conventional MR Imaging Findings of Neuroaxonal Dystrophy

Diffusion-Weighted and Conventional MR Imaging Findings of Neuroaxonal Dystrophy AJNR Am J Neuroradiol 25:1269 1273, August 2004 Diffusion-Weighted and Conventional MR Imaging Findings of Neuroaxonal Dystrophy R. Nuri Sener BACKGROUND AND PURPOSE: Neuroaxonal dystrophy is a rare progressive

More information

Pediatric MS MRI Study Methodology

Pediatric MS MRI Study Methodology General Pediatric MS MRI Study Methodology SCAN PREPARATION axial T2-weighted scans and/or axial FLAIR scans were obtained for all subjects when available, both T2 and FLAIR scans were scored. In order

More information

ORIGINAL CONTRIBUTION. Magnetic Resonance Imaging Effects of Interferon Beta-1b in the BENEFIT Study

ORIGINAL CONTRIBUTION. Magnetic Resonance Imaging Effects of Interferon Beta-1b in the BENEFIT Study ORIGINAL CONTRIBUTION Magnetic Resonance Imaging Effects of Interferon in the BENEFIT Study Integrated 2-Year Results Frederik Barkhof, MD, PhD; Chris H. Polman, MD, PhD; Ernst-Wilhelm Radue, MD; Ludwig

More information

Stefan Ropele, Siegried Strasser-Fuchs, Michael Augustin, Rudolf Stollberger, Christian Enzinger, Hans-Peter Hartung, and Franz Fazekas

Stefan Ropele, Siegried Strasser-Fuchs, Michael Augustin, Rudolf Stollberger, Christian Enzinger, Hans-Peter Hartung, and Franz Fazekas AJNR Am J Neuroradiol 21:1885 1891, November/December 2000 A Comparison of Magnetization Transfer Ratio, Magnetization Transfer Rate, and the Native Relaxation Time of Water Protons Related to Relapsing-remitting

More information

Patologie infiammatorie encefaliche e midollari

Patologie infiammatorie encefaliche e midollari Patologie infiammatorie encefaliche e midollari Maria Laura Stromillo Department of Medicine, Surgery and Neuroscience Inflammatory disorders of the CNS NMOSD ADEM Multiple Sclerosis Neuro-Myelitis Optica

More information

T1- vs. T2-based MRI measures of spinal cord volume in healthy subjects and patients with multiple sclerosis

T1- vs. T2-based MRI measures of spinal cord volume in healthy subjects and patients with multiple sclerosis Kim et al. BMC Neurology (2015) 15:124 DOI 10.1186/s12883-015-0387-0 RESEARCH ARTICLE Open Access T1- vs. T2-based MRI measures of spinal cord volume in healthy subjects and patients with multiple sclerosis

More information

Isolated Demyelinating Syndromes: Comparison of Different MR Imaging Criteria to Predict Conversion to Clinically Definite Multiple Sclerosis

Isolated Demyelinating Syndromes: Comparison of Different MR Imaging Criteria to Predict Conversion to Clinically Definite Multiple Sclerosis AJNR Am J Neuroradiol 21:702 706, April 2000 Isolated Demyelinating Syndromes: Comparison of Different MR Imaging Criteria to Predict Conversion to Clinically Definite Multiple Sclerosis Mar Tintoré, Alex

More information

Susceptibility-weighted MRI ups contrast, offers minute detail 9/15/04 By: Shalmali Pal

Susceptibility-weighted MRI ups contrast, offers minute detail 9/15/04 By: Shalmali Pal Susceptibility-weighted MRI ups contrast, offers minute detail 9/15/04 By: Shalmali Pal With its flashy sequences and high-speed protocols, there's no shortage of razzle-dazzle in MRI. But learning to

More information

Evolution of Multiple Sclerosis Lesions on Serial Contrast-Enhanced T1-Weighted and Magnetization-Transfer MR Images

Evolution of Multiple Sclerosis Lesions on Serial Contrast-Enhanced T1-Weighted and Magnetization-Transfer MR Images AJNR Am J Neuroradiol 20:1939 1945, November/December 1999 Evolution of Multiple Sclerosis Lesions on Serial Contrast-Enhanced T1-Weighted and Magnetization-Transfer MR Images Alex Rovira, Juli Alonso,

More information

7. MRI Assessment of Iron Deposition in Multiple Sclerosis

7. MRI Assessment of Iron Deposition in Multiple Sclerosis 7. MRI Assessment of Iron Deposition in Multiple Sclerosis S. Ropele, W.L. de Graaf, M. Khalil, M.P. Wattjes, C. Langkammer, M.A. Rocca, A. Rovira, J. Palace, F. Barkhof, M. Filippi, F. Fazekas 1 Department

More information

Magnetic resonance imaging in multiple sclerosis

Magnetic resonance imaging in multiple sclerosis APRIL 2002 103 Magnetic resonance imaging in multiple sclerosis Beside the ability to detect the Olga Ciccarelli and David H. Miller NMR Unit, Institute of Neurology, University College London, Queen Square,

More information

MEDIA BACKGROUNDER. Multiple Sclerosis: A serious and unpredictable neurological disease

MEDIA BACKGROUNDER. Multiple Sclerosis: A serious and unpredictable neurological disease MEDIA BACKGROUNDER Multiple Sclerosis: A serious and unpredictable neurological disease Multiple sclerosis (MS) is a complex chronic inflammatory disease of the central nervous system (CNS) that still

More information

Open Access Width of 3. Ventricle: Reference Values and Clinical Relevance in a Cohort of Patients with Relapsing Remitting Multiple Sclerosis

Open Access Width of 3. Ventricle: Reference Values and Clinical Relevance in a Cohort of Patients with Relapsing Remitting Multiple Sclerosis Send Orders of Reprints at reprints@benthamscience.net The Open Neurology Journal, 2013, 7, 11-16 11 Open Access Width of 3. Ventricle: Reference Values and Clinical Relevance in a Cohort of Patients with

More information

MRI Tz Hypointensities in basal ganglia of premanifest Huntingtons disease

MRI Tz Hypointensities in basal ganglia of premanifest Huntingtons disease Chapter MRI Tz Hypointensities in basal ganglia of premanifest Huntingtons disease Authors: C.K. Jurgens, MSc 1,,5 ; R. Jasinschi, PhD 6 ; A. Ekin, PhD 6 ; M.N.W. Witjes-Ané, PhD 1,5 ; H.A.M. Middelkoop

More information

SWI including phase and magnitude images

SWI including phase and magnitude images On-line Table: MRI imaging recommendation and summary of key features Sequence Pathologies Visible Key Features T1 volumetric high-resolution whole-brain reformatted in axial, coronal, and sagittal planes

More information

Laura Tormoehlen, M.D. Neurology and EM-Toxicology Indiana University

Laura Tormoehlen, M.D. Neurology and EM-Toxicology Indiana University Laura Tormoehlen, M.D. Neurology and EM-Toxicology Indiana University Disclosures! No conflicts of interest to disclose Neuroimaging 101! Plain films! Computed tomography " Angiography " Perfusion! Magnetic

More information

Complete Recovery of Perfusion Abnormalities in a Cardiac Arrest Patient Treated with Hypothermia: Results of Cerebral Perfusion MR Imaging

Complete Recovery of Perfusion Abnormalities in a Cardiac Arrest Patient Treated with Hypothermia: Results of Cerebral Perfusion MR Imaging pissn 2384-1095 eissn 2384-1109 imri 2018;22:56-60 https://doi.org/10.13104/imri.2018.22.1.56 Complete Recovery of Perfusion Abnormalities in a Cardiac Arrest Patient Treated with Hypothermia: Results

More information

ORIGINAL CONTRIBUTION. Normal-Appearing Brain T1 Relaxation Time Predicts Disability in Early Primary Progressive Multiple Sclerosis

ORIGINAL CONTRIBUTION. Normal-Appearing Brain T1 Relaxation Time Predicts Disability in Early Primary Progressive Multiple Sclerosis ORIGINAL CONTRIBUTION Normal-Appearing Brain T1 Relaxation Time Predicts Disability in Early Primary Progressive Multiple Sclerosis Francesco Manfredonia, MD; Olga Ciccarelli, PhD; Zhaleh Khaleeli, MRCP;

More information

Clinical, Laboratory and Radiological Predictors of Outcome in Relapsing Remitting Multiple Sclerosis

Clinical, Laboratory and Radiological Predictors of Outcome in Relapsing Remitting Multiple Sclerosis Ashraf A. Aboelsafa et al. Clinical, Laboratory and Radiological Predictors of Outcome in Relapsing Remitting Multiple Sclerosis Ashraf A. Aboelsafa, Ehab A. Elseidy, Ehab S. Mohammed Department of Neuropsychiatry,

More information

Early development of multiple sclerosis is associated with progressive grey matter atrophy in patients presenting with clinically isolated syndromes

Early development of multiple sclerosis is associated with progressive grey matter atrophy in patients presenting with clinically isolated syndromes DOI: 10.1093/brain/awh126 Brain (2004), 127, 1101±1107 Early development of multiple sclerosis is associated with progressive grey matter atrophy in patients presenting with clinically isolated syndromes

More information

Negative prognostic impact of MRI spinal lesions in the early stages of relapsing remitting multiple sclerosis

Negative prognostic impact of MRI spinal lesions in the early stages of relapsing remitting multiple sclerosis Original Article Negative prognostic impact of MRI spinal lesions in the early stages of relapsing remitting multiple sclerosis E D Amico, F Patti, C Leone, S Lo Fermo and M Zappia Multiple Sclerosis Journal

More information

Magnetic Resonance Imaging Findings of Eosinophilic Meningoencephalitis Caused by Angiostrongyliasis

Magnetic Resonance Imaging Findings of Eosinophilic Meningoencephalitis Caused by Angiostrongyliasis Chin J Radiol 2001; 26: 45-49 45 CASE REPORT Magnetic Resonance Imaging Findings of Eosinophilic Meningoencephalitis Caused by Angiostrongyliasis TSYH-JYI HSIEH 1 GIN-CHUNG LIU 1 CHUAN-MIN YEN 2 YU-TING

More information

Pediatric acute demyelinating encephalomyelitis in Denmark: a nationwide population-based study

Pediatric acute demyelinating encephalomyelitis in Denmark: a nationwide population-based study Pediatric acute demyelinating encephalomyelitis in Denmark: a nationwide population-based study Magnus Spangsberg Boesen November, 2016 Supervisors: P. Born, P. Uldall, M. Blinkenberg, M. Magyari, F. Sellebjerg

More information

ORIGINAL CONTRIBUTION. Multiple Sclerosis That Is Progressive From the Time of Onset

ORIGINAL CONTRIBUTION. Multiple Sclerosis That Is Progressive From the Time of Onset ORIGINAL CONTRIBUTION Multiple Sclerosis That Is Progressive From the Time of Onset Clinical Characteristics and Progression of Disability P. B. Andersson, MBChB, DPhil; E. Waubant, MD; L. Gee, MPH; D.

More information

Supplementary Online Content

Supplementary Online Content Supplementary Online Content Hooshmand B, Magialasche F, Kalpouzos G, et al. Association of vitamin B, folate, and sulfur amino acids with brain magnetic resonance imaging measures in older adults: a longitudinal

More information

Magnetic Resonance Imaging on Soft Tissue. Jiten K. Mistry Calvin Gan

Magnetic Resonance Imaging on Soft Tissue. Jiten K. Mistry Calvin Gan Magnetic Resonance Imaging on Soft Tissue 1 Jiten K. Mistry Calvin Gan Outline Background of Medical Imaging Introduction to MRI How MRI works MRI of Soft Tissue Benefits & Risks Recent Advances 2 The

More information

Clinical trials of multiple sclerosis monitored with enhanced MRI: new sample size calculations based on large data sets

Clinical trials of multiple sclerosis monitored with enhanced MRI: new sample size calculations based on large data sets 494 Neuroimaging Research Unit, Department of Neuroscience, Scientific Institute Ospedale San RaVaele, University of Milan, Via Olgettina 6, 2132 Milan, Italy M P Sormani M Rovaris M Filippi Clinical Trials

More information

brain MRI for neuropsychiatrists: what do you need to know

brain MRI for neuropsychiatrists: what do you need to know brain MRI for neuropsychiatrists: what do you need to know Christoforos Stoupis, MD, PhD Department of Radiology, Spital Maennedorf, Zurich & Inselspital, University of Bern, Switzerland c.stoupis@spitalmaennedorf.ch

More information

Cover Page. The handle holds various files of this Leiden University dissertation

Cover Page. The handle   holds various files of this Leiden University dissertation Cover Page The handle http://hdl.handle.net/1887/26921 holds various files of this Leiden University dissertation Author: Doan, Nhat Trung Title: Quantitative analysis of human brain MR images at ultrahigh

More information

The Role of MR Imaging in the Diagnosis of CCSVI and in Pre-Treatment Planning and Monitoring Patient Outcomes. E.

The Role of MR Imaging in the Diagnosis of CCSVI and in Pre-Treatment Planning and Monitoring Patient Outcomes. E. The Role of MR Imaging in the Diagnosis of CCSVI and in Pre-Treatment Planning and Monitoring Patient Outcomes E. Mark Haacke, PhD The MRI Institute for Biomedical Research Detroit, Michigan 48202 Wayne

More information

Corpus callosum index and long-term disability in multiple sclerosis patients

Corpus callosum index and long-term disability in multiple sclerosis patients J Neurol (2010) 257:1256 1264 DOI 10.1007/s00415-010-5503-x ORIGINAL COMMUNICATION Corpus callosum index and long-term disability in multiple sclerosis patients Özgür Yaldizli Ramin Atefy Achim Gass Dietrich

More information

multiple sclerosis by magnetic resonance imaging

multiple sclerosis by magnetic resonance imaging Index terms: Computed tomography Magnetic resonance sequence optimization Multiple sclerosis The evaluation of multiple sclerosis by magnetic resonance imaging Val M. Runge, M.D.*1 4, Ann C. Price, M.D.*

More information

Single-Dose Gadolinium with Magnetization Transfer versus Triple- Dose Gadolinium in the MR Detection of Multiple Sclerosis Lesions

Single-Dose Gadolinium with Magnetization Transfer versus Triple- Dose Gadolinium in the MR Detection of Multiple Sclerosis Lesions Single-Dose Gadolinium with Magnetization Transfer versus Triple- Dose Gadolinium in the MR Detection of Multiple Sclerosis Lesions J. H. T. M. van Waesberghe, J. A. Castelijns, W. Roser, N. Silver, T.

More information

A characteristic feature of acute haematomas in the brain on echo-planar diffusion-weighted imaging

A characteristic feature of acute haematomas in the brain on echo-planar diffusion-weighted imaging Neuroradiology (2002) 44: 907 911 DOI 10.1007/s00234-002-0860-5 DIAGNOSTIC NEURORADIOLOGY N. Morita M. Harada K. Yoneda H. Nishitani M. Uno A characteristic feature of acute haematomas in the brain on

More information

Biological Bases of Behavior. 3: Structure of the Nervous System

Biological Bases of Behavior. 3: Structure of the Nervous System Biological Bases of Behavior 3: Structure of the Nervous System Neuroanatomy Terms The neuraxis is an imaginary line drawn through the spinal cord up to the front of the brain Anatomical directions are

More information

Characterization of Multiple Sclerosis Plaques with T1-Weighted MR and Quantitative Magnetization Transfer

Characterization of Multiple Sclerosis Plaques with T1-Weighted MR and Quantitative Magnetization Transfer Characterization of Multiple Sclerosis Plaques with T1-Weighted MR and Quantitative Magnetization Transfer Laurie A. Loevner, Robert I. Grossman, Joseph C. McGowan, Karen N. Ramer, and Jeffrey A. Cohen

More information

MR Signal Intensity of the Optic Radiation

MR Signal Intensity of the Optic Radiation MR Signal Intensity of the Optic Radiation Mika Kitajima, Yukunori Korogi, Mutsumasa Takahashi, and Komyo Eto PURPOSE: To determine whether a hyperintense layer adjacent to the lateral ventricle on T2-

More information

NACC Vascular Consortium. NACC Vascular Consortium. NACC Vascular Consortium

NACC Vascular Consortium. NACC Vascular Consortium. NACC Vascular Consortium NACC Vascular Consortium NACC Vascular Consortium Participating centers: Oregon Health and Science University ADC Rush University ADC Mount Sinai School of Medicine ADC Boston University ADC In consultation

More information

Formation of lesions in multiple sclerosis (MS) comprises a

Formation of lesions in multiple sclerosis (MS) comprises a ORIGINAL RESEARCH D.S. Meier H.L. Weiner C.R.G. Guttmann MR Imaging Intensity Modeling of Damage and Repair In Multiple Sclerosis: Relationship of Short-Term Lesion Recovery to Progression and Disability

More information

For more information about how to cite these materials visit

For more information about how to cite these materials visit Author(s): Peter Hitchcock, PH.D., 2009 License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution Non-commercial Share Alike 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

More information

Neuroradiology Original Research

Neuroradiology Original Research MRI of Multiple Sclerosis Lesions Neuroradiology Original Research Ender Uysal 1 Sukru Mehmet Erturk 1 Hakan Yildirim 1 Feray Seleker 2 Muzaffer Basak 1 Uysal E, Erturk SM, Yildirim H, et al. Keywords:

More information

Case 7391 Intraventricular Lesion

Case 7391 Intraventricular Lesion Case 7391 Intraventricular Lesion Bastos Lima P1, Marques C1, Cabrita F2, Barbosa M2, Rebelo O3, Rio F1. 1Neuroradiology, 2Neurosurgery, 3Neuropathology, Coimbra University Hospitals, Portugal. University

More information

Diffusion-weighted magnetic resonance imaging (MRI) allows for tissue

Diffusion-weighted magnetic resonance imaging (MRI) allows for tissue MAGNETIC RESONANCE IMAGING / IMAGERIE PAR RÉSONANCE MAGNÉTIQUE Nonischemic causes of hyperintense signals on diffusion-weighted magnetic resonance images: a pictorial essay Jeffrey M. Hinman, MD; James

More information

Spinal cord MR imaging in Multiple Sclerosis

Spinal cord MR imaging in Multiple Sclerosis 43ème CONGRÈS ANNUEL de la Société Française de NeuroRadiologie 30 mars au 1 er avril 2016 Novotel Paris Tour Eiffel Spinal cord MR imaging in Multiple Sclerosis Àlex Rovira Unitat de Neurorradiología.

More information

Clinical Correlation of a New Practical MRI Method for Assessing Cervical Spinal Canal Compression

Clinical Correlation of a New Practical MRI Method for Assessing Cervical Spinal Canal Compression Musculoskeletal Imaging Original Research Park et al. MRI Assessment of Cervical Spinal Canal Compression Musculoskeletal Imaging Original Research Hee-Jin Park 1,2 Sam Soo Kim 2 Eun-Chul Chung 1 So-Yeon

More information

Computer-Assisted Quantitation of Enhancing Lesions in Multiple Sclerosis: Correlation with Clinical Classification

Computer-Assisted Quantitation of Enhancing Lesions in Multiple Sclerosis: Correlation with Clinical Classification Computer-Assisted Quantitation of Enhancing Lesions in Multiple Sclerosis: Correlation with Clinical Classification Yukio Miki, Robert I. Grossman, Jayaram K. Udupa, Supun Samarasekera, Mark A. van Buchem,

More information

Experimental Assessment of Infarct Lesion Growth in Mice using Time-Resolved T2* MR Image Sequences

Experimental Assessment of Infarct Lesion Growth in Mice using Time-Resolved T2* MR Image Sequences Experimental Assessment of Infarct Lesion Growth in Mice using Time-Resolved T2* MR Image Sequences Nils Daniel Forkert 1, Dennis Säring 1, Andrea Eisenbeis 2, Frank Leypoldt 3, Jens Fiehler 2, Heinz Handels

More information

mr brain volume analysis using brain assist

mr brain volume analysis using brain assist mr brain volume analysis using brain assist This Paper describes the tool named BrainAssist, which can be used for the study and analysis of brain abnormalities like Focal Cortical Dysplasia (FCD), Heterotopia

More information

Reactivation of herpesvirus under fingolimod: A case of severe herpes simplex encephalitis

Reactivation of herpesvirus under fingolimod: A case of severe herpes simplex encephalitis Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2015 Reactivation of herpesvirus under fingolimod: A case of severe herpes

More information

Neuroimaging and Other Biomarkers. MRI for Diagnosis, Prognosis and Treatment Decisions in MS

Neuroimaging and Other Biomarkers. MRI for Diagnosis, Prognosis and Treatment Decisions in MS Neuroimaging and Other Biomarkers MRI for Diagnosis, Prognosis and Treatment Decisions in MS Eric Klawiter, MD MSc Massachusetts General Hospital May 30, 2014 Disclosures and Funding Disclosures: Consulting

More information

Neuroradiological, clinical and genetic characterization of new forms of hereditary leukoencephalopathies

Neuroradiological, clinical and genetic characterization of new forms of hereditary leukoencephalopathies Neuroradiological, clinical and genetic characterization of new forms of hereditary leukoencephalopathies Principal Investigator: Dr. Donatella Tampieri, MD, FRCPC, Department of Neuroradiology, Montreal

More information

The New England Journal of Medicine

The New England Journal of Medicine The New England Journal of Medicine Copyright, 2, by the Massachusetts Medical Society VOLUME 343 N OVEMBER 16, 2 NUMBER 2 RELAPSES AND PROGRESSION OF DISABILITY IN MULTIPLE SCLEROSIS CHRISTIAN CONFAVREUX,

More information

MAGNIMS MRI in monitoring disease activity and progression

MAGNIMS MRI in monitoring disease activity and progression Teaching Course 3 MAGNIMS MRI in monitoring disease activity and progression Chairs: C. Enzinger (Graz, AT) N. De Stefano (Siena, IT) 7 Chances and challenges in monitoring disease activity and progression

More information

MRI Atlas of MS Lesions

MRI Atlas of MS Lesions MRI Atlas of MS Lesions M. A. Sahraian, E.-W. Radue MRI Atlas of MS Lesions With the collaboration of A. Gass, S. Haller, L. Kappos, J. Kesselring, J.-I. Kira, K. Weier 123 Prof. Dr. med. Mohammad Ali

More information

Progressive Multiple Sclerosis

Progressive Multiple Sclerosis Progressive Multiple Sclerosis Definitions, Clinical Course and Emerging Therapies M. Mateo Paz Soldán, MD, PhD Neurology Service, VA Salt Lake City HCS Assistant Professor of Neurology, University of

More information