Extending Mendelian genetics. Beyond Mendel s Laws of Inheritance. Incomplete dominance. Incomplete dominance. Co-dominance. Genetics of Blood type

Size: px
Start display at page:

Download "Extending Mendelian genetics. Beyond Mendel s Laws of Inheritance. Incomplete dominance. Incomplete dominance. Co-dominance. Genetics of Blood type"

Transcription

1 Beyond Mendel s Lws of Inheritnce Etending Mendelin genetics Mendel worked with simple system pes re geneticlly simple most trits re controlled by single gene ech gene hs only 2 lleles, 1 of which is completely dominnt to the other The reltionship between genotype & phenotype is rrely tht simple Incomplete dominnce Heterozygote shows n intermedite, blended phenotype emple: RR = red flowers RR rr = white flowers WW Rr = pink flowers RW mke 50% less color Incomplete dominnce P F 1 genertion (hybrids) red flowers pink flowers self-pollinte white flowers 25% 50% 25% white red pink 1:2:1 RR RW WW F 2 genertion Co-dominnce 2 lleles ffect the phenotype eqully & seprtely not blended phenotype humn BO blood groups 3 lleles I, I B, i I & I B lleles re co-dominnt glycoprotein ntigens on RBC I I B = both ntigens re produced i llele recessive to both Genetics of Blood type phenotype B genotype I I or I i I B I B or I B i ntigen on RBC type ntigens on surfce type B ntigens on surfce B I I B type B ntigens on surfce both type & O i i no ntigens on surfce ntibodies in blood nti-b ntibodies nti- ntibodies no ntibodies nti- & nti-b ntibodies dontion sttus universl recipient universl donor 1

2 Pleiotropy Most genes re pleiotropic one gene ffects more thn one phenotypic chrcter 1 gene ffects more thn 1 trit dwrfism (chondroplsi) gigntism (cromegly) cromegly: ndré the Gint Inheritnce pttern of chondroplsi dominnt inheritnce dwrf dwrf lethl B_C_ bbc _cc Epistsis One gene completely msks nother gene cot color in mice = 2 seprte genes C,c: pigment (C) or no pigment (c) B,b: more pigment (blck=b) or less (brown=b) cc = lbino, no mtter B llele 9:3:3:1 becomes 9:3:4 50% dwrf:50% norml or 1:1 67% dwrf:33% norml or 2:1 Epistsis in Lbrdor retrievers 2 genes: (E,e) & (B,b) pigment (E) or no pigment (e) pigment concentrtion: blck (B) to brown (b) eebb eeb E bb E B Polygenic inheritnce Some phenotypes determined by dditive effects of 2 or more genes on single chrcter phenotypes on continuum humn trits skin color height weight intelligence behviors 2

3 Skin color: lbinism However lbinism cn be inherited s single gene trit = lbino lbino fricns Johnny & Edgr Winter Se linked trits Genes re on se chromosomes s opposed to utosoml chromosomes first discovered by T.H. Morgn t Columbi U. Drosophil breeding good genetic subject prolific 2 week genertions 4 pirs of chromosomes =femle, =mle melnin = universl brown color enzyme tyrosine melnin lbinism Clsses of chromosomes utosoml chromosomes P Discovery of se linkge F 1 genertion (hybrids) red-eye femle red eye offspring white-eye mle se chromosomes F 2 genertion red-eye femle 50% red-eye mle 50% white eye mle Wht s up with Morgn s flies? RR rr Rr Rr r r R r R Rr Rr R RR Rr Doesn t work tht wy! R Rr Rr r Rr rr red eyes 3 red : 1 white Genetics of Se In humns & other mmmls, there re 2 se chromosomes: & 2 chromosomes develop s femle: gene redundncy, like utosoml chromosomes n & chromosome develop s mle: no redundncy 50% femle : 50% mle 3

4 femle / eggs Let s reconsider Morgn s flies R R R R r R r R r r R R red eyes R r R r R R R R r R R r red femles 50% red mles; 50% white mles Genes on se chromosomes chromosome few genes other thn SR se-determining region mster regultor for mleness turns on genes for production of mle hormones mny effects = pleiotropy! chromosome other genes/trits beyond se determintion muttions: hemophili Duchenne musculr dystrophy color-blindness Humn chromosome Se-linked usully mens -linked more thn 60 diseses trced to genes on chromosome Duchenne musculr dystrophy Becker musculr dystrophy Chronic grnulomtous disese Retinitis pigmentos-3 Norrie disese Retinitis pigmentos-2 Sideroblstic nemi rskog-scott syndrome PGK deficiency hemolytic nemi nhidrotic ectoderml dysplsi gmmglobulinemi Kennedy disese Pelizeus-Merzbcher disese lport syndrome Fbry disese Immunodeficiency, -linked, with hyper IgM Lymphoprolifertive syndrome lbinism-defness syndrome Frgile- syndrome Ichthyosis, -linked Plcentl steroid sulftse deficiency Kllmnn syndrome Chondrodysplsi punctt, -linked recessive Hypophosphtemi icrdi syndrome Hypomgnesemi, -linked Oculr lbinism Retinoschisis drenl hypoplsi Glycerol kinse deficiency Ornithine trnscrbmylse deficiency Incontinenti pigmenti Wiskott-ldrich syndrome Menkes syndrome ndrogen insensitivity Chrcot-Mrie-Tooth neuropthy Choroideremi Cleft plte, -linked Spstic prplegi, -linked, uncomplicted Defness with stpes fition PRPS-relted gout Lowe syndrome Lesch-Nyhn syndrome HPRT-relted gout Hunter syndrome Hemophili B Hemophili G6PD deficiency: fvism Drug-sensitive nemi Chronic hemolytic nemi Mnic-depressive illness, -linked Colorblindness, (severl forms) Dyskertosis congenit TKCR syndrome drenoleukodystrophy drenomyeloneuropthy Emery-Dreifuss musculr dystrophy Dibetes insipidus, renl Myotubulr myopthy, -linked Hemophili H h Hh H h HH H mle / sperm H H H H h crrier H h disese se-linked recessive H h H H h H -inctivtion Femle mmmls inherit 2 chromosomes one becomes inctivted during embryonic development condenses into compct object = Brr body which becomes Brr body is rndom tricolor cts cn only be femle ptchwork trit = mosic ptches of blck H h H h ptches of ornge 4

5 Mle pttern bldness Se influenced trit utosoml trit influenced by se hormones ge effect s well = onset fter 30 yers old dominnt in mles & recessive in femles B_ = bld in mles; bb = bld in femles Environmentl effects Phenotype is controlled by both environment & genes Humn skin color is influenced by both genetics & environmentl conditions Cot color in rctic fo influenced by het sensitive lleles Color of Hydrnge flowers is influenced by soil ph ny Questions?

AP Biology. Extending Mendelian genetics. Beyond Mendel s Laws of Inheritance. Incomplete dominance. Incomplete dominance.

AP Biology. Extending Mendelian genetics. Beyond Mendel s Laws of Inheritance. Incomplete dominance. Incomplete dominance. Beyond Mendel s Lws of Inheritnce Etending Mendelin genetics Mendel worked with simple system pes re geneticlly simple most trits re controlled by single gene ech gene hs only 2 lleles, 1 of which is completely

More information

AP Biology. Extending Mendelian genetics. Beyond Mendel s Laws of Inheritance. Incomplete dominance. Incomplete dominance.

AP Biology. Extending Mendelian genetics. Beyond Mendel s Laws of Inheritance. Incomplete dominance. Incomplete dominance. Beyond Mendel s Lws of Inheitnce Etending Mendelin genetics Mendel woked with simple system pes e geneticlly simple most tits e contolled by single gene ech gene hs only 2 lleles, 1 of which is completely

More information

Beyond Mendel s Laws of Inheritance

Beyond Mendel s Laws of Inheritance Beyond Mendel s Laws of Inheritance 2006-2007 Extending Mendelian genetics Mendel worked with a simple system peas are genetically simple most traits are controlled by a single gene each gene has only

More information

Patterns of Single Gene Inheritance

Patterns of Single Gene Inheritance M1 Humn Genetics Types of Genetic Disese Ptterns of Single Gene Inheritnce Virgini A. Pllnte, M.S. vpllnte@mcvh-vcu.edu Chromosoml Single gene (Mendelin) Multifctoril Tertogenic 1 2 3 4 A A A 1 2 homozygote

More information

MUTATIONS. Mutagens. Point mutations substitutions. Mutations. Sickle-cell disease. Point mutations insertions & deletions

MUTATIONS. Mutagens. Point mutations substitutions. Mutations. Sickle-cell disease. Point mutations insertions & deletions MUTTIONS Mutgens Mutgens re physicl or chemicl gents tht give rise to muttions. High energy rdition UV, X, gmm. se nlogues, intercltors, chemicl chnge inducers. ffect DN structure, se piring, etc. 2004

More information

Chapter 11. Introduction to Genetics

Chapter 11. Introduction to Genetics Chapter 11 Introduction to Genetics A Brief History In the past, people did not understand how traits were inherited, but there were many guesses based on things that could be observed. Two theories emerged.

More information

Welcome Back! 2/6/18. A. GGSS B. ggss C. ggss D. GgSs E. Ggss. 1. A species of mice can have gray or black fur

Welcome Back! 2/6/18. A. GGSS B. ggss C. ggss D. GgSs E. Ggss. 1. A species of mice can have gray or black fur Welcome Back! 2/6/18 1. A species of mice can have gray or black fur and long or short tails. A cross between blackfurred, long-tailed mice and gray-furred, shorttailed mice produce all black-furred, long-tailed

More information

Genes and Inheritance (11-12)

Genes and Inheritance (11-12) Genes and Inheritance (11-12) You are a unique combination of your two parents We all have two copies of each gene (one maternal and one paternal) Gametes produced via meiosis contain only one copy of

More information

Thebiotutor.com A2 Biology OCR Unit F215: Control, genomes and environment Module 1.2 Meiosis and variation Answers

Thebiotutor.com A2 Biology OCR Unit F215: Control, genomes and environment Module 1.2 Meiosis and variation Answers Theiotutor.com A2 Biology OCR Unit F215: Control, genomes nd environment Module 1.2 Meiosis nd vrition Answers Andy Todd 1 1. () (i) gene length of DNA; codes for (specific), polypeptide / protein / RNA;

More information

Biology. Slide 1 of 31. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 31. End Show. Copyright Pearson Prentice Hall Biology 1 of 31 11 3 Exploring Mendelian 11-3 Exploring Mendelian Genetics Genetics 2 of 31 Independent Assortment What is the principle of independent assortment? 3 of 31 Independent Assortment Independent

More information

Biology Unit 7 Genetics 7:1 Genetics

Biology Unit 7 Genetics 7:1 Genetics Biology Unit 7 Genetics 7:1 Genetics Gregor Mendel: Austrian monk Studied the inheritance of traits in pea plants His work was not recognized until the 20 th century Between 1856 and 1863, Mendel cultivated

More information

Example: Colour in snapdragons

Example: Colour in snapdragons Incomplete Dominance this occurs when the expression of one allele does not completely mask the expression of another. the result is that a heterozygous organism has a phenotype that is a blend of the

More information

Patterns of Inheritance

Patterns of Inheritance Patterns of Inheritance Mendel the monk studied inheritance keys to his success: he picked pea plants he focused on easily categorized traits he used true-breeding populations parents always produced offspring

More information

Incomplete Dominance

Incomplete Dominance Biology 3201 Genetics Unit #2: Mendelian Genetics #2 Mendelian Genetics (part 2) and Beyond Incomplete Dominance O Incomplete dominance: a situation where NEITHER of the two alleles for a trait are dominant

More information

Biology. Slide 1 of 31. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1 of 31. End Show. Copyright Pearson Prentice Hall Biology 1 of 31 11 3 Exploring Mendelian 11-3 Exploring Mendelian Genetics Genetics 2 of 31 Independent Assortment Independent Assortment To determine if the segregation of one pair of alleles affects

More information

Non-Mendelian Genetics

Non-Mendelian Genetics Non-Mendelian Genetics Complete dominance Law of segregation Law of independent assortment One gene one trait Mendelian Genetics Codominance Incomplete dominance Multiple alleles Pleiotropy Epistasis Polygenic

More information

Name Period. Keystone Vocabulary: genetics fertilization trait hybrid gene allele Principle of dominance segregation gamete probability

Name Period. Keystone Vocabulary: genetics fertilization trait hybrid gene allele Principle of dominance segregation gamete probability Name Period BIO B2 GENETICS (Chapter 11) You should be able to: 1. Describe and/or predict observed patterns of inheritance (dominant, recessive, co- dominant, incomplete dominance, sex- linked, polygenic

More information

11-1: Introduction to Genetics

11-1: Introduction to Genetics 11-1: Introduction to Genetics The Work of Gregor Mendel Copyright Pearson Prentice Hall Genetics Vocabulary Genetics The study of heredity. Heredity The passing of physical characteristics from parents

More information

TECHNIQUE. Parental generation (P) Stamens Carpel 3. RESULTS First filial. offspring (F 1 )

TECHNIQUE. Parental generation (P) Stamens Carpel 3. RESULTS First filial. offspring (F 1 ) TECHNIQUE 2 Parental generation (P) Stamens Carpel 3 4 RESULTS First filial generation offspring (F ) 5 2 EXPERIMENT P Generation (true-breeding parents) Purple flowers White flowers F Generation (hybrids)

More information

Mendel. The pea plant was ideal to work with and Mendel s results were so accurate because: 1) Many. Purple versus flowers, yellow versus seeds, etc.

Mendel. The pea plant was ideal to work with and Mendel s results were so accurate because: 1) Many. Purple versus flowers, yellow versus seeds, etc. Mendel A. Mendel: Before Mendel, people believed in the hypothesis. This is analogous to how blue and yellow paints blend to make. Mendel introduced the hypothesis. This deals with discrete units called

More information

Genetics- The field of biology that studies how characteristics are passed from one generation to another.

Genetics- The field of biology that studies how characteristics are passed from one generation to another. Genetics- The field of biology that studies how characteristics are passed from one generation to another. Heredity- The passage of traits from one generation to the next. Characteristics- a quality of

More information

GENETICS PREDICTING HEREDITY

GENETICS PREDICTING HEREDITY GENETICS PREDICTING HEREDITY INTRODUCTION TO GENETICS Genetics is the scientific study of heredity Heredity is essentially the study of how traits are passed from parents to their offspring. GREGOR MENDEL

More information

Beyond Mendel s Laws. Incomplete Dominance Co-dominance and Multiple Alleles

Beyond Mendel s Laws. Incomplete Dominance Co-dominance and Multiple Alleles Beyond Mendel s Laws Incomplete Dominance Co-dominance and Multiple Alleles Mendel s Studies He found that inherited traits were either dominant or recessive Dominant alleles expresses over the recessive

More information

Genes and Inheritance

Genes and Inheritance Genes and Inheritance Variation Causes of Variation Variation No two people are exactly the same The differences between people is called VARIATION. This variation comes from two sources: Genetic cause

More information

What creates variation in the offspring of sexually reproducing organisms?

What creates variation in the offspring of sexually reproducing organisms? What creates variation in the offspring of sexually reproducing organisms? 1. genetic recombination during fertilization 2. mitotic division in body cells 62% 3. crossing over in mitosis 4. homologous

More information

MENDELIAN GENETICS. Law of Dominance: Law of Segregation: GAMETE FORMATION Parents and Possible Gametes: Gregory Mendel:

MENDELIAN GENETICS. Law of Dominance: Law of Segregation: GAMETE FORMATION Parents and Possible Gametes: Gregory Mendel: MENDELIAN GENETICS Gregory Mendel: Heredity: Cross: X P1 Generation: F1 Generation: F2 Generation: Gametes: Dominant: Recessive: Genotype: Phenotype: Law of Dominance: Genes: Alleles: Law of Segregation:

More information

Class *GENETIC NOTES & WORKSHEETS

Class *GENETIC NOTES & WORKSHEETS Name Class *GENETIC NOTES & WORKSHEETS DAY 1: Mendelian Genetics Vocabulary A. Genetics- Study of B. Heredity- The passing on of characteristics (traits) from to C. Trait A particular that can vary from

More information

Science Olympiad Heredity

Science Olympiad Heredity Science Olympiad Heredity Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. A Punnett square shows you all the ways in which can combine. a.

More information

Genetics. *** Reading Packet

Genetics. *** Reading Packet Genetics *** Reading Packet 5.4 Mendel and His Peas Learning Objectives Describe Mendel's first genetics experiments. Introduction Why do you look like your family? For a long time people understood that

More information

.the science that studies how genes are transmitted from one generation to the next.

.the science that studies how genes are transmitted from one generation to the next. Genetics .the science that studies how genes are transmitted from one generation to the next. The chromosomes are contained in the nucleus of the cell. Genes and Chromosomes Chromosomes are made of: Gene:

More information

Introduction to Genetics and Heredity

Introduction to Genetics and Heredity Introduction to Genetics and Heredity Although these dogs have similar characteristics they are each unique! I. Early Ideas About Heredity A. The Theory of Blending Inheritance Each parent contributes

More information

Semester 2- Unit 2: Inheritance

Semester 2- Unit 2: Inheritance Semester 2- Unit 2: Inheritance heredity -characteristics passed from parent to offspring genetics -the scientific study of heredity trait - a specific characteristic of an individual genes -factors passed

More information

NOTES: Exceptions to Mendelian Genetics!

NOTES: Exceptions to Mendelian Genetics! NOTES: 11.3 Exceptions to Mendelian Genetics! Beyond Dominant and Recessive Alleles Some alleles are neither dominant nor recessive, and many traits are controlled by multiple alleles OR multiple genes.

More information

Name Class Date. Review Guide. Genetics. The fundamental principles of genetics were first discovered by. What type of plant did he breed?.

Name Class Date. Review Guide. Genetics. The fundamental principles of genetics were first discovered by. What type of plant did he breed?. Name Class Date Review Guide Genetics The fundamental principles of genetics were first discovered by. What type of plant did he breed?. True-breeding parental plants are called the generation. Their hybrid

More information

The laws of Heredity. Allele: is the copy (or a version) of the gene that control the same characteristics.

The laws of Heredity. Allele: is the copy (or a version) of the gene that control the same characteristics. The laws of Heredity 1. Definition: Heredity: The passing of traits from parents to their offspring by means of the genes from the parents. Gene: Part or portion of a chromosome that carries genetic information

More information

UNIT 1-History of life on earth! Big picture biodiversity-major lineages, Prokaryotes, Eukaryotes-Evolution of Meiosis

UNIT 1-History of life on earth! Big picture biodiversity-major lineages, Prokaryotes, Eukaryotes-Evolution of Meiosis Where are we in this course??? UNIT 1-History of life on earth! Big picture biodiversity-major lineages, Prokaryotes, Eukaryotes-Evolution of Meiosis Today we will start with UNIT 2 A. Mendel and the Gene

More information

Introduction to Genetics

Introduction to Genetics Introduction to Genetics Remember DNA RNA Protein Traits DNA contains the code for proteins (protein synthesis remember?) Proteins determine our traits Gregor Mendel 1822-1884 Father of Genetics Studied

More information

You are who you are because of a combination of HEREDITY and ENVIRONMENT. ENVIRONMENT: all outside forces that act on an organism.

You are who you are because of a combination of HEREDITY and ENVIRONMENT. ENVIRONMENT: all outside forces that act on an organism. Unit 6 Genetics 6.1 Genetics You are who you are because of a combination of HEREDITY and ENVIRONMENT. ENVIRONMENT: all outside forces that act on an organism. HEREDITY: traits that are passed from parents

More information

Name Lab 5-B. Phenotype refers to the expression (what you can see) of a person s genotype.

Name Lab 5-B. Phenotype refers to the expression (what you can see) of a person s genotype. Name Lab 5-B Lab Objectives: Define the following terms: phenotype, genotype, punnet square, autosomal, dominant and recessive, sex linked, Investigate some common phenotypes and discuss the potential

More information

Pedigrees: Genetic Family History

Pedigrees: Genetic Family History Pedigrees: Genetic Family History - Women are represented with a. - Men are represented with a. - Affected individuals are (individuals who express the trait). C B A D If this is you who are The other

More information

Labrador Coat Color Similar to coat color in mice: Black lab is BxEx Yellow lab is xxee Chocolate lab is bbex Probable pathway:

Labrador Coat Color Similar to coat color in mice: Black lab is BxEx Yellow lab is xxee Chocolate lab is bbex Probable pathway: Honors Genetics 1. Gregor Mendel (1822-1884) German monk at the Augustine Abbey of St. Thomas in Brno (today in the Czech Republic). He was a gardener, teacher and priest. Mendel conducted experiments

More information

Patterns of Inheritance. Game Plan. Gregor Mendel ( ) Overview of patterns of inheritance Determine how some genetic disorders are inherited

Patterns of Inheritance. Game Plan. Gregor Mendel ( ) Overview of patterns of inheritance Determine how some genetic disorders are inherited Patterns of Inheritance Game Plan Overview of patterns of inheritance Determine how some genetic disorders are inherited Gregor Mendel (8-88) Austrian monk responsible for developing the modern idea of

More information

Mendelian Genetics. 7.3 Gene Linkage and Mapping Genes can be mapped to specific locations on chromosomes.

Mendelian Genetics. 7.3 Gene Linkage and Mapping Genes can be mapped to specific locations on chromosomes. 7 Extending CHAPTER Mendelian Genetics GETTING READY TO LEARN Preview Key Concepts 7.1 Chromosomes and Phenotype The chromosomes on which genes are located can affect the expression of traits. 7.2 Complex

More information

Genetics After Mendel

Genetics After Mendel Genetics After Mendel Genetics After Mendel Single factor inheritance Mendel found traits as dominant or recessive Some instances where the former rule does not apply: Incomplete Dominance Co-dominance

More information

Test Booklet. Subject: SC, Grade: HS Genetics Assessment. Student name:

Test Booklet. Subject: SC, Grade: HS Genetics Assessment. Student name: Test Booklet Subject: SC, Grade: HS Genetics Assessment Student name: Author: Megan Kitchens School: SHAW HIGH SCHOOL Printed: Monday January 30, 2017 1 In fruit flies, the gray body color (G) is dominant

More information

Mendelian Genetics. Activity. Part I: Introduction. Instructions

Mendelian Genetics. Activity. Part I: Introduction. Instructions Activity Part I: Introduction Some of your traits are inherited and cannot be changed, while others can be influenced by the environment around you. There has been ongoing research in the causes of cancer.

More information

COMPLETE DOMINANCE. Autosomal Dominant Inheritance Autosomal Recessive Inheritance

COMPLETE DOMINANCE. Autosomal Dominant Inheritance Autosomal Recessive Inheritance COMPLETE DOMINANCE In complete dominance, the effect of one allele completely masks the effect of the other. The allele that masks the other is called dominant, and the allele that is masked is called

More information

Mendelian Genetics. Biology 3201 Unit 3

Mendelian Genetics. Biology 3201 Unit 3 Mendelian Genetics Biology 3201 Unit 3 Recall: Terms Genetics is a branch of biology dealing with the principles of variation and inheritance in animals and plants. Heredity the passing of traits from

More information

P = parents F = filial

P = parents F = filial Genetics Mendel s work Bred pea plants Cross-pollinated true breeding parents (P) then raised the seed & observed traits (F 1 ) Allowed offspring to cross-pollinate & observed next generation (F 2 ) P

More information

Gregor Mendel. What is Genetics? the study of heredity

Gregor Mendel. What is Genetics? the study of heredity Gregor Mendel What is Genetics? the study of heredity Gregor Mendel s Peas Pollen: plant s sperm Egg Cells: plants reproductive cells Fertilization: joining of pollen + egg cells develops into embryo in

More information

Patterns of Heredity Genetics

Patterns of Heredity Genetics Patterns of Heredity Genetics DO NOW Hand in outlines (my desk) Pick up tests from back table and review them. We will be going over the zipgrade and the short answer together. Save your questions for

More information

Unit 7 Section 2 and 3

Unit 7 Section 2 and 3 Unit 7 Section 2 and 3 Evidence 12: Do you think food preferences are passed down from Parents to children, or does the environment play a role? Explain your answer. One of the most important outcomes

More information

Ch 10 Genetics Mendelian and Post-Medelian Teacher Version.notebook. October 20, * Trait- a character/gene. self-pollination or crosspollination

Ch 10 Genetics Mendelian and Post-Medelian Teacher Version.notebook. October 20, * Trait- a character/gene. self-pollination or crosspollination * Trait- a character/gene shape, * Monk in Austria at age 21 * At 30, went to University of Vienna to study science and math * After graduating he returned to the monastery and became a high school teacher

More information

Human Genetics (Learning Objectives)

Human Genetics (Learning Objectives) Human Genetics (Learning Objectives) Recognize Mendel s contribution to the field of genetics. Review what you know about a karyotype: autosomes and sex chromosomes. Understand and define the terms: characteristic,

More information

Unit 5: Genetics Notes

Unit 5: Genetics Notes Unit 5: Genetics Notes https://goo.gl/fgtzef Name: Period: Test Date: Table of Contents Title of Page Page Number Date Warm-ups 3-4 Mendelian Genetics Notes 5-6 Mendelian Genetics Lets Practice 7 Monohybrid

More information

Genetics. The study of heredity. Father of Genetics: Gregor Mendel (mid 1800 s) Developed set of laws that explain how heredity works

Genetics. The study of heredity. Father of Genetics: Gregor Mendel (mid 1800 s) Developed set of laws that explain how heredity works Genetics The study of heredity Father of Genetics: Gregor Mendel (mid 1800 s) Developed set of laws that explain how heredity works Father of Genetics: Gregor Mendel original pea plant (input) offspring

More information

What You ll Learn. Genetics Since Mendel. ! Explain how traits are inherited by incomplete dominance

What You ll Learn. Genetics Since Mendel. ! Explain how traits are inherited by incomplete dominance Genetics Since Mendel GLE 0707.4.4 Predict the probable appearance of offspring based on the genetic characteristics of the parents. What You ll Learn! Explain how traits are inherited by incomplete dominance!

More information

Genetics WS Part 7 Name Part 7: Incomplete Dominance or Codominance

Genetics WS Part 7 Name Part 7: Incomplete Dominance or Codominance Genetics WS Part 7 Name Part 7: Incomplete Dominance or Codominance In Four o clock flowers the alleles for flower color are both equal therefore neither dominates over the other. We call this condition

More information

Patterns of Heredity - Genetics - Sections: 10.2, 11.1, 11.2, & 11.3

Patterns of Heredity - Genetics - Sections: 10.2, 11.1, 11.2, & 11.3 Patterns of Heredity - Genetics - Sections: 10.2, 11.1, 11.2, & 11.3 Genetics = the study of heredity by which traits are passed from parents to offspring Page. 227 Heredity = The passing of genes/traits

More information

Gregor Mendel Father of Genetics

Gregor Mendel Father of Genetics Genetics and Mendel Gregor Mendel Father of Genetics Gregor Mendel First person to trace characteristics of living things Augustinian Monk Lived and worked in an Austrian monastery in the mid-1800s Parents

More information

HEREDITY. def: the passing of traits from parent to offspring.

HEREDITY. def: the passing of traits from parent to offspring. Genetics & Heredity HEREDITY def: the passing of traits from parent to offspring. GENETICS def: The study of heredity. *The Father of Genetics* (1822-1884) Occupation: Monk Subjects Studied: Botany (*study

More information

Genetics & Heredity 11/16/2017

Genetics & Heredity 11/16/2017 Genetics & Heredity Biology I Turner College & Career High School 2017 Fertilization is the fusion of an egg and a sperm. Purebred (True breeding plants) are plants that were allowed to selfpollinate and

More information

Semester 2- Unit 2: Inheritance

Semester 2- Unit 2: Inheritance Semester 2- Unit 2: Inheritance heredity -characteristics passed from parent to offspring genetics -the scientific study of heredity trait - a specific characteristic of an individual genes -factors passed

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 6 Patterns of Inheritance

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 6 Patterns of Inheritance Chapter 6 Patterns of Inheritance Genetics Explains and Predicts Inheritance Patterns Genetics can explain how these poodles look different. Section 10.1 Genetics Explains and Predicts Inheritance Patterns

More information

Mendel and Heredity. Chapter 12

Mendel and Heredity. Chapter 12 Mendel and Heredity Chapter 12 12.1 Objectives: 1.) summarize the importance of Mendel s experiments 2.)Differentiate between genes and alleles. 3.) Explain that alleles determine what physical traits

More information

HEREDITY = The passing of traits from parents to offspring. Transmitted by means of information stored in molecules of DNA.

HEREDITY = The passing of traits from parents to offspring. Transmitted by means of information stored in molecules of DNA. HEREDITY = The passing of traits from parents to offspring. Transmitted by means of information stored in molecules of DNA. GENEITCS =Scientific study of heredity Based on knowledge that traits are transmitted

More information

NARRATION FOR UNDERSTANDING INHERITANCE: MENDEL, METHOD, AND MAPPING

NARRATION FOR UNDERSTANDING INHERITANCE: MENDEL, METHOD, AND MAPPING NARRATION FOR UNDERSTANDING INHERITANCE: MENDEL, METHOD, AND MAPPING Each of us, unless we re an identical twin, is characterized by a unique combination of traits that makes us different from all other

More information

Name Class Date *PACKET NOTES & WORKSHEETS LAB GRADE

Name Class Date *PACKET NOTES & WORKSHEETS LAB GRADE Name Class Date *PACKET NOTES & WORKSHEETS LAB GRADE MEIOSIS is specialized cell division resulting in cells with the genetic material of the parents Sex cells called have exactly set of chromosomes, this

More information

Genetics: CH9 Patterns of Inheritance

Genetics: CH9 Patterns of Inheritance Genetics: CH9 Patterns of Inheritance o o Lecture note Directions Highlight Key information (10-30% of most slides) My Thoughts: Questions, comments, additional information, connections to prior knowledge,

More information

DNA Review??? gene???

DNA Review??? gene??? DNA Review??? gene??? Human Chromosomes Humans have 23 pairs of chromosomes; 46 all together Females have 23 matched pairs; males have 22 matched and one unmatched pair Gregor Mendel Born in 1822, Austria

More information

12 MENDEL, GENES, AND INHERITANCE

12 MENDEL, GENES, AND INHERITANCE 12 MENDEL, GENES, AND INHERITANCE Chapter Outline 12.1 THE BEGINNINGS OF GENETICS: MENDEL S GARDEN PEAS Mendel chose true-breeding garden peas for his experiments Mendel first worked with single-character

More information

9/25/ Some traits are controlled by a single gene. Selective Breeding: Observing Heredity

9/25/ Some traits are controlled by a single gene. Selective Breeding: Observing Heredity Chapter 7 Learning Outcomes Explain the concept of a single-gene trait Describe Mendel s contributions to the field of genetics Be able to define the terms gene, allele, dominant, recessive, homozygous,

More information

Lecture 13: May 24, 2004

Lecture 13: May 24, 2004 Lecture 13: May 24, 2004 CH14: Mendel and the gene idea *particulate inheritance parents pass on discrete heritable units *gene- unit of inheritance which occupies a specific chromosomal location (locus)

More information

Genetics and Heredity Notes

Genetics and Heredity Notes Genetics and Heredity Notes I. Introduction A. It was known for 1000s of years that traits were inherited but scientists were unsure about the laws that governed this inheritance. B. Gregor Mendel (1822-1884)

More information

I. Classical Genetics. 1. What makes these parakeets so varied in color?

I. Classical Genetics. 1. What makes these parakeets so varied in color? 1. Classical Genetics a. Mendel i. Mendel s Laws ii. Advanced Genetic Principles b. Modern Genetics i. Scientists ii. Nucleic Acids DNA/RNA Function iii.replication iv.protein Synthesis v. Mutations (gene

More information

Genetics and Heredity

Genetics and Heredity Genetics and Heredity History Genetics is the study of genes. Inheritance is how traits, or characteristics, are passed on from generation to generation. Chromosomes are made up of genes, which are made

More information

An Augustinian Monk working in Austria (today part of the Czech Republic). Had training in chemistry, physics & mathematics.

An Augustinian Monk working in Austria (today part of the Czech Republic). Had training in chemistry, physics & mathematics. Mendelian genetics At the beginning of the last section, we mentioned that while you may resemble your parents, you're not an exact copy. Knowing what we do about mitosis and meiosis, we're now ready to

More information

Name Class Date. KEY CONCEPT The chromosomes on which genes are located can affect the expression of traits.

Name Class Date. KEY CONCEPT The chromosomes on which genes are located can affect the expression of traits. Section 1: Chromosomes and Phenotype KEY CONCEPT The chromosomes on which genes are located can affect the expression of traits. VOCABULARY carrier sex-linked gene X chromosome inactivation MAIN IDEA:

More information

GENETICS NOTES. Chapters 12, 13, 14, 15 16

GENETICS NOTES. Chapters 12, 13, 14, 15 16 GENETICS NOTES Chapters 12, 13, 14, 15 16 DNA contains the genetic code for the production of PROTEINS. A gene is a segment of DNA, which consists of enough bases to code for many different proteins. The

More information

Human Inheritance Lesson 4

Human Inheritance Lesson 4 Human Inheritance Lesson 4 May 10 6:55 PM What are some patterns of human inheritance? What are the functions of the sex chromosomes? May 10 6:56 PM 1 I. What are some patterns of human inheritance A.

More information

Honors Biology Review Sheet to Chapter 9 Test

Honors Biology Review Sheet to Chapter 9 Test Honors Biology Review Sheet to Chapter 9 Test Name Per 1. Label the following flower: sepal, petal, anther, filament, style, ovary, stigma Draw in ovules and label. Color the female structure red and the

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:0.08/nture0987 SUPPLEMENTARY FIGURE Structure of rbbit Xist gene. Exons re shown in boxes with romn numbers, introns in thin lines. Arrows indicte the locliztion of primers used for mplifiction. WWW.NATURE.COM/NATURE

More information

Meiotic Mistakes and Abnormalities Learning Outcomes

Meiotic Mistakes and Abnormalities Learning Outcomes Meiotic Mistakes and Abnormalities Learning Outcomes 5.6 Explain how nondisjunction can result in whole chromosomal abnormalities. (Module 5.10) 5.7 Describe the inheritance patterns for strict dominant

More information

Mendel and Heredity. Chapter 12

Mendel and Heredity. Chapter 12 Mendel and Heredity Chapter 12 Objectives: 1.) Differentiate between genotype and phenotype 2.)Differentiate between genes and alleles. 3.) Differentiate between dominant and recessive alleles. 4.) Explain

More information

Chapter 6 Heredity The Big Idea Heredity is the passing of the instructions for traits from one generation to the next.

Chapter 6 Heredity The Big Idea Heredity is the passing of the instructions for traits from one generation to the next. Chapter 6 Heredity The Big Idea Heredity is the passing of the instructions for traits from one generation to the next. Section 1 Mendel and His Peas Key Concept The work of Gregor Mendel explains the

More information

Introduction to Genetics

Introduction to Genetics Introduction to Genetics Remember DNA RNA Protein Traits DNA contains the code for proteins (protein synthesis remember?) Proteins determine our traits Remember Gregor Mendel 1822-1884 Father of Genetics

More information

Chapter 11 Introduction to Genetics

Chapter 11 Introduction to Genetics Chapter 11 Introduction to Genetics 11.1 Gregor Mendel Genetics is the scientific study of heredity How traits are passed from one generation to the next Mendel Austrian monk (1822) Used Pea Plants (crossed

More information

Patterns of Inheritance

Patterns of Inheritance 1 Patterns of Inheritance Bio 103 Lecture Dr. Largen 2 Topics Mendel s Principles Variations on Mendel s Principles Chromosomal Basis of Inheritance Sex Chromosomes and Sex-Linked Genes 3 Experimental

More information

Genetics Practice Questions

Genetics Practice Questions Name: ate: 1. If Jessica has light eyes (bb) and both of her parents have dark eyes (b) which statement is true?. Jessica inherited both genes from her father.. Jessica inherited both genes from her mother..

More information

3. Mating two organisms produces a 3:1 ratio of the phenotype in progeny. The parental genotypes are

3. Mating two organisms produces a 3:1 ratio of the phenotype in progeny. The parental genotypes are 1. In dihybrid crosses, the ratio 9:3:3:1 indicates A. codominance. B. independent assortment. C. intermediate dominance. D. three alleles for each trait. 2. Mating of two organisms produces a 1:1 ratio

More information

General Biology 1004 Chapter 9 Lecture Handout, Summer 2005 Dr. Frisby

General Biology 1004 Chapter 9 Lecture Handout, Summer 2005 Dr. Frisby Slide 1 CHAPTER 9 Patterns of Inheritance PowerPoint Lecture Slides for Essential Biology, Second Edition & Essential Biology with Physiology Presentation prepared by Chris C. Romero Neil Campbell, Jane

More information

Genetics and heredity. For a long time, general ideas of inheritance were known + =

Genetics and heredity. For a long time, general ideas of inheritance were known + = Mendelian Genetics Genetics and heredity For a long time, general ideas of inheritance were known + = + = What was really lacking was a quantitative understanding of how particular traits were passed down

More information

REVIEW SHEET: Units 11 Meiosis, Fertilization, & Genetics

REVIEW SHEET: Units 11 Meiosis, Fertilization, & Genetics REVIEW SHEET: Units 11 Meiosis, Fertilization, & Genetics ACP BIOLOGY Textbook Reading: Meiosis & Fertilization (Ch. 11.4, 14.1-2) and Classical Genetics (Ch. 11.1-3) Handouts:! NOTES Meiosis & Fertilization!

More information

Understanding Inheritance. 3. All inherited traits follow Mendel s patterns of inheritance.

Understanding Inheritance. 3. All inherited traits follow Mendel s patterns of inheritance. Genetics Understanding Inheritance Key Concepts What determines the expression of traits? How can inheritance be modeled? How do some patterns of inheritance differ from Mendel s model? What do you think?

More information

Date Pages Page # 3. Record the color of your beads. Are they homozygous or heterozygous?

Date Pages Page # 3. Record the color of your beads. Are they homozygous or heterozygous? 1 Patterns of Inheritance Process and Procedures Date Pages 645-650 Page # 3. Record the color of your beads. Are they homozygous or heterozygous? 6. Record the colors of the two beads. Are they homozygous

More information

Unit 11 Test: Genetics Date: /Period:

Unit 11 Test: Genetics Date: /Period: Name: 1. Compared to human cells resulting from mitotic cell division, human cells resulting from meiotic cell division would have A) twice as many chromosomes B) the same number of chromosomes C) one-half

More information

UNIT IV. Chapter 14 The Human Genome

UNIT IV. Chapter 14 The Human Genome UNIT IV Chapter 14 The Human Genome UNIT 2: GENETICS Chapter 7: Extending Medelian Genetics I. Chromosomes and Phenotype (7.1) A. Two copies of each autosomal gene affect phenotype 1. Most human traits

More information

Unit 6.2: Mendelian Inheritance

Unit 6.2: Mendelian Inheritance Unit 6.2: Mendelian Inheritance Lesson Objectives Define probability. Explain how probability is related to inheritance. Describe how to use a Punnett square. Explain how Mendel interpreted the results

More information

Gregor Mendel father of heredity

Gregor Mendel father of heredity MENDEL AND MEIOSIS Gregor Mendel father of heredity MENDEL S LAWS OF HEREDITY Heredity branch of genetics dealing with the passing on of traits from parents to offspring Pea Plants Easy maintenance & large

More information

UNIT 2: GENETICS Chapter 7: Extending Medelian Genetics

UNIT 2: GENETICS Chapter 7: Extending Medelian Genetics CORNELL NOTES Directions: You must create a minimum of 5 questions in this column per page (average). Use these to study your notes and prepare for tests and quizzes. Notes will be stamped after each assigned

More information