MOLECULAR MECHANISMS OF MAMMALIAN DNA REPAIR AND THE DNA DAMAGE CHECKPOINTS

Size: px
Start display at page:

Download "MOLECULAR MECHANISMS OF MAMMALIAN DNA REPAIR AND THE DNA DAMAGE CHECKPOINTS"

Transcription

1 Annu. Rev. Biochem :39 85 doi: /annurev.biochem Copyright 2004 by Annual Reviews. All rights reserved First published online as a Review in Advance on January 20, 2004 MOLECULAR MECHANISMS OF MAMMALIAN DNA REPAIR AND THE DNA DAMAGE CHECKPOINTS Aziz Sancar, 1 Laura A. Lindsey-Boltz, 1 Keziban Ünsal-Kaçmaz, 1 and Stuart Linn 2 1 Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina ; aziz_sancar@med.unc.edu, llindsey@med.unc.edu, kezi_unsal@med.unc.edu 2 Division of Biochemistry and Molecular Biology, University of California, Berkeley, California ; slinn@socrates.berkeley.edu Key Words damage recognition, excision repair, PIKK family, Rad17-RFC/ complex, signal transduction f Abstract DNA damage is a relatively common event in the life of a cell and may lead to mutation, cancer, and cellular or organismic death. Damage to DNA induces several cellular responses that enable the cell either to eliminate or cope with the damage or to activate a programmed cell death process, presumably to eliminate cells with potentially catastrophic mutations. These DNA damage response reactions include: (a) removal of DNA damage and restoration of the continuity of the DNA duplex; (b) activation of a DNA damage checkpoint, which arrests cell cycle progression so as to allow for repair and prevention of the transmission of damaged or incompletely replicated chromosomes; (c) transcriptional response, which causes changes in the transcription profile that may be beneficial to the cell; and (d) apoptosis, which eliminates heavily damaged or seriously deregulated cells. DNA repair mechanisms include direct repair, base excision repair, nucleotide excision repair, double-strand break repair, and cross-link repair. The DNA damage checkpoints employ damage sensor proteins, such as ATM, ATR, the Rad17-RFC complex, and the complex, to detect DNA damage and to initiate signal transduction cascades that employ Chk1 and Chk2 Ser/Thr kinases and Cdc25 phosphatases. The signal transducers activate p53 and inactivate cyclin-dependent kinases to inhibit cell cycle progression from G1 to S (the G1/S checkpoint), DNA replication (the intra-s checkpoint), or G2 to mitosis (the G2/M checkpoint). In this review the molecular mechanisms of DNA repair and the DNA damage checkpoints in mammalian cells are analyzed /04/ $

2 40 SANCAR et al. CONTENTS INTRODUCTION SUBSTRATES AND SIGNALS FOR DNA REPAIR AND DNA DAMAGE CHECKPOINTS Replication, Recombination, and Repair Intermediates DNA Base Damages DNA Backbone Damages Cross-links DNA DAMAGE RECOGNITION Direct Damage Recognition Multistep Damage Recognition Recognition by Proxy Recognition of DNA Repair Intermediates DNA REPAIR MECHANISMS Direct Repair Base Excision Repair Nucleotide Excision Repair Double-Strand Break Repair and Recombinational Repair Cross-link Repair DNA DAMAGE CHECKPOINTS What Are the DNA Damage Checkpoints? Molecular Components of the DNA Damage Checkpoints The G1/S Checkpoint The Intra-S-Phase Checkpoint The G2/M Checkpoint The Replication Checkpoint (S/M Checkpoint) CONCLUSIONS INTRODUCTION The primary structure of DNA is constantly subjected to alteration by cellular metabolites and exogenous DNA-damaging agents. These alterations may cause simple base changes or they may cause more complex changes including deletions, fusions, translocations, or aneuploidy. Such alterations may ultimately lead to cellular death of unicellular organisms or degenerative changes and aging of multicellular organisms. DNA damages can perturb the cellular steady-state quasi-equilibrium and activate or amplify certain biochemical pathways that regulate cell growth and division and pathways that help to coordinate DNA replication with damage removal. The four types of pathways elicited by DNA damage known, or presumed, to ameliorate harmful damage effects are DNA repair, DNA damage checkpoints, transcriptional response, and apoptosis (1) (Figure 1). Defects in any of these pathways may cause genomic instability (2). This review focuses upon the mechanisms of DNA repair and the DNA damage checkpoints.

3 DNA REPAIR AND THE DNA DAMAGE CHECKPOINTS 41 Figure 1 DNA damage response reactions in mammalian cells. The four responses (DNA repair, transcriptional response, DNA damage checkpoints, and apoptosis) may function independently, but frequently a protein primarily involved in one response may participate in other responses. SUBSTRATES AND SIGNALS FOR DNA REPAIR AND DNA DAMAGE CHECKPOINTS Proteins that bind to a specific sequence or structure in DNA, in contrast to enzymes with simple substrates, must recognize their target in the vast excess of related structures. Damage sensors not only bind undamaged DNA in search of damage, but they also contact undamaged DNA during specific binding. Therefore, they generally have nonnegligible affinity for undamaged DNA. Since the amount of undamaged DNA vastly exceeds that of damaged DNA, DNA damage sensors spend far more time associated with undamaged DNA than with damaged DNA. Yet, these sensors carry out their specific functions in the presence of high concentrations of nonspecific DNA, because damage recognition is usually a multistep reaction. There is thus a low probability that all of the steps will occur subsequent to the initial contact with undamaged DNA. However, even with multistep recognition, the discrimination between undamaged and damaged DNA is not absolute, so that neither DNA repair nor the DNA damage checkpoints should be envisioned as operated by molecular switches. Rather, both processes are operative at all times, but the magnitudes of the repair or checkpoint reactions are amplified by the presence of DNA damage. DNA damages include covalent changes in DNA structure and noncovalent anomalous structures, including base-pair mismatches, loops, and bubbles arising from a string of mismatches. The first are processed by DNA repair and recombination pathways, whereas the latter are processed by mismatch repair pathways (3, 4). This review focuses mostly on cellular responses to covalent

4 62 SANCAR et al. TABLE 2 DNA damage checkpoint proteins Protein function Mammals S. pombe S. cerevisiae Sensors RFC-like Rad17 Rad17 Rad24 PCNA-like Rad9 Rad9 Ddc1 Rad1 Rad1 Rad17 Hus1 Hus1 Mec3 PI3-Kinases (PIKK) ATM Tel1 Tel1 ATR Rad3 Mec1 PIKK binding partner ATRIP Rad26 Ddc2/Lcd1/Pie1 Mediators MDC1 53BP1 TopBP1 Cut5 Dpb11 Claspin Mrc1 Mrc1 BRCA1 Crb2/Rph9 Rad9 Transducers Kinase Chk1 Chk1 Chk1 Chk2 Cds1 Rad53 Molecular Components of the DNA Damage Checkpoints The DNA damage checkpoint, like other signal transduction pathways, conceptually has three components: sensors, signal transducers, and effectors (Table 2). Extensive genetic analysis in yeast and more recently in human cells, combined with rather limited biochemical studies, have helped to identify proteins involved in damage sensing, signal transduction, and effector steps of the DNA damage checkpoints (Figure 8). However, there is not an absolute demarcation between the various components of the checkpoint. For example, the damage sensor, ATM, also functions as a signal transducer. Moreover, a fourth class of checkpoint proteins, called mediators, has been identified. This class includes BRCA1, Claspin, 53BP1, and MDC1 and is conceptually placed between sensors and signal transducers. However, as in the case of ATM functioning as both a sensor and a transducer, these mediator proteins also appear to participate in more than one step of the checkpoint response. Although the G1/S, intra-s, and the G2/M checkpoints are distinct, the damage sensor molecules that activate the various checkpoints appear to either be shared by all three pathways or to play a primary sensor role in one pathway and a back-up role in the others. Similarly, the signal-transducing molecules, which are protein kinases and phosphatases, are shared by the different checkpoints to

5 DNA REPAIR AND THE DNA DAMAGE CHECKPOINTS 63 Figure 8 Components of the DNA damage checkpoints in human cells. The damage is detected by sensors that, with the aid of mediators, transduce the signal to transducers. The transducers, in turn, activate or inactivate other proteins (effectors) that directly participate in inhibiting the G1/S transition, S-phase progression, or the G2/M transition. varying degrees (1, 132). The effector components (proteins that inhibit phase transition) of the checkpoints are, naturally, what gives the checkpoints their unique identities. However, various sensors, mediators, and signal transducers

6 68 SANCAR et al. The G1/S Checkpoint The G1/S checkpoint prevents cells from entering the S phase in the presence of DNA damage by inhibiting the initiation of replication (Figure 9). Under suitable conditions, cells in the G1 phase of the cell cycle become committed to enter the S phase at a stage called the restriction point in mammalian cells and start in budding yeast (205). The restriction point precedes the actual start of DNA synthesis by about 2 h in human cells. If there is DNA damage, however, entry into S phase is prevented regardless of whether the cells have passed the restriction point. Current evidence suggests the following sequence of events for the G1/S checkpoint in human cells. If the DNA damage is double-strand breaks caused by ionizing radiation or radiomimetic agents, ATM is activated and phosphorylates many target molecules, notably p53 and Chk2. These phosphorylations result in the activation of two signal transduction pathways, one to initiate and one to maintain the G1/S arrest (204). The reaction that initiates the G1/S arrest is phosphorylation of Chk2, which in turn phosphorylates Cdc25A phosphatase, causing its inactivation by nuclear exclusion and ubiquitin-mediated proteolytic degradation (206, 207). Lack of active Cdc25A results in the accumulation of the phosphorylated (inactive) form of Cdk2, which is incapable of phosphorylating Cdc45 to initiate replication at the sites of preformed ORC-ORI complexes. If the DNA damage is by UV light or UV-mimetic agents, the signal is sensed by ATR, Rad17-RFC, and the complex, leading to phosphorylation of Chk1 by ATR. The activated Chk1 then phosphorylates Cdc25A, leading to G1 arrest. Whether the initial arrest is caused by the ATM-Chk2-Cdc25A pathway or the ATR-Chk1-Cdc25A pathway, this rapid response is followed by the p53- mediated maintenance of G1/S arrest, which becomes fully operational several hours after the detection of DNA damage (204). In the maintenance stage, ATM or ATR phosphorylates Ser15 of p53 directly and Ser20 through activation of Chk2 or Chk1, respectively (142, 146, ). The phosphorylation of p53 3 Figure 9 The G1/S checkpoint. DNA damage is sensed by ATM after double-strand breaks or by ATR, Rad17-RFC, and the complex after UV-damage. ATM/ATR phosphorylates Rad17, Rad9, p53, and Chk1/Chk2 that in turn phosphorylates Cdc25A, causing its inactivation by nuclear exclusion and ubiquitin-mediated degradation. Phosphorylated and inactivated Cdk2 accumulates and cannot phosphorylate Cdc45 to initiate replication. Maintenance of the G1/S arrest is achieved by p53, which is phosphorylated on Ser15 by ATM/ATR and on Ser20 by Chk1/Chk2. Phosphorylated p53 induces p21 WAF-1/Cip1 transcription, and p21 WAF-1/Cip1 binds to the Cdk4/CycD complex, thus preventing it from phosphorylating Rb, which is necessary for the release of the E2F transcription factor and subsequent transcription of S-phase genes. p21 WAF-1/Cip1 also binds to and inactivates the Cdk2/CycE complex, thus securing the maintenance of the G1/S checkpoint.

7 DNA REPAIR AND THE DNA DAMAGE CHECKPOINTS 69

8 DNA REPAIR AND THE DNA DAMAGE CHECKPOINTS 77 accumulation of Y15-phosphorylated Cdc2 and mitotic arrest. Initiation of the G2/M checkpoint may not be as simple as presented above. MAP kinases p38 (272) and p38 (273) have been implicated in the G2/M checkpoint responses to ionizing radiation and UV, respectively. Clearly, the interfacing of two major cellular signal transduction pathways, the MAP kinase- and the checkpoint response pathways, deserves more study. The Replication Checkpoint (S/M Checkpoint) The replication checkpoint (also referred to as the S/M checkpoint) is the process by which mitosis is inhibited while DNA replication is ongoing or blocked (128). In both the G2/M and replication checkpoints, the ATR-Chk1-Cdc25 signal transduction pathway is utilized to inhibit mitosis, although the initiating signals for the two checkpoints are different. Ongoing replication or replication forks blocked by DNA damage or nucleotide starvation initiate the replication checkpoint. Evidence from in vitro studies with Xenopus egg extracts indicates that the initiating signal is a component of the replication fork, and experiments with various replication inhibitors suggested that the signal might actually be the RNA primer of Okazaki fragments (274). However, more recent experiments have raised questions about the true identity of the replication checkpoint signal, as the inhibitors used to assign it to RNA primers inhibited the entire replisome assembly (275). The replication checkpoint has been observed in all model systems, including yeast (110) and mammalian cells (266). Surprisingly, however, recent evidence indicates that in mice the replication checkpoint activated by hydroxyurea and aphidicolin is independent of ATM and ATR, but the UV- and ionizing radiationinduced replication checkpoint is dependent on these damage sensor/signal transducer kinases (266), raising the possibility that replication forks and DNA damage during S phase may inhibit mitosis by different signaling mechanisms. CONCLUSIONS DNA damage activates several distinct biochemical pathways. First, DNA repair enzymes of varying complexities recognize and eliminate the damage. Second, DNA damage activates DNA damage checkpoints, which arrest cell cycle progression. Under most circumstances, checkpoints aid in cellular survival. Third, DNA damage activates transcription of certain genes (transcriptional response). The role of the transcriptional response in cell survival is unknown. Finally, apoptosis in metazoans is the programmed cell death that is activated by either cell death ligands or DNA damage, and serves to eliminate superfluous or deregulated and dangerous cells. The four DNA damage response pathways described above can and do function independently under certain circumstances. However, under most con-

9 78 SANCAR et al. ditions there is extensive interaction between these response reactions. Clearly, the individual players in the checkpoint responses serve not only to delay the cell cycle, but also to mediate DNA repair, directly and indirectly. Exactly how this occurs and, in the greater sense, how these agents assess DNA damage both quantitatively and qualitatively so as to choose between mediating DNA repair or apoptosis are outstanding areas for study. These aspects of the DNA damage response pathways must be considered in future research for a better understanding of the cell s response to genotoxicants and for the development of strategies aimed at targeting these pathways for cancer prevention and chemotherapy. ACKNOWLEDGMENTS This work was supported by National Institutes of Health grants GM32833 (to A.S.), GM20830 (to L.A.L.-B.), and GM59424 (to S.L.), and by the Miller Institute for Basic Research in Science (A.S.). The Annual Review of Biochemistry is online at LITERATURE CITED 1. Zhou BB, Elledge SJ Nature 408: Kolodner RD, Putnam CD, Myung K Science 297: Modrich P, Lahue R Annu. Rev. Biochem. 65: Kolodner RD, Marsischky GT Curr. Opin. Genet. Dev. 9: Cox MM, Goodman MF, Kreuzer KN, Sherratt DJ, Sandler SJ, Marians KJ Nature 404: Cox MM Mutat. Res. 510: Minko IG, Zou Y, Lloyd RS Proc. Natl. Acad. Sci. USA 99: Sancar A Biochemistry 33: Deisenhofer J Mutat. Res. 460: Todo T Mutat. Res. 434: Sancar A Chem. Rev. 103: Park H, Zhang KJ, Ren YJ, Nadji S, Sinha N, et al Proc. Natl. Acad. Sci. USA 99: Orren DK, Selby CP, Hearst JE, Sancar A J. Biol. Chem. 267: Sancar A, Hearst JE Science 259: Johnson PF, McKnight SL Annu. Rev. Biochem. 58: Chen L Curr. Opin. Struct. Biol. 9: Naar AM, Lemon BD, Tjian R Annu. Rev. Biochem. 70: Sancar A, Franklin KA, Sancar GB Proc. Natl. Acad. Sci. USA 81: Tornaletti S, Hanawalt PC Biochimie 81: Friedberg EC Annu. Rev. Biochem. 65: Selby CP, Sancar A Science 260: Mellon I, Spivak G, Hanawalt PC Cell 51: Mellon I, Hanawalt PC Nature 342: Cox MM Annu. Rev. Genet. 35: Zhou J, Ahn J, Wilson SH, Prives C EMBO J. 20: Todo T, Takemori H, Ryo H, Ihara M, Matsunaga T, et al Nature 361:

Lecture 10. G1/S Regulation and Cell Cycle Checkpoints. G1/S regulation and growth control G2 repair checkpoint Spindle assembly or mitotic checkpoint

Lecture 10. G1/S Regulation and Cell Cycle Checkpoints. G1/S regulation and growth control G2 repair checkpoint Spindle assembly or mitotic checkpoint Lecture 10 G1/S Regulation and Cell Cycle Checkpoints Outline: G1/S regulation and growth control G2 repair checkpoint Spindle assembly or mitotic checkpoint Paper: The roles of Fzy/Cdc20 and Fzr/Cdh1

More information

Chapt 15: Molecular Genetics of Cell Cycle and Cancer

Chapt 15: Molecular Genetics of Cell Cycle and Cancer Chapt 15: Molecular Genetics of Cell Cycle and Cancer Student Learning Outcomes: Describe the cell cycle: steps taken by a cell to duplicate itself = cell division; Interphase (G1, S and G2), Mitosis.

More information

Regulators of Cell Cycle Progression

Regulators of Cell Cycle Progression Regulators of Cell Cycle Progression Studies of Cdk s and cyclins in genetically modified mice reveal a high level of plasticity, allowing different cyclins and Cdk s to compensate for the loss of one

More information

BCHM3972 Human Molecular Cell Biology (Advanced) 2013 Course University of Sydney

BCHM3972 Human Molecular Cell Biology (Advanced) 2013 Course University of Sydney BCHM3972 Human Molecular Cell Biology (Advanced) 2013 Course University of Sydney Page 2: Immune Mechanisms & Molecular Biology of Host Defence (Prof Campbell) Page 45: Infection and Implications for Cell

More information

Cell cycle and Apoptosis. Chalermchai Mitrpant

Cell cycle and Apoptosis. Chalermchai Mitrpant Cell cycle and Apoptosis 2556 Chalermchai Mitrpant Overview of the cell cycle Outline Regulatory mechanisms controlling cell cycle Progression of the cell cycle Checkpoint of the cell cycle Phases of the

More information

Targeting the ATR Kinase in Cancer Therapy

Targeting the ATR Kinase in Cancer Therapy Targeting the ATR Kinase in Cancer Therapy 2017 Chabner Colloquium October 30, 2017 Lee Zou MGH Cancer Center Harvard Medical School Disclosure Consultant/advisory role: Loxo Oncology DNA Damage and Replication

More information

基醫所. The Cell Cycle. Chi-Wu Chiang, Ph.D. IMM, NCKU

基醫所. The Cell Cycle. Chi-Wu Chiang, Ph.D. IMM, NCKU 基醫所 The Cell Cycle Chi-Wu Chiang, Ph.D. IMM, NCKU 1 1 Introduction to cell cycle and cell cycle checkpoints 2 2 Cell cycle A cell reproduces by performing an orderly sequence of events in which it duplicates

More information

CELL CYCLE MOLECULAR BASIS OF ONCOGENESIS

CELL CYCLE MOLECULAR BASIS OF ONCOGENESIS CELL CYCLE MOLECULAR BASIS OF ONCOGENESIS Summary of the regulation of cyclin/cdk complexes during celll cycle Cell cycle phase Cyclin-cdk complex inhibitor activation Substrate(s) G1 Cyclin D/cdk 4,6

More information

Cell cycle control (mammalian)

Cell cycle control (mammalian) Apr. 21, 2005 Cell cycle control (mammalian) Basic mechanisms & protein components Checkpoints Chap. 21, by Lodish et al., 5 th ed. 2004 Chap. 17, by Alberts et al., 4 th ed. 2002 鍾明怡 mychung@vghtpe.gov.tw

More information

Cell cycle, signaling to cell cycle, and molecular basis of oncogenesis

Cell cycle, signaling to cell cycle, and molecular basis of oncogenesis Cell cycle, signaling to cell cycle, and molecular basis of oncogenesis MUDr. Jiří Vachtenheim, CSc. CELL CYCLE - SUMMARY Basic terminology: Cyclins conserved proteins with homologous regions; their cellular

More information

Regulation of cell cycle. Dr. SARRAY Sameh, Ph.D

Regulation of cell cycle. Dr. SARRAY Sameh, Ph.D Regulation of cell cycle Dr. SARRAY Sameh, Ph.D Control of cell cycle: Checkpoints Are the cell cycle controls mechanisms in eukaryotic cells. These checkpoints verify whether the processes at each phase

More information

Molecular Cell Biology (Bio 5068) Cell Cycle I. Ron Bose, MD PhD November 14, 2017

Molecular Cell Biology (Bio 5068) Cell Cycle I. Ron Bose, MD PhD November 14, 2017 Molecular Cell Biology (Bio 5068) Cell Cycle I Ron Bose, MD PhD November 14, 2017 CELL DIVISION CYCLE M G2 S G1 DISCOVERY AND NAMING OF CYCLINS A protein (called cyclin ) was observed to increase as cells

More information

Lecture 14 - The cell cycle and cell death

Lecture 14 - The cell cycle and cell death 02.17.10 Lecture 14 - The cell cycle and cell death The cell cycle: cells duplicate their contents and divide The cell cycle may be divided into 4 phases The cell cycle triggers essential processes (DNA

More information

CELL CYCLE REGULATION AND CANCER. Cellular Reproduction II

CELL CYCLE REGULATION AND CANCER. Cellular Reproduction II CELL CYCLE REGULATION AND CANCER Cellular Reproduction II THE CELL CYCLE Interphase G1- gap phase 1- cell grows and develops S- DNA synthesis phase- cell replicates each chromosome G2- gap phase 2- cell

More information

Regulation of Cell Division (Ch. 12)

Regulation of Cell Division (Ch. 12) Regulation of Cell Division (Ch. 12) Coordination of cell division A multicellular organism needs to coordinate cell division across different tissues & organs critical for normal growth, development &

More information

Introduction to Cancer Biology

Introduction to Cancer Biology Introduction to Cancer Biology Robin Hesketh Multiple choice questions (choose the one correct answer from the five choices) Which ONE of the following is a tumour suppressor? a. AKT b. APC c. BCL2 d.

More information

Regulation of Cell Division. AP Biology

Regulation of Cell Division. AP Biology Regulation of Cell Division 2006-2007 Coordination of cell division A multicellular organism needs to coordinate cell division across different tissues & organs critical for normal growth, development

More information

Multistep nature of cancer development. Cancer genes

Multistep nature of cancer development. Cancer genes Multistep nature of cancer development Phenotypic progression loss of control over cell growth/death (neoplasm) invasiveness (carcinoma) distal spread (metastatic tumor) Genetic progression multiple genetic

More information

Division Ave. High School AP Biology

Division Ave. High School AP Biology Regulation of Cell Division 2008-2009 Coordination of cell division A multicellular organism needs to coordinate cell division across different tissues & organs u critical for normal growth, development

More information

Chapter 12. Regulation of Cell Division. AP Biology

Chapter 12. Regulation of Cell Division. AP Biology Chapter 12. Regulation of Cell Division Coordination of cell division! Multicellular organism " need to coordinate across different parts of organism! timing of cell division! rates of cell division "

More information

Regulation of Cell Division

Regulation of Cell Division Regulation of Cell Division Two HeLa cancer cells are just completing cytokinesis. Explain how the cell division of cancer cells like these is misregulated. Identify genetic and other changes that might

More information

Genomic instability. Amin Mahpour

Genomic instability. Amin Mahpour Genomic instability Amin Mahpour 1 Some questions to ponder What is Genomic instability? What factors contribute to the genomic integrity? How we identify these aberrations? 2 PART I: MOLECULAR BIOLOGY

More information

UNC-Duke Biology Course for Residents Fall Cell Cycle Effects of Radiation

UNC-Duke Biology Course for Residents Fall Cell Cycle Effects of Radiation UNC-Duke Biology Course for Residents Fall 2018 1 Cell Cycle: Sequence of changes in a cell starting with the moment the cell is created by cell division, continuing through the doubling of the DNA and

More information

Review II: Cell Biology

Review II: Cell Biology Review II: Cell Biology Rajan Munshi BBSI @ Pitt 2006 Department of Computational Biology University of Pittsburgh School of Medicine May 24, 2006 Outline Cell Cycle Signal Transduction 1 Cell Cycle Four

More information

Mitosis and the Cell Cycle

Mitosis and the Cell Cycle Mitosis and the Cell Cycle Chapter 12 The Cell Cycle: Cell Growth & Cell Division Where it all began You started as a cell smaller than a period at the end of a sentence Getting from there to here Cell

More information

Cancer Biology How a cell responds to DNA Damage

Cancer Biology How a cell responds to DNA Damage 1 Cancer Biology How a cell responds to DNA Damage Jann Sarkaria Department of Oncology Mayo Clinic 2 EDUCATIONAL GOALS How proteins can transmit signals to each other. The definition of a tumor suppressor

More information

Regulation of the Cell Cycle

Regulation of the Cell Cycle Regulation of the Cell Cycle 21 I. OVERVIEW Quiescent differentiated cell / can be induced to re-enter the active cell cycle. urvival Cell division Apoptosis 1 Daughter cells Apoptic cell enescent cell

More information

Biology is the only subject in which multiplication is the same thing as division

Biology is the only subject in which multiplication is the same thing as division The Cell Cycle Biology is the only subject in which multiplication is the same thing as division Why do cells divide? For reproduction asexual reproduction For growth one-celled organisms from fertilized

More information

Prof. R. V. Skibbens

Prof. R. V. Skibbens Prof. R. V. Skibbens December 2, 2011 BIOS 10: BioScience in the 21 st Century Cell Cycle, Cell Division and Cancer (Part 2) Directionality The Cell Cycle clock goes in only one direction S-phase cells

More information

Tumour growth environment modulates Chk1 signalling pathways and sensitivity to Chk1 inhibition

Tumour growth environment modulates Chk1 signalling pathways and sensitivity to Chk1 inhibition Tumour growth environment modulates Chk1 signalling pathways and sensitivity to Chk1 inhibition Andrew J Massey Supplementary Information Supplementary Figure S1. Related to Fig. 1. (a) HT29 or U2OS cells

More information

Removal of Shelterin Reveals the Telomere End-Protection Problem

Removal of Shelterin Reveals the Telomere End-Protection Problem Removal of Shelterin Reveals the Telomere End-Protection Problem DSB Double-Strand Breaks causate da radiazioni stress ossidativo farmaci DSB e CROMATINA Higher-order chromatin packaging is a barrier to

More information

Prof. R. V. Skibbens. Cell Cycle, Cell Division and Cancer (Part 2)

Prof. R. V. Skibbens. Cell Cycle, Cell Division and Cancer (Part 2) Prof. R. V. Skibbens November 22, 2010 BIOS 10: BioScience in the 21 st Century Cell Cycle, Cell Division and Cancer (Part 2) Directionality - clocks go in only one direction G1 doesn t have replication-inducing

More information

Karyotype analysis reveals transloction of chromosome 22 to 9 in CML chronic myelogenous leukemia has fusion protein Bcr-Abl

Karyotype analysis reveals transloction of chromosome 22 to 9 in CML chronic myelogenous leukemia has fusion protein Bcr-Abl Chapt. 18 Cancer Molecular Biology of Cancer Student Learning Outcomes: Describe cancer diseases in which cells no longer respond Describe how cancers come from genomic mutations (inherited or somatic)

More information

Cancer DEREGULATION OF CELL CYCLE CONTROL IN ONCOGENESIS. D. Kardassis Division of Basic Sciences University of Crete Medical School and IMBB-FORTH

Cancer DEREGULATION OF CELL CYCLE CONTROL IN ONCOGENESIS. D. Kardassis Division of Basic Sciences University of Crete Medical School and IMBB-FORTH E6 2006-2007: 2007: Molecular Biology of Cancer DEREGULATION OF CELL CYCLE CONTROL IN ONCOGENESIS D. Kardassis Division of Basic Sciences University of Crete Medical School and IMBB-FORTH Literature *

More information

Cell Cycle. Trends in Cell Biology

Cell Cycle. Trends in Cell Biology Cell Cycle Trends in Cell Biology Cell Cycle The orderly sequence of events by which a cell duplicates its contents and divides into two Daughter Cells Activities of a cell from one cell division to the

More information

HLA Complex Genetics & Biology

HLA Complex Genetics & Biology HLA Complex Genetics & Biology M. Tevfik DORAK Environmental & Occupational Health College of Public Health Florida International University Miami, USA http://www.dorak.info Mount Sinai Medical Center

More information

Cell Cycle, Mitosis, and Microtubules. LS1A Final Exam Review Friday 1/12/07. Processes occurring during cell cycle

Cell Cycle, Mitosis, and Microtubules. LS1A Final Exam Review Friday 1/12/07. Processes occurring during cell cycle Cell Cycle, Mitosis, and Microtubules LS1A Final Exam Review Friday 1/12/07 Processes occurring during cell cycle Replicate chromosomes Segregate chromosomes Cell divides Cell grows Cell Growth 1 The standard

More information

Determination Differentiation. determinated precursor specialized cell

Determination Differentiation. determinated precursor specialized cell Biology of Cancer -Developmental Biology: Determination and Differentiation -Cell Cycle Regulation -Tumor genes: Proto-Oncogenes, Tumor supressor genes -Tumor-Progression -Example for Tumor-Progression:

More information

Introduction. Cancer Biology. Tumor-suppressor genes. Proto-oncogenes. DNA stability genes. Mechanisms of carcinogenesis.

Introduction. Cancer Biology. Tumor-suppressor genes. Proto-oncogenes. DNA stability genes. Mechanisms of carcinogenesis. Cancer Biology Chapter 18 Eric J. Hall., Amato Giaccia, Radiobiology for the Radiologist Introduction Tissue homeostasis depends on the regulated cell division and self-elimination (programmed cell death)

More information

How deregulated cell cycles (might) trigger cancer. Dan Fisher. Friday 27th October Lucie Fisher, 3 Eddie Fisher, 6.

How deregulated cell cycles (might) trigger cancer. Dan Fisher. Friday 27th October Lucie Fisher, 3 Eddie Fisher, 6. How deregulated cell cycles (might) trigger cancer http://www.igmm.cnrs.fr Dan Fisher Friday 27th October 2017 Lucie Fisher, 3 Eddie Fisher, 6 1 transformed cells transformed cells Structure of this lecture

More information

Cancer. Throughout the life of an individual, but particularly during development, every cell constantly faces decisions.

Cancer. Throughout the life of an individual, but particularly during development, every cell constantly faces decisions. Cancer Throughout the life of an individual, but particularly during development, every cell constantly faces decisions. Should it divide? Yes No--> Should it differentiate? Yes No-->Should it die? Yes-->Apoptosis

More information

CONTENTS. Preface... xii

CONTENTS. Preface... xii CONTENTS Preface... xii 1. Autocrine Transformation: Cytokine Model... 1 James A. McCubrey, Xiao-Yang Wang, Paul A. Algate, William L. Blalock and Linda S. Steelman Abstract... 1 Cytokine Regulation of

More information

Chapter 12 The Cell Cycle

Chapter 12 The Cell Cycle Chapter 12 The Cell Cycle Objectives Describe how cell reproduction contributes to repair and growth. Compare and contrast prokaryotic and eukaryotic cell division. Compare and contrast asexual and sexual

More information

Why do cells divide? The Cell Cycle: Cell Growth, Cell Division. Making new cells. Getting the right stuff. Overview of mitosis 1/5/2015

Why do cells divide? The Cell Cycle: Cell Growth, Cell Division. Making new cells. Getting the right stuff. Overview of mitosis 1/5/2015 Why do cells divide? The Cell Cycle: Cell Growth, Cell Division For reproduction asexual reproduction one-celled organisms For growth from fertilized egg to multi-celled organism For repair & renewal replace

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 3,800 116,000 120M Open access books available International authors and editors Downloads Our

More information

Control of Cell Cycle. Unit 2 Part f III

Control of Cell Cycle. Unit 2 Part f III Control of Cell Cycle Unit 2 Part f III How often do cells divide and why? The timing and rate of cell division in different parts of the plant or animals are crucial to normal growth, development and

More information

Breast Cancer Susceptibility and HLA Complex: Source of Missing Heritability?

Breast Cancer Susceptibility and HLA Complex: Source of Missing Heritability? Breast Cancer Susceptibility and HLA Complex: Source of Missing Heritability? M. Tevfik DORAK Environmental & Occupational Health College of Public Health Florida International University Miami, USA http://www.dorak.info

More information

PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland

PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland AD Award Number: W81XWH-05-1-0494 TITLE: Tumor Suppression by BRCA-1: A Critical Role at DNA Replication Forks PRINCIPAL INVESTIGATOR: Jean Gautier, Ph.D. CONTRACTING ORGANIZATION: Columbia University

More information

Removal of Shelterin Reveals the Telomere End-Protection Problem

Removal of Shelterin Reveals the Telomere End-Protection Problem Removal of Shelterin Reveals the Telomere End-Protection Problem DSB Double-Strand Breaks causate da radiazioni stress ossidativo farmaci DSB e CROMATINA Higher-order chromatin packaging is a barrier to

More information

DSB. Double-Strand Breaks causate da radiazioni stress ossidativo farmaci

DSB. Double-Strand Breaks causate da radiazioni stress ossidativo farmaci DSB Double-Strand Breaks causate da radiazioni stress ossidativo farmaci DSB e CROMATINA Higher-order chromatin packaging is a barrier to the detection and repair of DNA damage DSBs induce a local decrease

More information

Genome of Hepatitis B Virus. VIRAL ONCOGENE Dr. Yahwardiah Siregar, PhD Dr. Sry Suryani Widjaja, Mkes Biochemistry Department

Genome of Hepatitis B Virus. VIRAL ONCOGENE Dr. Yahwardiah Siregar, PhD Dr. Sry Suryani Widjaja, Mkes Biochemistry Department Genome of Hepatitis B Virus VIRAL ONCOGENE Dr. Yahwardiah Siregar, PhD Dr. Sry Suryani Widjaja, Mkes Biochemistry Department Proto Oncogen and Oncogen Oncogen Proteins that possess the ability to cause

More information

Selective targeting of cancer cells through inhibition of Checkpoint kinase 1

Selective targeting of cancer cells through inhibition of Checkpoint kinase 1 Selective targeting of cancer cells through inhibition of Checkpoint kinase 1 Grete Hasvold Department of Radiation Biology Institute for Cancer Research The Norwegian Radium Hospital Oslo University Hospital

More information

Cancer and Gene Alterations - 1

Cancer and Gene Alterations - 1 Cancer and Gene Alterations - 1 Cancer and Gene Alteration As we know, cancer is a disease of unregulated cell growth. Although we looked at some of the features of cancer when we discussed mitosis checkpoints,

More information

Chapter 12. living /non-living? growth repair renew. Reproduction. Reproduction. living /non-living. fertilized egg (zygote) next chapter

Chapter 12. living /non-living? growth repair renew. Reproduction. Reproduction. living /non-living. fertilized egg (zygote) next chapter Chapter 12 How cells divide Reproduction living /non-living? growth repair renew based on cell division first mitosis - distributes identical sets of chromosomes cell cycle (life) Cell Division in Bacteria

More information

Cell Signaling (III) Cell Cycle (I)

Cell Signaling (III) Cell Cycle (I) BME 42-620 Engineering Molecular Cell Biology Lecture 22: Cell Signaling (III) Cell Cycle (I) Chapter 15 BME42-620 Lecture 22, December 01, 2011 1 Comments on Reading Assignment 5 (I) I assume that this

More information

Early Embryonic Development

Early Embryonic Development Early Embryonic Development Maternal effect gene products set the stage by controlling the expression of the first embryonic genes. 1. Transcription factors 2. Receptors 3. Regulatory proteins Maternal

More information

C) The graph should look exactly like the graph on the left (Mut1 cells + Mating Pheromone for 3 hours at 25 degrees). The cells arrest in G1.

C) The graph should look exactly like the graph on the left (Mut1 cells + Mating Pheromone for 3 hours at 25 degrees). The cells arrest in G1. 706-2000-Exam 4 Answer Key 1) The question asks you to explain peaks A and B in the top graph. The other two graphs were there to give you hints. The question did not ask for these other two graphs to

More information

Molecular biology :- Cancer genetics lecture 11

Molecular biology :- Cancer genetics lecture 11 Molecular biology :- Cancer genetics lecture 11 -We have talked about 2 group of genes that is involved in cellular transformation : proto-oncogenes and tumour suppressor genes, and it isn t enough to

More information

MOLECULAR BASIS OF ONCOGENESIS

MOLECULAR BASIS OF ONCOGENESIS MOLECULAR BASIS OF ONCOGENESIS MUDr. Jiří Vachtenheim, CSc. 1 Cell processes which result also in cell cycle effects. Differentiation. Differentiated cells are usually in the G0 phase of the cell cycle.

More information

609G: Concepts of Cancer Genetics and Treatments (3 credits)

609G: Concepts of Cancer Genetics and Treatments (3 credits) Master of Chemical and Life Sciences Program College of Computer, Mathematical, and Natural Sciences 609G: Concepts of Cancer Genetics and Treatments (3 credits) Text books: Principles of Cancer Genetics,

More information

Cancer. Questions about cancer. What is cancer? What causes unregulated cell growth? What regulates cell growth? What causes DNA damage?

Cancer. Questions about cancer. What is cancer? What causes unregulated cell growth? What regulates cell growth? What causes DNA damage? Questions about cancer What is cancer? Cancer Gil McVean, Department of Statistics, Oxford What causes unregulated cell growth? What regulates cell growth? What causes DNA damage? What are the steps in

More information

Chapter 9. Cells Grow and Reproduce

Chapter 9. Cells Grow and Reproduce Chapter 9 Cells Grow and Reproduce DNA Replication DNA polymerase Addition of a nucleotide to the 3 end of a growing strand Use dntps as substrate Release of pyrophosphate Initiation of Replication Replication

More information

A class of genes that normally suppress cell proliferation. p53 and Rb..ect. suppressor gene products can release cells. hyperproliferation.

A class of genes that normally suppress cell proliferation. p53 and Rb..ect. suppressor gene products can release cells. hyperproliferation. Tumor Suppressor Genes A class of genes that normally suppress cell proliferation. p53 and Rb..ect Mutations that inactivate the tumor suppressor gene products can release cells from growth suppression

More information

Prof. R. V. Skibbens. BIOS 10 and BIOS 90: BioScience in the 21 st Century. Cell Cycle, Cell Division and intro to Cancer.

Prof. R. V. Skibbens. BIOS 10 and BIOS 90: BioScience in the 21 st Century. Cell Cycle, Cell Division and intro to Cancer. Prof. R. V. Skibbens August 31, 2015 BIOS 10 and BIOS 90: BioScience in the 21 st Century Cell Cycle, Cell Division and intro to Cancer Cell Cycle Why a cell cycle? What is the goal? trauma growth development

More information

Revisiting post-translational regulation of cell cycle CDKs

Revisiting post-translational regulation of cell cycle CDKs Revisiting post-translational regulation of cell cycle CDKs Cyclin-CDK complexes during cell cycle Cyclin B-CDK1 G0 E2F prb Cyclin A-CDK1 G2 M Cyclin D-CDK4 CDK6 + prb Cyclin A-CDK2 S R G1 Cyclin E-CDK2

More information

CYCLINS ON THE MOVE: A TIME AND A PLACE FOR CYCLIN A2 AND CYCLIN B1 IN THE HUMAN CELL CYCLE

CYCLINS ON THE MOVE: A TIME AND A PLACE FOR CYCLIN A2 AND CYCLIN B1 IN THE HUMAN CELL CYCLE From the Department of Cell and Molecular Biology Karolinska Institutet, Stockholm, Sweden CYCLINS ON THE MOVE: A TIME AND A PLACE FOR CYCLIN A2 AND CYCLIN B1 IN THE HUMAN CELL CYCLE Helena Silva Cascales

More information

Surviving the Breakup: The DNA Damage Checkpoint

Surviving the Breakup: The DNA Damage Checkpoint I ANRV293-GE40-09 ARI 17 June 2006 19:2 R E V I E W S First published online as a Review in Advance on June 28, 2006 E C N A D V A N Annu. Rev. Genet. 2006. 40:209 35 The Annual Review of Genetics is online

More information

PHOSPHO-REGULATION OF THE DNA DAMAGE RESPONSE KINASE ATR. Edward Adam Nam. Dissertation. Submitted to the Faculty of the

PHOSPHO-REGULATION OF THE DNA DAMAGE RESPONSE KINASE ATR. Edward Adam Nam. Dissertation. Submitted to the Faculty of the PHOSPHO-REGULATION OF THE DNA DAMAGE RESPONSE KINASE ATR By Edward Adam Nam Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements

More information

Prof. R. V. Skibbens

Prof. R. V. Skibbens Prof. R. V. Skibbens September 8, 2017 BioScience in the 21 st Century Cell Cycle, Cell Division and intro to Cancer Cell growth and division What are the goals? I Cell Cycle what is this? response to

More information

CELL CYCLE,CHECK POINTS. Prof S.N.Senapati, A.H.REGIONAL CANCER CENTRE, MANGALABAG, CUTTACK

CELL CYCLE,CHECK POINTS. Prof S.N.Senapati, A.H.REGIONAL CANCER CENTRE, MANGALABAG, CUTTACK CELL CYCLE,CHECK POINTS Prof S.N.Senapati, A.H.REGIONAL CANCER CENTRE, MANGALABAG, CUTTACK E-Mail:-snsenapati2007@gmail.com IN RADIATION ONCOLOGY TUMOR CELL DEATH CELL DEATH AFTER IRRADIATION OCCURS MOSTLY

More information

Tumor cell reassortment within the cell cycle (including checkpoints and cell-cycle arrest)

Tumor cell reassortment within the cell cycle (including checkpoints and cell-cycle arrest) Tumor cell reassortment within the cell cycle (including checkpoints and cell-cycle arrest) Carsten Herskind Dept. of Radiation Oncology. Universitätsmedizin Mannheim Medical Faculty Mannheim, Heidelberg

More information

5/25/2015. Replication fork. Replication fork. Replication fork. Replication fork

5/25/2015. Replication fork. Replication fork. Replication fork. Replication fork Mutations Chapter 5 Cellular Functions Lecture 3: and Cell Division Most DNA mutations alter the protein product May Make it function better (rarely) Change its function Reduce its function Make it non-functional

More information

Stochastic Simulation of P53, MDM2 Interaction

Stochastic Simulation of P53, MDM2 Interaction Human Journals Research Article May 2017 Vol.:6, Issue:3 All rights are reserved by B.Odgerel et al. Stochastic Simulation of P53, MDM2 Interaction Keywords: DNA damage, P53, MDM2 interactions, propensity,

More information

Oncogenes and Tumor. supressors

Oncogenes and Tumor. supressors Oncogenes and Tumor supressors From history to therapeutics Serge ROCHE Neoplastic transformation TUMOR SURESSOR ONCOGENE ONCOGENES History 1911 1960 1980 2001 Transforming retrovirus RSV v-src is an oncogene

More information

The interaction between Rad9 and Tousled-like kinase 1 in the cell cycle and the DNA damage response

The interaction between Rad9 and Tousled-like kinase 1 in the cell cycle and the DNA damage response The interaction between Rad9 and Tousled-like kinase 1 in the cell cycle and the DNA damage response By Ryan Patrick Kelly A thesis submitted to the Graduate Program in Biochemistry in conformity with

More information

Genetics and Cancer Ch 20

Genetics and Cancer Ch 20 Genetics and Cancer Ch 20 Cancer is genetic Hereditary cancers Predisposition genes Ex. some forms of colon cancer Sporadic cancers ~90% of cancers Descendants of cancerous cells all cancerous (clonal)

More information

APOPTOSIS AND RADIATION. Laura Valverde Soria Radiology and Physical Medicine

APOPTOSIS AND RADIATION. Laura Valverde Soria Radiology and Physical Medicine APOPTOSIS AND RADIATION Laura Valverde Soria Radiology and Physical Medicine APOPTOSIS APOPTOSIS PROGRAMMED CELL DEATH Apoptosis is a natural phenomenon: each cell contains in its genome the information

More information

2.1 The Importance of Cell Division

2.1 The Importance of Cell Division 2.1 The Importance of Cell Division Functions of cell division Growth Repair Reproduction Growth All organisms begin as a single cell. Cell divisions will increase as an organism s size increases. There

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Discussion The cell cycle machinery and the DNA damage response network are highly interconnected and co-regulated in assuring faithful duplication and partition of genetic materials into

More information

7.012 Problem Set 6 Solutions

7.012 Problem Set 6 Solutions Name Section 7.012 Problem Set 6 Solutions Question 1 The viral family Orthomyxoviridae contains the influenza A, B and C viruses. These viruses have a (-)ss RNA genome surrounded by a capsid composed

More information

Cell cycle and apoptosis

Cell cycle and apoptosis Cell cycle and apoptosis Cell cycle Definition Stages and steps Cell cycle Interphase (G1/G0, S, and G2) Mitosis (prophase, metaphase, anaphase, telophase, karyokinesis, cytokinesis) Control checkpoints

More information

Cell Cycle and Cancer

Cell Cycle and Cancer 142 8. Cell Cycle and Cancer NOTES CELL CYCLE G 0 state o Resting cells may re-enter the cell cycle Nondividing cells (skeletal and cardiac muscle, neurons) o Have left the cell cycle and cannot undergo

More information

Brian T Burgess, DO, PhD, GYN Oncology Fellow Rachel W. Miller, MD, GYN Oncology

Brian T Burgess, DO, PhD, GYN Oncology Fellow Rachel W. Miller, MD, GYN Oncology Brian T Burgess, DO, PhD, GYN Oncology Fellow Rachel W. Miller, MD, GYN Oncology Epithelial Ovarian Cancer - Standard Current Treatment: Surgery with De-bulking + Platinum-Taxane based Chemotherapy - No

More information

Cellular Reproduction, Part 2: Meiosis Lecture 10 Fall 2008

Cellular Reproduction, Part 2: Meiosis Lecture 10 Fall 2008 Mitosis & 1 Cellular Reproduction, Part 2: Lecture 10 Fall 2008 Mitosis Form of cell division that leads to identical daughter cells with the full complement of DNA Occurs in somatic cells Cells of body

More information

The cell cycle plays a prominent role in development,

The cell cycle plays a prominent role in development, Dynamics of the mammalian cell cycle in physiological and pathological conditions Claude Gérard 1 and Albert Goldbeter 1,2 * A network of cyclin-dependent kinases (Cdks) controls progression along the

More information

CHARACTERIZATION OF CHECKPOINT ADAPTATION IN HUMAN FIBROBLASTIC GLIOMA CELLS AND AN ANALYSIS OF PROTEIN PHOSPHATASE INHIBITORS

CHARACTERIZATION OF CHECKPOINT ADAPTATION IN HUMAN FIBROBLASTIC GLIOMA CELLS AND AN ANALYSIS OF PROTEIN PHOSPHATASE INHIBITORS CHARACTERIZATION OF CHECKPOINT ADAPTATION IN HUMAN FIBROBLASTIC GLIOMA CELLS AND AN ANALYSIS OF PROTEIN PHOSPHATASE INHIBITORS Brittany Lanser Bachelor of Science Honours, University of Saskatchewan, 2010

More information

Supplemental Data Macrophage Migration Inhibitory Factor MIF Interferes with the Rb-E2F Pathway

Supplemental Data Macrophage Migration Inhibitory Factor MIF Interferes with the Rb-E2F Pathway Supplemental Data Macrophage Migration Inhibitory Factor MIF Interferes with the Rb-E2F Pathway S1 Oleksi Petrenko and Ute M. Moll Figure S1. MIF-Deficient Cells Have Reduced Transforming Ability (A) Soft

More information

Oncolytic virus strategy

Oncolytic virus strategy Oncolytic viruses Oncolytic virus strategy normal tumor NO replication replication survival lysis Oncolytic virus strategy Mechanisms of tumor selectivity of several, some of them naturally, oncolytic

More information

Signaling. Dr. Sujata Persad Katz Group Centre for Pharmacy & Health research

Signaling. Dr. Sujata Persad Katz Group Centre for Pharmacy & Health research Signaling Dr. Sujata Persad 3-020 Katz Group Centre for Pharmacy & Health research E-mail:sujata.persad@ualberta.ca 1 Growth Factor Receptors and Other Signaling Pathways What we will cover today: How

More information

Biochemistry 201: DNA repair January 24, 26, 2000 Gilbert Chu

Biochemistry 201: DNA repair January 24, 26, 2000 Gilbert Chu 1) Why study DNA repair? Biochemistry 201: DNA repair January 24, 26, 2000 Gilbert Chu The genome is assaulted by a myriad of different agents that cause DNA damage. Sources of damage can be both exogenous

More information

Plasma membranes. Plasmodesmata between plant cells. Gap junctions between animal cells Cell junctions. Cell-cell recognition

Plasma membranes. Plasmodesmata between plant cells. Gap junctions between animal cells Cell junctions. Cell-cell recognition Cell Communication Cell Signaling Cell-to-cell communication is essential for multicellular organisms Communicate by chemical messengers Animal and plant cells have cell junctions that directly connect

More information

nuclear science and technology

nuclear science and technology EUROPEAN COMMISSION nuclear science and technology Radiation-specific DNA non-double strand break lesions: repair mechanisms and biological effects (Non-DSB Lesions) Contract N o FIGH-CT2002-00207 Final

More information

Bacterial cell. Origin of replication. Septum

Bacterial cell. Origin of replication. Septum Bacterial cell Bacterial chromosome: Double-stranded DNA Origin of replication Septum 1 2 3 Chromosome Rosettes of Chromatin Loops Scaffold protein Chromatin Loop Solenoid Scaffold protein Chromatin loop

More information

Cancer. The fundamental defect is. unregulated cell division. Properties of Cancerous Cells. Causes of Cancer. Altered growth and proliferation

Cancer. The fundamental defect is. unregulated cell division. Properties of Cancerous Cells. Causes of Cancer. Altered growth and proliferation Cancer The fundamental defect is unregulated cell division. Properties of Cancerous Cells Altered growth and proliferation Loss of growth factor dependence Loss of contact inhibition Immortalization Alterated

More information

Cancer. The fundamental defect is. unregulated cell division. Properties of Cancerous Cells. Causes of Cancer. Altered growth and proliferation

Cancer. The fundamental defect is. unregulated cell division. Properties of Cancerous Cells. Causes of Cancer. Altered growth and proliferation Cancer The fundamental defect is unregulated cell division. Properties of Cancerous Cells Altered growth and proliferation Loss of growth factor dependence Loss of contact inhibition Immortalization Alterated

More information

BL 424 Test pts name Multiple choice have one choice each and are worth 3 points.

BL 424 Test pts name Multiple choice have one choice each and are worth 3 points. BL 424 Test 3 2010 150 pts name Multiple choice have one choice each and are worth 3 points. 1. The plasma membrane functions as a a. selective barrier to the passage of molecules. b. sensor through which

More information

Deregulation of signal transduction and cell cycle in Cancer

Deregulation of signal transduction and cell cycle in Cancer Deregulation of signal transduction and cell cycle in Cancer Tuangporn Suthiphongchai, Ph.D. Department of Biochemistry Faculty of Science, Mahidol University Email: tuangporn.sut@mahidol.ac.th Room Pr324

More information

Repair of Broken Chromosomes and Maintenance of Chromosome Stability

Repair of Broken Chromosomes and Maintenance of Chromosome Stability Repair of Broken Chromosomes and Maintenance of Chromosome Stability Jim Haber Brandeis University Genome instability in tumor cells Truncations Translocations Inversions Duplications Amplifications Deletions

More information

6.3 DNA Mutations. SBI4U Ms. Ho-Lau

6.3 DNA Mutations. SBI4U Ms. Ho-Lau 6.3 DNA Mutations SBI4U Ms. Ho-Lau DNA Mutations Gene expression can be affected by errors that occur during DNA replication. Some errors are repaired, but others can become mutations (changes in the nucleotide

More information