W III. Formulation Scan! W II W I. What is Solubilization?! All phase diagrams contain a. Phase behavior!

Size: px
Start display at page:

Download "W III. Formulation Scan! W II W I. What is Solubilization?! All phase diagrams contain a. Phase behavior!"

Transcription

1 1 / th American Chemical Society National Meeting, New rleans LA USA, April 6-10, / 44 What is Solubilization? it is the ability of a surfactant to produce a monophasic system containing both oil and water surfactant (+ alcohol) S+A monophasic zone Jean-Louis Salager, Ana Forgiarini, Cesar Scorzza and rlando Rojas water polyphasic zone oil height of polyphasic zone generally at center 3 / 44 W All phase diagrams contain a monophasic zone S S 1 1 W 1 3 If a formulation variable is changed (along a Formulation scan) How does solubilization change? W S Bourrel M., Schechter R. S., Microemulsions and Related Systems, Marcel Dekker, New York / 44 W I Formulation Scan W III Salinity ptimum Formulation Phase behavior W II 5 / 44 The height of polyphasic zone at fixed oil/ water composition (e.g. 50/50) is monitored 6 / 44 Phase A a bicontinuous microemulsion is S Phase B is a bicontinuous microemulsion A B Height S + A Formulation Scan lowest height = maximum solubilization at optimum formulation Bourrel M., et al., The Topology of phase boundaries for oil-brinesurfactant systems and its relationship to oil Recovery, Society of Petroleum Engineers J., 22 (1), (1981) swollen micelle S1 micelle φ bicontinuous microemulsion 1φ A B 3φ φ swollen micelle S2 micelle W Salager J. L., Antón R. E. Ionic Microemulsions. In Handbook of Microemulsions Science and Technology, Kumar P., Mittal K., Eds. Chapter 8, Dekker. New York

2 7 / 44 Bicontinuous Structures with zero curvature 8 / 44 Bicontinuous Structure with zero mean curvature Random bicontinuous structure Schwartz surface Scriven S., Nature 263: 123 (1976) Characteristics of microemulsion and of oil-water interface in a Winsor III diagram 9 / 44 Solubilization Parameters SP water in m SP oil in m 3 φ Formulation Scan Maximum Solubilization at crossing 10 / 44 Tension-Solubilization Relationship Solubilization varies as the inverse of interfacial tension many applications of optimum formulation Enhanced oil recovery Crude oil dehydration Emulsion breaking Detergency Remediation Solubilization in microemulsion... INTERFACIAL TENSIN (mn/m) ptimum Formulation Vo/Vs mo mw l m u 3 φ Salinity, % NaCl SP* Vw/Vs Formulation SLUBILIZATIN PARAMETERS ml/ml 11 / 44 oil () water (W) Winsor s Ratio (1954) between molecular interaction energies surfactant (C) Aco Acw R < 1, R = 1 or R > 1 related to phase behavior R = Aco Acw R = 1 at optimum formulation Winsor P., Solvent Properties of Amphiphilic Compounds, Butterworth London (1954) 12 / 44 Winsor s R Maximum Solubilization when N = D R = Aco = N = 1 Acw D but... various cases R = 1 = = = Is it the same thing? No 2

3 13 / 44 According to Winsor s premise Solubilization increases when interactions increase on both sides of interface But there is a limit 14 / 44 In some cases Winsor s premise does not explain the observed increase in solubilization Lipophilic Additive increases solubilization 20 SP* ml/g M Surfactant Ethoxylated ctylphenol (EN near 5) Isooctane, WR =1, 25ºC when chain reaches carbon atoms, the surfactant precipitates (Krafft Temperature) 10 Additive P 0 E P 1 E % aditivo en aceite P 1.5 E 0 % Additive in oil P 3 E GRACIAA A., et al. Improving Solubilization in Microemulsions with Additives - 1 : The lipophilic linker role, Langmuir 9 : (1993) 15 / / 44 Proposed Mechanism The Lipophilic Linker increases interactions on the oil side by ordering the molecules deeper inside the oil bulk phase IL IL Graciaa A. et al. Improving Solubilization in Microemulsions with Additives - Part I : The lipophilic linker role, Langmuir 9, 669 (1993) Graciaa A. et al., Improving Solubilization in Microemulsions with Additives - Part II : Long chain Alcohol as Lipophilic Linkers, Langmuir 9, 3371 (1993) Salager J. L. et al. Improving Solubilization in Microemulsions with Additives. Part III: ptimization of the Lipophilic Linker, J. Surfactants & Detergents 1, 403 (1998) ordered zone WATER ordered zone Interface INTERFACE WATER Lipophilic Linker 17 / 44 The Lipophilic Linker 18 / 44 Examples of Lipophilic Linkers does not adsorb at interface (it is not a cosurfactant) is a slightly polar oil (or a very lipophilic amphiphile) is located inside oil phase near interface (interfacial segregation) gets oriented perpendicular to interface stretches the reach of surfactant in oil (without producing precipitation) Long chain n-alcohols ( > 8) Long chain alkylphenols ( > 8) idem slightly ethoxylated (EN < 2) Single chain esters (ethyl oleate) probably other linear lipophilic amphiphiles Graciaa A., et al., Improving Solubilization in Microemulsions with Additives - Part II : Long chain Alcohol as Lipophilic Linkers, Langmuir 9 : (1993) 3

4 19 / 44 Lipophilic Linker Role The L.L. stretches (in situ)... the surfactant hydrophobic tail 20 / 44 Hydrophilic Linker Same role on the water side di-hexyl-sulfosuccinate The L.L. produces a slightly polar zone inside the oil phase, near the interface The H.L. produces a slightly less polar zone in the water phase, close to interface Uchiyama H. et al. Supersolubilization in Chlorinated Hydrocarbon Microemulsions. Solubilization Enhanced by Lipophilic and Hydrophilic Linkers, Industrial & Engineering Chemistry Research 39 : 2704 (2000) Acosta E. et al, The Role of Hydrophilic Linkers, J. Surfactants Detergents, 5: 151 (2002) 21 / 44 Naphtalene Sulfonate = hydrotrope S 3 Na H 3 C H 3 C H 3 C Hydrophilic Linker S 3 Na S 3 Na Di-butyl Naphtalene Sulfonate = hydrophilic surfactant H 3 C-CH 2 -CH 2 -CH 2 H 3 C-CH 2 -CH 2 -CH 2 S 3 Na Mono/Dimethyl Naphtalene Sulfonate = hydrophilic linker 22 / 44 Lipophilic and Hydrophilic Linkers Combining LL and HL increases solubilization performance in many systems : Hydrocarbons, mono, di and triesters, natural oils, tri and tetrachloroethylene (denser-than-water oils), motor oil, terpenes, squalane etc For various applications: Detergency, hard surface cleaning, remediation processes, drilling fluids, completion, spacer and workover fluids, etc Acosta E., et al., Environmental Science Technology 36: (2002) Acosta E., et al., J. Surfactants Detergents, 6: (2003) 23 / 44 Lipophilic and Hydrophilic Linkers 24 / 44 Go-thru amphiphilic Linker oil Lipohilic Linker adsorbed Surfactant Hydrophilic Linker water produce: Better match (oil does not contact water) Continuous polarity variation It extends interactions on both sides of interface (low MW diblock polymer) At low concentration there is no solubility problem Considerable Enhancement of Solubilization LL effect anchored at interface HL effect Jakobs B. et al., Amphiphilic block copolymers as efficiency boosters for microemulsions, Langmuir 15, 6707 (1999) 4

5 25 / / 44 Favorables factors are : continuity in interfacial transition and a good match on both sides 27 / the same effect could be attained with a single molecule : extended surfactant Surfactant + Lipophilic Linker? hydrophobic chain hydrophilic group Extended Surfactant Spacer arm is hydrophobic but slightly polar PLY- PRPYLENE XIDE 28 / 44 Extended Surfactants (1 rst Generation) dodecyl poly-propylene oxide (variable length) ethoxy (2E) sulfate sodium salt Miñana-Perez M. et al., Solubilization of Polar oils in Microemulsion Systems, Progress Colloid Polymer Science, 98 : (1995) 29 / 44 Extended Surfactant Properties depend on When PN increases CMC decreases Cloud Point is lowered Propylene xide Number (PN) ptimum Salinity (3φ) decreases Conclusion: When PN increases surfactant becomes more lipophilic PP chain is part of the "tail" 30 / 44 Extended Surfactant Properties produce a HIGH SLUBILIZATIN and LW TENSIN particularly with natural oils Soya oil = natural triglyceride SP (ml/g) WR = 1 T = 35 C 1.25 wt.% extended Surfactants Ethyl leate Miñana-Perez M. et al., Colloids and Surfaces A. 100 : (1995). Hexadecane Mygyol 812 Soya oil PRPYLENE XIDE NUMBER 5

6 31 / 44 Micelar agregation of extended surfactant 32 / 44 Micelar agregation of extended surfactant Intermediate polarity zone Lipophilic Core Hydrophilic Groups computer simulation courtesy Alvaro Fernández computer simulation courtesy Alvaro Fernández 33 / 44 Potential Applications Single phase water-oil mixtures bladder stone dissolution single phase dressing vegetable oil extraction environmental remediation petroleum well cleaning Microemulsions for injection in blood stream (most pharmaceutical products are oil soluble) Soak-only Detergent Formulation (no stirring required) 34 / 44 ptimize nature and size of the 3 pieces: Adjust structure to oil nature New generation of extended surfactants: Biocompatible (e.g. sugar) polar group Determine mxing rules Conventional + extended surfactants 35 / 44 2 nd Generation of extended surfactants for biocompatible applications nice polar group taylored spacer arm Fatty acid derivative (hydrophobic tail) Physico-chemical Properties of theses Products are under study 36 / 44 Recent Publications Scorzza C. et al., Synthèse de dérivés polypropilèneglycol à tête glucidyl ou ityl comme surfactifs, XVIIº Journées Chimie des Glucides, Tregastel, France, June 1998 Scorzza C. et al., New amphiphilic polypropileneglycol derivatives with carbohydrate polar head, 24º Congr. An. Comite Español Detergencia, Barcelona, Spain, May 1999 Goethals G. et al., Spacer arm influence on glucido-amphiphilic compound properties, III International Meeting of the Portuguese Carbohydrate Chemistry Group and I Iberian Carbohydrate Meeting, Aveiro, Portugal, Sept , 1999 Goethals G. et al., Carbohydrate Polymers, 45: (2001) Salager et al., Enhancing Solubilization in Microemulsions. From Classic trends to Novel Extended Surfactant Structures, Pubs 14th International Symposium Surfactants in Solution, Barcelona, Spain, June 9-14, 2002 Scorzza C. et al., J. Surfactants Sabatini & Detergents 5: (2002) Scorzza C. et al., J. Surfactants & Detergents 5: (2002) Fernandez A. et al., J. Surfactants & Detergents 8: (2005) Fernandez A. et al., J. Surfactants & Detergents 8: (2005) Salager J. L. et al. Enhancing Solubilization in Microemulsion State of the Art, J. Surfactants Detergents 8: 3-21 (2005). 2 publications waiting. Goethals G. et al., Spacer Arm influence on Glucido-amphiphilic Compound Properties, Carbohydrate Polymers, 45 : (2001) 6

7 37 / 44 Semicommercially available compounds 38 / 44 Polar heads (simple or combined) currently synthesized and tested in Lab. FIRP Sasol (Condavista) Seppic Hunstman Linear C12-C18 chain attached at end or center saturated or unsaturated Spacer to be tested Poly C2/C3/C4 Cellulose compounds Gradual polarity change sulfate ethoxy-sulfate carboxylate ethoxy-carboxylate C6 sugars xylitol (C5 sugar) di-xylitol ethoxy-xylitol carboxylate & xylitol carboxylate & glucose thers 39 / 44 extended soaps 40 / 44 Hydrophilic Linker Lipophilic tail Lipophili c linker spacer Hydrophilic head R= alkyl tail R-(--PP) n --Et--Et Lipophilic Linker H H H Hydrophilic linker Facilitates synthesis extended glycoside Sugar polar group H 41 / / 44 R = dodecyl = Xylitol extended di-xylitol Increase in water solubility and HLB 7

8 43 / / 44 Current best solubilization : 1 gram of high performance extended surfactant might solubilize almost 50 g of hexadecane or ethyl oleate and 15 g of C18 triglyceride 8

Normal Case (Winsor) What is Solubilization? All phase diagrams contain a. in all cases

Normal Case (Winsor) What is Solubilization? All phase diagrams contain a. in all cases 1 / 72 UNICAMP Brazil, November 3, 2009 2 / 72 What is Solubilization? it is the ability of a surfactant to produce a monophasic system containing both oil and water Principles and Recent Advances with

More information

A Novel Sulfonated Alkyl Ester Surfactant to Reduce Oil-Water Interfacial Tensions in Wide Range Salinity with Monovalent and Divalent Ions

A Novel Sulfonated Alkyl Ester Surfactant to Reduce Oil-Water Interfacial Tensions in Wide Range Salinity with Monovalent and Divalent Ions Modern Applied Science; Vol. 10, No. 1; 2016 ISSN 1913-1844 E-ISSN 1913-1852 Published by Canadian Center of Science and Education A Novel Sulfonated Alkyl Ester Surfactant to Reduce Oil-Water Interfacial

More information

MICROEMULSION FORMATION OF VEGETABLE OILS USING MIXED EXTENDED SURFACTANT FOR CLEANING APPLICATIONS

MICROEMULSION FORMATION OF VEGETABLE OILS USING MIXED EXTENDED SURFACTANT FOR CLEANING APPLICATIONS MICROEMULSION FORMATION OF VEGETABLE OILS USING MIXED EXTENDED SURFACTANT FOR CLEANING APPLICATIONS Siriluk Jariyawattanarat a, Chodchanok Attapong b, David A. Sabatini c, John F. Scamehorn c, Ampira Charoensaeng*,a

More information

Characterization and Emulsification Properties of Rhamnolipid and Sophorolipid Biosurfactants and Their Applications

Characterization and Emulsification Properties of Rhamnolipid and Sophorolipid Biosurfactants and Their Applications Int. J. Mol. Sci. 2011, 12, 1232-1244; doi:10.3390/ijms12021232 Review OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Characterization and Emulsification

More information

Colloid chemistry. Lecture 10: Surfactants

Colloid chemistry. Lecture 10: Surfactants Colloid chemistry Lecture 10: Surfactants Applications of surfactants: cleaning/detergents (40%); textiles; cosmetics; pharmacy; paint; food; etc. Etymology Surfactant micelles surfactant molecule spherical

More information

Self-assembled nanostructures soft and hard matter

Self-assembled nanostructures soft and hard matter Hands-On Nano-Technology course Nano-Science Center University of Copenhagen Self-assembled nanostructures soft and hard matter One-day workshop, August 12, 2004 Division of Physical Chemistry 1, Center

More information

Surfactants. The Basic Theory. Surfactants (or surface active agents ): are organic compounds with at least one lyophilic. Paints and Adhesives

Surfactants. The Basic Theory. Surfactants (or surface active agents ): are organic compounds with at least one lyophilic. Paints and Adhesives Surfactants Surfactants (or surface active agents ): are organic compounds with at least one lyophilic ( solvent-loving ) group and one lyophobic ( solvent-fearing ) group in the molecule. In the simplest

More information

Colloid chemistry. Lecture 13: Emulsions

Colloid chemistry. Lecture 13: Emulsions Colloid chemistry Lecture 13: Emulsions Emulsions food cosmetics pharmaceutics biological systems bituminous carpet (asphalt) etc. Emulsion suitable for intravenous injection. Balm: Water in oil emulsion

More information

AADE-02-DFWM-HO-24. Copyright 2002 AADE Technical Conference

AADE-02-DFWM-HO-24. Copyright 2002 AADE Technical Conference AADE-02-DFWM-HO-24 Invert Emulsion Drilling Fluids: Effect of Emulsifier when Changing Synthetic and Base Oil Lirio Quintero, Dennis Clapper, and Alex McKellar, Baker Hughes INTEQ Copyright 2002 AADE Technical

More information

SYSTEMS CONTAINING MIXTURES OF EXTENDED SURFACTANTS AND CONVENTIONAL NONIONICS. PHASE BEHAVIOR AND SOLUBILIZATION IN MICROEMULSION

SYSTEMS CONTAINING MIXTURES OF EXTENDED SURFACTANTS AND CONVENTIONAL NONIONICS. PHASE BEHAVIOR AND SOLUBILIZATION IN MICROEMULSION 4th World Surfactants Congress (Barcelona, Spain, June 3-7, 1996) Proceedings Vol. 2, 226-234. Edited for A.E.P.S.A.T. by Roger de Llúria, Barcelona, Spain, 1996. SYSTEMS CONTAINING MIXTURES OF EXTENDED

More information

Physical Pharmacy. Interfacial phenomena. Khalid T Maaroof MSc. Pharmaceutical sciences School of pharmacy Pharmaceutics department

Physical Pharmacy. Interfacial phenomena. Khalid T Maaroof MSc. Pharmaceutical sciences School of pharmacy Pharmaceutics department Physical Pharmacy Interfacial phenomena Khalid T Maaroof MSc. Pharmaceutical sciences School of pharmacy Pharmaceutics department 1 Introduction The boundary between two phases is generally described as

More information

Colloid Chemistry. Lecture #2 Association colloid

Colloid Chemistry. Lecture #2 Association colloid Colloid Chemistry Lecture #2 Association colloid 1 https://ilustracionmedica.wordpress.com/2014/08/27/fisicos-haciendo-medicina-john-tyndall/ Solution Classical vs. Colloid solution Tyndall effect Increased

More information

3.1.3 Lipids. Source: AQA Spec

3.1.3 Lipids. Source: AQA Spec alevelbiology.co.uk SPECIFICATION Triglycerides and phospholipids are two groups of lipid. Triglycerides are formed by the condensation of one molecule of glycerol and three molecules of fatty acid. A

More information

Self-Assembly. Lecture 3 Lecture 3 Surfactants Self-Assembly

Self-Assembly. Lecture 3 Lecture 3 Surfactants Self-Assembly Self-Assembly Lecture 3 Lecture 3 Surfactants Self-Assembly Anionic surfactants unsaturated omega-3 3 fatty acids rd carbon from the metyl end has double bond saturated Non-ionic surfactants Cationic surfactants

More information

A Study of Performance Properties of Alkyl Poly(glucoside) and Sodium Dodecylsulfate in their Mixed Systems

A Study of Performance Properties of Alkyl Poly(glucoside) and Sodium Dodecylsulfate in their Mixed Systems J. Surface Sci. Technol., Vol 22, No. 1-2, pp. 75-88, 2006 2006 Indian Society for Surface Science and Technology, India A Study of Performance Properties of Alkyl Poly(glucoside) and Sodium Dodecylsulfate

More information

Name the ester produced when methanol and pentanoic acid react. methyl pentanoate. Name the type of reaction used to make an ester

Name the ester produced when methanol and pentanoic acid react. methyl pentanoate. Name the type of reaction used to make an ester 1 Name the ester produced when methanol and pentanoic acid react methyl pentanoate 2 Name the type of reaction used to make an ester condensation reaction 3 Name the by-product of the reaction used to

More information

Formulating Cleaning Products with Microemulsions. George Smith, Promod Kumar, Duy Nguyen, Huntsman Corporation, Austin, TX, USA

Formulating Cleaning Products with Microemulsions. George Smith, Promod Kumar, Duy Nguyen, Huntsman Corporation, Austin, TX, USA Abstract Formulating Cleaning Products with Microemulsions. George Smith, Promod Kumar, Duy Nguyen, Huntsman Corporation, Austin, TX, USA Microemulsions are thermodynamically stable, optically isotropic

More information

Introduction to the Study of Lipids

Introduction to the Study of Lipids Introduction to the Study of Lipids Factors to Consider in the Study of Biomolecules What are the features of the basic building blocks? (ex: monosaccharides, alcohols, fatty acids, amino acids) 1) General

More information

Calderglen High School CfE Higher Chemistry. Nature s Chemistry. Soaps, Detergents and Emulsions

Calderglen High School CfE Higher Chemistry. Nature s Chemistry. Soaps, Detergents and Emulsions Calderglen High School CfE Higher Chemistry Nature s Chemistry Soaps, Detergents and Emulsions Page 1 of 12 No. Learning Outcome Understanding? 1 Soaps are produced by the alkaline hydrolysis of the ester

More information

The Function of Emollients in Skin Care

The Function of Emollients in Skin Care The Function of Emollients in Skin Care Benjamin Schwartz Ontario SCC Education Day September 18, 2018 Lipid knowledge for the personal care industry Emollient - definition Wikipedia: complex mixtures

More information

SP Technical Research Institute of Sweden

SP Technical Research Institute of Sweden SP Technical Research Institute of Sweden 10:45 Kemi Hur fungerar egentligen de olika kemikalierna i rengöringsmedel? Mikael Kjellin från SP och Anders Karlsson, NVADAN Important parameters for Cleaning

More information

Modern Aspects of Colloid Science MICELLES

Modern Aspects of Colloid Science MICELLES Modern Aspects of Colloid Science MICELLES critical micelle concentration (CMC) micellar shape determination of critical micelle concentration purity of surfactants Krafft temperature micellar equilibria

More information

What is the intermolecular force present in these molecules? A) London B) dipole-dipole C) hydrogen bonding D) ion-dipole E) None. D.

What is the intermolecular force present in these molecules? A) London B) dipole-dipole C) hydrogen bonding D) ion-dipole E) None. D. REVIEW SHEET CHP 7, FRST AND DEAL 1. (7.1) Types of Attractive Forces (Intermolecular forces (IMF)). IMF s are attractive forces between molecules due to electrostatic attraction. Therefore a molecule

More information

Synthesis of Cationic Novel Bolaform Surfactant and Effect of Alkyl Group Chain Length on Polar Head Group

Synthesis of Cationic Novel Bolaform Surfactant and Effect of Alkyl Group Chain Length on Polar Head Group Synthesis of Cationic Novel Bolaform Surfactant and Effect of Alkyl Group Chain Length on Polar Head Group 1. Propane-1,3-bis(trimethylammonium bromide) and Propane-1,3-bis(triethylammonium bromide) V.

More information

Industrial Crops and Products

Industrial Crops and Products Industrial Crops and Products 43 (2013) 15 24 Contents lists available at SciVerse ScienceDirect Industrial Crops and Products journa l h o me page: www.elsevier.com/locate/indcrop Formulation and phase

More information

The Chemical Building Blocks of Life. Chapter 3

The Chemical Building Blocks of Life. Chapter 3 The Chemical Building Blocks of Life Chapter 3 Biological Molecules Biological molecules consist primarily of -carbon bonded to carbon, or -carbon bonded to other molecules. Carbon can form up to 4 covalent

More information

OCR (A) Biology A-level

OCR (A) Biology A-level OCR (A) Biology A-level Topic 2.2: Biological molecules Notes Water Water is a very important molecule which is a major component of cells, for instance: Water is a polar molecule due to uneven distribution

More information

Name a property of. water why is it necessary for life?

Name a property of. water why is it necessary for life? 02.09.18 Name a property of + water why is it necessary for life? n Cohesion n Adhesion n Transparency n Density n Solvent n Heat capacity + Macromolecules (2.3 & some of 2.4) + Organic Molecules All molecules

More information

Biological Molecules

Biological Molecules The Chemical Building Blocks of Life Chapter 3 Biological molecules consist primarily of -carbon bonded to carbon, or -carbon bonded to other molecules. Carbon can form up to 4 covalent bonds. Carbon may

More information

BIOPHYSICS II. By Prof. Xiang Yang Liu Department of Physics,

BIOPHYSICS II. By Prof. Xiang Yang Liu Department of Physics, BIOPHYSICS II By Prof. Xiang Yang Liu Department of Physics, NUS 1 Hydrogen bond and the stability of macromolecular structure Membrane Model Amphiphilic molecule self-assembly at the surface and din the

More information

Classification of Surfactants Using the Phase Inversion Temperature: Extension of the Method for Comparing Oils

Classification of Surfactants Using the Phase Inversion Temperature: Extension of the Method for Comparing Oils Nov. 227 2 Classification of Surfactants Using the Phase Inversion Temperature: Extension of the Method for Comparing ils Christel Pierlot J. ntiveros, M. Catté, V. Molinier, J.L. Salager, J.M. Aubry Université

More information

Effect of Surfactant Tail Structure on Phase Behavior of Branched and Linear Alkylbenzene Sulfonate in Water and Oil Ternary Systems

Effect of Surfactant Tail Structure on Phase Behavior of Branched and Linear Alkylbenzene Sulfonate in Water and Oil Ternary Systems Effect of Surfactant Tail Structure on Phase Behavior of Branched and Linear Alkylbenzene Sulfonate in Water and Oil Ternary Systems Abeer Al Bawab 1, 2, Ayat Bozeya 2, Fadwa Odeh 2 10.7603/s40837-014-0005-5

More information

Good Afternoon! 11/30/18

Good Afternoon! 11/30/18 Good Afternoon! 11/30/18 1. The term polar refers to a molecule that. A. Is cold B. Has two of the same charges C. Has two opposing charges D. Contains a hydrogen bond 2. Electrons on a water molecule

More information

Solubility of Betulinic Acid in Microemulsion System: (Part 2)

Solubility of Betulinic Acid in Microemulsion System: (Part 2) Est. 1984 ORIENTAL JOURNAL OF CHEMISTRY An International Open Free Access, Peer Reviewed Research Journal www.orientjchem.org ISSN: 0970-020 X CODEN: OJCHEG 2011, Vol. 27, No. (3): Pg. 959-965 Solubility

More information

Lecture Series 2 Macromolecules: Their Structure and Function

Lecture Series 2 Macromolecules: Their Structure and Function Lecture Series 2 Macromolecules: Their Structure and Function Reading Assignments Read Chapter 4 (Protein structure & Function) Biological Substances found in Living Tissues The big four in terms of macromolecules

More information

CH 3. Lipids CHAPTER SUMMARY

CH 3. Lipids CHAPTER SUMMARY H 3 C H 3 C 15 H 3 C H Views of Cholesterol APTER SUMMARY 15.1 The Nature of can best be defined as biomolecules which are soluble to a great extent in solvents. In contrast to carbohydrates, proteins

More information

CHEM 470 Surfactant Science

CHEM 470 Surfactant Science CHEM 470 Surfactant Science As a chemist recently recruited to cosmetic industry, or as a recent chemistry graduate, you may be surprised to discover that the technical foundation of the personal-care

More information

Biological Molecules

Biological Molecules Chemical Building Blocks of Life Chapter 3 Biological Molecules Biological molecules consist primarily of -carbon bonded to carbon, or -carbon bonded to other molecules. Carbon can form up to 4 covalent

More information

PURPOSE: To synthesize soap from fat and lye. To observe the physical and chemical properties of soap.

PURPOSE: To synthesize soap from fat and lye. To observe the physical and chemical properties of soap. FATS AND SAP: SAPNIFIATIN PURPSE: To synthesize soap from fat and lye. To observe the physical and chemical properties of soap. FATTY AIDS AND FATS: Fats and oils are mixtures of complex esters. Fat esters

More information

A Concise Review on Surfactants and Its Significance

A Concise Review on Surfactants and Its Significance International Journal of Applied Chemistry. ISSN 0973-1792 Volume 13, Number 3 (2017) pp. 663-672 Research India Publications http://www.ripublication.com A Concise Review on Surfactants and Its Significance

More information

Biology: Life on Earth Chapter 3 Molecules of life

Biology: Life on Earth Chapter 3 Molecules of life Biology: Life on Earth Chapter 3 Molecules of life Chapter 3 Outline 3.1 Why Is Carbon So Important in Biological Molecules? p. 38 3.2 How Are Organic Molecules Synthesized? p. 38 3.3 What Are Carbohydrates?

More information

Introduction of emulsions Effect of polysaccharides on emulsion stability Use of polysaccharides as emulsifier. Polysaccharides in Food Emulsions

Introduction of emulsions Effect of polysaccharides on emulsion stability Use of polysaccharides as emulsifier. Polysaccharides in Food Emulsions 1 Introduction of emulsions Effect of polysaccharides on emulsion stability Use of polysaccharides as emulsifier 2 Basic concepts of emulsions Interfacial tension (): the force that operates on an interface

More information

The Star of The Show (Ch. 3)

The Star of The Show (Ch. 3) The Star of The Show (Ch. 3) Why study Carbon? All of life is built on carbon Cells ~72% 2 O ~25% carbon compounds carbohydrates lipids proteins nucleic acids ~3% salts Na, Cl, K Chemistry of Life Organic

More information

Chapter Three (Biochemistry)

Chapter Three (Biochemistry) Chapter Three (Biochemistry) 1 SECTION ONE: CARBON COMPOUNDS CARBON BONDING All compounds can be classified in two broad categories: organic compounds and inorganic compounds. Organic compounds are made

More information

Chapter 2 The Chemistry of Life Part 2

Chapter 2 The Chemistry of Life Part 2 Chapter 2 The Chemistry of Life Part 2 Carbohydrates are Polymers of Monosaccharides Three different ways to represent a monosaccharide Carbohydrates Carbohydrates are sugars and starches and provide

More information

The four levels of protein structure are: primary structure, secondary structure, tertiary structure, and quaternary structure.

The four levels of protein structure are: primary structure, secondary structure, tertiary structure, and quaternary structure. Proteins Proteins are organic complex nitrogenous compounds of high molecular weight, formed of C, H, O and N. They are formed of a number of amino acids linked together by peptide linkage [-CO-NH-]. Proteins

More information

The main biological functions of the many varied types of lipids include: energy storage protection insulation regulation of physiological processes

The main biological functions of the many varied types of lipids include: energy storage protection insulation regulation of physiological processes Big Idea In the biological sciences, a dehydration synthesis (condensation reaction) is typically defined as a chemical reaction that involves the loss of water from the reacting molecules. This reaction

More information

Inorganic compounds: Usually do not contain carbon H 2 O Ca 3 (PO 4 ) 2 NaCl Carbon containing molecules not considered organic: CO 2

Inorganic compounds: Usually do not contain carbon H 2 O Ca 3 (PO 4 ) 2 NaCl Carbon containing molecules not considered organic: CO 2 Organic Chemistry The study of carbon-containing compounds and their properties. Biochemistry: Made by living things All contain the elements carbon and hydrogen Inorganic: Inorganic compounds: All other

More information

Efficiency of Amphoteric Surfactants as Flow Improvers and Pour Point Depressants

Efficiency of Amphoteric Surfactants as Flow Improvers and Pour Point Depressants Journal of Power and Energy Engineering, 13, 1, 90-94 http://dx.doi.org/.4236/jpee.13.0 Published Online October 13 (http://www.scirp.org/journal/jpee) Efficiency of Amphoteric Surfactants as Flow Improvers

More information

Carbon. Isomers. The Chemical Building Blocks of Life

Carbon. Isomers. The Chemical Building Blocks of Life The Chemical Building Blocks of Life Carbon Chapter 3 Framework of biological molecules consists primarily of carbon bonded to Carbon O, N, S, P or H Can form up to 4 covalent bonds Hydrocarbons molecule

More information

Paper 4. Biomolecules and their interactions Module 22: Aggregates of lipids: micelles, liposomes and their applications OBJECTIVE

Paper 4. Biomolecules and their interactions Module 22: Aggregates of lipids: micelles, liposomes and their applications OBJECTIVE Paper 4. Biomolecules and their interactions Module 22: Aggregates of lipids: micelles, liposomes and their applications OBJECTIVE The main aim of this module is to introduce the students to the types

More information

2.3 Carbon-Based Molecules CARBON BASED MOLECULES

2.3 Carbon-Based Molecules CARBON BASED MOLECULES CARBON BASED MOLECULES KEY CONCEPTS Carbon-based molecules are the foundation of life. Lipids are one class of organic molecules. This group includes fats, oils, waxes, and steroids. Lipids are made of

More information

New generation of phosphate-esters for MWF: balancing performance, labeling and economics.

New generation of phosphate-esters for MWF: balancing performance, labeling and economics. New generation of phosphate-esters for MWF: balancing performance, labeling and economics. Claude-Emmanuel Hédoire 1), 1) Solvay Novecare, Aubervilliers, France 1 Introduction Phosphate-esters are well

More information

Macromolecules. 3. There are several levels of protein structure, the most complex of which is A) primary B) secondary C) tertiary D) quaternary

Macromolecules. 3. There are several levels of protein structure, the most complex of which is A) primary B) secondary C) tertiary D) quaternary Macromolecules 1. If you remove all of the functional groups from an organic molecule so that it has only carbon and hydrogen atoms, the molecule become a molecule. A) carbohydrate B) carbonyl C) carboxyl

More information

BIOLOGY 111. CHAPTER 2: The Chemistry of Life Biological Molecules

BIOLOGY 111. CHAPTER 2: The Chemistry of Life Biological Molecules BIOLOGY 111 CHAPTER 2: The Chemistry of Life Biological Molecules The Chemistry of Life : Learning Outcomes 2.4) Describe the significance of carbon in forming the basis of the four classes of biological

More information

Lipids: Fats, Oils & Waxes: AP Biology

Lipids: Fats, Oils & Waxes: AP Biology Lipids: Fats, Oils & Waxes: Lipids long term energy storage concentrated energy *9 Cal/gram Lipids: Triglycerides Lipids are composed of C, H, O u long hydrocarbon chains (H-C) Family groups u fats u phospholipids

More information

Biomolecules. Biomolecules. Carbohydrates. Biol 219 Lec 3 Fall Polysaccharides. Function: Glucose storage Fig. 2.2

Biomolecules. Biomolecules. Carbohydrates. Biol 219 Lec 3 Fall Polysaccharides. Function: Glucose storage Fig. 2.2 Biomolecules Biomolecules Monomers Polymers Carbohydrates monosaccharides polysaccharides fatty acids triglycerides Proteins amino acids polypeptides Nucleic Acids nucleotides DNA, RNA Carbohydrates Carbohydrates

More information

Biology Chapter 2 Review

Biology Chapter 2 Review Biology Chapter 2 Review Vocabulary: Define the following words on a separate piece of paper. Element Compound Ion Ionic Bond Covalent Bond Molecule Hydrogen Bon Cohesion Adhesion Solution Solute Solvent

More information

Surfactant Aggregation

Surfactant Aggregation Surfactant Aggregation Background What Is A Surfactant? S u r f a c t a n t Surface active agent... A chemical that, when dissolved in water, moves toward "surfaces" What Does A Surfactant Do?... Cleans

More information

WHAT IS A LIPID? OBJECTIVE The objective of this worksheet is to understand the structure and function of lipids

WHAT IS A LIPID? OBJECTIVE The objective of this worksheet is to understand the structure and function of lipids WHAT IS A LIPID? OBJECTIVE The objective of this worksheet is to understand the structure and function of lipids PART A: Understanding Lipids Lipids are more commonly known as fats and include triglycerides,

More information

Lecture Series 2 Macromolecules: Their Structure and Function

Lecture Series 2 Macromolecules: Their Structure and Function Lecture Series 2 Macromolecules: Their Structure and Function Reading Assignments Read Chapter 4 (Protein structure & Function) Biological Substances found in Living Tissues The big four in terms of macromolecules

More information

Lecture Series 2 Macromolecules: Their Structure and Function

Lecture Series 2 Macromolecules: Their Structure and Function Lecture Series 2 Macromolecules: Their Structure and Function Reading Assignments Read Chapter 4 (Protein structure & Function) Biological Substances found in Living Tissues The big four in terms of macromolecules

More information

Lipids and Membranes

Lipids and Membranes Lipids Lipids are hydrophobic or amphiphilic insoluble in water soluble in organic solvents soluble in lipids Lipids are used as energy storage molecules structural components of membranes protective molecules

More information

2.1.1 Biological Molecules

2.1.1 Biological Molecules 2.1.1 Biological Molecules Relevant Past Paper Questions Paper Question Specification point(s) tested 2013 January 4 parts c and d p r 2013 January 6 except part c j k m n o 2012 June 1 part ci d e f g

More information

A. Lipids: Water-Insoluble Molecules

A. Lipids: Water-Insoluble Molecules Biological Substances found in Living Tissues Lecture Series 3 Macromolecules: Their Structure and Function A. Lipids: Water-Insoluble Lipids can form large biological molecules, but these aggregations

More information

APPLIED CHEMISTRY SURFACE TENSION, SURFACTANTS TYPES OF SURFACTANTS & THEIR USES IN TEXTILE PROCESSING

APPLIED CHEMISTRY SURFACE TENSION, SURFACTANTS TYPES OF SURFACTANTS & THEIR USES IN TEXTILE PROCESSING APPLIED CHEMISTRY SURFACE TENSION, SURFACTANTS TYPES OF SURFACTANTS & THEIR USES IN TEXTILE PROCESSING Lecture No. 13 & 14 2 Surface Tension This property of liquids arises from the intermolecular forces

More information

CHAPTER 2- BIOCHEMISTRY I. WATER (VERY IMPORTANT TO LIVING ORGANISMS) A. POLAR COMPOUND- 10/4/ H O KENNEDY BIOLOGY 1AB

CHAPTER 2- BIOCHEMISTRY I. WATER (VERY IMPORTANT TO LIVING ORGANISMS) A. POLAR COMPOUND- 10/4/ H O KENNEDY BIOLOGY 1AB CHAPTER 2- BIOCHEMISTRY KENNEDY BIOLOGY 1AB I. WATER (VERY IMPORTANT TO LIVING ORGANISMS) WATER S UNIQUE PROPERTIES MAKE IT ESSENTIAL FOR ALL LIFE FUNCTIONS IT IS POLAR, AND HAS BOTH ADHESIVE AND COHESIVE

More information

Lesson 2. Biological Molecules. Introduction to Life Processes - SCI 102 1

Lesson 2. Biological Molecules. Introduction to Life Processes - SCI 102 1 Lesson 2 Biological Molecules Introduction to Life Processes - SCI 102 1 Carbon in Biological Molecules Organic molecules contain carbon (C) and hydrogen (H) Example: glucose (C 6 H 12 O 6 ) Inorganic

More information

Characterisation of crude palm oil O/W emulsion produced with Tween 80 and potential in residual oil recovery of palm pressed mesocarp fibre

Characterisation of crude palm oil O/W emulsion produced with Tween 80 and potential in residual oil recovery of palm pressed mesocarp fibre IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Characterisation of crude palm oil O/W emulsion produced with Tween 80 and potential in residual oil recovery of palm pressed mesocarp

More information

CHAPTER 5 CONCLUSIONS

CHAPTER 5 CONCLUSIONS CHAPTER 5 CONCLUSIONS /166/ 5.0 Summary The leather industry uses a quite number of chemicals during various steps involved in the conversion of raw hides and skins to finished leather. Surfactants are

More information

Carbohydrates and Lipids

Carbohydrates and Lipids Carbohydrates and Lipids Chapter 5: Macromolecules Macromolecules Smaller organic molecules join together to form larger molecules o macromolecules 4 major classes of macromolecules: o Carbohydrates o

More information

Carboxylic Acid Derivatives

Carboxylic Acid Derivatives arboxylic Acid Derivatives The most important derivatives of carboxylic acids are l " ' ' acid halide acid anhydride an ester an amide Although not direct derivatives, nitriles, -, are related to carboxylic

More information

Chapter 20 Lipids. Organic and Biochem

Chapter 20 Lipids. Organic and Biochem Chapter 20 Lipids rganic and Biochem 20.1 Introduction Found in living organisms Insoluble in water but Soluble in non-polar substances Example of Lipid Solvent: diethyl ether Polar groups in lipids are

More information

Biomolecules. Unit 3

Biomolecules. Unit 3 Biomolecules Unit 3 Atoms Elements Compounds Periodic Table What are biomolecules? Monomers vs Polymers Carbohydrates Lipids Proteins Nucleic Acids Minerals Vitamins Enzymes Triglycerides Chemical Reactions

More information

2.2 Properties of Water

2.2 Properties of Water 2.2 Properties of Water I. Water s unique properties allow life to exist on Earth. A. Life depends on hydrogen bonds in water. B. Water is a polar molecule. 1. Polar molecules have slightly charged regions

More information

Continuous process of detergents production on the basis of alkylarylsulfonic acids

Continuous process of detergents production on the basis of alkylarylsulfonic acids MATERIAL FOR EXPERIMENT NO. 09 Continuous process of detergents production on the basis of alkylarylsulfonic acids based on: Podręcznik do ćwiczeń z technologii chemicznej (Ed. T. Kasprzycka-Guttman),

More information

Chemistry 1050 Exam 3 Study Guide

Chemistry 1050 Exam 3 Study Guide Chapter 12 Chemistry 1050 Exam 3 Study Guide 12.1 a) Identify alkenes, alkynes and aromatics as unsaturated hydrocarbons. Determine the number of hydrogen atoms needed to complete an alkene structure.

More information

Unit 3: Chemistry of Life Mr. Nagel Meade High School

Unit 3: Chemistry of Life Mr. Nagel Meade High School Unit 3: Chemistry of Life Mr. Nagel Meade High School IB Syllabus Statements 3.2.1 Distinguish between organic and inorganic compounds. 3.2.2 Identify amino acids, glucose, ribose and fatty acids from

More information

Chapter 3 Guided Reading Notes Carbon and the Molecular Diversity of Life

Chapter 3 Guided Reading Notes Carbon and the Molecular Diversity of Life AP Biology Name: Block Chapter 3 Guided Reading Notes Carbon and the Molecular Diversity of Life Most of this chapter is new material. We will discuss it all in detail. Section 1 1. Make an electron distribution

More information

Interactions between Bisphosphate. Geminis and Sodium Lauryl Ether

Interactions between Bisphosphate. Geminis and Sodium Lauryl Ether Chapter 5 Interactions between Bisphosphate Geminis and Sodium Lauryl Ether Sulphate 110 5.1 Introduction The physiochemical and surface active properties of mixed surfactants are of more interest and

More information

Dispersants and Related Oil Spill Technologies at the Nanoscale!

Dispersants and Related Oil Spill Technologies at the Nanoscale! vj@tulane.edu Dispersants and Related Oil Spill Technologies at the Nanoscale! Vijay T. John Department of Chemical and Biomolecular Engineering Tulane University Funding: Gulf of Mexico Research Initiative

More information

Development of heavy-duty degreasers with low CLP labelling Microemulsions Part II

Development of heavy-duty degreasers with low CLP labelling Microemulsions Part II Development of heavy-duty degreasers with low CLP labelling Microemulsions Part II Alan Mortensen, Ph.D. 07-05-2015 1 Classification, Labelling and Packaging (CLP) New symbols and phrases (Hazard and Precautionary)

More information

Humic acid - ability to use as natural surfactants Jelena Avdalović 1, Srđan Miletić 2, Vladimir Beškoski 2, Mila Ilić 2, Gordana-Gojgić Cvijović 2, Miroslav Vrvić 3 1 Institute for Technology of Nuclear

More information

Chemistry 1506: Allied Health Chemistry 2. Section 8: Lipids. Biochemical Esters and Hydrocarbons. Outline

Chemistry 1506: Allied Health Chemistry 2. Section 8: Lipids. Biochemical Esters and Hydrocarbons. Outline hemistry 1506 Dr. unter s lass Section 8 Notes - Page 1/21 hemistry 1506: Allied ealth hemistry 2 Section 8: Lipids Biochemical Esters and ydrocarbons utline SETIN 8.1 INTRDUTIN...2 SETIN SETIN SETIN 8.2

More information

EXPERIMENT 9 LIPIDS: DETERMINATION OF FAT IN FRENCH FRIES. a fat molecule. Materials Needed

EXPERIMENT 9 LIPIDS: DETERMINATION OF FAT IN FRENCH FRIES. a fat molecule. Materials Needed EXPERIMENT 9 LIPIDS: DETERMINATIN F FAT IN FRENCH FRIES Materials Needed French fries or potato chips 1 capillary tube dichloromethane boiling stones 2 Pasteur pipets 1 applicator stick Br 2 / CH 2 Cl

More information

Chemistry of Carbon. All living things rely on one particular type of molecule: carbon

Chemistry of Carbon. All living things rely on one particular type of molecule: carbon Ach Chemistry of Carbon All living things rely on one particular type of molecule: carbon Carbon atom with an outer shell of four electrons can form covalent bonds with four atoms. In organic molecules,

More information

Macromolecules. You are what you eat! Chapter 5. AP Biology

Macromolecules. You are what you eat! Chapter 5. AP Biology Macromolecules You are what you eat! Chapter 5 AP Biology Organic Compounds Contain bonds between CARBON glycosidic bond AP Biology Carbohydrates Structure / monomer u monosaccharide Function u energy

More information

3150:112 SAMPLE TEST 2. Print out a copy Answer the questions on your own. Check the answers at GOBC Ans.pdf. Good Luck!

3150:112 SAMPLE TEST 2. Print out a copy Answer the questions on your own. Check the answers at GOBC Ans.pdf. Good Luck! SAMPLE TEST 2 3150:112 Print out a copy Answer the questions on your own. Check the answers at GOBC Ans.pdf. Good Luck! QUESTIONS 1-3 REFER TO TE FOLLOWING: A. C 2 O O B. C 2 O O O C 2 O C. O C 2 O 1.

More information

Emulsions. Purpose of emulsions and of emulsification:

Emulsions. Purpose of emulsions and of emulsification: Pharmacist Ghada Hamid Emulsions Emulsion is a dispersion in which the dispersed phase is composed of small globules of a liquid distributed throughout a vehicle in which it is immiscible. The dispersed

More information

Biopharmaceutics Dosage form factors influencing bioavailability Lec:5

Biopharmaceutics Dosage form factors influencing bioavailability Lec:5 Biopharmaceutics Dosage form factors influencing bioavailability Lec:5 Ali Y Ali BSc Pharmacy MSc Industrial Pharmaceutical Sciences Dept. of Pharmaceutics School of Pharmacy University of Sulaimani 09/01/2019

More information

All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds:

All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds: Organic Chemistry All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds: Do not contain carbon Organic compounds

More information

Reading. Learning Objectives. How are macromolecules assembled? 8. Macromolecules I. Contents

Reading. Learning Objectives. How are macromolecules assembled? 8. Macromolecules I. Contents Contents 1 Reading 2 Learning Objectives 3 How are macromolecules assembled? 4 Carbohydrates 4.1 Structural Carbohydrates 5 Lipids 5.1 Fats/Triglycerides 5.1.1 Saturated versus Unsaturated fats 5.2 Phospholipids

More information

Learning Target: Describe characteristics and functions of carbohydrates, lipids, and proteins. Compare and contrast the classes of organic

Learning Target: Describe characteristics and functions of carbohydrates, lipids, and proteins. Compare and contrast the classes of organic Learning Target: Describe characteristics and functions of carbohydrates, lipids, and proteins. Compare and contrast the classes of organic compounds. What are inorganic molecules? Molecules that CANNOT

More information

Large Biological Molecules Multiple Choice Review

Large Biological Molecules Multiple Choice Review New Jersey enter for Teaching and Learning Slide 1 / 43 Progressive Science Initiative This material is made freely available at www.njctl.org and is intended for the non-commercial use of students and

More information

Biological Molecules

Biological Molecules Why? Biological Molecules What are the building blocks of life? From the smallest single-celled organism to the tallest tree, all life depends on the properties and reactions of four classes of organic

More information

6/9/2015. Unit 15: Organic Chemistry Lesson 15.2: Substituted Hydrocarbons & Functional Groups

6/9/2015. Unit 15: Organic Chemistry Lesson 15.2: Substituted Hydrocarbons & Functional Groups 1-chloropropane 2-methylpropane 1-iodobutane Ethanoic Acid Unit 15: Organic Chemistry Lesson 15.2: Substituted Hydrocarbons & Functional Groups 43 It Ain t Just Hydrocarbons There are all sorts of organic

More information

Chemistry 506: Allied Health Chemistry 2. Chapter 17: Lipids. Biochemical Esters and Hydrocarbons

Chemistry 506: Allied Health Chemistry 2. Chapter 17: Lipids. Biochemical Esters and Hydrocarbons hemistry 506 Dr. unter s lass hapter 17. hemistry 506: Allied ealth hemistry 2 1 hapter 17: Lipids Biochemical Esters and ydrocarbons Introduction to General, rganic & Biochemistry, 5 th Edition by Bettelheim

More information

BIOCHEMISTRY. How Are Macromolecules Formed? Dehydration Synthesis or condensation reaction Polymers formed by combining monomers and removing water.

BIOCHEMISTRY. How Are Macromolecules Formed? Dehydration Synthesis or condensation reaction Polymers formed by combining monomers and removing water. BIOCHEMISTRY Organic compounds Compounds that contain carbon are called organic. Inorganic compounds do not contain carbon. Carbon has 4 electrons in outer shell. Carbon can form covalent bonds with as

More information

Developments of Multifunctional Additives for High Quality Lube Oil

Developments of Multifunctional Additives for High Quality Lube Oil Journal of Power and Energy Engineering, 2013, 1, 84-89 http://dx.doi.org/.4236/jpee.2013.14 Published Online October 2013 (http://www.scirp.org/journal/jpee) Developments of Multifunctional Additives

More information

Oil Soluble Silicones. Southeast Chapter March 19, 2015

Oil Soluble Silicones. Southeast Chapter March 19, 2015 Oil Soluble Silicones Southeast Chapter March 19, 2015 1 Background! Silicone compounds have been known since 1860, but were of little commercial interest until the 1940's. 2 Background! Silicone compounds

More information