4. Amphiphiles. 4.1 Types of amphiphiles. 4.2 Surface activity Surface tension Interface tension

Size: px
Start display at page:

Download "4. Amphiphiles. 4.1 Types of amphiphiles. 4.2 Surface activity Surface tension Interface tension"

Transcription

1 4. Amhihile 4.1 Tye of amhihile 4.2 Surface activity Surface tenion Interface tenion 4.3 Micellization and the critical micelle concentration Surface tenion and the CMC Gibb adortion equation The Krafft temerature The cloed aociation model The hydrohobic effect Molecular tructure and interfacial curvature 1

2 4.3 Micellization and the critical micelle concentration Surface tenion and the CMC Surface tenion [mn m -1 ] 72 I II III ~35 urface tenion of water decreae with increaing urfactant concentration u to the critical micelle concentration (CMC) lnc ionic urfactant: CMC ~ 10-2 M nonionic urfactant: CMC ~ 10-4 M 2

3 Croing the CMC regime I regime II regime III CMC urfactant concentration uon addition of urfactant above CMC: formation of micelle in ubhae 3

4 How many urfactant molecule are at the urface? adortion concern only a tiny fraction of the molecule, till ignificant effect on urface tenion tyical CMC: 2x10-3 M number of molecule (molecular area 25 Å 2 ) adorbed onto 100 cm 2 : N 4x10 16 in olution: 1.2x10 21 molecule/liter < 1 molecule out of 10 4 adorbed C. Tauin, in Soft Matter Phyic, M. Daoud, C.W. William (Ed.), Sringer Berlin

5 4.3.2 The Gibb adortion equation urface tenion concentration of urfactant? exce of comonent j at interface σ: σ j j ( α β n n ) n n + j j urface exce in equilibrium: Γ j σ n j A σ α β µ j µ j µ j A: urface area µ: chemical otential conider urfactant at air-water interface: d γ Γ µ d : urfactant chemical otential of urfactant: dµ RTd ln c c: concentration of urfactant in water Γ 1 dγ RT d ln c T 5

6 regime I: linear decreae of urface tenion with urfactant concentration: γ γ 0 kc urface reure π γ γ 0 kc Γ RT πa n RT in dilute olution: urfactant behave like ga regime II: γ ln c Γ cont. γ γ 0 m ln c Γ n A m RT number of urfactant molecule er urface area i contant i.e. urface exce aturate already below CMC reaon: total conc. of urfactant bulk conc. + urface exce bulk conc. increae lightly with lnc, even though urface aturated increae in acking denity in urface layer u to CMC 6

7 regime III: urface tenion nearly contant becaue chemical otential deend only weakly on urfactant concentration chemical otential: below CMC: c c i.e. total urfactant concentration unimer concentration far above CMC: c c Kc c c 1/ ( K) 1/ : aociation number, i.e. average number of molecule er micelle, tyically K: equilibrium contant of micellization chemical otential µ RT ln c RT RT chemical otential deend weakly on urfactant concentration µ θ + ln c ln 7 [ K]

8 Influence of head grou on CMC for ionic urfactant, CMC higher than for nonionic urfactant reaon: electrotatic reulion between head grou mut be overcome to form micelle CMC increae with head grou charge Influence of alt on CMC for ionic urfactant, addition of alt decreae the CMC becaue it reduce the reulion between charged head grou. 8

9 Influence of hydrohobic grou on CMC hydrohobicity: the more hydrohobic the chain i, the lower the CMC (e.g. fluorinated urfactant) log(cmc) number of carbon atom length of hydrohobic chain: the longer the hydrohobic chain, the lower the CMC: log(cmc) A B n C A, B: contant n c : number of carbon atom ionic urfactant : CMC decreae by a factor of ~2 er CH 2 added nonionic urfactant: CMC decreae by a factor of ~3 er CH 2 added 9

10 4.3.3 The Krafft temerature olubility curve CMC olubility of ionic urfactant deend trongly on temerature: increae raidly in narrow temerature range Krafft temerature: temerature at which the olubility curve meet the CMC curve Krafft temerature deend on: length of alkyl chain crytal tructure interaction between head grou alt content interlay between T-deendent CMC curve and T-deendent olubility of the urfactant oition of the Krafft oint 10

11 4.3.4 The cloed aociation model dynamic equilibrium between unimer and micelle containing unimer S S dierity in i ~20-30% equilibrium contant: K c c c : concentration of micelle of aociation number, [mol/l] c : concentration of unimer Gibb energy change of micellization er mole of micelle: mic G θ RT ln K RT ln c c er mole of micelle: mic G θ RT RT ln K ln c + RT ln c für large and at the CMC: mic G θ RT ln c CMC 11

12 for ionic urfactant, include counterion C: S x + ) y α α n/ degree of diociation of the urfactant ( n C S x, y: charge of urfactant/counterion G n RT 2 ln θ mic c CMC above CMC: added molecule go into micelle concentration of ecie CMC unimer micelle urfactant concentration 12

13 unimer + CMC urfactant concentration aggregation number (number of unimer er micelle) indeendent of urfactant concentration number of micelle increae with urfactant concentration 13

14 for nonionic urfactant: θ mic H R d ln c d(1/ T ) CMC θ ln c mich CMC + cont. RT lot lnc CMC v. 1/T to determine enthaly of micellization driving force for micelle formation: increae in entroy of ytem of molecule in micelle comared to unaociated molecule reaon: unaociated molecule ordering of urrounding water gain in entroy of water uon micelle formation >> lo of configurational entroy 14

15 Hydrohobic effect liquid water molecule ha 4 H-bond in a tetrahedral geometry hydrogen bond life time ~1. 3D hydrogen bonding network hydrohobic interaction: entroic hydrohobic unit induce ome order in the urrounding water. D. Chandler, Nature437 (2005) water molecule urrounding a mall molecule (left) or a cluter of mall molecule (right) 15

16 4.3.6 Molecular tructure and interfacial curvature rediction of hae of micelle (here, cylinder, bicontinuou, lamellar) two model: 1. curvature model elatic energy related to curved urface 2. hae of urfactant molecule acking of molecule C. Tauin, in Soft Matter Phyic, M. Daoud, C.W. William (Ed.), Sringer Berlin

17 Micellar hae and ize: General conideration 1t condition: ace requirement of olar head and hydrohobic chain define ontaneou curvature c 0 of the interface minimization of elatic energy in abence of contraint 2nd condition: ize of micelle maller than or equal to the tretched length of hydrohobic tail area er headgrou: geometric electrotatic for uncharged membrane: F elatic < k B T membrane highly flexible G. Porte, in Soft Matter Phyic, M. Daoud, C.W. William (Ed.), Sringer Berlin

18 Model 1: Curvature model calculation of morhology baed on the curvature of a continuou urfactant film differential geometry of urface in each oint P: mean curvature and Gauian curvature R 1, R 2 : radii of curvature addle urface in bicontinuou tructure c 1 < 0, c 2 > 0 1 c 1, c2 R1 c 1 + c H 2 2 K c c R mean curvature 2 Gauian curvature 18

19 elatic free energy of a curved urface: F el κ,κ : F mean + F Gau 1 κ ( c1 + c2 c0 ) κc1c 2 elatic moduli for mean and Gauian curvature can be meaured uing dynamic light cattering related to membrane flexibility κ : κ : bending modulu, imortant for 1D deformation addle lay modulu, imortant for addle where c 1 -c 2 19

20 Effect of coolute on curvature ure urfactant monolayer inertion of hort amhihile oil in water emulion comenation by welling with oil molecule C. Tauin, in Soft Matter Phyic, M. Daoud, C.W. William (Ed.), Sringer Berlin

21 Packing model 1/3 1/2 1 N micelle cylinder veicle bilayer invere micelle definition of acking arameter N V al V: urfactant volume a: area of head grou l: tail length 21

22 Packing arameter aociation number 3 4πRmic / 3 V volume 4πR a 2 mic urface area V armic V: volume er molecule R mic : micellar radiu a: head grou area l: tail length 1 3 V al 1 3 urfactant acking arameter: N V al variation of N oible mainly by altering a by variation of olvent 22

23 Packing arameter for urfactant with alkyl chain OSO3 - SDS: dodecylulfate length of alkyl chain: l / nm n C nm: C-C bond length nm: rojection of C-C bond length onto chain axi volume of alkyl chain: ( ) 3 V / nm n C + n Me n Me 1 or 2: number of methyl grou SDS: l 1.551nm V a 0.324nm OSO nm 2 N 0.33 aociation number herical micelle 4πl 2 49 a 23

c = pc p regime III: surface tension nearly constant because chemical potential depends only weakly on surfactant concentration chemical potential:

c = pc p regime III: surface tension nearly constant because chemical potential depends only weakly on surfactant concentration chemical potential: regime III: surface tension nearly constant because chemical otential deends only weakly on surfactant concentration chemical otential: below CMC: c c s i.e. total surfactant concentration unimer concentration

More information

ISM08. Surfactants II Chapters 3 and 4

ISM08. Surfactants II Chapters 3 and 4 ISM08 Surfactants II Chapters 3 and 4 1 Topics Emulsions Foam Curvature Laplace pressure Packing factor Lyotropic phases Membranes and vesicles 2 Emulsions Emulsions are dispersions of immiscible or partially

More information

Interactions between Bisphosphate. Geminis and Sodium Lauryl Ether

Interactions between Bisphosphate. Geminis and Sodium Lauryl Ether Chapter 5 Interactions between Bisphosphate Geminis and Sodium Lauryl Ether Sulphate 110 5.1 Introduction The physiochemical and surface active properties of mixed surfactants are of more interest and

More information

Micellar Solutions of Ionic Surfactants and Their Mixtures with Nonionic Surfactants: Theoretical Modeling vs. Experiment 1

Micellar Solutions of Ionic Surfactants and Their Mixtures with Nonionic Surfactants: Theoretical Modeling vs. Experiment 1 ISSN 06-933X, Colloid Journal, 04, Vol. 76, No. 3, pp. 5570. Pleiade Publihing, Ltd., 04. Micellar Solution of Ionic Surfactant and Their Mixture with Nonionic Surfactant: Theoretical Modeling v. Experiment

More information

Surfactants. The Basic Theory. Surfactants (or surface active agents ): are organic compounds with at least one lyophilic. Paints and Adhesives

Surfactants. The Basic Theory. Surfactants (or surface active agents ): are organic compounds with at least one lyophilic. Paints and Adhesives Surfactants Surfactants (or surface active agents ): are organic compounds with at least one lyophilic ( solvent-loving ) group and one lyophobic ( solvent-fearing ) group in the molecule. In the simplest

More information

Colloid chemistry. Lecture 10: Surfactants

Colloid chemistry. Lecture 10: Surfactants Colloid chemistry Lecture 10: Surfactants Applications of surfactants: cleaning/detergents (40%); textiles; cosmetics; pharmacy; paint; food; etc. Etymology Surfactant micelles surfactant molecule spherical

More information

2. Block Copolymers. 2.1 Micelle and gel formation in amphiphilic block copolymers. 2.2 Phase behavior in the bulk. 2.3 Structures in thin films

2. Block Copolymers. 2.1 Micelle and gel formation in amphiphilic block copolymers. 2.2 Phase behavior in the bulk. 2.3 Structures in thin films 2. Block Copolymers 2.1 Micelle and gel formation in amphiphilic block copolymers 2.2 Phase behavior in the bulk 2.3 Structures in thin films I.W. Hamley, Block Copolymers in Solution. Wiley 2005. 1 Block

More information

Self-assembled nanostructures soft and hard matter

Self-assembled nanostructures soft and hard matter Hands-On Nano-Technology course Nano-Science Center University of Copenhagen Self-assembled nanostructures soft and hard matter One-day workshop, August 12, 2004 Division of Physical Chemistry 1, Center

More information

Lipid Segregation on Cylindrically and Spherically Curved Membranes

Lipid Segregation on Cylindrically and Spherically Curved Membranes Lipid Segregation on Cylindrically and Spherically Curved Membrane where n and u are unit vector repreenting, repectively, lipid orientation and membrane normal, repreent the two-dimenional derivative

More information

Self-assembly and phase behavior

Self-assembly and phase behavior Self-assembly and phase behavior Amphiphiles and surface tension Lyotropic phases Micelles Key parameters for micellisation Critical packing parameter Other lyotropic phases Special lyotropic phases: vesicles

More information

0.5 nm nm acyl tail region (hydrophobic) 1.5 nm. Hydrophobic repulsion organizes amphiphilic molecules: These scales are 5 10xk B T:

0.5 nm nm acyl tail region (hydrophobic) 1.5 nm. Hydrophobic repulsion organizes amphiphilic molecules: These scales are 5 10xk B T: Lecture 31: Biomembranes: The hydrophobic energy scale and membrane behavior 31.1 Reading for Lectures 30-32: PKT Chapter 11 (skip Ch. 10) Upshot of last lecture: Generic membrane lipid: Can be cylindrical

More information

Self-Assembly. Lecture 3 Lecture 3 Surfactants Self-Assembly

Self-Assembly. Lecture 3 Lecture 3 Surfactants Self-Assembly Self-Assembly Lecture 3 Lecture 3 Surfactants Self-Assembly Anionic surfactants unsaturated omega-3 3 fatty acids rd carbon from the metyl end has double bond saturated Non-ionic surfactants Cationic surfactants

More information

Molecular Packing Parameter and Surfactant Self-Assembly: The Neglected Role of the Surfactant Tail

Molecular Packing Parameter and Surfactant Self-Assembly: The Neglected Role of the Surfactant Tail Langmuir 2002, 18, 31-38 31 Molecular Packing Parameter and Surfactant Self-Assembly: The Neglected Role of the Surfactant Tail R. Nagarajan Department of Chemical Engineering, The Pennsylvania State University,

More information

Colloid Chemistry. Lecture #2 Association colloid

Colloid Chemistry. Lecture #2 Association colloid Colloid Chemistry Lecture #2 Association colloid 1 https://ilustracionmedica.wordpress.com/2014/08/27/fisicos-haciendo-medicina-john-tyndall/ Solution Classical vs. Colloid solution Tyndall effect Increased

More information

Quiz 8 Introduction to Polymers (Chemistry)

Quiz 8 Introduction to Polymers (Chemistry) 051117 Quiz 8 Introduction to Polymers (Chemistry) (Figures from Heimenz Colloid Sci.) 1) Surfactants are amphiphilic molecules (molecules having one end hydrophobic and the other hydrophilic) and are

More information

Modern Aspects of Colloid Science MICELLES

Modern Aspects of Colloid Science MICELLES Modern Aspects of Colloid Science MICELLES critical micelle concentration (CMC) micellar shape determination of critical micelle concentration purity of surfactants Krafft temperature micellar equilibria

More information

Bilayer Deformation, Pores & Micellation Induced by Oxidized Lipids

Bilayer Deformation, Pores & Micellation Induced by Oxidized Lipids Supporting Information Bilayer Deformation, Pores & Micellation Induced by Oxidized Lipids Phansiri Boonnoy 1, Viwan Jarerattanachat 1,2, Mikko Karttunen 3*, and Jirasak Wongekkabut 1* 1 Department of

More information

Topic 7b: Biological Membranes

Topic 7b: Biological Membranes Topic 7b: Biological Membranes Overview: Why does life need a compartment? Nature of the packaging what is it made of? properties? New types of deformations in 2D Applications: Stretching membranes, forming

More information

Temperature Effect on Micelle Formation: Molecular Thermodynamic Model Revisited

Temperature Effect on Micelle Formation: Molecular Thermodynamic Model Revisited pubs.acs.org/langmuir Temperature Effect on Micelle Formation: Molecular Thermodynamic Model Revisited Atefeh Khoshnood, oris Lukanov, and Abbas Firoozabadi*,, Reservoir Engineering Research Institute,

More information

Seismic Response Control of Structures using Liquid Column Vibration Absorber Considering Real Earthquake Ground Motions

Seismic Response Control of Structures using Liquid Column Vibration Absorber Considering Real Earthquake Ground Motions Seimic Repone Control of Structure uing iquid Column Vibration Aborber Conidering Real Ground Motion Debai Panda M. Tech Scholar National Intitute of Technology Agartala Agartala, India Dr. Rama Debbarma

More information

Energetics and Self-Assembly of Amphipathic Peptide Pores in Lipid Membranes

Energetics and Self-Assembly of Amphipathic Peptide Pores in Lipid Membranes 2242 Biophyical Journal Volume 84 April 2003 2242 2255 Energetic and Self-Aembly of Amphipathic Peptide Pore in Lipid Membrane Aaf Zemel, Deborah R. Fattal, and Avinoam Ben-Shaul Department of Phyical

More information

H 2 O. Liquid, solid, and vapor coexist in the same environment

H 2 O. Liquid, solid, and vapor coexist in the same environment Water H 2 O Liquid, solid, and vapor coexist in the same environment WATER MOLECULES FORM HYDROGEN BONDS Water is a fundamental requirement for life, so it is important to understand the structural and

More information

Rheology of Wormlike Micelles

Rheology of Wormlike Micelles Rheology of Wormlike Micelles (ITP Complex Fluids Program 3/27/2) T1 Rheology of Wormlike Micelles Grégoire Porte Denis Roux Jean-François Berret* Sandra Lerouge Jean-Paul Decruppe Peter Lindner Laurence

More information

Copyright 2016 Dan Dill 1

Copyright 2016 Dan Dill 1 carbonate These solutions are mixed and a precipitate forms. After the precipitation, the solution 1. will be positively charged 2. will be electrically neutral 3. will be negatively charged 4. More information

More information

Molecular Theory of Chain Packing, Elasticity and Lipid-Protein Interaction in Lipid Bilayers

Molecular Theory of Chain Packing, Elasticity and Lipid-Protein Interaction in Lipid Bilayers CHAPTER 7 Molecular Theory of Chain Packing, Elasticity and Lipid-Protein Interaction in Lipid Bilayers A. BEN-SHAUL The Institute of Advanced Studies, Department of Physical Chemistry and the Fritz Haber

More information

APPLIED CHEMISTRY SURFACE TENSION, SURFACTANTS TYPES OF SURFACTANTS & THEIR USES IN TEXTILE PROCESSING

APPLIED CHEMISTRY SURFACE TENSION, SURFACTANTS TYPES OF SURFACTANTS & THEIR USES IN TEXTILE PROCESSING APPLIED CHEMISTRY SURFACE TENSION, SURFACTANTS TYPES OF SURFACTANTS & THEIR USES IN TEXTILE PROCESSING Lecture No. 13 & 14 2 Surface Tension This property of liquids arises from the intermolecular forces

More information

Theory of Micelle Formation

Theory of Micelle Formation 1 Theory of Micelle Formation Quantitative Approach to Predicting Micellar Properties from Surfactant Molecular Structure R. NAGARAJAN The Pennsylvania State University, University Park, Pennsylvania,

More information

THE INVESTIGATION OF THE EFFECT OF THE REINFORCEMENT S KIND ON THE TENSILE STRENGTH IN THE FIBER REINFORCED COMPOSITE MATERIALS

THE INVESTIGATION OF THE EFFECT OF THE REINFORCEMENT S KIND ON THE TENSILE STRENGTH IN THE FIBER REINFORCED COMPOSITE MATERIALS Trakia Journal of Science, Vol. 7, Suppl. 2, pp 15-19, 2009 Copyright 2009 Trakia Univerity Available online at: http://www.uni-z.bg ISSN 1313-7050 (print) ISSN 1313-3551 (online) Original Contribution

More information

Interactions of Liquid Droplets with Biomembranes

Interactions of Liquid Droplets with Biomembranes Interactions of Liquid Droplets with Biomembranes Reinhard Lipowsky MPI of Colloids and Interfaces, Potsdam-Golm Intro: Membranes and GUVs GUVs + Aqueous Two-Phase Systems Theory of Fluid-Elastic Scaffolding

More information

arxiv: v2 [cond-mat.soft] 6 Feb 2014

arxiv: v2 [cond-mat.soft] 6 Feb 2014 Pis ma v ZhETF Pore formation phase diagrams for lipid membranes S.I. Mukhin ), B.B. Kheyfets Theoretical Physics and Quantum Technology Department, NUST MISIS, 949 Moscow, Russia Submitted arxiv:4.4v

More information

SYNERGISTIC ASPECTS OF SURFACTANT MIXTURES 1. THE ANIONIC SURFACTANT SODIUM DODECYL SULFATE AND THE CATIONIC SURFACTANT TRIMETHYLAMMONIUM BROMIDE

SYNERGISTIC ASPECTS OF SURFACTANT MIXTURES 1. THE ANIONIC SURFACTANT SODIUM DODECYL SULFATE AND THE CATIONIC SURFACTANT TRIMETHYLAMMONIUM BROMIDE Laboratory Services and Instrumentation for Surface Science SYNERGISTIC ASPECTS OF SURFACTANT MIXTURES 1. THE ANIONIC SURFACTANT SODIUM DODECYL SULFATE AND THE CATIONIC SURFACTANT TRIMETHYLAMMONIUM BROMIDE

More information

Physical Cell Biology Lecture 10: membranes elasticity and geometry. Hydrophobicity as an entropic effect

Physical Cell Biology Lecture 10: membranes elasticity and geometry. Hydrophobicity as an entropic effect Physical Cell Biology Lecture 10: membranes elasticity and geometry Phillips: Chapter 5, Chapter 11 and Pollard Chapter 13 Hydrophobicity as an entropic effect 1 Self-Assembly of Lipid Structures Lipid

More information

Surface Activity And Adsorption Of Some Surfactants At Aqueous / Air Interface At Different Temperatures

Surface Activity And Adsorption Of Some Surfactants At Aqueous / Air Interface At Different Temperatures Surface Activity And Adsorption Of Some Surfactants At Aqueous / Air Interface At Different Temperatures Alzahraa A. El Feky, Magda N. Shalaby, Omnia A.A. El-Shamy, Suzy A. Selim Abstract: The adsorption

More information

Solution Behaviour of Polyethylene Oxide, Nonionic Gemini Surfactants

Solution Behaviour of Polyethylene Oxide, Nonionic Gemini Surfactants Solution Behaviour of Polyethylene Oxide, Nonionic Gemini Surfactants A thesis submitted to The University of Sydney in fulfilment of the requirements for the admission to the degree of Doctor of Philosophy

More information

MAE 545: Lecture 14 (11/10) Mechanics of cell membranes

MAE 545: Lecture 14 (11/10) Mechanics of cell membranes MAE 545: ecture 14 (11/10) Mechanics of cell membranes Cell membranes Eukaryotic cells E. Coli FIBROBAST 10 mm E. COI nuclear pore complex 1 mm inner membrane plasma membrane secretory complex ribosome

More information

Micellar Solubilization of Poorly Water Soluble Drug Using Non Ionic Surfactant

Micellar Solubilization of Poorly Water Soluble Drug Using Non Ionic Surfactant Chauhan and Udawat, IJARPB, 2012; Vol.2 (1):1-8. IN 2277 6222 Received on 08/01/2012; Revised on 19/01/2012; Accepted on 30/01/2012. Micellar olubilization of Poorly Water oluble Drug Using Non Ionic urfactant

More information

MOLECULAR THERMODYNAMICS OF MICELLIZATION: MICELLE SIZE DISTRIBUTIONS AND GEOMETRY TRANSITIONS

MOLECULAR THERMODYNAMICS OF MICELLIZATION: MICELLE SIZE DISTRIBUTIONS AND GEOMETRY TRANSITIONS Brazilian Journal of Chemical Engineering ISSN 0104-663 Printed in Brazil www.abeq.org.br/bjche Vol. 33, No. 03, pp. 515-53, July - September, 016 dx.doi.org/10.1590/0104-663.0160333s015019 MOLECULAR THERMODYNAMICS

More information

BIOPHYSICS II. By Prof. Xiang Yang Liu Department of Physics,

BIOPHYSICS II. By Prof. Xiang Yang Liu Department of Physics, BIOPHYSICS II By Prof. Xiang Yang Liu Department of Physics, NUS 1 Hydrogen bond and the stability of macromolecular structure Membrane Model Amphiphilic molecule self-assembly at the surface and din the

More information

Bending rigidity of mixed phospholipid bilayers and the equilibrium radius of corresponding vesicles

Bending rigidity of mixed phospholipid bilayers and the equilibrium radius of corresponding vesicles Bending rigidity of mixed phospholipid bilayers and the equilibrium radius of corresponding vesicles M. M. A. E. Claessens, 1 B. F. van Oort, 1 F. A. M. Leermakers, 1 F. A. Hoekstra, 2 and M. A. Cohen

More information

A Study of Performance Properties of Alkyl Poly(glucoside) and Sodium Dodecylsulfate in their Mixed Systems

A Study of Performance Properties of Alkyl Poly(glucoside) and Sodium Dodecylsulfate in their Mixed Systems J. Surface Sci. Technol., Vol 22, No. 1-2, pp. 75-88, 2006 2006 Indian Society for Surface Science and Technology, India A Study of Performance Properties of Alkyl Poly(glucoside) and Sodium Dodecylsulfate

More information

STAT 200. Guided Exercise 7

STAT 200. Guided Exercise 7 STAT 00 Guided Exercise 7 1. There are two main retirement lans for emloyees, Tax Sheltered Annuity (TSA) and a 401(K). A study in North Carolina investigated whether emloyees with similar incomes differ

More information

Biology 5357: Membranes

Biology 5357: Membranes s 5357 Biology 5357: s Assembly and Thermodynamics of Soft Matter Paul H. MD, PhD Department of Cell Biology and Physiology pschlesinger@.wustl.edu 362-2223 Characteristics s 5357 s are polymorphic s 5357

More information

Coupling between line tension and domain contact angle in heterogeneous membranes

Coupling between line tension and domain contact angle in heterogeneous membranes Available online at www.sciencedirect.com Biochimica et Biohysica Acta 1778 (008) 1190 1195 www.elsevier.com/locate/bbamem Couling between line tension and domain contact angle in heterogeneous membranes

More information

Colloid chemistry. Lecture 13: Emulsions

Colloid chemistry. Lecture 13: Emulsions Colloid chemistry Lecture 13: Emulsions Emulsions food cosmetics pharmaceutics biological systems bituminous carpet (asphalt) etc. Emulsion suitable for intravenous injection. Balm: Water in oil emulsion

More information

The phosphate group replaces the fatty acid on C number 3 of a triacylglycerol molecule O O CH 2 O C R CH 2 O P O X OH.

The phosphate group replaces the fatty acid on C number 3 of a triacylglycerol molecule O O CH 2 O C R CH 2 O P O X OH. Phosphoacylglycerols (Phospholipids) Phosphoacylglycerols are fatty acid esters of glycerol which also contain a phosphate group and other specific groups The phosphate group replaces the fatty acid on

More information

Efficiency of Amphoteric Surfactants as Flow Improvers and Pour Point Depressants

Efficiency of Amphoteric Surfactants as Flow Improvers and Pour Point Depressants Journal of Power and Energy Engineering, 13, 1, 90-94 http://dx.doi.org/.4236/jpee.13.0 Published Online October 13 (http://www.scirp.org/journal/jpee) Efficiency of Amphoteric Surfactants as Flow Improvers

More information

Interaction between two cylindrical inclusions in a symmetric lipid bilayer

Interaction between two cylindrical inclusions in a symmetric lipid bilayer JOURNAL OF CHEMICAL PHYSICS VOLUME 119, NUMBER 14 8 OCTOBER 2003 Interaction between two cylindrical inclusions in a symmetric lipid bilayer Klemen Bohinc Faculty of Electrical Engineering, University

More information

A Novel Sulfonated Alkyl Ester Surfactant to Reduce Oil-Water Interfacial Tensions in Wide Range Salinity with Monovalent and Divalent Ions

A Novel Sulfonated Alkyl Ester Surfactant to Reduce Oil-Water Interfacial Tensions in Wide Range Salinity with Monovalent and Divalent Ions Modern Applied Science; Vol. 10, No. 1; 2016 ISSN 1913-1844 E-ISSN 1913-1852 Published by Canadian Center of Science and Education A Novel Sulfonated Alkyl Ester Surfactant to Reduce Oil-Water Interfacial

More information

3.1.3 Lipids. Source: AQA Spec

3.1.3 Lipids. Source: AQA Spec alevelbiology.co.uk SPECIFICATION Triglycerides and phospholipids are two groups of lipid. Triglycerides are formed by the condensation of one molecule of glycerol and three molecules of fatty acid. A

More information

SAXS on lipid structures

SAXS on lipid structures Practical Course in Biophysics, Experiment R2b SAXS on lipid structures Summer term 2015 Room: Advisor: X-ray lab at LS Rädler, NU111 Stefan Fischer Tel: +49-(0)89-2180-1459 Email: stefan.f.fischer@physik.lmu.de

More information

Proteins consist in whole or large part of amino acids. Simple proteins consist only of amino acids.

Proteins consist in whole or large part of amino acids. Simple proteins consist only of amino acids. Today we begin our discussion of the structure and properties of proteins. Proteins consist in whole or large part of amino acids. Simple proteins consist only of amino acids. Conjugated proteins contain

More information

Chemical Surface Transformation 1

Chemical Surface Transformation 1 Chemical Surface Transformation 1 Chemical reactions at Si H surfaces (inorganic and organic) can generate very thin films (sub nm thickness up to µm): inorganic layer formation by: thermal conversion:

More information

Effect of Lipid Characteristics on the Structure of Transmembrane Proteins

Effect of Lipid Characteristics on the Structure of Transmembrane Proteins 141 Biophysical Journal Volume 75 September 1998 141 1414 Effect of Lipid Characteristics on the Structure of Transmembrane Proteins N. Dan* and S. A. Safran *Department of Chemical Engineering, University

More information

Physical Pharmacy. Interfacial phenomena. Khalid T Maaroof MSc. Pharmaceutical sciences School of pharmacy Pharmaceutics department

Physical Pharmacy. Interfacial phenomena. Khalid T Maaroof MSc. Pharmaceutical sciences School of pharmacy Pharmaceutics department Physical Pharmacy Interfacial phenomena Khalid T Maaroof MSc. Pharmaceutical sciences School of pharmacy Pharmaceutics department 1 Introduction The boundary between two phases is generally described as

More information

Physics of Cellular Materials: Biomembranes

Physics of Cellular Materials: Biomembranes Physics of Cellular Materials: Biomembranes Tom Chou 1 1 Dept. of Biomathematics, UCL, Los ngeles, C 90095-1766 (Dated: December 6, 2002) Here I will review the mathematics and statistical physics associated

More information

MAE 545: Lecture 17 (11/19) Mechanics of cell membranes

MAE 545: Lecture 17 (11/19) Mechanics of cell membranes MAE 545: Lecture 17 (11/19) Mechanics cell membranes Membrane deformations stretch bend shear change. Phillips et al., Physical Biology Cell a model sometimes known as Helfrich Canham Evans free. involves

More information

Surfactant Aggregation

Surfactant Aggregation Surfactant Aggregation Background What Is A Surfactant? S u r f a c t a n t Surface active agent... A chemical that, when dissolved in water, moves toward "surfaces" What Does A Surfactant Do?... Cleans

More information

CHAPTER 3 Amino Acids, Peptides, Proteins

CHAPTER 3 Amino Acids, Peptides, Proteins CHAPTER 3 Amino Acids, Peptides, Proteins Learning goals: Structure and naming of amino acids Structure and properties of peptides Ionization behavior of amino acids and peptides Methods to characterize

More information

μ i = chemical potential of species i C i = concentration of species I

μ i = chemical potential of species i C i = concentration of species I BIOE 459/559: Cell Engineering Membrane Permeability eferences: Water Movement Through ipid Bilayers, Pores and Plasma Membranes. Theory and eality, Alan Finkelstein, 1987 Membrane Permeability, 100 Years

More information

Study on Colloid Vibration Current in Aqueous Solution of Binary Surfactant Mixtures: Effects of Counterions and Hydrophobic Chains

Study on Colloid Vibration Current in Aqueous Solution of Binary Surfactant Mixtures: Effects of Counterions and Hydrophobic Chains Journal of Oleo Science Copyright 2016 by Japan Oil Chemists Society doi : 10.5650/jos.ess16101 Study on Colloid Vibration Current in Aqueous Solution of Binary Surfactant Mixtures: Effects of Counterions

More information

A Computer Simulation and Molecular-Thermodynamic Framework to Model the Micellization of Ionic Branched Surfactants in Aqueous Solution

A Computer Simulation and Molecular-Thermodynamic Framework to Model the Micellization of Ionic Branched Surfactants in Aqueous Solution A Computer Simulation and Molecular-Thermodynamic Framework to Model the Micellization of Ionic Branched Surfactants in Aqueous Solution by Shangchao Lin B.S., Mechanical Engineering, University of Michigan,

More information

Lecture #15. Energy of transformation of one molecule is ~ktln(p e /S e ) ktln(p e /10S e ) = =ktln10=2.3kt

Lecture #15. Energy of transformation of one molecule is ~ktln(p e /S e ) ktln(p e /10S e ) = =ktln10=2.3kt Lecture #14 Problems 1. If the K d for the actin subunit-subunit interactions along a strand is 0.1 mm and the K d for subunits at the ends of two-stranded filaments is 0.03 mm, then what is the K d for

More information

Emulsification. An Introduction to the Emulsification of Lipids within a Watery Environment. By Noel Ways

Emulsification. An Introduction to the Emulsification of Lipids within a Watery Environment. By Noel Ways Emulsification An Introduction to the Emulsification of Lipids within a Watery Environment By Noel Ways To begin the process of understanding emulsification, let's start with water. First, we note that

More information

Molecular Dynamics Simulation of. Amphiphilic Aggregates

Molecular Dynamics Simulation of. Amphiphilic Aggregates Molecular Dynamics Simulation of Amphiphilic Aggregates By Lanyuan Lu A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements

More information

Biophysical Regulation of Lipid Biosynthesis in the Plasma Membrane

Biophysical Regulation of Lipid Biosynthesis in the Plasma Membrane 2938 Biophyical Journal Volume 94 April 2008 2938 2954 Biophyical Regulation of Lipid Bioynthei in the Plama Membrane Stephen H. Alley,* Ocar Ce, y Richard H. Templer, y and Mauricio Barahona* z *Department

More information

Effect of Surfactant Tail Structure on Phase Behavior of Branched and Linear Alkylbenzene Sulfonate in Water and Oil Ternary Systems

Effect of Surfactant Tail Structure on Phase Behavior of Branched and Linear Alkylbenzene Sulfonate in Water and Oil Ternary Systems Effect of Surfactant Tail Structure on Phase Behavior of Branched and Linear Alkylbenzene Sulfonate in Water and Oil Ternary Systems Abeer Al Bawab 1, 2, Ayat Bozeya 2, Fadwa Odeh 2 10.7603/s40837-014-0005-5

More information

Phase Behavior of Model Lipid Bilayers

Phase Behavior of Model Lipid Bilayers J. Phys. Chem. B 2005, 109, 6553-6563 6553 Phase Behavior of Model Lipid Bilayers Marieke Kranenburg and Berend Smit*,, The Van t Hoff Institute for Molecular Sciences, UniVersity of Amsterdam, Nieuwe

More information

Spontaneous vesicle formation by mixed surfactants

Spontaneous vesicle formation by mixed surfactants Progress in Colloid & Polymer Science Progr Colloid Polym Sci 84:3--7 (1991) Spontaneous vesicle formation by mixed surfactants S. A. Safranl'4), E C. MacKintosh1), P. A. Pincus2), and D. A. Andelman 3)

More information

Biology Chapter 2 Review

Biology Chapter 2 Review Biology Chapter 2 Review Vocabulary: Define the following words on a separate piece of paper. Element Compound Ion Ionic Bond Covalent Bond Molecule Hydrogen Bon Cohesion Adhesion Solution Solute Solvent

More information

The main biological functions of the many varied types of lipids include: energy storage protection insulation regulation of physiological processes

The main biological functions of the many varied types of lipids include: energy storage protection insulation regulation of physiological processes Big Idea In the biological sciences, a dehydration synthesis (condensation reaction) is typically defined as a chemical reaction that involves the loss of water from the reacting molecules. This reaction

More information

Neutron and Softmatter

Neutron and Softmatter Neutron and Softmatter Hideki Seto IMSS/J-PARC Center, KEK SOKENDAI So# Ma'er Polymer Liquid Crystal polymeric liquid crystal liquid crystal polymer amphiphilic polymer lyotropic liquid crystal liquid

More information

SDS-Assisted Protein Transport Through Solid-State Nanopores

SDS-Assisted Protein Transport Through Solid-State Nanopores Supplementary Information for: SDS-Assisted Protein Transport Through Solid-State Nanopores Laura Restrepo-Pérez 1, Shalini John 2, Aleksei Aksimentiev 2 *, Chirlmin Joo 1 *, Cees Dekker 1 * 1 Department

More information

Responsive Self-assemblies based on Fatty acids

Responsive Self-assemblies based on Fatty acids Responsive Self-assemblies based on Fatty acids Anne-Laure Fameau, Audrey Arnould, Arnaud Saint-Jalmes To cite this version: Anne-Laure Fameau, Audrey Arnould, Arnaud Saint-Jalmes. Responsive Self-assemblies

More information

Fluid Mozaic Model of Membranes

Fluid Mozaic Model of Membranes Replacement for the 1935 Davson Danielli model Provided explanation for Gortner-Grendel lack of lipid and permitted the unit membrane model. Trans membrane protein by labelling Fry & Edidin showed that

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1. (a) Uncropped version of Fig. 2a. RM indicates that the translation was done in the absence of rough mcirosomes. (b) LepB construct containing the GGPG-L6RL6-

More information

MARTINI Coarse-Grained Model of Triton TX-100 in Pure DPPC. Monolayer and Bilayer Interfaces. Supporting Information

MARTINI Coarse-Grained Model of Triton TX-100 in Pure DPPC. Monolayer and Bilayer Interfaces. Supporting Information MARTINI Coarse-Grained Model of Triton TX-100 in Pure DPPC Monolayer and Bilayer Interfaces. Antonio Pizzirusso a, Antonio De Nicola* a, Giuseppe Milano a a Dipartimento di Chimica e Biologia, Università

More information

MBB 694:407, 115:511. Please use BLOCK CAPITAL letters like this --- A, B, C, D, E. Not lowercase!

MBB 694:407, 115:511. Please use BLOCK CAPITAL letters like this --- A, B, C, D, E. Not lowercase! MBB 694:407, 115:511 First Test Severinov/Deis Tue. Sep. 30, 2003 Name Index number (not SSN) Row Letter Seat Number This exam consists of two parts. Part I is multiple choice. Each of these 25 questions

More information

Partitioning of Substrate within Aqueous Micelle Systems by Using Dead-End and Cross Flow Membrane Filtrations

Partitioning of Substrate within Aqueous Micelle Systems by Using Dead-End and Cross Flow Membrane Filtrations Available online at www.sciencedirect.com Procedia Engineering 33 (212 ) 7 77 IEE 11 Partitioning of ubstrate within Aqueous icelle ystems by Using Dead-End and Cross Flow embrane Filtrations hamed. Djennad

More information

Equilibrium Surface Tension, Dynamic Surface Tension, and Micellization Properties of Lactobionamide-Type Sugar-Based Gemini Surfactants

Equilibrium Surface Tension, Dynamic Surface Tension, and Micellization Properties of Lactobionamide-Type Sugar-Based Gemini Surfactants Journal of Oleo Science Copyright 2013 by Japan Oil Chemists Society Equilibrium Surface Tension, Dynamic Surface Tension, and Micellization Properties of Lactobionamide-Type Sugar-Based Gemini Surfactants

More information

Calculating Transition Energy Barriers and Characterizing Activation States for Steps of Fusion

Calculating Transition Energy Barriers and Characterizing Activation States for Steps of Fusion Calculating Transition Energy Barriers and Characterizing Activation States for Steps of Fusion Rolf J. Ryham 1,, Thomas S. Klotz 2, Lihan Yao 1, and Fredric S. Cohen 3 1 Fordham University, Department

More information

Acid/Base chemistry. NESA Biochemistry Fall 2001 Review problems for the first exam. Complete the following sentences

Acid/Base chemistry. NESA Biochemistry Fall 2001 Review problems for the first exam. Complete the following sentences 1 NESA Biochemistry Fall 2001 eview problems for the first exam Acid/Base chemistry 1. 2 3 is a weak acid. 2. The anion of a weak acid is a weak base 3. p is the measure of a solutions acidity. 4. 3 and

More information

BIOCHEMISTRY 460 FIRST HOUR EXAMINATION FORM A (yellow) ANSWER KEY February 11, 2008

BIOCHEMISTRY 460 FIRST HOUR EXAMINATION FORM A (yellow) ANSWER KEY February 11, 2008 WRITE YOUR AND I.D. NUMBER LEGIBLY ON EVERY PAGE PAGES WILL BE SEPARATED FOR GRADING! CHECK TO BE SURE YOU HAVE 6 PAGES, (print): ANSWERS INCLUDING COVER PAGE. I swear/affirm that I have neither given

More information

Head. Tail. Carboxyl group. group. group. air water. Hydrocarbon chain. lecture 5-sa Seth Copen Goldstein 2.

Head. Tail. Carboxyl group. group. group. air water. Hydrocarbon chain. lecture 5-sa Seth Copen Goldstein 2. Lipids Some lipid structures Organic compounds Amphipathic Polar head group (hydrophilic) Non-polar tails (hydrophobic) Lots of uses Energy storage Membranes Hormones Vitamins HO O C H 2 C CH 2 H 2 C CH

More information

Flip-Flop Induced Relaxation Of Bending Energy: Implications For Membrane Remodeling

Flip-Flop Induced Relaxation Of Bending Energy: Implications For Membrane Remodeling Biophysical Journal, Volume 97 Supporting Material Flip-Flop Induced Relaxation Of Bending Energy: Implications For Membrane Remodeling Raphael Jeremy Bruckner, Sheref S. Mansy, Alonso Ricardo, L. Mahadevan,

More information

Biological Molecules

Biological Molecules The Chemical Building Blocks of Life Chapter 3 Biological molecules consist primarily of -carbon bonded to carbon, or -carbon bonded to other molecules. Carbon can form up to 4 covalent bonds. Carbon may

More information

The Chemical Building Blocks of Life. Chapter 3

The Chemical Building Blocks of Life. Chapter 3 The Chemical Building Blocks of Life Chapter 3 Biological Molecules Biological molecules consist primarily of -carbon bonded to carbon, or -carbon bonded to other molecules. Carbon can form up to 4 covalent

More information

Calorimetric Study of Micelle Formation of Alkylammonium Chlorides in Water

Calorimetric Study of Micelle Formation of Alkylammonium Chlorides in Water Journal of Oleo Science Copyright 2018 by Japan Oil Chemit Society doi : 10.5650/jo.e18007 Calorimetric Study of Micelle Formation of Alkylammonium Chloride in Water Hideko Sahara 1* and Shigeharu Harada

More information

Objectives. 6.3, 6.4 Quantifying the quality of hypothesis tests. Type I and II errors. Power of a test. Cautions about significance tests

Objectives. 6.3, 6.4 Quantifying the quality of hypothesis tests. Type I and II errors. Power of a test. Cautions about significance tests Objectives 6.3, 6.4 Quantifying the quality of hyothesis tests Tye I and II errors Power of a test Cautions about significance tests Further reading: htt://onlinestatbook.com/2/ower/contents.html Toics:

More information

Developing Reagents for Membrane Protein Studies

Developing Reagents for Membrane Protein Studies Developing Reagents for Membrane Protein Studies Qinghai Zhang In collaboration with JCIMPT-TSRI Labs NIH Roadmap Membrane Protein Production & Technologies Meeting La Jolla, CA, USA Nov. 1-2, 2007 Detergents

More information

University of Groningen

University of Groningen University of Groningen ph-dependent aggregation behavior of a sugar-amine gemini surfactant in water: Vesicles, micelles, and monolayers of hexane-1,6-bis(hexadecyl-1 '-deoxyglucitylamine) Bergsma, M.;

More information

Surface characteristics of microalgae and their effects on harvesting performance by air flotation

Surface characteristics of microalgae and their effects on harvesting performance by air flotation January, 207 Int J Agric & Biol Eng Open Acce at http://www.ijabe.org Vol. 0 No. 25 Surface characteritic of microalgae and their effect on harveting performance by air flotation Wen Hao, Li Yanpeng,2*,

More information

Lipids: Fats, Oils & Waxes: AP Biology

Lipids: Fats, Oils & Waxes: AP Biology Lipids: Fats, Oils & Waxes: Lipids long term energy storage concentrated energy *9 Cal/gram Lipids: Triglycerides Lipids are composed of C, H, O u long hydrocarbon chains (H-C) Family groups u fats u phospholipids

More information

Synthesis of Cationic Novel Bolaform Surfactant and Effect of Alkyl Group Chain Length on Polar Head Group

Synthesis of Cationic Novel Bolaform Surfactant and Effect of Alkyl Group Chain Length on Polar Head Group Synthesis of Cationic Novel Bolaform Surfactant and Effect of Alkyl Group Chain Length on Polar Head Group 1. Propane-1,3-bis(trimethylammonium bromide) and Propane-1,3-bis(triethylammonium bromide) V.

More information

Inorganic compounds: Usually do not contain carbon H 2 O Ca 3 (PO 4 ) 2 NaCl Carbon containing molecules not considered organic: CO 2

Inorganic compounds: Usually do not contain carbon H 2 O Ca 3 (PO 4 ) 2 NaCl Carbon containing molecules not considered organic: CO 2 Organic Chemistry The study of carbon-containing compounds and their properties. Biochemistry: Made by living things All contain the elements carbon and hydrogen Inorganic: Inorganic compounds: All other

More information

by the cosurfactant hexanol. Earlier work on lipid-dna systems [1] has shown that

by the cosurfactant hexanol. Earlier work on lipid-dna systems [1] has shown that Chapter 4 Influence of hexanol on the structure of CTAB-DNA and CTAB-SHN-DNA complexes 4.1 Introduction This chapter deals with the structural transformations of CTAB-DNA complexes induced by the cosurfactant

More information

Coarse grained simulations of Lipid Bilayer Membranes

Coarse grained simulations of Lipid Bilayer Membranes Coarse grained simulations of Lipid Bilayer Membranes P. B. Sunil Kumar Department of Physics IIT Madras, Chennai 600036 sunil@iitm.ac.in Atomistic MD: time scales ~ 10 ns length scales ~100 nm 2 To study

More information

Chapter 12: Membranes. Voet & Voet: Pages

Chapter 12: Membranes. Voet & Voet: Pages Chapter 12: Membranes Voet & Voet: Pages 390-415 Slide 1 Membranes Essential components of all living cells (define boundry of cells) exclude toxic ions and compounds; accumulation of nutrients energy

More information

Development of the Fathead Minnow Narcosis Toxicity Data Base

Development of the Fathead Minnow Narcosis Toxicity Data Base Development of the Fathead Minnow Narcosis Toxicity Data Base Larry Brooke 1, Gilman Veith 2, Daniel Call 3, Dianne Geiger 1, and Christine Russom 4 Log 1 96-hr LC 5 (mol/l) -2-4 -6 Log LC 5 = -1.9 log

More information

Q1: Circle the best correct answer: (15 marks)

Q1: Circle the best correct answer: (15 marks) Q1: Circle the best correct answer: (15 marks) 1. Which one of the following incorrectly pairs an amino acid with a valid chemical characteristic a. Glycine, is chiral b. Tyrosine and tryptophan; at neutral

More information

The Role of Physical Properties Data in Product Development

The Role of Physical Properties Data in Product Development The Role of Physical Properties Data in Product Development From Molecules to Market Gent June 18 th and 19 th 2008 Eckhard Flöter Unilever R&D Vlaardingen Physical Properties Data Melting point, heat

More information