Human Cell Biology. General Information About the Cell. Cell Structure and Function

Size: px
Start display at page:

Download "Human Cell Biology. General Information About the Cell. Cell Structure and Function"

Transcription

1 Human Cell Biology Cell Structure and Function Learn and Understand Plasma membrane is like a picket fence Each body cell lives within a fluid environment, constantly interacting with it following the laws of chemistry and physics Protein conformation and protein ability to temporarily and reversibly change shape is key to life Cell organelles carryout specialized functions The presence and number of each organelle in a cell dictates what a cell can do General Information About the Cell Since 1830s, Basic/Smallest Unit Of Life Surface to volume ratio - Cell size is optimized What a cell can do is based on form and what it includes About 250 different cell types in adult human 1

2 General Information About the Cell Requires energy varies based on need Most contain complete set of genetic information Contain building blocks and structures to carry out activities Not created - come from the reproduction of other cells humans have trillions Basic Organization of Eukaryotic Cells - Generalized Cell All cells have some common structures and functions Human cells have three basic parts: Plasma membrane flexible outer selectivelypermeable boundary Cytoplasm intracellular fluid containing organelles Nucleus control center Smooth endoplasmic reticulum Typical Eukaryotic Animal Cell Chromatin Nucleolus Nuclear envelope Nucleus Plasma membrane Cytosol Mitochondrion Lysosome Centrioles Centrosome matrix Rough endoplasmic reticulum Ribosomes Golgi apparatus Cytoskeletal elements Microtubule Intermediate filaments Peroxisome Secretion being released from cell by exocytosis 2

3 The Cell s Environments Extracellular fluid (ECF) = interstitial fluid + blood plasma Intracellular fluid (ICF) = fluid inside cells Fluids are solutions of numerous dissolved substances (solutes) and/or colloids (suspensions, not quite soluble but dispersed like a solution) Extracellular Fluids % of Body Weight Interstitial fluid 15 Blood plasma 5 Intracellular fluid 40 Plasma Membrane The outermost membrane there are many internal membranes Separates intracellular fluid from extracellular fluid a 7-10 nm boundary Lipid bilayer and proteins in constantly changing fluid mosaic (model) Plays dynamic role in cellular activity Selectively or differentially permeable Figure 3.3 The plasma membrane. Extracellular fluid (watery environment outside cell) Note: Glycocalyx is unique to an individual s cells and identifies cells to each other. Also identifies non-self. Glycocalyx (carbohydrates) Lipid bilayer containing proteins Outward-facing layer of phospholipids Inward-facing layer of phospholipids Cytoplasm (watery environment inside cell) Polar head of phospholipid molecule Nonpolar tail of phospholipid molecule Cholesterol Glycolipid Integral proteins Filament of cytoskeleton Peripheral proteins Glycoprotein 3

4 Membrane Lipids 75% phospholipids (lipid bilayer) Phosphate heads: polar and hydrophilic Fatty acid tails: nonpolar and hydrophobic 5% glycolipids Lipids with polar sugar groups on outer membrane surface 20% cholesterol Increasing cholesterol increases membrane stability, reduces fluidity Membrane Lipids Fluid nature provides/allows Distribution of molecules within the membrane to change Growth and repair Phospholipids reassembled if membrane is damaged or altered self orienting PM incorporates other membranes or segments can break away One reason for selective permeability Phospholipids Polar (hydrophilic) at one end; nonpolar (hydrophobic) at the other. Do you remember polarity? What about electronegativity? 4

5 Membrane Proteins Improve communication with environment ½ mass of plasma membrane Most carry out specialized membrane functions Some chemically anchored and move freely Some tethered to intracellular structures Two types Membrane Proteins Integral proteins Firmly inserted into membrane most are transmembranal hydrophobic and hydrophilic regions place them in membrane Can interact with lipid tails and water Function as transport proteins (channels and carriers), enzymes, or receptors Membrane Proteins Peripheral proteins Loosely attached to integral proteins Include filaments on intracellular surface for membrane support Function as enzymes; motor proteins for shape change during cell division and muscle contraction; cell-to-cell connections 5

6 Summary of Membrane Protein Function Transport Receptors Attachment to extracellular proteins or other cells Enzymes Cell-cell recognition Critical Learning Objective: Function dependent on 3-D shape (conformation) and chemical characteristics. Conformation dependent on amino acids present, bonding, and environment Conformational Shift - a result of the R groups of the amino acids that make up the proteins Protein Basics amine Carboxyl (acid) hydrophilic Neutral/hydrophobic A dipeptide Acidic side group - hydrophilic Linear sequence of amino acids α helix β pleated sheet weakly maintained via hydrogen bonding Many fibrous proteins Globular proteins formed by hydrogen and stronger covalent bonds Hydrophilic AAs orient externally Final shape means everything the foundation of protein function 6

7 Transport Channel: A protein that spans the memb may provide a hydrophilic channel acros the membrane that is selective for a particular solute. Carrier: Some transport proteins hydroly ATP as an energy source to actively pum substances across the membrane. Not all carriers utilize ATP ATP ADP + P + free energy Signal Receptors Active site or binding site A membrane protein exposed to the outside of the cell may have a binding site that fits the shape of a specific chemical messenger, such as a hormone. When bound, the chemical messenger may cause a change in shape in the protein that initiates a chain of chemical reactions in the cell. Receptor Contact signaling touching and recognition of cells Chemical signaling interaction between receptors and ligands to alter activity of cell proteins Signal Transduction using the G protein messaging system Ligand (1st messenger) Receptor G protein Enzyme 2nd messenger Extracellular fluid Effector protein (e.g., an enzyme) Ligand Receptor G protein GDP Inactive 2nd messenger Active 2nd messenger * Ligands include hormones and neurotransmitters. Activated kinase enzymes Cascade of cellular responses (The amplification effect is tremendous. Each enzyme catalyzes hundreds of reactions.) Intracellular fluid 7

8 Enzymes Enzymatic activity membrane protein may be an enzyme with its active site exposed to substances in the adjacent solution Example: final digestion of biomolecules at membrane of intestinal cells A team of several enzymes in a membrane may catalyze sequential steps of a metabolic pathway Attachment to the internal cytoskeleton and/or extracellular matrix Elements of the cytoskeleton (cell's internal supports) and the extracellular matrix (basement membrane) may anchor to membrane proteins, which helps maintain cell shape and fix the location of certain membrane proteins. Others play a role in cell movement or bind adjacent cells together. Intercellular Joining - Cell Junctions Some cells free roaming e.g., sperm cells, several cells of immune system CAMs Many cells bound into communities Membrane proteins of adjacent cells may be hooked together in various kinds of intercellular junctions. Three ways cells are bound cell adhesion molecules or CAMs 8

9 Plasma membranes of adjacent cells Microvilli Intercellular space Basement membrane Interlocking junctional proteins Intercellular space Tight junctions: Impermeable junctions prevent molecules from passing through the intercellular space. Plasma membranes of adjacent cells Microvilli Intercellular space Basement membrane Intermediate filament (keratin) Intercellular space Plaque Linker proteins (cadherins) Desmosomes: Anchoring junctions bind adjacent cells together like a molecular Velcro and help form an internal tension-reducing network of fibers. Sheet-like tissues Plasma membranes of adjacent cells Microvilli Intercellular space Basement membrane Gap junctions: Communicating junctions allow ions and small molecules to pass for intercellular communication. Cardiac muscle, smooth muscle, some neurons Intercellular space Channel between cells (formed by connexons) 9

10 Cell-Cell Recognition Some glycoproteins serve as identification tags that are specifically recognized by other cells. Glycoprotein Passage of Materials Across the Membrane Plasma membranes selectively permeable Some molecules pass through easily; some do not Passage of a molecule is the result of chemical properties (polarity/charge), size, availability of specific channels or carriers, electrochemical gradient some substances pass easily through lipid bilayer some pass through channel and carrier proteins some must be pumped across using carrier proteins and energy some must be engulfed Types of Membrane Transport Passive processes No cellular energy (ATP) required Substance moves down its concentration or electrical gradient High to low concentration; positive charge toward negative charge; until equilibrium Diffusion Simple diffusion Osmosis, the diffusion of solvent (water) based on solute concentration If you need to, review osmosis and tonicity p Osmolarity = sum of the molarities of the dissolved particles of a solution mosm/l Facilitated diffusion assisted Carrier- and channel-mediated involves some of the those proteins just presented Influenced by temperature Filtration Based on size of openings, size of molecules, pressure More commonly occurs in-between cells rather than across membranes Active processes Energy (ATP) required which can only be provided by a living cell 10

11 Passive Processes: Figure 3.7a Diffusion through the plasma membrane. Extracellular fluid Lipidsoluble solutes Cytoplasm Simple diffusion of fat-soluble molecules directly through the phospholipid bilayer Passive Processes: Figure 3.7c Diffusion through the plasma membrane. Small lipidinsoluble solutes A leakage channel always open Compare to a gated channel that requires a stimulus to open Channel-mediated facilitated diffusion through a channel protein; mostly ions selected on basis of size and charge Passive Processes: Figure 3.7d Diffusion through the plasma membrane. Water molecules Lipid bilayer Aquaporin Osmosis, diffusion of a solvent such as water through a specific channel protein (aquaporin) or through the lipid bilayer 11

12 Passive Processes: Figure 3.7b Diffusion through the plasma membrane. Lipid-insoluble solutes (such as sugars or amino acids) Conformational shift of the protein moves the molecule Carrier-mediated facilitated Diffusion via protein carrier specific for one chemical; binding of substrate causes transport protein to change shape Carrier Protein Dynamics Lessons: Carriers/facilitators are specific, carry only compatible molecules Competitors/inhibitors alter ability to carry compatible molecules Carrying/facilitating takes time, albeit brief The number of carriers/facilitators in cell membrane is finite the cell controls the number and type up/down regulation possible Membrane Transport: Active Processes Two types of active processes Active transport Vesicular transport Both require ATP to move solutes across a living plasma membrane because: Solute too large (example: proteins) for channels and/or Solute not lipid soluble and/or No concentration gradient 12

13 Active Transport: Two Types Requires carrier proteins (solute pumps ) Bind specifically and reversibly with substance Moves solutes against concentration gradient Primary active transport Required energy directly from ATP hydrolysis Secondary active transport Required energy indirectly from ionic gradients created by primary active transport Primary Active Transport Energy from hydrolysis of ATP causes shape change in transport protein that "pumps" solutes (ions) across membrane Solute binding and phoshorylation cause conformational changes in transport protein E.g., calcium, hydrogen, Na + -K + pumps Sodium-potassium pump Most well-studied Carrier (pump) called Na + -K + ATPase Located in all plasma membranes Involved in primary and secondary active transport of nutrients and ions Figure 3.10 Primary active transport is the process in which solutes are moved across cell membranes against electrochemical gradients using energy supplied directly by ATP. Extracellular fluid Na + Na + K + pump ATP-binding site Cytoplasm K + Na + bound 1 Three cytoplasmic Na + bind to pump protein. P K + released 6 Pump protein binds ATP; releases K + to the inside, and Na + sites are ready to bind Na + again. The cycle repeats. 2 Na + binding promotes hydrolysis of ATP. The energy released during this reaction phosphorylates the pump. Na + released K + bound P P i K + 5 K + binding triggers release of the phosphate. The dephosphorylated pump resumes its original conformation. 3 Phosphorylation causes the pump to change shape, expelling Na + to the outside. P 4 Two extracellular K + bind to pump. 13

14 Figure 3.11 Secondary active transport is driven by the concentration gradient created by primary active transport. Extracellular fluid Na+-K+ pump Na + -glucose symport transporter loads glucose from extracellular fluid Glucose Na + -glucose symport transporter releases glucose into the cytoplasm Cytoplasm Active Transport Terms: Uniport - always transports one substance at a time (not shown) Cotransport - always transports more than one substance at a time Symport system: Substances transported in same direction Antiport system: Substances transported in opposite directions Vesicular Transport Transport of large particles, macromolecules, and fluids across membrane in membranous sacs called vesicles Requires cellular energy Functions: Exocytosis transport out of cell Endocytosis transport into cell Phagocytosis, pinocytosis, receptor-mediated endocytosis Transcytosis transport into, across, and then out of cell Vesicular trafficking transport from one area or organelle in cell to another Phagocytosis and Receptor-Mediated Endocytosis pseudopods Receptors Vesicle Phagosome 14

15 Pinocytosis and Exocytosis Captured in Living Cell Vesicle Photomicrograph of a secretory vesicle releasing its contents by exocytosis (100,000x) Figure 3.12 Events of endocytosis mediated by protein-coated pits. 1 Extracellular fluid Plasma Protein coat membrane (typically clathrin) Cytoplasm 2 3 Transport vesicle Uncoated endocytic vesicle 4 Uncoated vesicle fuses with a sorting vesicle called an endosome. Lysosome Endosome 5 Transport vesicle containing membrane compone -nts moves to the plasma membrane for recycling. 6 Fused vesicle may (a) fuse with lysosome for digestion of its contents, or (b) deliver its contents to the plasma membrane on the opposite side of the cell (transcytosis). Cell Organelles 15

16 Cytoplasm Cellular material outside nucleus but inside plasma membrane Composed of Cytoskeleton Cytosol: semi-fluid portion. Dissolved molecules (ions in water) A colloid (suspension of semi-soluble substances, example: proteins in water) Cytoplasmic Inclusions granules, droplets, pigment molecules, crystals Organelles Nucleus Membrane-bound Nucleoplasm, nucleolus and nuclear envelope Much of the DNA in a cell located here Figure 3.29a The nucleus. Nuclear envelope Chromatin (condensed) Nucleolus Nuclear pores Nucleus Cisterns of rough ER 16

17 Cytoskeleton Supports the cell but has to allow for movements like changes in cell shape and movements of cilia Microtubules: hollow, made of tubulin. Internal scaffold, transport, cell division Intermediate filaments: mechanical strength Microfilaments: actin. Structure, support for microvilli, contractility, movement Cytoplasmic inclusions: aggregates of chemicals such as lipid droplets, melanin Cytoplasmic Organelles Membranous Mitochondria Peroxisomes Lysosomes Endoplasmic reticulum Golgi apparatus Nonmembranous Cytoskeleton Centrioles Ribosomes Membranes allow crucial compartmentalization Ribosomes Sites of protein synthesis Composed of a large and a small rrna subunit Types Free Attached (to endoplasmic reticulum) 17

18 Endoplasmic Reticulum Types Rough Has attached ribosomes Proteins produced and modified here Common in cells that secrete protein products Smooth No attached ribosomes, instead integral proteins serving as enzymes Manufacturing, metabolism, breakdown More specialized function in muscle cells Cisternae: Interior spaces isolated from rest of cytoplasm Figure 3.18 The endoplasmic reticulum. Nucleus Smooth ER Nuclear envelope Rough ER Ribosomes Diagrammatic view of smooth and rough ER Electron micrograph of smooth and rough ER (25,000x) Figure 3.39 Rough ER processing of proteins. Slide 1 1 The SRP directs the 2 Once attached to the ER, the SRP is mrna-ribosome complex to the released and the growing polypeptide rough ER. There the SRP binds to snakes through the ER membrane pore a receptor site. into the cistern. ER signal sequence Ribosome mrna 3 An enzyme clips off the signal sequence. As protein synthesis continues, sugar groups may be added to the protein. Signal recognition particle (SRP) Receptor site Signal sequence removed Growing polypeptide Released protein Sugar group 4 In this example, the completed protein is released from the ribosome and folds into its 3-D conformation, a process aided by molecular chaperones. 5 The protein is enclosed within a protein coated transport vesicle. The transport vesicles make their way to the Golgi apparatus, where further processing of the proteins occurs (see Figure 3.19). Rough ER cistern Cytosol Transport vesicle pinching off Protein-coated transport vesicle 18

19 Figure 3.19a Golgi apparatus. Transport vesicle from rough ER Cis face receiving side of Golgi apparatus Cisterns New vesicles forming Transport vesicle from trans face Secretory vesicle Trans face shipping side of Golgi apparatus Many vesicles in the process of pinching off from the Golgi apparatus. Figure 3.20 The sequence of events from protein synthesis on the rough ER to the final distribution of those proteins. Rough ER ER membrane Phagosome Proteins in cisterns Plasma membrane Vesicular trafficking Pathway C: Lysosome containing acid hydrolase Vesicle enzymes becomes lysosome Golgi apparatus Pathway A: Vesicle contents destined for exocytosis Secretory vesicle Secretion by exocytosis Pathway B: Vesicle membrane to be incorporated into plasma membrane Extracellular fluid Action of Lysosomes 19

20 Mitochondria Major site of ATP synthesis Membranes Cristae: Infoldings of inner membrane Matrix: Substance located in space formed by inner membrane Mitochondria increase in number when cell energy requirements increase. Mitochondria contain DNA that codes for some of the proteins needed for mitochondria production. Overview of Cell Metabolism Production of ATP necessary for life ATP production takes place in the cytosol (anaerobic) and mitochondria (aerobic) Anaerobic does not require oxygen. Results in very little ATP production but provides ATP when O 2 is in short supply. Aerobic requires oxygen. Results in large amount of ATP. Cilia Appendages projecting from cell surfaces Capable of movement Moves materials over the cell surface 20

21 Flagella Similar to cilia but longer Usually only one per cell Move the cell itself in wave-like fashion Example: sperm cell 21

10/28/2013. Double bilayer of lipids with imbedded, dispersed proteins Bilayer consists of phospholipids, cholesterol, and glycolipids

10/28/2013. Double bilayer of lipids with imbedded, dispersed proteins Bilayer consists of phospholipids, cholesterol, and glycolipids Structure of a Generalized Cell MEMBRANES Figure 3.1 Plasma Membrane Fluid Mosaic Model Separates intracellular fluids from extracellular fluids Plays a dynamic role in cellular activity Glycocalyx is

More information

Cells: The Living Units

Cells: The Living Units Chapter 3 Part A Cells: The Living Units Annie Leibovitz/Contact Press Images PowerPoint Lecture Slides prepared by Karen Dunbar Kareiva Ivy Tech Community College Why This Matters Understanding the structure

More information

Anatomy Chapter 2 - Cells

Anatomy Chapter 2 - Cells Cells Cells are the basic living structural, functional unit of the body Cytology is the branch of science that studies cells The human body has 100 trillion cells 200 different cell types with a variety

More information

Cell Membranes Valencia college

Cell Membranes Valencia college 6 Cell Membranes Valencia college 6 Cell Membranes Chapter objectives: The Structure of a Biological Membrane The Plasma Membrane Involved in Cell Adhesion and Recognition Passive Processes of Membrane

More information

The Cell Membrane. Lecture 3a. Overview: Membranes. What is a membrane? Structure of the cell membrane. Fluid Mosaic Model. Membranes and Transport

The Cell Membrane. Lecture 3a. Overview: Membranes. What is a membrane? Structure of the cell membrane. Fluid Mosaic Model. Membranes and Transport Lecture 3a. The Cell Membrane Membranes and Transport Overview: Membranes Structure of cell membranes Functions of cell membranes How things get in and out of cells What is a membrane? Basically, a covering

More information

Structures in Cells. Cytoplasm. Lecture 5, EH1008: Biology for Public Health, Biomolecules

Structures in Cells. Cytoplasm. Lecture 5, EH1008: Biology for Public Health, Biomolecules Structures in Cells Lecture 5, EH1008: Biology for Public Health, Biomolecules Limian.zheng@ucc.ie 1 Cytoplasm Nucleus Centrioles Cytoskeleton Cilia Microvilli 2 Cytoplasm Cellular material outside nucleus

More information

Structures in Cells. Lecture 5, EH1008: Biology for Public Health, Biomolecules.

Structures in Cells. Lecture 5, EH1008: Biology for Public Health, Biomolecules. Structures in Cells Lecture 5, EH1008: Biology for Public Health, Biomolecules Limian.zheng@ucc.ie 1 Cytoplasm Nucleus Centrioles Cytoskeleton Cilia Microvilli 2 Cytoplasm Cellular material outside nucleus

More information

The Cell. Biology 105 Lecture 4 Reading: Chapter 3 (pages 47 62)

The Cell. Biology 105 Lecture 4 Reading: Chapter 3 (pages 47 62) The Cell Biology 105 Lecture 4 Reading: Chapter 3 (pages 47 62) Outline I. Prokaryotic vs. Eukaryotic II. Eukaryotic A. Plasma membrane transport across B. Main features of animal cells and their functions

More information

Structure & Function of Cells

Structure & Function of Cells Anatomy & Physiology 101-805 Unit 4 Structure & Function of Cells Paul Anderson 2011 Anatomy of a Generalised Cell Attached or bound ribosomes Cilia Cytosol Centriole Mitochondrion Rough endoplasmic reticulum

More information

Cells: The Living Units

Cells: The Living Units Chapter 3 Part B Cells: The Living Units Annie Leibovitz/Contact Press Images PowerPoint Lecture Slides prepared by Karen Dunbar Kareiva Ivy Tech Community College 3.4 Active Membrane Transport Two major

More information

Ch. 3 CELLS AND TISSUES. Copyright 2010 Pearson Education, Inc.

Ch. 3 CELLS AND TISSUES. Copyright 2010 Pearson Education, Inc. Ch. 3 CELLS AND TISSUES Generalized Cell All cells: Human cells have three basic parts: Plasma membrane flexible outer boundary Cytoplasm intracellular fluid containing organelles Nucleus control center

More information

Lecture Series 5 Cellular Membranes

Lecture Series 5 Cellular Membranes Lecture Series 5 Cellular Membranes Cellular Membranes A. Membrane Composition and Structure B. Animal Cell Adhesion C. Passive Processes of Membrane Transport D. Active Transport E. Endocytosis and Exocytosis

More information

A. Membrane Composition and Structure. B. Animal Cell Adhesion. C. Passive Processes of Membrane Transport. D. Active Transport

A. Membrane Composition and Structure. B. Animal Cell Adhesion. C. Passive Processes of Membrane Transport. D. Active Transport Cellular Membranes A. Membrane Composition and Structure Lecture Series 5 Cellular Membranes B. Animal Cell Adhesion E. Endocytosis and Exocytosis A. Membrane Composition and Structure The Fluid Mosaic

More information

Lecture Series 4 Cellular Membranes

Lecture Series 4 Cellular Membranes Lecture Series 4 Cellular Membranes Reading Assignments Read Chapter 11 Membrane Structure Review Chapter 21 pages 709-717 717 (Animal( Cell Adhesion) Review Chapter 12 Membrane Transport Review Chapter

More information

Cells. 1. Smallest living structures. 2. Basic structural and functional units of the body. 3. Derived from pre-existing cells. 4. Homeostasis.

Cells. 1. Smallest living structures. 2. Basic structural and functional units of the body. 3. Derived from pre-existing cells. 4. Homeostasis. Cells The Cell The human body has about 75 trillion cells All tissues and organs are made up of cells Smallest functional unit of life Cytology Histology Cytology Epithelial cells Fibroblasts Erythrocytes

More information

6 functions of membrane proteins integral & peripheral proteins Membrane Junctions

6 functions of membrane proteins integral & peripheral proteins Membrane Junctions Cells Cells are the structural units of all living organisms ranging from unicellular to multicellular organisms. Biochemical activities of cells are dictated by cell shape and specific subcellular structures.

More information

I. Fluid Mosaic Model A. Biological membranes are lipid bilayers with associated proteins

I. Fluid Mosaic Model A. Biological membranes are lipid bilayers with associated proteins Lecture 6: Membranes and Cell Transport Biological Membranes I. Fluid Mosaic Model A. Biological membranes are lipid bilayers with associated proteins 1. Characteristics a. Phospholipids form bilayers

More information

Cell Membranes and Signaling

Cell Membranes and Signaling 5 Cell Membranes and Signaling Concept 5.1 Biological Membranes Have a Common Structure and Are Fluid A membrane s structure and functions are determined by its constituents: lipids, proteins, and carbohydrates.

More information

Modern Cell Theory. Plasma Membrane. Generalized Cell Structures. Cellular Form and Function. Three principle parts of a cell

Modern Cell Theory. Plasma Membrane. Generalized Cell Structures. Cellular Form and Function. Three principle parts of a cell Cellular Form and Function Concepts of cellular structure Cell surface Membrane transport Cytoplasm Modern Cell Theory All living organisms are composed of cells. the simplest structural and functional

More information

A. Major parts 1. Nucleus 2. Cytoplasm a. Contain organelles (see below) 3. Plasma membrane (To be discussed in Cellular Transport Lecture)

A. Major parts 1. Nucleus 2. Cytoplasm a. Contain organelles (see below) 3. Plasma membrane (To be discussed in Cellular Transport Lecture) Lecture 5: Cellular Biology I. Cell Theory Concepts: 1. Cells are the functional and structural units of living organisms 2. The activity of an organism is dependent on both the individual and collective

More information

Modern Cell Theory. Plasma Membrane. Generalized Cell Structures. Cellular Form and Function. Three principle parts of a cell

Modern Cell Theory. Plasma Membrane. Generalized Cell Structures. Cellular Form and Function. Three principle parts of a cell Cellular Form and Function Concepts of cellular structure Cell surface Membrane transport Cytoplasm Modern Cell Theory All living organisms are composed of cells. the simplest structural and functional

More information

Chaffey College: Anatomy and Physiology Chapter 3: Cells - The Living Units

Chaffey College: Anatomy and Physiology Chapter 3: Cells - The Living Units Cell Theory Chaffey College: Anatomy and Physiology Chapter 3: Cells - The Living Units The cell is the basic structural and functional unit of life Organismal activity depends on individual and collective

More information

Title: Sep 10 7:59 PM (1 of 36) Ch 3 Cell Organelles and Transport

Title: Sep 10 7:59 PM (1 of 36) Ch 3 Cell Organelles and Transport Title: Sep 10 7:59 PM (1 of 36) Ch 3 Cell Organelles and Transport Title: Sep 10 8:02 PM (2 of 36) Cell organelles Nucleus: contains DNA Title: Sep 10 8:03 PM (3 of 36) Nuclear envelope double membrane

More information

Chapter 3: Cells. I. Overview

Chapter 3: Cells. I. Overview Chapter 3: Cells I. Overview A. Characteristics 1. Basic structural/functional unit 2. Diameter is too small to see by the naked eye 3. Can be over 3 feet long 4. Trillions of cells in over 200 basic types

More information

Cells: The Living Units

Cells: The Living Units Cells: The Living Units Introduction Life in general occurs in an aqueous environment All chemical processes essential to life occur within the aqueous environment of the cell and surrounding fluids contained

More information

(d) are made mainly of lipids and of proteins that lie like thin sheets on the membrane surface

(d) are made mainly of lipids and of proteins that lie like thin sheets on the membrane surface Which of the following statements is no true? Biological membranes (a) are composed partly of amphipathic lipids (b) have hydrophobic and hydrophilic regions (c) are typically in a fluid state (d) are

More information

Lecture Series 4 Cellular Membranes. Reading Assignments. Selective and Semi-permeable Barriers

Lecture Series 4 Cellular Membranes. Reading Assignments. Selective and Semi-permeable Barriers Lecture Series 4 Cellular Membranes Reading Assignments Read Chapter 11 Membrane Structure Review Chapter 12 Membrane Transport Review Chapter 15 regarding Endocytosis and Exocytosis Read Chapter 20 (Cell

More information

Chapter 3: Cytology. Cytology is the study of cells. Cells are the basic units of life. We are made up of trillions of cells.

Chapter 3: Cytology. Cytology is the study of cells. Cells are the basic units of life. We are made up of trillions of cells. PLEASE NOTE THAT THE ITEMS IN THE TEXT THAT ARE HIGHLIGHTED IN YELLOW ARE THOSE THAT ARE TOUCHED ON IN THE READING ASSIGNMENT (PAGES 90-99) AND IN THE LECTURE. ESPECIALLY KNOW THIS MATERIAL FOR THE FIRST

More information

Human Anatomy & Physiology

Human Anatomy & Physiology PowerPoint Lecture Slides prepared by Barbara Heard, Atlantic Cape Community College Ninth Edition Human Anatomy & Physiology C H A P T E R 3 Annie Leibovitz/Contact Press Images 2013 Pearson Education,

More information

The Study of Cells The diversity of the cells of the body The following figure shows the proportion of cell size of the variety of cells in the body

The Study of Cells The diversity of the cells of the body The following figure shows the proportion of cell size of the variety of cells in the body Adapted from Martini Human Anatomy 7th ed. Chapter 2 Foundations: The Cell Introduction There are trillions of cells in the body Cells are the structural building blocks of all plants and animals Cells

More information

The Cell. BIOLOGY OF HUMANS Concepts, Applications, and Issues. Judith Goodenough Betty McGuire

The Cell. BIOLOGY OF HUMANS Concepts, Applications, and Issues. Judith Goodenough Betty McGuire BIOLOGY OF HUMANS Concepts, Applications, and Issues Fifth Edition Judith Goodenough Betty McGuire 3 The Cell Lecture Presentation Anne Gasc Hawaii Pacific University and University of Hawaii Honolulu

More information

Biology 12 Cell Structure and Function. Typical Animal Cell

Biology 12 Cell Structure and Function. Typical Animal Cell Biology 12 Cell Structure and Function Typical Animal Cell Vacuoles: storage of materials and water Golgi body: a series of stacked disk shaped sacs. Repackaging centre stores, modifies, and packages proteins

More information

MEMBRANE STRUCTURE AND FUNCTION

MEMBRANE STRUCTURE AND FUNCTION MEMBRANE STRUCTURE AND FUNCTION 2.4.2 Membranes organize the chemical activities of cells Membranes provide structural order for metabolism Form most of the cell's organelles Compartmentalize chemical

More information

Cell Structure and Function

Cell Structure and Function Cell Structure and Function Agre and cells in the news Cells Smallest living unit Most are microscopic Discovery of Cells Robert Hooke (mid-1600s) Observed sliver of cork Saw row of empty boxes Coined

More information

ORGANELLES OF THE ENDOMEMBRANE SYSTEM

ORGANELLES OF THE ENDOMEMBRANE SYSTEM Membranes compartmentalize the interior of the cell and facilitate a variety of metabolic activities. Chloroplasts and a rigid cell wall are what distinguish a plant cell from an animal cell. A typical

More information

Cell Membrane: a Phospholipid Bilayer. Membrane Structure and Function. Fluid Mosaic Model. Chapter 5

Cell Membrane: a Phospholipid Bilayer. Membrane Structure and Function. Fluid Mosaic Model. Chapter 5 Membrane Structure and Function Chapter 5 Cell Membrane: a Phospholipid Bilayer Phospholipid Hydrophilic Head Hydrophobic Tail Lipid Bilayer Fluid Mosaic Model Mixture of saturated and unsaturated fatty

More information

Cells and Tissues 3PART A. PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College

Cells and Tissues 3PART A. PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College Cells and Tissues 3PART A Cells and Tissues Carry out all chemical activities needed to sustain life

More information

CELL PARTS TYPICAL ANIMAL CELL

CELL PARTS TYPICAL ANIMAL CELL AP BIOLOGY CText Reference, Campbell v.8, Chapter 6 ACTIVITY1.12 NAME DATE HOUR CELL PARTS TYPICAL ANIMAL CELL ENDOMEMBRANE SYSTEM TYPICAL PLANT CELL QUESTIONS: 1. Write the name of the cell part in the

More information

CH 03 CELLS: THE LIVING UNITS

CH 03 CELLS: THE LIVING UNITS CH 03 CELLS: THE LIVING UNITS This chapter provides a review of critical information regarding cells the basic units of structure and function of all living things. CELL THEORY The cell theory resulted

More information

A TOUR OF THE CELL 10/1/2012

A TOUR OF THE CELL 10/1/2012 A TOUR OF THE CELL Chapter 6 KEY CONCEPTS: Eukaryotic cells have internal membranes that compartmentalize their functions The eukaryotic cell s genetic instructions are housed in the nucleus and carried

More information

3. Endomembrane System: It s all integrated!

3. Endomembrane System: It s all integrated! 3. Endomembrane System: It s all integrated! 4. Vacuoles ii. Large Central Vacuole (Plants)! Fills up most of plant cell! Membrane bound (tonoplast)! Helps cell s water balance! Dump site for hazardous

More information

Cells. Unit 3 Cell Structure and Function. Cells. Plasma Membrane

Cells. Unit 3 Cell Structure and Function. Cells. Plasma Membrane Unit 3 Cell Structure and Function Cells Cell theory The cell is the basic unit of life The cells of all living things exhibit the seven characteristics of life All living things are made of cells Cells

More information

Chapter 1 Plasma membranes

Chapter 1 Plasma membranes 1 of 5 TEXTBOOK ANSWERS Chapter 1 Plasma membranes Recap 1.1 1 The plasma membrane: keeps internal contents of the cell confined to one area keeps out foreign molecules that damage or destroy the cell

More information

(impermeable; freely permeable; selectively permeable)

(impermeable; freely permeable; selectively permeable) BIOL 2457 CHAPTER 3 Part 1 SI 1 1. A is the basic structure of life. 2. The gelatinous inside of the cell is called the. 3. Name the structure that increases the cell s surface area? 4. Name the structure

More information

Lecture Series 4 Cellular Membranes

Lecture Series 4 Cellular Membranes Lecture Series 4 Cellular Membranes Reading Assignments Read Chapter 11 Membrane Structure Review Chapter 12 Membrane Transport Review Chapter 15 regarding Endocytosis and Exocytosis Read Chapter 20 (Cell

More information

Chapter 4 Organization of the Cell

Chapter 4 Organization of the Cell Chapter 4 Organization of the Cell Cell basic unit of life o Small o Self-sufficient o Self-replicating Cell Theory organisms are composed of cells and all cells come from the division of other cells Cells

More information

Delve AP Biology Lecture 4: 10/9/11 Melissa Ko and Anne Huang

Delve AP Biology Lecture 4: 10/9/11 Melissa Ko and Anne Huang Today s Agenda: I. Review of organelles II. More important organelles III. Plasma membrane structure IV. Diffusion and transport Delve AP Biology Lecture 4: 10/9/11 Melissa Ko and Anne Huang I. Review

More information

Membrane Structure and Membrane Transport of Small Molecules. Assist. Prof. Pinar Tulay Faculty of Medicine

Membrane Structure and Membrane Transport of Small Molecules. Assist. Prof. Pinar Tulay Faculty of Medicine Membrane Structure and Membrane Transport of Small Molecules Assist. Prof. Pinar Tulay Faculty of Medicine Introduction Cell membranes define compartments of different compositions. Membranes are composed

More information

Chapter 2: The Cell. Ryan R. Williams, M.D., Ph.D. August 29 th, 2018 West Los Angeles College

Chapter 2: The Cell. Ryan R. Williams, M.D., Ph.D. August 29 th, 2018 West Los Angeles College Chapter 2: The Cell Ryan R. Williams, M.D., Ph.D. August 29 th, 2018 West Los Angeles College Introduction There are two types of cells in the body: Sex cells Sperm in males and oocytes in females Somatic

More information

Membrane Structure. Membrane Structure. Membrane Structure. Membranes

Membrane Structure. Membrane Structure. Membrane Structure. Membranes Membrane Structure Membranes Chapter 5 The fluid mosaic model of membrane structure contends that membranes consist of: -phospholipids arranged in a bilayer -globular proteins inserted in the lipid bilayer

More information

Chapt. 10 Cell Biology and Biochemistry. The cell: Student Learning Outcomes: Describe basic features of typical human cell

Chapt. 10 Cell Biology and Biochemistry. The cell: Student Learning Outcomes: Describe basic features of typical human cell Chapt. 10 Cell Biology and Biochemistry Cell Chapt. 10 Cell Biology and Biochemistry The cell: Lipid bilayer membrane Student Learning Outcomes: Describe basic features of typical human cell Integral transport

More information

Cell Category? Prokaryote

Cell Category? Prokaryote CELLS Cell Category? Prokaryote Prokaryote Eukaryote Cell Category? Cell Type? Cell Category? Cell Type? Endosymbiosis eukaryotic cells were formed from simpler prokaryotes Endo within Symbiosis together

More information

AP Biology Cells: Chapters 4 & 5

AP Biology Cells: Chapters 4 & 5 AP Biology Cells: Chapters 4 & 5 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The was the first unifying principle of biology. a. spontaneous generation

More information

Cells. Variation and Function of Cells

Cells. Variation and Function of Cells Cells Variation and Function of Cells Cell Theory states that: 1. All living things are made of cells 2. Cells are the basic unit of structure and function in living things 3. New cells are produced from

More information

Organelles. copyright cmassengale 1

Organelles. copyright cmassengale 1 Organelles copyright cmassengale 1 Organelles Very small (Microscopic) Perform various functions for a cell Found in the cytoplasm May or may not be membrane-bound 2 Animal Cell Organelles Nucleolus Nucleus

More information

Chapter Seven. A View of the Cell

Chapter Seven. A View of the Cell Chapter Seven A View of the Cell Cellular Organization Cell Tissue group of cells functioning together. Organ group of tissues functioning together. Organ System group of organs functioning together. Organism

More information

Cell and Cell Membrane Structure and Function

Cell and Cell Membrane Structure and Function Lesson 3 Cell and Cell Membrane Structure and Function Introduction to Life Processes - SCI 102 1 The Cell Theory Three principles comprise the cell theory 1) Every living organism is made up of one or

More information

Membranes. Chapter 5

Membranes. Chapter 5 Membranes Chapter 5 Membrane Structure The fluid mosaic model of membrane structure contends that membranes consist of: -phospholipids arranged in a bilayer -globular proteins inserted in the lipid bilayer

More information

Cytoskeleton. Provide shape and support for the cell. Other functions of the cytoskeleton. Nucleolus. Nucleus

Cytoskeleton. Provide shape and support for the cell. Other functions of the cytoskeleton. Nucleolus. Nucleus Chapter 4: Cell Structure and Function Cytoskeleton The cytoskeleton is a network of fibers that organizes structures and activities in the cell. Microtubules (the largest) Intermediate fibers Microfilaments

More information

Bio10 Cell Structure SRJC

Bio10 Cell Structure SRJC 3.) Cell Structure and Function Structure of Cell Membranes Fluid mosaic model Mixed composition: Phospholipid bilayer Glycolipids Sterols Proteins Fluid Mosaic Model Phospholipids are not packed tightly

More information

Chapter 7: Membrane Structure & Function

Chapter 7: Membrane Structure & Function Chapter 7: Membrane Structure & Function 1. Membrane Structure 2. Transport Across Membranes 1. Membrane Structure Chapter Reading pp. 125-129 What are Biological Membranes? Hydrophilic head WATER They

More information

Chapter 7: Membrane Structure & Function. 1. Membrane Structure. What are Biological Membranes? 10/21/2015. Why phospholipids? 1. Membrane Structure

Chapter 7: Membrane Structure & Function. 1. Membrane Structure. What are Biological Membranes? 10/21/2015. Why phospholipids? 1. Membrane Structure Chapter 7: Membrane Structure & Function 1. Membrane Structure 2. Transport Across Membranes 1. Membrane Structure Chapter Reading pp. 125-129 What are Biological Membranes? Hydrophilic head WATER They

More information

The Cell Organelles. Eukaryotic cell. The plasma membrane separates the cell from the environment. Plasma membrane: a cell s boundary

The Cell Organelles. Eukaryotic cell. The plasma membrane separates the cell from the environment. Plasma membrane: a cell s boundary Eukaryotic cell The Cell Organelles Enclosed by plasma membrane Subdivided into membrane bound compartments - organelles One of the organelles is membrane bound nucleus Cytoplasm contains supporting matrix

More information

4 A Tour of the Cell CAMPBELL BIOLOGY IN FOCUS. Urry Cain Wasserman Minorsky Jackson Reece

4 A Tour of the Cell CAMPBELL BIOLOGY IN FOCUS. Urry Cain Wasserman Minorsky Jackson Reece CAMPBELL BIOLOGY IN FOCUS Urry Cain Wasserman Minorsky Jackson Reece 4 A Tour of the Cell Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Overview: The Fundamental Units of Life All

More information

1. or is the study of cellular structure and function. 2. What is the purpose and characteristics of the plasma membrane?

1. or is the study of cellular structure and function. 2. What is the purpose and characteristics of the plasma membrane? Chapter 3 Reading Guide The Cellular Level of Organization Name 1. or is the study of cellular structure and function. Section 3.1 Parts of a Cell 2. What is the purpose and characteristics of the plasma

More information

Cell Structure & Interactions

Cell Structure & Interactions Cells Structures & Interactions Overview 1830s-Botanist Matthias Schleiden and zoologist Theodor Schwann were studying tissues and proposed the unified cell theory All living things are composed of one

More information

Chapter 3 Part 2! Pages (10 th and 11 th eds.)! The Cellular Level of Organization! Cellular Organelles and Protein Synthesis!

Chapter 3 Part 2! Pages (10 th and 11 th eds.)! The Cellular Level of Organization! Cellular Organelles and Protein Synthesis! Chapter 3 Part 2! Pages 65 89 (10 th and 11 th eds.)! The Cellular Level of Organization! Cellular Organelles and Protein Synthesis! The Cell Theory! Living organisms are composed of one or more cells.!

More information

3UNIT. Photosynthesis and. Cellular Respiration. Unit PreQuiz? General Outcomes. Unit 3 Contents. Focussing Questions

3UNIT. Photosynthesis and. Cellular Respiration. Unit PreQuiz?   General Outcomes. Unit 3 Contents. Focussing Questions 3UNIT Photosynthesis and Cellular Respiration General Outcomes In this unit, you will relate photosynthesis to the storage of energy in organic compounds explain the role of cellular respiration in releasing

More information

Membrane Structure and Function

Membrane Structure and Function Membrane Structure and Function Chapter 7 Objectives Define the following terms: amphipathic molecules, aquaporins, diffusion Distinguish between the following pairs or sets of terms: peripheral and integral

More information

basic unit structure and function

basic unit structure and function Chapter 3 Cells Introduction The cell is the basic unit of structure and function in living things. Cells vary in their shape, size, and arrangements, but all cells have similar components with a particular

More information

The Cell and Cellular transport

The Cell and Cellular transport Cell theory (1838): The Cell 1. All organisms are composed of one or more cells, and the life processes of metabolism and heredity occur within these cells. 2. Cells are the smallest living things, the

More information

8/7/18. UNIT 2: Cells Chapter 3: Cell Structure and Function. I. Cell Theory (3.1) A. Early studies led to the development of the cell theory

8/7/18. UNIT 2: Cells Chapter 3: Cell Structure and Function. I. Cell Theory (3.1) A. Early studies led to the development of the cell theory 8/7/18 UNIT 2: Cells Chapter 3: Cell Structure and Function I. Cell Theory (3.1) A. Early studies led to the development of the cell theory 1. Discovery of Cells a. Robert Hooke (1665)-Used compound microscope

More information

Membranes. Chapter 5. Membrane Structure

Membranes. Chapter 5. Membrane Structure Membranes Chapter 5 Membrane Structure Lipid Bilayer model: - double phospholipid layer - Gorter & Grendel: 1925 Fluid Mosaic model: consist of -phospholipids arranged in a bilayer -globular proteins inserted

More information

Study Guide for Biology Chapter 5

Study Guide for Biology Chapter 5 Class: Date: Study Guide for Biology Chapter 5 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following led to the discovery of cells? a.

More information

Renáta Schipp Gergely Berta Department of Medical Biology

Renáta Schipp Gergely Berta Department of Medical Biology The cell III. Renáta Schipp Gergely Berta Department of Medical Biology Size and Biology Biology is a visually rich subject many of the biological events and structures are smaller than the unaided human

More information

Hole s Human Anatomy and Physiology Tenth Edition. Chapter 3

Hole s Human Anatomy and Physiology Tenth Edition. Chapter 3 PowerPoint Lecture Outlines to accompany Hole s Human Anatomy and Physiology Tenth Edition Shier w Butler w Lewis Chapter 3 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

More information

LIFE IS CELLULAR. Cell Theory. Cells Are Small. Prokaryotic Cell 10/4/15. Chapter 7 Cell Structure and Function

LIFE IS CELLULAR. Cell Theory. Cells Are Small. Prokaryotic Cell 10/4/15. Chapter 7 Cell Structure and Function Chapter 7 Cell Structure and Function The cell basic unit of life, all living things are made of a cell (unicellular) or more than one cell (multicellular). LIFE IS CELLULAR The invention of the microscope

More information

Peroxisomes. Endomembrane System. Vacuoles 9/25/15

Peroxisomes. Endomembrane System. Vacuoles 9/25/15 Contains enzymes in a membranous sac that produce H 2 O 2 Help survive environmental toxins including alcohol Help the cell use oxygen to break down fatty acids Peroxisomes Endo System Components of the

More information

A Tour of the Cell. Ch. 7

A Tour of the Cell. Ch. 7 A Tour of the Cell Ch. 7 Cell Theory O All organisms are composed of one or more cells. O The cell is the basic unit of structure and organization of organisms. O All cells come from preexisting cells.

More information

CELLS. Cells. Basic unit of life (except virus)

CELLS. Cells. Basic unit of life (except virus) Basic unit of life (except virus) CELLS Prokaryotic, w/o nucleus, bacteria Eukaryotic, w/ nucleus Various cell types specialized for particular function. Differentiation. Over 200 human cell types 56%

More information

Human height. Length of some nerve and muscle cells. Chicken egg. Frog egg. Most plant and animal cells Nucleus Most bacteria Mitochondrion

Human height. Length of some nerve and muscle cells. Chicken egg. Frog egg. Most plant and animal cells Nucleus Most bacteria Mitochondrion 10 m 1 m 0.1 m 1 cm Human height Length of some nerve and muscle cells Chicken egg Unaided eye 1 mm Frog egg 100 µm 10 µm 1 µm 100 nm 10 nm Most plant and animal cells Nucleus Most bacteria Mitochondrion

More information

Diffusion across cell membrane

Diffusion across cell membrane The Cell Membrane and Cellular Transport Diffusion across cell membrane Cell membrane is the boundary between inside & outside separates cell from its environment Can it be an impenetrable boundary? NO!

More information

Ch7: Membrane Structure & Function

Ch7: Membrane Structure & Function Ch7: Membrane Structure & Function History 1915 RBC membranes studied found proteins and lipids 1935 membrane mostly phospholipids 2 layers 1950 electron microscopes supported bilayer idea (Sandwich model)

More information

Cytosol the fluid Cytoplasm cell interior, everything outside the nucleus but within the cell membrane, includes the organelles, cytosol, and

Cytosol the fluid Cytoplasm cell interior, everything outside the nucleus but within the cell membrane, includes the organelles, cytosol, and Cell Organelles Plasma Membrane comprised of a phospholipid bilayer and embedded proteins Outer surface has oligosaccharides separates the cells s contents from its surroundings Cytosol the fluid Cytoplasm

More information

Cell Structure and Function

Cell Structure and Function C h a p t e r 3 Cell Structure and Function PowerPoint Lecture Slides prepared by Jason LaPres Lone Star College - North Harris 3-1 The study of cells provides the foundation for understanding human physiology

More information

Chapter 3: Cells 3-1

Chapter 3: Cells 3-1 Chapter 3: Cells 3-1 Introduction: A. Human body consists of 75 trillion cells B. About 260 types of cells that vary in shape & size yet have much in common B. Differences in cell shape make different

More information

3- Cell Structure and Function How do things move in and out of cells? A Quick Review Taft College Human Physiology

3- Cell Structure and Function How do things move in and out of cells? A Quick Review Taft College Human Physiology 3- Cell Structure and Function How do things move in and out of cells? A Quick Review Taft College Human Physiology How do things move in and out of cells? Things may move through cell membranes by Passive

More information

CHAPTER 8 MEMBRANE STUCTURE AND FUNCTION

CHAPTER 8 MEMBRANE STUCTURE AND FUNCTION CHAPTER 8 MEMBRANE STUCTURE AND FUNCTION Plasma Membrane Plasma membrane is selectively permeable, (allowing some substances to cross more easily than others) PM is flexible bends and changes shape

More information

Basic Cell Info. Cell diameter range: 7.5 micrometers (RBC) 150 micrometers (ovum)

Basic Cell Info. Cell diameter range: 7.5 micrometers (RBC) 150 micrometers (ovum) Unit 2: Cells 1 Basic Cell Info Cell Theory - the cell is the fundamental organizational unit of life Schleidon & Schwann first to suggest that all living things are composed of cells Human body 100 trillion

More information

Cell Biology. AP1 Chapter 3

Cell Biology. AP1 Chapter 3 Chapter 3: Cell Biology AP1 Chapter 3 1 Cell I. Fxns of a cell the basic unit of all living things (the smallest part of a living organism in our case humans) Shared Characteristics Plasma Membrane Outer

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Figure 2.1 Using Figure 2.1, match the following: 1) Rough endoplasmic reticulum 1) 2) Nucleolus 2) 3)

More information

Cell Overview. Hanan Jafar BDS.MSc.PhD

Cell Overview. Hanan Jafar BDS.MSc.PhD Cell Overview Hanan Jafar BDS.MSc.PhD THE CELL is made of: 1- Nucleus 2- Cell Membrane 3- Cytoplasm THE CELL Formed of: 1. Nuclear envelope 2. Chromatin 3. Nucleolus 4. Nucleoplasm (nuclear matrix) NUCLEUS

More information

Cell Structure & Function. Source:

Cell Structure & Function. Source: Cell Structure & Function Source: http://koning.ecsu.ctstateu.edu/cell/cell.html Definition of Cell A cell is the smallest unit that is capable of performing life functions. http://web.jjay.cuny.edu/~acarpi/nsc/images/cell.gif

More information

Chapter 5 Ground Rules of Metabolism Sections 6-10

Chapter 5 Ground Rules of Metabolism Sections 6-10 Chapter 5 Ground Rules of Metabolism Sections 6-10 5.6 Cofactors in Metabolic Pathways Most enzymes require cofactors Energy in ATP drives many endergonic reactions Table 5-1 p86 Cofactors and Coenzymes

More information

Overview of the Cellular Basis of Life. Copyright 2009 Pearson Education, Inc., publishing as Benjamin Cummings

Overview of the Cellular Basis of Life. Copyright 2009 Pearson Education, Inc., publishing as Benjamin Cummings Overview of the Cellular Basis of Life Cells and Tissues Cells: Carry out all chemical activities needed to sustain life Cells are the building blocks of all living things Tissues Cells vary in length,

More information

Draw and label a diagram to show the structure of membranes

Draw and label a diagram to show the structure of membranes 2.4 Membranes 2.4.1 - Draw and label a diagram to show the structure of membranes Phospholipid Bilayer - This is arranged with the hydrophilic phosphate heads facing outwards, and the hydrophobic fatty

More information

Phospholipids. Extracellular fluid. Polar hydrophilic heads. Nonpolar hydrophobic tails. Polar hydrophilic heads. Intracellular fluid (cytosol)

Phospholipids. Extracellular fluid. Polar hydrophilic heads. Nonpolar hydrophobic tails. Polar hydrophilic heads. Intracellular fluid (cytosol) Module 2C Membranes and Cell Transport All cells are surrounded by a plasma membrane. Eukaryotic cells also contain internal membranes and membrane- bound organelles. In this module, we will examine the

More information

Early scientists who observed cells made detailed sketches of what they saw.

Early scientists who observed cells made detailed sketches of what they saw. Early scientists who observed cells made detailed sketches of what they saw. Early scientists who observed cells made detailed sketches of what they saw. CORK Early scientists who observed cells made detailed

More information

Cell Theory. Cells are the basic unit of life.

Cell Theory. Cells are the basic unit of life. 3.1 7.1 Cell Theory Cells are the basic unit of life. 3.1 7.1 Cell Theory The cell theory grew out of the work of many scientists Galileo (1610) made the first microscope Hooke (1665) made up the term

More information

Chapter Seven. A View of the Cell

Chapter Seven. A View of the Cell Chapter Seven A View of the Cell Cellular Organization Cell Tissue group of cells functioning together. Organ group of tissues functioning together. Organ System group of organs functioning together. Organism

More information