Research to Routine Workflows for Large and Small Molecules using the Q Exactive HR/MS

Size: px
Start display at page:

Download "Research to Routine Workflows for Large and Small Molecules using the Q Exactive HR/MS"

Transcription

1 Research to Routine Workflows for Large and Small Molecules using the Q Exactive HR/MS Sept. 22, 2011 Patrick Bennett Director Pharma Strategic Marketing Thermo Fisher Scientific

2 Agenda Definitions Research to Routine Small Vs. Large Molecule Physicochemical Types of instruments/technology and experiments Small molecule regulations vs Large molecule regulations Application of HR/MS Why HR/MS Q Exactive Proven Proteomic workflow tools applied to routine quantitation 2

3 Definitions Pharma traditional pharmaceutical company focused primarily on small molecule drug discovery, development and sales. May have large molecule components and includes CRO s. BioPharma can be same company as Pharma or a company that specifically focuses on biologics based therapeutic agents. Includes CRO s. Biologics complex, natural proteins, blood products, clotting factors, antibodies, mab, peptides, analogues, truncated forms, fusion proteins, non-protein macromolecules RNA/DNA, antisense RNA, aptamer s/oligonucleotides Large molecule biologics; based on molecular weight Small molecule traditional drugs; based on molecular weight. 3

4 4 RESEARCH TO ROUTINE

5 Biologics Development: Research to Routine Unregulated Range of traditional Proteomics experiments through to high throughput screening. Research focus, minor component interest, many analytes, same type of test. Internal based procedures rather than regulated SOP s Regulated Routine and Semi-Routine experiments supporting safety and efficacy studies. Few drugs, many samples, high expense GLP & GMP environment strict SOP s Research Discovery DMPK QC/QA Activities Traditional Proteomics, Protein-protein interactions Pathway analysis Activity, PD Biomarker dev. PTM Analysis Disulfide Mapping Protein Characterization Structural Analysis Immunogenicity Neutralization PK/PD, LBA s, Cell based assays, PTM Optimization, Protein Characterization, Safety, Efficacy, Metabolism, DDI PK/PD, CQA/QbD, Production Characterizations, Drug monitoring 5

6 Small vs Large Chemical Characteristics Characteristic Small Large Molecular Weight <800 >5000 Endogenous No Often Yes Solubility Hydrophobic Hydrophilic Purity Homogeneous Heterogeneous Immunogenic No Yes Conjugated Yes No Valence Monovalent Divalent Kinetics Fast Slow Detection Isotopic Activity/functional Stability Chemical/enzymatic Immunologic/enzymatic Metabolic interference Yes/knowledge Unknown Protein Binding Yes No 6

7 Small vs Large Analytical Methodology Characteristic Small Large Basis of Measurement Analyte Antigen-Ab reaction Detection Direct Indirect Reagents Common and available Unique, not commercial or available Analytes Small Small and macromolecule Sample Preparation Yes No Calibration Curves Linear Non-Linear Assay Environment Organic Aqueous Development Time Weeks Months Technology LC/MS (Affinity based Extraction) LBA: ELISA, RIA, ECL, Multiplexing Stability Drug Drug + Reagents Regulations Very defined and rigid Some flexibility 7

8 8 APPLICATION OF HR/MS

9 Specificity = Resolution + Mass Accuracy Resolution: 10k, 30k, 50k, 100k Butyl-Phthalate, (ubiquitous background ion) 54 ppm apart Relative Abundance Ethinyl-Estradiol, m/z 9

10 High Resolution Ensures Accurate Target Selection R: 35K R: 70K R: 140K ppm m/z Accurate quantification is only possible when the target can be correctly identified. An interference which is 30 ppm apart from the target can be completely separated using high-resolution of 140,000 using the Q Exactive. 10

11 When does HR/MS make sense? Research phase Early to late discovery phases Pre-clinical phase QA/QC - characterization Ligand binding assay development Specificity testing Stability testing Assay troubleshooting, unexpected results Reagents unavailable, difficult to produce, expensive Bridging methods, reagents Biomarker research, multiple biomarkers 11

12 Research to Routine: Range of Experiments for LC/MS Qualitative Identification Confirmation Research Low throughput Discovery Development Medium throughput Verification Quantitative Routine High throughput Optimized assays Traditional Proteomics, Metabolomics, Metabolism, Biomarker Research Translational Research, Biopharma, Metabolomics, Metabolism Drug Discovery, Various Biomarker Pharma & Biopharma Quantitation, Leachables, Extractables, Impurities, QA/QC Orbitraps Q Exactive Triples All Q TOF All Q TOF Triples & Q Trap 12

13 Q Exactive TM Hardware Innovations S-Lens ion source Quadrupole mass filter Advanced signal processing 13

14 Specifications/Details Thermo Scientific HyperQuad mass filter Mass range: m/z Linear range: 4-5 orders of magnitude Variable precursor isolation width selection from 0.4 Da to full mass range Resolution : up to 140,000 17k, 35k, 70k, 140k at m/z 200 scan speed dependent on resolution setting Sources: ESI probe compatible with liquid flow rates of < 1 μl/min to 1 ml/min without splitting APCI source compatible with liquid flow rates of 50 μl/min to 2 ml/min without splitting Nanospray/microspray 14

15 What Do We Gain by Selected Ion Monitoring? In Full MS, total C-trap charge capacity is shared between multiple signals of different intensity Signal-to-noise ratio becomes dependent on the ratio of compound of interest to other analytes-much less so in SIM! In Orbitrap instruments, SIM could become MRM without any additional overhead! N= N= Full MS S/N = 745 IT= ms SIM (10amu) For the same target: S/N = 5400 IT= ms NL: 1.94E8 [ ] Lowest signal NL: 1.12E8 [ ] Lowest signal Gain in sensitivity (7x) 6000 Sensitivity gain 5 10 x with SIM mode The gain will be higher in more complex matrices S/N (spectrum) Caffeine S/N (FMS) S/N (SIM10)

16 16 QUANTITATION

17 Traditional Workflow (Triple Quadrupoles) NCEs Tune MRM PP Sample Clean Up Bioanalysis PK Estimates (NCE only) LC-SRM Analysis Tuning MRM takes time & requires some level of expertise MRM methods are not easily transferable between platforms from different vendors, which makes scalability difficult. Peptides require determination of charge state and the optimal SRM transition, which is again platform dependent. Expertise required, even for a basic assay. Limits the number of transitions (duty cycle & no. of scans per analyte). Difficult to automate set-up to get sequence information expertise required. 17

18 HRMS Workflow (Q Exactive) NCEs PP Sample Clean Up Bioanalysis PK Estimates (NCE) PK Estimates Metabolites LC-HRMS No compound dependent tuning required easier to use/faster to set-up Post-acquisition data analysis Providing PK data as well as critical new information (metabolites, biomarkers) More value in terms of the Fail Fast paradigm Multiple Analytes (IS) Peptides Post-Acquisition Data Query 18

19 Quantitation Summary of Small Molecules on Q-Exactive Q Exactive Full Scan Compound LOQ Curve Fit Oxycodone 50 fg L - 1/X2 Paroxetine 100 fg Q - 1/X2 Ketoconazole 50 fg L - 1/X2 Clonazepam 500 fg Q - 1/X2 Verapamil 50 fg Q - 1/X2 Clopidogrel 50 fg L - 1/X2 Q Exactive Targeted-SIM LOQ Curve Fit 50 fg L - 1/X2 50 fg L - 1/X2 50 fg L - 1/X2 500 fg Q - 1/X2 50 fg L - 1/X2 50 fg L - 1/X2 Triple Quad Vantage (SRM) LOQ Curve Fit 50 fg L - 1/X2 50 fg L - 1/X fg Q - 1/X2 100 fg L - 1/X2 10 fg Q - 1/X2 50 fg Q - 1/X2 Q-Exactive achieves similar quantitation performance of above compound mixture as Vantage 19

20 Uroguanylin in Glucagon Peptide Matrix (Full Scan) Q Exactive Test-003 # RT: AV: 6 NL: 1.17E6 T: FTMS + p ESI Full ms [ ] Relative Abundance [M+2H] [M+H] m/z 20

21 Uroguanylin Singly Charged Species Test-003 # RT: AV: 6 NL: 1.32E5 T: FTMS + p ESI Full ms [ ] R=25584 z= R=25350 z=1 Uroguanylin was quantified by summing the first 3 isotopes of both singly and doubly charged ions Relative Abundance R=25986 z= R=26333 z= R=26133 z= R=25043 z= R=26044 z= m/z 21

22 Uroguanylin Doubly Charged Species Test-003 # RT: AV: 6 NL: 1.13E5 T: FTMS + p ESI Full ms [ ] R=36727 z= R=35417 z= Relative Abundance R=36214 z= R=36408 z= R=35710 z= R=32095 z= R=33958 z= m/z 22

23 Q Exactive: 100 pg/ml to 10,000 pg/ml Uroguanylin in Glucagon Peptide Matrix (t-sim) R 2 =0.9977, Linear 1/x Uroguanylin Y = *X R^2 = W: 1/X^2 Linear Dynamic Range 1 x 10(4) Area Area Uroguanylin Y = *X R^2 = W: 1/X^ ng/ml ng/ml

24 Insulin Quantitation Results - Plasma Nominal Concentration (ng/ml) Replicate # Mean Calculated Concentration Stdev % CV

25 Exendin Quantitation Results - Plasma Nominal Concentration (ng/ml) Replicate # Mean Calculated Concentration Stdev % CV

26 GLP-1 Quantitation Results - Plasma Nominal Concentration (ng/ml) Replicate # Mean Calculated Concentration Stdev % CV

27 PROTEOMICS RESEARCH TO ROUTINE 27

28 Workflow Steps Define the Experiment Identify the protein sequence under study Selection of Peptides Literature search, in silico digestion, BLAST searchers to ensure sequence specificity WRT to the background matrix Selection of Targeted m/z values Sensitivity based on intense fragmentation, selectivity WRT background Verification of Targeted m/z values Comparison of experimental LC-MS and MS/MS parameters to references (incorporation of recombinant protein analysis and/or heavy labeled synthetic peptides Optimization of Targeted m/z values Keeping only the best peptides/product ions, collision energies, scheduled time windows 28

29 Workflow for Targeted Protein Quantitation Development Sample Preparation Mass Spectrometry Data Processing MS Heavy Labeled Protein Protein(s) Digest 1. Ionization (electrospray) 2. MS (full spectra) m/z Quantification Heavy Labeled Peptides PRTC Kit 3. MS Pre-cursor selection 4. Fragmentation (CID, HCD, ETD) Separation HPLC 5. MSn (Product Ion spectra) Reference Database Intensity [counts] MS/MS y?? y?? Peptide sequence verification Time [M+2H]²?-H?O, [M+2H]²?-NH? y?²? y?? y?²?-h?o, y?²?-nh? y?? b?? b?? y??-nh? y?? b?? y?? m/z Domon and Aebersold Nature Biotechnology 2010, 7(28),

30 Target Verification Using Heavy Labeled Peptides Relative Abundance Relative Abundance NL: 1.71E NL: 5.33E LC VFQSWWDR m/z VFQSWWDR m/z Time (min) Relative Abundance MS VFQSWWDR MS/MS VFQSWWDR VFQSWWDR VFQSWWDR m/z

31 31 HeavyPeptide TM AQUA TM Standards

32 HeavyPeptide TM AQUA TM Benefits HeavyPeptide AQUA products enable absolute quantification of all proteins in a sample. The HeavyPeptide AQUA kits can now be prepared with covalent modifications, such as phosphorylation, which are chemically identical to naturally occurring post-translational modifications (PTMs). As a result, the HeavyPeptide AQUA kits are an extremely cost-effective solution, enabling researchers to identify and quantify peptides of interest much faster, with significantly increased precision. This answers the need for relative and absolute quantification of the expression levels for all proteins in complex samples. This is essential since PTMs significantly increase the size of proteomes over their corresponding genomes. The HeavyPeptide AQUA product range produces a clear and consistent gain in efficiency, transparency and reproducibility of experiments. 32

33 Extracted from: C:\Scott Peterman\Backup\Marketing_Monthly_Updates\2011_Marketing_Plan\Thermo_Instruments\Seed_Unit_Requests\Amgen\Control_trainer_180grad_inj1.raw #6273 RT: ITMS, CID, z=+2, Mono m/z= Da, MH+= Da, Match Tol.=0.8 Da b₃ y₂ y₅ y₆ Extracted from: C:\Scott Peterman\Backup\Marketing_Monthly_Updates\2011_Marketing_Plan\Thermo_Instruments\Seed_Unit_Requests\Amgen\Control_trainer_180grad_inj1.raw #2982 RT: ITMS, CID, z=+1, Mono m/z= Da, MH+= Da, Match Tol.=0.8 Da y₈ [M+1H]+-H₂O b₁₀+-h₂o y₁₂² b₁₃+ y₇+ b₉+-h₂o25 y₉ b₁₄+ y₃+-nh₃ b₅+-h₂o b₇+ b₈ b₁₄+-nh₃, y₁₄ y₁₀ y₃+ y₁₁²+-h₂o, y₁₁²+-nh₃ y₁₁+ 20 y₁₂+ b₁₄ Extracted from: C:\Scott Peterman\Backup\Marketing_Monthly_Updates\2011_Marketing_Plan\Thermo_Instruments\Seed_Unit_Requests\Amgen\Control_trainer_180grad_inj1.raw #4001 RT: ITMS, CID, z=+2, Mono m/z= b₉+ Da, MH+= Da, Match Tol.=0.8 Da b₁₃+-h₂o y₆+ m/z b₈ y₇ b₁₁+ b₆+ y₉+ b₁₀ a₇+-nh₃ b₁₂+-h₂o b₅ y₈+ b₈+-h₂o b₉+-h₂o b₁₁+-h₂o b₁₄+-h₂o y₇ y₁₃+ y₁₂+ b₇+-h₂o y₆ [M+2H]²+ y₅ y₇² b₂ m/z a₃+-nh₃ b₃ y₃ b₄ b₅ m/z Experimental Purified Protein Stock Solution Treatment Digestion PRTC Kit Control H 2 O 2 treated (40 hrs) ph 8.0 treated (40 hrs) Intensity [counts] (10^3) Relative Abundance Time (min) Intensity [counts] (10^3) Intensity [counts] (10^3) Sequence coverage, AUC, PTMs, %CVs, RT confirmation Sequence for Spectral Libraries 33

34 Pierce Peptide Retention Time Calibration Kit + Pinpoint 1.2 Software What s New? Peptide Retention Time Calibration Kit Pinpoint 1.2 Software for Targeted Protein Quan Application: Quickly assess and optimize chromatography and MS instrument performance Predict peptide retention times using calculated hydrophobicity factors Predict peptide elution across multiple instrument platforms Improve quantification and increase multiplexing with optimized scheduled SRM windows Incorporation of the PRTC kit provides a system QC, normalization, and RT correlation across experiments and instrumental platforms. Key features High-purity 15 synthetic heavy peptides mixed at equimolar ratio Elutes across entire chromatographic gradient Fully automated using Pinpoint 1.2 QC page Pinpoint 34

35 Peptide Retention Time Calibration (PRTC) Kit (Heavy Peptides) # Sequence Observed Mass ( Z=2) Hydrophobicity Factor (HF) 1 SSAAPPPPPR GISNEGQNASIK HVLTSIGEK DIPVPKPK IGDYAGIK TASEFDSAIAQDK SAAGAFGPELSR ELGQSGVDTYLQTK GLILVGGYGTR GILFVGSGVSGGEEGAR SFANQPLEVVYSK LTILEELR NGFILDGFPR ELASGLSFPVGFK LSSEAPALFQFDLK

36 Retention Time Analysis Comparison with Internal Standards x R 2 = x R 2 =

37 Conclusions Quanfirmation enabled characterization and quantification were performed in 1 experiment Separating quantification (MS-level) and qualitative enables reprocessing data for targeted peptide expansion Introduction of PRTC kit enabled method reproducibility for the AS, LC, and MS methods PRTC kit provides direct relationship of calculated hydrophobicity factors to measured retention times and scalability Absolute and/or relative quantitation using heavy peptides Entire method is integrated with Proteome Discoverer and Pinpoint 37

38 Acknowledgments Kevin Cook Zhiqi Hao Scott Peterman Thank You 38

New Mass Spectrometry Tools to Transform Metabolomics and Lipidomics

New Mass Spectrometry Tools to Transform Metabolomics and Lipidomics New Mass Spectrometry Tools to Transform Metabolomics and Lipidomics July.3.13 Ken Miller Vice President of Marketing, Life Sciences Mass Spectrometry 1 The world leader in serving science Omics & the

More information

Don t miss a thing on your peptide mapping journey How to get full coverage peptide maps using high resolution accurate mass spectrometry

Don t miss a thing on your peptide mapping journey How to get full coverage peptide maps using high resolution accurate mass spectrometry Don t miss a thing on your peptide mapping journey How to get full coverage peptide maps using high resolution accurate mass spectrometry Kai Scheffler, PhD BioPharma Support Expert,LSMS Europe The world

More information

Bioanalytical Quantitation of Biotherapeutics Using Intact Protein vs. Proteolytic Peptides by LC-HR/AM on a Q Exactive MS

Bioanalytical Quantitation of Biotherapeutics Using Intact Protein vs. Proteolytic Peptides by LC-HR/AM on a Q Exactive MS Bioanalytical Quantitation of Biotherapeutics Using Intact Protein vs. Proteolytic Peptides by LC-HR/AM on a Q Exactive MS Jenny Chen, Hongxia Wang, Zhiqi Hao, Patrick Bennett, and Greg Kilby Thermo Fisher

More information

New Instruments and Services

New Instruments and Services New Instruments and Services Liwen Zhang Mass Spectrometry and Proteomics Facility The Ohio State University Summer Workshop 2016 Thermo Orbitrap Fusion http://planetorbitrap.com/orbitrap fusion Thermo

More information

The Comparison of High Resolution MS with Triple Quadrupole MS for the Analysis of Oligonucleotides

The Comparison of High Resolution MS with Triple Quadrupole MS for the Analysis of Oligonucleotides The Comparison of High Resolution MS with Triple Quadrupole MS for the Analysis of Oligonucleotides Mohammed Abrar Unilabs York Bioanalytical Solutions Outline Introduction Why LC-MS/MS? Limitations of

More information

Target Analyses in Parallel Reaction Monitoring Mode (PRM)

Target Analyses in Parallel Reaction Monitoring Mode (PRM) Target Analses in Parallel Reaction Monitoring Mode (PRM) Skline Webinar Januar 13, 2015 Bruno Domon, PhD Head Luxembourg Clinical Proteomics Center Invited Professor Universit of Luxembourg INTRODUCTION

More information

Application Note # LCMS-89 High quantification efficiency in plasma targeted proteomics with a full-capability discovery Q-TOF platform

Application Note # LCMS-89 High quantification efficiency in plasma targeted proteomics with a full-capability discovery Q-TOF platform Application Note # LCMS-89 High quantification efficiency in plasma targeted proteomics with a full-capability discovery Q-TOF platform Abstract Targeted proteomics for biomarker verification/validation

More information

Quantification with Proteome Discoverer. Bernard Delanghe

Quantification with Proteome Discoverer. Bernard Delanghe Quantification with Proteome Discoverer Bernard Delanghe Overview: Which approach to use? Proteome Discoverer Quantification Method What When to use Metabolic labeling SILAC Cell culture systems Small

More information

for new contaminants at ultra trace level by using high resolution mass spectrometry

for new contaminants at ultra trace level by using high resolution mass spectrometry Non-targeted screening for new contaminants at ultra trace level by using high resolution mass spectrometry Dr Igor Fochi LSMS Product Specialist Thermo Fisher Scientific What is Environmental Analysis

More information

Dr. Erin E. Chambers Waters Corporation. Presented by Dr. Diego Rodriguez Cabaleiro Waters Europe Waters Corporation 1

Dr. Erin E. Chambers Waters Corporation. Presented by Dr. Diego Rodriguez Cabaleiro Waters Europe Waters Corporation 1 Development of an SPE-LC/MS/MS Assay for the Simultaneous Quantification of Amyloid Beta Peptides in Cerebrospinal Fluid in Support of Alzheimer s Research Dr. Erin E. Chambers Waters Corporation Presented

More information

Quantitative Analysis of Vit D Metabolites in Human Plasma using Exactive System

Quantitative Analysis of Vit D Metabolites in Human Plasma using Exactive System Quantitative Analysis of Vit D Metabolites in Human Plasma using Exactive System Marta Kozak Clinical Research Applications Group Thermo Fisher Scientific San Jose CA Clinical Research use only, Not for

More information

More structural information with MS n

More structural information with MS n PRODUCT SPECIFICATIONS The LTQ XL linear ion trap mass spectrometer More structural information with MS n The LTQ XL linear ion trap mass spectrometer delivers more structural information faster and with

More information

Comprehensive Forensic Toxicology Screening in Serum using On-Line SPE LC-MS/MS

Comprehensive Forensic Toxicology Screening in Serum using On-Line SPE LC-MS/MS Comprehensive Forensic Toxicology Screening in Serum using On-Line SPE LC-MS/MS SCIEX QTRAP 4500 LC-MS/MS System and Spark Holland PICO Adrian M. Taylor 1, Peter Ringeling 2, Martin Sibum 2, Stefan Sturm

More information

MASS SPECTROMETRY BASED METABOLOMICS. Pavel Aronov. ABRF2010 Metabolomics Research Group March 21, 2010

MASS SPECTROMETRY BASED METABOLOMICS. Pavel Aronov. ABRF2010 Metabolomics Research Group March 21, 2010 MASS SPECTROMETRY BASED METABOLOMICS Pavel Aronov ABRF2010 Metabolomics Research Group March 21, 2010 Types of Experiments in Metabolomics targeted non targeted Number of analyzed metabolites is limited

More information

Quantitation by High Resolution Mass Spectrometry: Case Study of TOF MS for the Quantitation of Allopurinol from Human Plasma

Quantitation by High Resolution Mass Spectrometry: Case Study of TOF MS for the Quantitation of Allopurinol from Human Plasma Quantitation by High Resolution Mass Spectrometry: Case Study of TOF MS for the Quantitation of Allopurinol from Human Plasma Shaokun Pang 1, Weixing Sun 2, Adrien Musuku 2, Xavier J. Misonne 1 1 SCIEX,

More information

Amadeo R. Fernández-Alba

Amadeo R. Fernández-Alba % of compounds % of compounds % of compounds % of compounds Amadeo R. Fernández-Alba LC-Orbitrap QExactive Focus Instrumental LOQ 1% 9% 8% 7% 6% 5% 4% 3% 2% 1% %.1 mg/g.2 mg/g Tomato.5 mg/g ddms2 Target

More information

LC/MS/MS SOLUTIONS FOR LIPIDOMICS. Biomarker and Omics Solutions FOR DISCOVERY AND TARGETED LIPIDOMICS

LC/MS/MS SOLUTIONS FOR LIPIDOMICS. Biomarker and Omics Solutions FOR DISCOVERY AND TARGETED LIPIDOMICS LC/MS/MS SOLUTIONS FOR LIPIDOMICS Biomarker and Omics Solutions FOR DISCOVERY AND TARGETED LIPIDOMICS Lipids play a key role in many biological processes, such as the formation of cell membranes and signaling

More information

Development of a Bioanalytical Method for Quantification of Amyloid Beta Peptides in Cerebrospinal Fluid

Development of a Bioanalytical Method for Quantification of Amyloid Beta Peptides in Cerebrospinal Fluid Development of a Bioanalytical Method for Quantification of Amyloid Beta Peptides in Cerebrospinal Fluid Joanne ( 乔安妮 ) Mather Senior Scientist Waters Corporation Data courtesy of Erin Chambers and Mary

More information

Increased Identification Coverage and Throughput for Complex Lipidomes

Increased Identification Coverage and Throughput for Complex Lipidomes Increased Identification Coverage and Throughput for Complex Lipidomes Reiko Kiyonami, David Peake, Yingying Huang, Thermo Fisher Scientific, San Jose, CA USA Application Note 607 Key Words Q Exactive

More information

Latest Innovations in LC/MS/MS from Waters for Metabolism and Bioanalytical Applications

Latest Innovations in LC/MS/MS from Waters for Metabolism and Bioanalytical Applications Latest Innovations in LC/MS/MS from Waters for Metabolism and Bioanalytical Applications Ignatius J. Kass Senior Field Marketing Manager Pharmaceutical MS Challenges in Pharmaceutical Sample Analysis Quantitative

More information

O O H. Robert S. Plumb and Paul D. Rainville Waters Corporation, Milford, MA, U.S. INTRODUCTION EXPERIMENTAL. LC /MS conditions

O O H. Robert S. Plumb and Paul D. Rainville Waters Corporation, Milford, MA, U.S. INTRODUCTION EXPERIMENTAL. LC /MS conditions Simplifying Qual/Quan Analysis in Discovery DMPK using UPLC and Xevo TQ MS Robert S. Plumb and Paul D. Rainville Waters Corporation, Milford, MA, U.S. INTRODUCTION The determination of the drug metabolism

More information

MALDI Imaging Drug Imaging Detlev Suckau Head of R&D MALDI Bruker Daltonik GmbH. December 19,

MALDI Imaging Drug Imaging Detlev Suckau Head of R&D MALDI Bruker Daltonik GmbH. December 19, MALDI Imaging Drug Imaging Detlev Suckau Head of R&D MALDI Bruker Daltonik GmbH December 19, 2014 1 The principle of MALDI imaging Spatially resolved mass spectra are recorded Each mass signal represents

More information

Towards High Resolution MS in Regulated Bioanalysis

Towards High Resolution MS in Regulated Bioanalysis Towards High Resolution MS in Regulated Bioanalysis Benno Ingelse MSD 3 rd EB focus meeting June 12 th 13 th Brussels, Belgium Contributors Gary Adamson Ken Anderson Kevin Bateman Cynthia Chavez-Eng Inhou

More information

Impurity Identification using a Quadrupole - Time of Flight Mass Spectrometer QTOF

Impurity Identification using a Quadrupole - Time of Flight Mass Spectrometer QTOF Impurity Identification using a Quadrupole - Time of Flight Mass Spectrometer QTOF PUSHER TOF DETECTOR ZSPRAY TM Ion Source SAMPLING CONE SKIMMER RF HEXAPOLE RF HEXAPOLE QUADRUPOLE IN NARROW BANDPASS MODE

More information

Rapid, Simple Impurity Characterization with the Xevo TQ Mass Spectrometer

Rapid, Simple Impurity Characterization with the Xevo TQ Mass Spectrometer Robert Plumb, Michael D. Jones, and Marian Twohig Waters Corporation, Milford, MA, USA INTRODUCTION The detection and characterization of impurities and degradation products of an active pharmaceutical

More information

High resolution mass spectrometry for bioanalysis at Janssen. Current experiences and future perspectives

High resolution mass spectrometry for bioanalysis at Janssen. Current experiences and future perspectives High resolution mass spectrometry for bioanalysis at Janssen. Current experiences and future perspectives Lieve Dillen Drug Safety Sciences Analytical Sciences, Non-regulated Bioanalysis Presentation outline

More information

Characterization of an Unknown Compound Using the LTQ Orbitrap

Characterization of an Unknown Compound Using the LTQ Orbitrap Characterization of an Unknown Compound Using the LTQ rbitrap Donald Daley, Russell Scammell, Argenta Discovery Limited, 8/9 Spire Green Centre, Flex Meadow, Harlow, Essex, CM19 5TR, UK bjectives unknown

More information

PTM Discovery Method for Automated Identification and Sequencing of Phosphopeptides Using the Q TRAP LC/MS/MS System

PTM Discovery Method for Automated Identification and Sequencing of Phosphopeptides Using the Q TRAP LC/MS/MS System Application Note LC/MS PTM Discovery Method for Automated Identification and Sequencing of Phosphopeptides Using the Q TRAP LC/MS/MS System Purpose This application note describes an automated workflow

More information

MS/MS to Targeted Proteomics (MRM)

MS/MS to Targeted Proteomics (MRM) MS/MS to Targeted Proteomics (MRM) How it worked on the Human Lens Proteome Jayson Falkner PhD jay@singleorganism.com Genes Show Limited Value in Predicting Diseases With only a few exceptions, what the

More information

Improving Selectivity in Quantitative Analysis Using MS 3 on a Hybrid Quadrupole-Linear Ion Trap Mass Spectrometer

Improving Selectivity in Quantitative Analysis Using MS 3 on a Hybrid Quadrupole-Linear Ion Trap Mass Spectrometer Improving Selectivity in Quantitative Analysis Using MS 3 on a Hybrid Quadrupole-Linear Ion Trap Mass Spectrometer Overview Increased selectivity is achieved in quantitative analysis by using MS 3. The

More information

Advances in Hybrid Mass Spectrometry

Advances in Hybrid Mass Spectrometry The world leader in serving science Advances in Hybrid Mass Spectrometry ESAC 2008 Claire Dauly Field Marketing Specialist, Proteomics New hybrids instruments LTQ Orbitrap XL with ETD MALDI LTQ Orbitrap

More information

Measuring Lipid Composition LC-MS/MS

Measuring Lipid Composition LC-MS/MS Project: Measuring Lipid Composition LC-MS/MS Verification of expected lipid composition in nanomedical controlled release systems by liquid chromatography tandem mass spectrometry AUTHORED BY: DATE: Sven

More information

Quadrupole and Ion Trap Mass Analysers and an introduction to Resolution

Quadrupole and Ion Trap Mass Analysers and an introduction to Resolution Quadrupole and Ion Trap Mass Analysers and an introduction to Resolution A simple definition of a Mass Spectrometer A Mass Spectrometer is an analytical instrument that can separate charged molecules according

More information

Robust extraction, separation, and quantitation of structural isomer steroids from human plasma by SPE-UHPLC-MS/MS

Robust extraction, separation, and quantitation of structural isomer steroids from human plasma by SPE-UHPLC-MS/MS TECHNICAL NOTE 21882 Robust extraction, separation, and quantitation of structural isomer steroids human plasma by SPE-UHPLC-MS/MS Authors Jon Bardsley 1, Kean Woodmansey 1, and Stacy Tremintin 2 1 Thermo

More information

Considerations of the use of Triple Quadrupoles or Ion Traps in Quantitative Applications

Considerations of the use of Triple Quadrupoles or Ion Traps in Quantitative Applications Considerations of the use of Triple Quadrupoles or Ion Traps in Quantitative Applications Triple Stage Quadrupole API MS / MS Full Scan Products / - IONS AND NEUTRALS FORMED IN API SOURCE Q0 LENS TRANSPORTS

More information

SYNAPT G2-S High Definition MS (HDMS) System

SYNAPT G2-S High Definition MS (HDMS) System SYNAPT G2-S High Definition MS (HDMS) System High performance, versatility, and workflow efficiency of your MS system all play a crucial role in your ability to successfully reach your scientific and business

More information

High-Throughput, Cost-Efficient LC-MS/MS Forensic Method for Measuring Buprenorphine and Norbuprenorphine in Urine

High-Throughput, Cost-Efficient LC-MS/MS Forensic Method for Measuring Buprenorphine and Norbuprenorphine in Urine High-Throughput, Cost-Efficient LC-MS/MS Forensic Method for Measuring and in Urine Xiaolei Xie, Joe DiBussolo, Marta Kozak; Thermo Fisher Scientific, San Jose, CA Application Note 627 Key Words, norbuprenorphine,

More information

Advancing your Forensic Toxicology Analyses; Adopting the Latest in Mass Spectrometry Innovations

Advancing your Forensic Toxicology Analyses; Adopting the Latest in Mass Spectrometry Innovations Advancing your Forensic Toxicology Analyses; Adopting the Latest in Mass Spectrometry Innovations For Research Use Only. Not for use in diagnostic procedures. 1 2015 AB Sciex RUO-MKT-11-1018-A For research

More information

New Instruments and Services

New Instruments and Services New Instruments and Services http://planetorbitrap.com/orbitrap fusion Combining the best of quadrupole, Orbitrap, and ion trap mass analysis in a revolutionary Tribrid architecture, the Orbitrap Fusion

More information

MASS SPECTROMETRY IN METABOLOMICS

MASS SPECTROMETRY IN METABOLOMICS For personal use only. Please do not reuse or reproduce without the author s permission MASS SPECTRMETRY IN METABLMICS Pavel Aronov Stanford Mass Spectrometry Users Meeting August 21, 2008 rigin of Metabolomics

More information

NIH Public Access Author Manuscript J Proteome Res. Author manuscript; available in PMC 2014 July 05.

NIH Public Access Author Manuscript J Proteome Res. Author manuscript; available in PMC 2014 July 05. NIH Public Access Author Manuscript Published in final edited form as: J Proteome Res. 2013 July 5; 12(7): 3071 3086. doi:10.1021/pr3011588. Evaluation and Optimization of Mass Spectrometric Settings during

More information

Introduction to Proteomics 1.0

Introduction to Proteomics 1.0 Introduction to Proteomics 1.0 CMSP Workshop Pratik Jagtap Managing Director, CMSP Objectives Why are we here? For participants: Learn basics of MS-based proteomics Learn what s necessary for success using

More information

1. Sample Introduction to MS Systems:

1. Sample Introduction to MS Systems: MS Overview: 9.10.08 1. Sample Introduction to MS Systems:...2 1.1. Chromatography Interfaces:...3 1.2. Electron impact: Used mainly in Protein MS hard ionization source...4 1.3. Electrospray Ioniztion:

More information

[ APPLICATION NOTE ] High Sensitivity Intact Monoclonal Antibody (mab) HRMS Quantification APPLICATION BENEFITS INTRODUCTION WATERS SOLUTIONS KEYWORDS

[ APPLICATION NOTE ] High Sensitivity Intact Monoclonal Antibody (mab) HRMS Quantification APPLICATION BENEFITS INTRODUCTION WATERS SOLUTIONS KEYWORDS Yun Wang Alelyunas, Henry Shion, Mark Wrona Waters Corporation, Milford, MA, USA APPLICATION BENEFITS mab LC-MS method which enables users to achieve highly sensitive bioanalysis of intact trastuzumab

More information

Quantitation of Protein Phosphorylation Using Multiple Reaction Monitoring

Quantitation of Protein Phosphorylation Using Multiple Reaction Monitoring Quantitation of Protein Phosphorylation Using Multiple Reaction Monitoring Application Note Authors Ning Tang, Christine A. Miller and Keith Waddell Agilent Technologies, Inc. Santa Clara, CA USA This

More information

Vitamin D3 and related compounds by ESI and APCI

Vitamin D3 and related compounds by ESI and APCI Liquid Chromatography Mass Spectrometry SSI-LCMS-9 Vitamin D and related compounds by ESI and APCI LCMS-8 Summary Vitamin D and related compounds were measured by LC-ESI/APCI-MS-MS. Background Accurate

More information

Moving from targeted towards non-targeted approaches

Moving from targeted towards non-targeted approaches Gesundheitsdirektion Moving from targeted towards non-targeted approaches Anton Kaufmann Official Food Control Authority of the Canton of Zurich () Switzerland 2 Overview I From single residue to multi

More information

Go beyond. to realities unexplored. Comprehensive workflows, integrated solutions

Go beyond. to realities unexplored. Comprehensive workflows, integrated solutions Go beyond to realities unexplored Comprehensive workflows, integrated solutions We re committed to helping researchers and scientists in academia and industry harness the power of metabolomics to gain

More information

Comparison of Full Scan MS2 and MS3 Linear Ion Trap Approaches for Quantitation of Vitamin D

Comparison of Full Scan MS2 and MS3 Linear Ion Trap Approaches for Quantitation of Vitamin D Comparison of Full Scan MS2 and MS3 Linear Ion Trap Approaches for Quantitation of Vitamin D Julie A. Horner 1, Marta Kozak 1, Subodh Nimkar 1, and August A. Specht 1 1 Thermo Fisher Scientific, San Jose,

More information

Ion Source. Mass Analyzer. Detector. intensity. mass/charge

Ion Source. Mass Analyzer. Detector. intensity. mass/charge Proteomics Informatics Overview of spectrometry (Week 2) Ion Source Analyzer Detector Peptide Fragmentation Ion Source Analyzer 1 Fragmentation Analyzer 2 Detector b y Liquid Chromatography (LC)-MS/MS

More information

amazon speed Innovation with Integrity Ion Trap Performance Beyond Imagination Ion Trap MS

amazon speed Innovation with Integrity Ion Trap Performance Beyond Imagination Ion Trap MS amazon speed Ion Trap Performance Beyond Imagination Innovation with Integrity Ion Trap MS amazon Turning Speed into Solutions The amazon speed ion trap series sets new analytical standards for proteomics

More information

Integrated Targeted Quantitation Method for Insulin and its Therapeutic Analogs

Integrated Targeted Quantitation Method for Insulin and its Therapeutic Analogs Integrated Targeted Quantitation Method for Insulin and its Therapeutic Analogs Eric Niederkofler, 1 Dobrin Nedelkov, 1 Urban Kiernan, 1 David Phillips, 1 Kemmons Tubbs, 1 Scott Peterman, 2 Bryan Krastins,

More information

The Raptor HILIC-Si Column

The Raptor HILIC-Si Column The Raptor HILIC-Si Column With Raptor LC columns, Restek chemists became the first to combine the speed of superficially porous particles (also known as SPP or core-shell particles) with the resolution

More information

Agilent 6410 Triple Quadrupole LC/MS. Sensitivity, Reliability, Value

Agilent 6410 Triple Quadrupole LC/MS. Sensitivity, Reliability, Value Agilent 64 Triple Quadrupole LC/MS Sensitivity, Reliability, Value Sensitivity, Reliability, Value Whether you quantitate drug metabolites, measure herbicide levels in food, or determine contaminant levels

More information

Designer Cannabinoids

Designer Cannabinoids Liquid Chromatography Mass Spectrometry SSI-LCMS-010 Designer Cannabinoids LCMS-8030 Summary A rapid LC-MS-MS method for determination of designer cannabinoids in smokeable herbs was developed. Background

More information

Shotgun Proteomics MS/MS. Protein Mixture. proteolysis. Peptide Mixture. Time. Abundance. Abundance. m/z. Abundance. m/z 2. Abundance.

Shotgun Proteomics MS/MS. Protein Mixture. proteolysis. Peptide Mixture. Time. Abundance. Abundance. m/z. Abundance. m/z 2. Abundance. Abundance Abundance Abundance Abundance Abundance Shotgun Proteomics Protein Mixture 1 2 3 MS/MS proteolysis m/z 2 3 Time µlc m/z MS 1 m/z Peptide Mixture m/z Block Diagram of a Mass Spectrometer Sample

More information

Extended Mass Range Triple Quadrupole for Routine Analysis of High Mass-to-charge Peptide Ions

Extended Mass Range Triple Quadrupole for Routine Analysis of High Mass-to-charge Peptide Ions Extended Mass Range Triple Quadrupole for Routine Analysis of High Mass-to-charge Peptide Ions Application Note Targeted Proteomics Authors Linfeng Wu, Christine A. Miller, Jordy Hsiao, Te-wei Chu, Behrooz

More information

LC-MS/MS for the quantification of Peptide biomarker and mixture of closely related Protein in formulation

LC-MS/MS for the quantification of Peptide biomarker and mixture of closely related Protein in formulation EUROPEAN BIOANALYSIS FORUM Barcelona, November 14-16, 2012 LC-MS/MS for the quantification of Peptide biomarker and mixture of closely related Protein in formulation Luc-Alain SAVOY CONTENT Part I: SGS

More information

Supporting information

Supporting information Supporting information Figure legends Supplementary Table 1. Specific product ions obtained from fragmentation of lithium adducts in the positive ion mode comparing the different positional isomers of

More information

UPLC-HRMS: A tool for multi-residue veterinary drug methods

UPLC-HRMS: A tool for multi-residue veterinary drug methods AOAC, Paris, November 23-24, 2009 UPLC-HRMS: A tool for multi-residue veterinary drug methods Anton Kaufmann Official Food Control Authority of the Canton of Zurich (Kantonales Labor Zürich) The challenge

More information

MS/MS as an LC Detector for the Screening of Drugs and Their Metabolites in Race Horse Urine

MS/MS as an LC Detector for the Screening of Drugs and Their Metabolites in Race Horse Urine Application Note: 346 MS/MS as an LC Detector for the Screening of Drugs and Their Metabolites in Race Horse Urine Gargi Choudhary and Diane Cho, Thermo Fisher Scientific, San Jose, CA Wayne Skinner and

More information

LC-MS/MS Method for the Determination of Tenofovir from Plasma

LC-MS/MS Method for the Determination of Tenofovir from Plasma LC-MS/MS Method for the Determination of Tenofovir from Plasma Kimberly Phipps, Thermo Fisher Scientific, Runcorn, Cheshire, UK Application Note 687 Key Words SPE, SOLA CX, Hypersil GOLD, tenofovir Abstract

More information

Simple Method (IS-MRM) to Monitor Lysophospholipids and Phospholipids During LC-MS Method Development via In-Source CID

Simple Method (IS-MRM) to Monitor Lysophospholipids and Phospholipids During LC-MS Method Development via In-Source CID Simple Method (IS-MRM) to Monitor Lysophospholipids and Phospholipids During LC-MS Method Development via In-Source CID James Little, Eastman Chemical Company, Kingsport, TN Overview Phospholipids and

More information

Automated Purification and Analytical Reinjection of a Small Molecule Drug, Probenecid, on a Gilson LC/MS Dual Function System

Automated Purification and Analytical Reinjection of a Small Molecule Drug, Probenecid, on a Gilson LC/MS Dual Function System Automated Purification and Analytical Reinjection of a Small Molecule Drug, Probenecid, on a Gilson LC/MS Dual Function System Keywords Introduction Application Note PHA0413 High Pressure Liquid Chromatography

More information

New Developments in LC-IMS-MS Proteomic Measurements and Informatic Analyses

New Developments in LC-IMS-MS Proteomic Measurements and Informatic Analyses New Developments in LC-IMS-MS Proteomic Measurements and Informatic Analyses Erin Shammel Baker Kristin E. Burnum-Johnson, Xing Zhang, Cameron P. Casey, Yehia M. Ibrahim, Matthew E. Monroe, Tao Liu, Brendan

More information

Automating Mass Spectrometry-Based Quantitative Glycomics using Tandem Mass Tag (TMT) Reagents with SimGlycan

Automating Mass Spectrometry-Based Quantitative Glycomics using Tandem Mass Tag (TMT) Reagents with SimGlycan PREMIER Biosoft Automating Mass Spectrometry-Based Quantitative Glycomics using Tandem Mass Tag (TMT) Reagents with SimGlycan Ne uaca2-3galb1-4glc NAcb1 6 Gal NAca -Thr 3 Ne uaca2-3galb1 Ningombam Sanjib

More information

TECHNICAL NOTE. Accurate and fast proteomics analysis of human plasma with PlasmaDive and SpectroDive

TECHNICAL NOTE. Accurate and fast proteomics analysis of human plasma with PlasmaDive and SpectroDive TECHNICAL NOTE Accurate and fast proteomics analysis of human plasma with PlasmaDive and SpectroDive In this technical note you will learn about: Step-by-step set-up of parallel reaction monitoring (PRM)

More information

amazon Turning Speed into Solutions

amazon Turning Speed into Solutions amazon speed Ion Trap Performance Beyond Imagination Innovation with Integrity Ion Trap MS amazon Turning Speed into Solutions The amazon speed ion trap series sets new analytical standards for proteomics

More information

Agilent 6490 Triple Quadrupole LC/MS System with ifunnel Technology. Ultra sensitive quantitative performance

Agilent 6490 Triple Quadrupole LC/MS System with ifunnel Technology. Ultra sensitive quantitative performance Agilent 6490 Triple Quadrupole LC/MS System with ifunnel Technology Ultra sensitive quantitative performance Unmatched quantitative performance for the most challenging analyses The Agilent 6490 Triple

More information

Learning Objectives. Overview of topics to be discussed 10/25/2013 HIGH RESOLUTION MASS SPECTROMETRY (HRMS) IN DISCOVERY PROTEOMICS

Learning Objectives. Overview of topics to be discussed 10/25/2013 HIGH RESOLUTION MASS SPECTROMETRY (HRMS) IN DISCOVERY PROTEOMICS HIGH RESOLUTION MASS SPECTROMETRY (HRMS) IN DISCOVERY PROTEOMICS A clinical proteomics perspective Michael L. Merchant, PhD School of Medicine, University of Louisville Louisville, KY Learning Objectives

More information

The New 6495 Triple Quadrupole LC/MS

The New 6495 Triple Quadrupole LC/MS The New 6495 Triple Quadrupole LC/MS Experience A New Level of Confidence Martin Haex Product Specialist MS and Automation 1 Overview of Topics The New 6495 QQQ LC/MS Technology Innovations Quantitation

More information

Discovery Metabolomics - Quantitative Profiling of the Metabolome using TripleTOF Technology

Discovery Metabolomics - Quantitative Profiling of the Metabolome using TripleTOF Technology ANSWERS FOR SCIENCE. KNOWLEDGE FOR LIFE. Discovery Metabolomics - Quantitative Profiling of the Metabolome using TripleTOF Technology Baljit Ubhi Ph.D ASMS Baltimore, June 2014 What is Metabolomics? Also

More information

Reducing Sample Volume and Increasing Sensitivity for the Quantification of Human Insulin and 5 Analogs in Human Plasma Using ionkey/ms

Reducing Sample Volume and Increasing Sensitivity for the Quantification of Human Insulin and 5 Analogs in Human Plasma Using ionkey/ms Reducing Sample Volume and Increasing Sensitivity for the Quantification of Human Insulin and 5 Analogs in Human Plasma Using ionkey/ms Erin E. Chambers and Kenneth J. Fountain Waters Corporation, Milford,

More information

Summary Chapter 8 CHAPTER 8. Summary. Page 173

Summary Chapter 8 CHAPTER 8. Summary. Page 173 CHAPTER 8 Summary Page 173 Chapter 2: Liquid Chromatography/Tandem Mass Spectrometry Method for Quantitative Estimation of PEG 400 and its Applications A rapid sensitive and selective MRM based method

More information

2. Ionization Sources 3. Mass Analyzers 4. Tandem Mass Spectrometry

2. Ionization Sources 3. Mass Analyzers 4. Tandem Mass Spectrometry Dr. Sanjeeva Srivastava 1. Fundamental of Mass Spectrometry Role of MS and basic concepts 2. Ionization Sources 3. Mass Analyzers 4. Tandem Mass Spectrometry 2 1 MS basic concepts Mass spectrometry - technique

More information

Sample Concentration and Analysis of Human Hormones in Drinking Water

Sample Concentration and Analysis of Human Hormones in Drinking Water Sample Concentration and Analysis of Human Hormones in Drinking Water Carl Fisher Applications Chemist Ion Chromatography/Sample Preparation Thermo Fisher Scientific March 1, 215 1 The world leader in

More information

Determination of red blood cell fatty acid profiles in clinical research

Determination of red blood cell fatty acid profiles in clinical research Application Note Clinical Research Determination of red blood cell fatty acid profiles in clinical research Chemical ionization gas chromatography tandem mass spectrometry Authors Yvonne Schober 1, Hans

More information

Ultra Performance Liquid Chromatography Coupled to Orthogonal Quadrupole TOF MS(MS) for Metabolite Identification

Ultra Performance Liquid Chromatography Coupled to Orthogonal Quadrupole TOF MS(MS) for Metabolite Identification 22 SEPARATION SCIENCE REDEFINED MAY 2005 Ultra Performance Liquid Chromatography Coupled to Orthogonal Quadrupole TOF MS(MS) for Metabolite Identification In the drug discovery process the detection and

More information

Vitamin D Metabolite Analysis in Biological Samples Using Agilent Captiva EMR Lipid

Vitamin D Metabolite Analysis in Biological Samples Using Agilent Captiva EMR Lipid Vitamin D Metabolite Analysis in Biological Samples Using Agilent Captiva EMR Lipid Application Note Clinical Research Authors Derick Lucas and Limian Zhao Agilent Technologies, Inc. Abstract Lipids from

More information

SCS Mass Spectrometry Laboratory

SCS Mass Spectrometry Laboratory SCS Mass Spectrometry Laboratory Contact Information Staff 31 Noyes Laboratory (8:00-5:00 M-F) 217-333-2545 http://scs.illinois.edu/massspec/ Furong Sun (frs@illinois.edu) Furong Sun Director Training

More information

Michal Godula Thermo Fisher Scientific. The world leader in serving science

Michal Godula Thermo Fisher Scientific. The world leader in serving science Resolving the food authenticity challenges using advanced isotopic ratio and Thermo Scientific Orbitrap high resolution mass spectrometry tools in practice Michal Godula Thermo Fisher Scientific The world

More information

Determination of Amantadine Residues in Chicken by LCMS-8040

Determination of Amantadine Residues in Chicken by LCMS-8040 Liquid Chromatography Mass Spectrometry Determination of Amantadine Residues in Chicken by LCMS-8040 A method for the determination of amantadine in chicken was established using Shimadzu Triple Quadrupole

More information

MS/MS Library Creation of Q-TOF LC/MS Data for MassHunter PCDL Manager

MS/MS Library Creation of Q-TOF LC/MS Data for MassHunter PCDL Manager MS/MS Library Creation of Q-TOF LC/MS Data for MassHunter PCDL Manager Quick Start Guide Step 1. Calibrate the Q-TOF LC/MS for low m/z ratios 2 Step 2. Set up a Flow Injection Analysis (FIA) method for

More information

High-Throughput Quantitative LC-MS/MS Analysis of 6 Opiates and 14 Benzodiazepines in Urine

High-Throughput Quantitative LC-MS/MS Analysis of 6 Opiates and 14 Benzodiazepines in Urine High-Throughput Quantitative LC-MS/MS Analysis of and 14 Benzodiazepines in Urine Bill Yu, Kristine Van Natta, Marta Kozak, Thermo Fisher Scientific, San Jose, CA Application Note 588 Key Words Opiates,

More information

Supporting information

Supporting information Supporting information A novel lipidomics workflow for improved human plasma identification and quantification using RPLC-MSn methods and isotope dilution strategies Evelyn Rampler 1,2,3, Angela Criscuolo

More information

The use of mass spectrometry in lipidomics. Outlines

The use of mass spectrometry in lipidomics. Outlines The use of mass spectrometry in lipidomics Jeevan Prasain jprasain@uab.edu 6-2612 utlines Brief introduction to lipidomics Analytical methodology: MS/MS structure elucidation of phospholipids Phospholipid

More information

Accurate Quantification of Lipid Species by Electrospray Ionization Mass Spectrometry Meets a Key Challenge in Lipidomics

Accurate Quantification of Lipid Species by Electrospray Ionization Mass Spectrometry Meets a Key Challenge in Lipidomics Metabolites 2011, 1, 21-40; doi:10.3390/metabo1010021 Review OPEN ACCESS metabolites ISSN 2218-1989 www.mdpi.com/journal/metabolites/ Accurate Quantification of Lipid Species by Electrospray Ionization

More information

MS/MS Scan Modes. Eötvös University, Budapest April 16, MS/MS Scan Modes. Árpád Somogyi. Product Ion Scan Select. Scan. Precursor Ion Scan Scan

MS/MS Scan Modes. Eötvös University, Budapest April 16, MS/MS Scan Modes. Árpád Somogyi. Product Ion Scan Select. Scan. Precursor Ion Scan Scan MS/MS Modes Árpád Somogyi Eötvös University, Budapest April 16, 2012 MS/MS Modes Product Ion Precursor Ion Neutral Loss Δ ed Reaction Monitoring (SRM) 1 modes in a triple quadrupole (QqQ) (one quadrupole

More information

SIEVE 2.1 Proteomics Example

SIEVE 2.1 Proteomics Example SIEVE 2.1 Proteomics Example Software Overview What is SIEVE? SIEVE is Thermo Scientific s differential software solution. SIEVE will continue to enhance our current product for label-free differential

More information

Identification and Quantitation of Microcystins by Targeted Full-Scan LC-MS/MS

Identification and Quantitation of Microcystins by Targeted Full-Scan LC-MS/MS Identification and Quantitation of Microcystins by Targeted Full-Scan LC-MS/MS Terry Zhang, Reiko Kiyonami, Leo Wang and Guifeng Jiang Thermo Fisher Scientific, San Jose, CA, USA Application Note 569 Key

More information

How to Use TOF and Q-TOF Mass Spectrometers

How to Use TOF and Q-TOF Mass Spectrometers How to Use TOF and Q-TOF Mass Spectrometers October 2011 What do TOF and Q-TOF offer? TOF Fast scanning of full spectrum High resolution full scan spectra Accurate mass measurements Q-TOF Fast scanning

More information

Targeted and untargeted metabolic profiling by incorporating scanning FAIMS into LC-MS. Kayleigh Arthur

Targeted and untargeted metabolic profiling by incorporating scanning FAIMS into LC-MS. Kayleigh Arthur Targeted and untargeted metabolic profiling by incorporating scanning FAIMS into LC-MS Kayleigh Arthur K.Arthur@lboro.ac.uk Introduction LC-MS is a highly used technique for untargeted profiling analyses

More information

Evaluation of an LC-MS/MS Research Method for the Analysis of 33 Benzodiazepines and their Metabolites

Evaluation of an LC-MS/MS Research Method for the Analysis of 33 Benzodiazepines and their Metabolites Evaluation of an LC-MS/MS Research Method for the Analysis of 33 Benzodiazepines and their Metabolites Valérie Thibert 1, Norbert Dirsch 2, Johannes Engl 2, Martin Knirsch 2 1 Thermo Fisher Scientific,

More information

Edgar Naegele. Abstract

Edgar Naegele. Abstract Simultaneous determination of metabolic stability and identification of buspirone metabolites using multiple column fast LC/TOF mass spectrometry Application ote Edgar aegele Abstract A recent trend in

More information

Mass Spectrometry Infrastructure

Mass Spectrometry Infrastructure Mass Spectrometry Infrastructure Todd Williams, Ph.D. Director KU Mass Spectrometry and Analytical Proteomics Laboratory Mass Spectrometry Lab B025 Malott Hall Mission The Mass Spectrometry and analytical

More information

Introduction to LC/MS/MS

Introduction to LC/MS/MS Trends in 2006 Introduction to LC/MS/MS By Crystal Holt, LC/MS Product Specialist, Varian Inc. Toxicology laboratories Increased use of LC/MS Excellent LD Cheaper (still expensive) Much more robust Solves

More information

Development of a High Sensitivity SPE-LC-MS/MS Assay for the Quantification of Glucagon in Human Plasma Using the ionkey/ms System

Development of a High Sensitivity SPE-LC-MS/MS Assay for the Quantification of Glucagon in Human Plasma Using the ionkey/ms System Development of a High Sensitivity SPE-LC-MS/MS Assay for the Quantification of Glucagon in Human Plasma Using the ionkey/ms System Mary E. Lame, Erin E. Chambers, Sukhdev S. Bangar, and Kenneth J. Fountain

More information

Glycerolipid Analysis. LC/MS/MS Analytical Services

Glycerolipid Analysis. LC/MS/MS Analytical Services Glycerolipid Analysis LC/MS/MS Analytical Services Molecular Characterization and Quantitation of Glycerophospholipids in Commercial Lecithins by High Performance Liquid Chromatography with Mass Spectrometric

More information

A Simple and Accurate Method for the Rapid Quantitation of Drugs of Abuse in Urine Using Liquid Chromatography

A Simple and Accurate Method for the Rapid Quantitation of Drugs of Abuse in Urine Using Liquid Chromatography Application Note LCMS-109 A Simple and Accurate Method for the Rapid Quantitation of Drugs of Abuse in Urine Using Liquid Chromatography Time of Flight (LC-TOF) Mass Spectrometry Introduction Many clinical

More information