Drug Discovery through Enzyme Inhibition and Inactivation

Size: px
Start display at page:

Download "Drug Discovery through Enzyme Inhibition and Inactivation"

Transcription

1 Drug Discovery through Enzyme Inhibition and Inactivation

2 Learning outcomes The student will be able to: List the types of enzyme inhibitors Describe the mechanism of enzyme catalysis and drug resistance Discuss and apply theory of drug synergism Discuss mechanism of action of reversible and irreversible enzyme inhibitors Describe rational design of enzyme inhibitors

3 Types of enzyme inhibitors Reversible inhibitors involve reversible inhibition of enzyme via non-covalent interactions Irreversible inhibitor (Enzyme inactivator) - inhibits enzyme for an extended period of time via covalent interactions

4 Reversible Enzyme Inhibitors 1. Competitive inhibitors - compete with substrate for active site (structures similar to substrates or products) a) Simple competitive inhibitors b) Alternative substrate inhibitors c) Transition state analogs d) Slow, tight-binding inhibitors 2. Noncompetitive inhibitors - bind to a site other than active site (an allosteric site)

5 Mechanism of reversible inhibition E + I -S +S k on k off E I E S E P E + P E I concentration depends on [I] and [S] and their dissociation constants (K i and K m, respectively). Both S and I compete for E, (so a decrease in [I] or increase in [S], will decrease the [E I] and increases[e S]).

6 a) Simple Competitive Reversible Inhibitors E.g. antihypertensive drugs: ACE inhibitors - Captopril, enalapril, and lisinopril ypertensive Effects of ACE Produces angiotensin II, a vasoconstrictor, also trigger release of a hormone, aldosterone that regulates the electrolyte balance by retention of Na + and water. Angiotensin II is converted to angiotensin III, which also releases aldosterone. ACE also catalyzes hydrolysis of a vasodilator, bradykinin (Arg-Pro-Pro- Gly-Phe-Ser-Pro-Phe-Arg) ypertensive Effects of ACE May be involved in memory retention & neuronal development

7 Lead Discovery mixture of peptides in the venom of a South American pit viper shows inhibition of bradykininase activity and inhibits conversion of angiotensin I to angiotensin II Teprotide (Pyr-Trp-Pro-Arg-Pro Gln-Ile-Pro-Pro) showed highest activity in vivo

8 Lead Modification Testing peptides inhibitors on ACE showed that: Pro is best at C-terminal, Ala at penultimate and an aromatic residue at antepenultimate position. ACE was found to contain Zn 2+ that was believed to assist hydrolysis as a cofactor ACE catalytic site was assumed to resemble carboxypeptidase A

9 Lead Modification With (R)-2-benzylsuccinic acid as a model, a series of peptidomimetic, carboxyalkanoylproline derivatives (e.g. 1) were tested as inhibitors of ACE. All were only weak inhibitors of ACE. To increase potency, C - was changed to S that coordinate better to Zn(II).

10 ypothetical binding of inhibitors to ACE Note: Active site of ACE has two additional binding site than carboxypeptidase Carboxylate analog Thiol analog

11 Effect of Structural Modifications Analog Relative K i Captopril had the best binding properties (K i = 1.7 nm), It was also highly selective for ACE SAR studies showed that every part of captopril is important for binding. Captopril was the first ACE inhibitor on the drug market - hypertension and congestive heart failure. S 3 C S 3 C S S S S 3 C C N N N N N C 3 N N C 2 C 2 C 2 C 2 C 2 C 2 (captopril) , , ,100

12 Captopril showed two reversible side effects (rashes and loss of taste) - Merck hypothesized side effects from S group. Changed S back to C- C 2 replaced by N to increase interaction with enzyme, gave less potent molecule due to high hydrophilicity enalaprilat: R = (S)-PhC 2 C 2, R = was the best candidate A lipophilic group was added to reduce hydrophilicity and also to increase binding to S 1 sub-site on ACE enalaprilat was poorly absorbed orally - remedied by enalapril, an ethyl ester which is hydrolyzed in vivo by esterases to give enalaprilat

13 C 2 C 2 C 2 N N lisinopril 5.29 N 2 (C 2 ) 4 C 2 Does not require prodrug activation.

14 b) Competitive Reversible Inhibitor that Acts as Substrate Examples are Sulfonamide Antibacterial Agents (Sulfa Drugs) Lead discovery Bayer Co. tested azo dyes against streptococci. Prontosil was very effective in mice (1935). No activity in vitro unless a reducing agent is added. In vivo protonsil is metabolized by reduction to the active agent it is a prodrug. the active agent is the bacteriostatic sulfanilamide bacteriostatic - inhibits further growth of bacteria, but does not kill them.

15 Lead Modification Prontosil - beginning of modern chemotherapy Thousands of compounds synthesized and tested - the first SAR studies 1 st example where new leads for other diseases discovered from side effects in clinical studies - antidiabetic and diuretic agents ther developments from these studies: a simple assay for these compounds in body fluids showed antibacterial effect is proportional to the concentration in blood, which varied from patient to patient at a given dose - beginning of monitoring blood drug levels during chemotherapy

16 Mechanism of Action In 1939 Stamp showed microorganisms contained a substance that blocked the antibacterial action of sulfonamides In 1940 Woods hypothesized that this substance has structure similar to the enzyme substrate e also showed that it is p-aminobenzoic acid (PABA) and it compete with sulfanilamide for microbial growth Mid 1940s - Miller shows sulfanilamide inhibits folic acid biosynthesis Richey and Brown purified two enzymes involved in biosynthesis of dihydrofolate Sulfonamides were shown to be substrates for Dihydropteroate synthase (inhibiting formation of dihydrofolate needed for purines and DNA biosynthesis in bacteria)

17 Criteria for a good antimicrobial drug target 1. Target is essential to survival of microorganism 2. Target is unique to the microbe so humans are not harmed 3. Structure and function of the target is highly conserved across a variety of species of that microbe for broad spectrum 4. Resistance to inhibitors of target not easily acquired Dihydropteroate synthase satisfies the first 3 criteria It generally takes 1-4 years for resistance to emerge; resistance to sulfonamides took almost seven years.

18 Sulfonamides- Drug Resistance verproduction of PABA Formation of a dihydropteroate synthase that binds PABA normally, but binds sulfonamides thousands of times less tightly Altered permeability of sulfonamides

19 c) Transition State Analogs Bernhard and rgel theorized that: inhibitor molecules resembling transition state structure are more tightly bound to enzyme than substrate

20 Pentostatin an example of transition state analogs N N N N pentostatin 5.58 Antineoplastic agent isolated from bacterium Streptomyces antibioticus A potent inhibitor of adenosine deaminase K i = 2.5 x M (2.5 pm)(10 7 times lower than K m for adenosine!) 2 -deoxyinosine 2 -deoxyadenosine pentostatin mimics this

21 Multisubstrate transition state analog When more than one substrate is involved, a single stable compound is made with a structure similar to the two or more substrates at the transition state - multisubstrate analog inhibitor.

22 N-Phosphonoacetyl-L-Asp (PALA) an example of Multisubstrate Analog Aspartate transcarbamylase catalyze de novo biosynthesis of pyrimidines from carbamoyl phosphate and L- Asp PALA resembles the transition state P 3 = 5.65 N 2 carbamoyl phosphate P 3 = C - C.. - N 2 C - N 2 N 2 C - isostere - no longer a leaving group, mimics phosphate P 3 = C 2 N 5.67 C - C - PALA N N C - C - N-carbamoyl-L-Asp PALA was inffetctive due to tumor resistance: tumor cells acquired ability to utilize preformed circulating pyrimidine nucleosides increased carbamoyl phosphate increased aspartate transcarbamylase

23 Slow, Tight-Binding Inhibitors Slow-binding inhibitors - equilibrium between enzyme and inhibitor is reached slowly (k on small); inhibition is therefore time-dependent Tight-binding inhibitors - substantial inhibition when [E] and [I] are comparable (k off small) Slow, tight-binding inhibitors have both properties t 1/2 for E I complex can be up to months

24 Slow, Tight-Binding Inhibitors Examples Examples of Slow, Tight-Binding Inhibitors the Antihypercholesterolemic drugs Lovastatin and Simvastatin About 1/2 of body cholesterol is biosynthesized; the rest needs to be eaten. Some people biosynthesize much more than half of what they need. Rate-determining step in cholesterol biosynthesis is conversion of 3- hydroxy-3-methylglutaryl coenzyme A (MG-CoA) to mevalonic acid. Inhibition of MG-CoA reductase should lower plasma cholesterol levels. 2 NADP 2 NADP + 3 C MG-CoA C SCoA 5.68 MG-CoA reductase 3 C C Mevalonic acid 5.69 NADP + NADP NADP + 3 C C SCoA :B -CoAS 3 C C NADP 5.70

25 MG-CoA 3 C C C 3 C 2 C C C P - C 3 P C 2 - N N = 3 P NC 2 C 2 CNC 2 C 2 S N 2 N N CoA

26 Endo and coworkers (Sankyo Co. in Japan) found three compounds from fungus Penicillium citrinum that inhibited sterol biosynthesis mevastatin was most potent. A more potent compound was isolated by Endo from a different fungus - called monacolin K. Lead Discovery Mechanism of Action: Potent competitive reversible inhibitors of MG-CoA reductase (K i for lovastatin 6.4 x M) 3 C R C 3 mevastatin or compactin (R = ) monacolin K, mevinolin, or lovastatin (R = C 3 ) 5.71

27 The active form of lovastatin is the hydrolysis product. This mimics intermediate 5.70 in Scheme C 5.70 C SCoA :B when is replaced by C 3, it is simvastatin (2.5 times more potent than lovastatin) 3 C C C C 3 Active form of lovastatin

28 Irreversible Enzyme Inhibitors Two general types of irreversible inhibitors: Affinity labeling agents (reactive compounds) Mechanism-based enzyme inactivators (unreactive compounds) Note: Irreversible inhibition does not mean permanent loss of the enzyme - gene encodes for other copies (may take hours or days).

29 Affinity Labeling Agents These are reactive compounds that have structure similar to that of substrate of the target enzyme reversible complex S N 2 alkylation or acylation covalent complex Effective Affinity Labeling Agents have: low K i for target enzyme for selectivity reactive group close to a nucleophile in active site of target enzyme

30 -lactam antibiotics Examples affinity labeling agents

31 -lactam antibiotics inactivate Peptidoglycan transpeptidase which catalyze the cross-linking of peptidoglycan to form bacteria cell wall GlcNAc MurNAc GlcNAc NAc 3 C B: + B L-Ala D- -Glu N (D) CC 3 - C NAc L Lys-N 2 N (D) CC 3 C NAc peptidoglycan transpeptidase D-Ala D-Ala D-Ala C 3 GlcNAc MurNAc GlcNAc GlcNAc MurNAc GlcNAc 3 C Ser L-Ala D- -Glu L Lys-N 2 N (D) CC 3 C L Lys N 2 D- -Glu L-Ala 5.10 D-Ala D-Ala L Lys D- -Glu L-Ala C 3 GlcNAc MurNAc GlcNAc GlcNAc MurNAc GlcNAc 3 C L-Ala D- -Glu L Lys-N 2 N (D) CC 3 C N

32 R N a Me N a N b S N b C 2 Me Me C 2 Me The structure of penicillin is comparable with D-Ala-D- Ala which is hydrolyzed by the enzyme Peptidoglycan Penicillin inactivate the enzyme by acylating serine at active site

33 Penicillin Resistance: ccurs via 1. -Lactamase production - hydrolyzes -lactam ring 2. Also, transpeptidase becomes less susceptible to acylation. 3. Membrane permeability is modified. Drug Synergism: combination therapy (penicillin + - lactamase inhibitor) e.g. Augmentin (amoxicillin + clavulanate) Unasyn (ampicillin + sulbactam) S N C 2 - K + clavulanate potassium 5.92 N sulbactam 5.93 C 2

34 Mechanism-Based Enzyme Inactivators is an unreactive molecule with structure similar to substrate or product once bound the target enzyme converts it into a species that inactivates the enzyme Their differences from affinity labeling agents are initially unreactive target enzyme activates them by catalysis

35 Mechanism-Based Inactivation Kinetics k 1 k 2 k E + I E I E I ' 4 k -1 E - I '' k 3 E + P partition ratio = k 3 /k 4 ideally, partition ratio = 0 Note: Inactivation occurs prior to release of the activated species

36 Vigabatrin Examples of Mechanism-Based Inactivation Vigabatrin is an antiepileptic drug Epilepsy - Can arise from imbalance in two neurotransmitters (L-Glu and GABA) Thus an alternative to treat epilepsy could be introduce GABA into brain owever, GABA does not cross blood-brain barrier Vigabatrin crosses blood-brain barrier, and inactivates GABA aminotransferase via mechanism-based inactivation. - C GABA-AT - 3 N C 2 C + 3 N C 2 GAD PLP -C 2 PLP PMP - C 2 NADP + L-Glu -KG SSAD - 2 C NADP - C 2

37 Vigabatrin can cross the BBB because vinyl group: increases lipophilicity of the compound is electron withdrawing it will lower pka of the amino group thus increasing the nonzwitterionic form

38 Mechanism of action of Vigabatrin

Strategies in Cardiovascular Disease and Respiratory Disease

Strategies in Cardiovascular Disease and Respiratory Disease Strategies in Cardiovascular Disease and Respiratory Disease Drug Discovery and Medicinal Chemistry The Renin-Angiotensin Pathway Dr Anna Barnard - Spring 2017 Course Overview Lecture 1: Overview of the

More information

FIRST BIOCHEMISTRY EXAM Tuesday 25/10/ MCQs. Location : 102, 105, 106, 301, 302

FIRST BIOCHEMISTRY EXAM Tuesday 25/10/ MCQs. Location : 102, 105, 106, 301, 302 FIRST BIOCHEMISTRY EXAM Tuesday 25/10/2016 10-11 40 MCQs. Location : 102, 105, 106, 301, 302 The Behavior of Proteins: Enzymes, Mechanisms, and Control General theory of enzyme action, by Leonor Michaelis

More information

Lecture 12 Enzymes: Inhibition

Lecture 12 Enzymes: Inhibition Lecture 12 Enzymes: Inhibition Reading: Berg, Tymoczko & Stryer, 6th ed., Chapter 8, pp. 225-236 Problems: pp. 238-239, chapter 8, #1, 2, 4a,b, 5a,b, 7, 10 Jmol structure: cyclooxygenase/non-steroidal

More information

VELOCITY OF ENZYME-CATALYZED REACTIONS.

VELOCITY OF ENZYME-CATALYZED REACTIONS. Lecture 12: Enzymes: Inhibition [PDF] Reading: Berg, Tymoczko & Stryer, Chapter 8, pp. 225-236 Problems: pp. 238-239, chapter 8, #1, 2, 4a,b, 5a,b, 7, 10 Updated on: 2/21/07 at 9:00 pm (deleted problems

More information

Previous Class. Today. Term test I discussions. Detection of enzymatic intermediates: chymotrypsin mechanism

Previous Class. Today. Term test I discussions. Detection of enzymatic intermediates: chymotrypsin mechanism Term test I discussions Previous Class Today Detection of enzymatic intermediates: chymotrypsin mechanism Mechanistic Understanding of Enzymemediated Reactions Ultimate goals: Identification of the intermediates,

More information

Chemical Mechanism of Enzymes

Chemical Mechanism of Enzymes Chemical Mechanism of Enzymes Enzyme Engineering 5.2 Definition of the mechanism 1. The sequence from substrate(s) to product(s) : Reaction steps 2. The rates at which the complex are interconverted 3.

More information

Section 5. Enzymes, Equilibrium, Energy and the Sulfonamides

Section 5. Enzymes, Equilibrium, Energy and the Sulfonamides Section 5 Enzymes, Equilibrium, Energy and the Sulfonamides Monday: ESKAPE handout describing them (Tiffany will provide). M-W Tie the metabolism back to the nutritional requirements and media choice,

More information

Chapter 23 Enzymes 1

Chapter 23 Enzymes 1 Chapter 23 Enzymes 1 Enzymes Ribbon diagram of cytochrome c oxidase, the enzyme that directly uses oxygen during respiration. 2 Enzyme Catalysis Enzyme: A biological catalyst. With the exception of some

More information

Statin inhibition of HMG-CoA reductase: a 3-dimensional view

Statin inhibition of HMG-CoA reductase: a 3-dimensional view Atherosclerosis Supplements 4 (2003) 3/8 www.elsevier.com/locate/atherosclerosis Statin inhibition of HMG-CoA reductase: a 3-dimensional view Eva Istvan * Department of Molecular Microbiology, Howard Hughes

More information

Midterm 2. Low: 14 Mean: 61.3 High: 98. Standard Deviation: 17.7

Midterm 2. Low: 14 Mean: 61.3 High: 98. Standard Deviation: 17.7 Midterm 2 Low: 14 Mean: 61.3 High: 98 Standard Deviation: 17.7 Lecture 17 Amino Acid Metabolism Review of Urea Cycle N and S assimilation Last cofactors: THF and SAM Synthesis of few amino acids Dietary

More information

Chapter 10. Regulatory Strategy

Chapter 10. Regulatory Strategy Chapter 10 Regulatory Strategy Regulation of enzymatic activity: 1. Allosteric Control. Allosteric proteins have a regulatory site(s) and multiple functional sites Activity of proteins is regulated by

More information

Mechanisms of Enzymes

Mechanisms of Enzymes Mechanisms of Enzymes Presented by Dr. Mohammad Saadeh The requirements for the Pharmaceutical Biochemistry I Philadelphia University Faculty of pharmacy How enzymes work * Chemical reactions have an energy

More information

An Introduction to Enzyme Structure and Function

An Introduction to Enzyme Structure and Function An Introduction to Enzyme Structure and Function Enzymes Many reactions in living systems are similar to laboratory reactions. 1. Reactions in living systems often occur with the aid of enzymes. 2. Enzymes

More information

Enzyme Catalysis-Serine Proteases

Enzyme Catalysis-Serine Proteases Enzyme Catalysis-Serine Proteases Concepts to be learned Activation Energy Transition State Example: Proteases Requirements for proteolysis Families of proteases Protein Folds used by proteases for catalysis

More information

Chymotrypsin Lecture. Aims: to understand (1) the catalytic strategies used by enzymes and (2) the mechanism of chymotrypsin

Chymotrypsin Lecture. Aims: to understand (1) the catalytic strategies used by enzymes and (2) the mechanism of chymotrypsin Chymotrypsin Lecture Aims: to understand (1) the catalytic strategies used by enzymes and (2) the mechanism of chymotrypsin What s so great about enzymes? They accomplish large rate accelerations (10 10-10

More information

Anti-hypertensive agents

Anti-hypertensive agents Anti-hypertensive agents Dr. Pran Kishore Deb Assistant Professor, Pharmaceutical Medicinal Chemistry Faculty of Pharmacy, Philadelphia University-Jordan Email: pdeb@philadelphia.edu.jo Anti-hypertensive

More information

An Introduction to Enzyme and Coenzyme Chemistry, 2nd Ed. T. D. H. Bugg, Blackwell Science, Oxford, 2004

An Introduction to Enzyme and Coenzyme Chemistry, 2nd Ed. T. D. H. Bugg, Blackwell Science, Oxford, 2004 Combinatorial synthesis of linchpin β-turn mimic 1 2 DCC, BT 1 2 n -tbu 1 n -tbu 1) 2 FMC DCC, BT 2) piperidine 1 2 2 n -tbu 3 DCC, BT 1 2 n -tbu 3 1) Ph 3 P 2) cyclization 3) CF 3 C 2 2 1 n 3 2 Evaluated

More information

2. Which of the following amino acids is most likely to be found on the outer surface of a properly folded protein?

2. Which of the following amino acids is most likely to be found on the outer surface of a properly folded protein? Name: WHITE Student Number: Answer the following questions on the computer scoring sheet. 1 mark each 1. Which of the following amino acids would have the highest relative mobility R f in normal thin layer

More information

UNIVERSITY OF GUELPH CHEM 4540 ENZYMOLOGY Winter 2005 Quiz #2: March 24, 2005, 11:30 12:50 Instructor: Prof R. Merrill ANSWERS

UNIVERSITY OF GUELPH CHEM 4540 ENZYMOLOGY Winter 2005 Quiz #2: March 24, 2005, 11:30 12:50 Instructor: Prof R. Merrill ANSWERS UNIVERSITY F GUELPH CHEM 4540 ENZYMLGY Winter 2005 Quiz #2: March 24, 2005, 11:30 12:50 Instructor: Prof R. Merrill ANSWERS Instructions: Time allowed = 80 minutes. Total marks = 30. This quiz represents

More information

Bio 100 Serine Proteases 9/26/11

Bio 100 Serine Proteases 9/26/11 Assigned Reading: 4th ed. 6.4.1 The Chymotrypsin Mechanism Involves Acylation And Deacylation Of A Ser Residue p. 213 BOX 20-1 Penicillin and β-lactamase p. 779 6.5.7 Some Enzymes Are Regulated By Proteolytic

More information

STRUCTURE OF COMMONLY USED PENICILLINS

STRUCTURE OF COMMONLY USED PENICILLINS PENICILLINS Alice Prince I. CHEMISTRY A basic structure of penicillins consists of a nucleus with three components: a thiazolidine ring, a β-lactam ring and a side chain. The side chain determines, in

More information

The MOLECULES of LIFE

The MOLECULES of LIFE The MOLECULES of LIFE Physical and Chemical Principles Solutions Manual Prepared by James Fraser and Samuel Leachman Chapter 16 Principles of Enzyme Catalysis Problems True/False and Multiple Choice 1.

More information

Concept 8.3: ATP powers cellular work by coupling exergonic reactions to endergonic reactions

Concept 8.3: ATP powers cellular work by coupling exergonic reactions to endergonic reactions Concept 8.3: ATP powers cellular work by coupling exergonic reactions to endergonic reactions A cell does three main kinds of work: Chemical Transport Mechanical To do work, cells manage energy resources

More information

Six Types of Enzyme Catalysts

Six Types of Enzyme Catalysts Six Types of Enzyme Catalysts Although a huge number of reactions occur in living systems, these reactions fall into only half a dozen types. The reactions are: 1. Oxidation and reduction. Enzymes that

More information

CHAPTER 9: CATALYTIC STRATEGIES. Chess vs Enzymes King vs Substrate

CHAPTER 9: CATALYTIC STRATEGIES. Chess vs Enzymes King vs Substrate CHAPTER 9: CATALYTIC STRATEGIES Chess vs Enzymes King vs Substrate INTRODUCTION CHAPTER 9 What are the sources of the catalytic power and specificity of enzymes? Problems in reactions in cells Neutral

More information

I is a cascading prodrug. II is used to treat hepatitis B infection III ultimately inhibits viral reverse transcriptase.

I is a cascading prodrug. II is used to treat hepatitis B infection III ultimately inhibits viral reverse transcriptase. Medicinal Chemistry 410 Exam #1 February 19, 2010 ame: Med. Chem. # 1 Part. (75 Points) There are 50 multiple choice questions worth 1.5 points each (75 Points). Please use the cantron heet provided. f

More information

Metabolism of amino acids. Vladimíra Kvasnicová

Metabolism of amino acids. Vladimíra Kvasnicová Metabolism of amino acids Vladimíra Kvasnicová Classification of proteinogenic AAs -metabolic point of view 1) biosynthesis in a human body nonessential (are synthesized) essential (must be present in

More information

Tala Saleh. Ahmad Attari. Mamoun Ahram

Tala Saleh. Ahmad Attari. Mamoun Ahram 23 Tala Saleh Ahmad Attari Minna Mushtaha Mamoun Ahram In the previous lecture, we discussed the mechanisms of regulating enzymes through inhibitors. Now, we will start this lecture by discussing regulation

More information

Lecture 17: Nitrogen metabolism 1. Urea cycle detoxification of NH 3 2. Amino acid degradation

Lecture 17: Nitrogen metabolism 1. Urea cycle detoxification of NH 3 2. Amino acid degradation Lecture 17: Nitrogen metabolism 1. Urea cycle detoxification of NH 3 2. Amino acid degradation Reference material Biochemistry 4 th edition, Mathews, Van Holde, Appling, Anthony Cahill. Pearson ISBN:978

More information

Chemical Nature of the Amino Acids. Table of a-amino Acids Found in Proteins

Chemical Nature of the Amino Acids. Table of a-amino Acids Found in Proteins Chemical Nature of the Amino Acids All peptides and polypeptides are polymers of alpha-amino acids. There are 20 a- amino acids that are relevant to the make-up of mammalian proteins (see below). Several

More information

Welcome to Class 14! Class 14: Outline and Objectives. Overview of amino acid catabolism! Introductory Biochemistry!

Welcome to Class 14! Class 14: Outline and Objectives. Overview of amino acid catabolism! Introductory Biochemistry! Welcome to Class 14 Introductory Biochemistry Class 14: Outline and Objectives Amino Acid Catabolism Fates of amino groups transamination urea cycle Fates of carbon skeletons important cofactors metabolic

More information

Enzymes Part III: regulation II. Dr. Mamoun Ahram Summer, 2017

Enzymes Part III: regulation II. Dr. Mamoun Ahram Summer, 2017 Enzymes Part III: regulation II Dr. Mamoun Ahram Summer, 2017 Advantage This is a major mechanism for rapid and transient regulation of enzyme activity. A most common mechanism is enzyme phosphorylation

More information

Medicinal Chemistry 410 Exam #1 February 20, 2009 Name: Med. Chem. #

Medicinal Chemistry 410 Exam #1 February 20, 2009 Name: Med. Chem. # Medicinal Chemistry 410 Exam #1 February 20, 2009 ame: Med. Chem. # 1 Part. (75 Points) There are 50 multiple choice questions worth 1.5 points each (75 Points). Please use the cantron heet provided. f

More information

6.5 Enzymes. Enzyme Active Site and Substrate Specificity

6.5 Enzymes. Enzyme Active Site and Substrate Specificity 180 Chapter 6 Metabolism 6.5 Enzymes By the end of this section, you will be able to: Describe the role of enzymes in metabolic pathways Explain how enzymes function as molecular catalysts Discuss enzyme

More information

Amino acids. Side chain. -Carbon atom. Carboxyl group. Amino group

Amino acids. Side chain. -Carbon atom. Carboxyl group. Amino group PROTEINS Amino acids Side chain -Carbon atom Amino group Carboxyl group Amino acids Primary structure Amino acid monomers Peptide bond Peptide bond Amino group Carboxyl group Peptide bond N-terminal (

More information

Lecture 5: Drug targets (continued)

Lecture 5: Drug targets (continued) Lecture 5: Drug targets (continued) IIa. Enzymes as drug targets (HMG-CoA example) Many drugs are inhibitors of enzymes that catalyze biologically important reactions. The conversion of HMG-CoA to mevalonic

More information

TA Section Day/Time. Organic Chemistry FINAL EXAM B (250 points)

TA Section Day/Time. Organic Chemistry FINAL EXAM B (250 points) UCSC, Binder ame TA Section Day/Time rganic Chemistry FIAL EXAM B (250 points) D T BEGI TE EXAM TU TE PAGE UTIL ISTUCTED T D S. In the meantime, please read the instructions below. Use your knowledge of

More information

Chem 135: First Midterm

Chem 135: First Midterm Chem 135: First Midterm September 28 th, 2007 Please provide all answers in the space provided. Extra paper is available if needed. You may not use calculators for this exam, but you are free to use (previously

More information

Regulation of Enzyme Activity

Regulation of Enzyme Activity Regulation of Enzyme Activity Enzyme activity must be regulated so that the proper levels of products are produced at all times and places This control occurs in several ways: - biosynthesis at the genetic

More information

PHARMACOLOGY II. Dr Shariq Syed Associate Professor AIKTC, SoP

PHARMACOLOGY II. Dr Shariq Syed Associate Professor AIKTC, SoP PHARMACOLOGY II Dr Shariq Syed Associate Professor AIKTC, SoP INTRODUCTION TO BACTERIA! INTRODUCTION TO BACTERIA! THEY COME IN DIFFERENT SHAPES ANTIMICROBIAL SITES OF ACTION SULPHONAMIDES 1930, Physician/researcher

More information

Module Contact: Dr Paul McDermott, PHA Copyright of the University of East Anglia Version 1

Module Contact: Dr Paul McDermott, PHA Copyright of the University of East Anglia Version 1 UIVERSITY F EAST AGLIA School of Pharmacy Main Series UG Examination 2012-13 LIFE SCIECES CHEMISTRY PHA-1ECY Time allowed: 2 hours You must answer FUR (4) of the SIX (6) questions. Use a SEPARATE answer

More information

PAPER No. : 16, Bioorganic and biophysical chemistry MODULE No. : 22, Mechanism of enzyme catalyst reaction (I) Chymotrypsin

PAPER No. : 16, Bioorganic and biophysical chemistry MODULE No. : 22, Mechanism of enzyme catalyst reaction (I) Chymotrypsin Subject Paper No and Title 16 Bio-organic and Biophysical Module No and Title 22 Mechanism of Enzyme Catalyzed reactions I Module Tag CHE_P16_M22 Chymotrypsin TABLE OF CONTENTS 1. Learning outcomes 2.

More information

Biomolecules: amino acids

Biomolecules: amino acids Biomolecules: amino acids Amino acids Amino acids are the building blocks of proteins They are also part of hormones, neurotransmitters and metabolic intermediates There are 20 different amino acids in

More information

Amino acid metabolism

Amino acid metabolism Amino acid metabolism The important reaction commonly employed in the breakdown of an amino acid is always the removal of its -amino group. The product ammonia is excreted after conversion to urea or other

More information

Chapter 5- Enzymes. State Standard Standard 1.b.

Chapter 5- Enzymes. State Standard Standard 1.b. Chapter 5- Enzymes State Standard Standard 1.b. Enzymes Speed Up Chemical Reactions Most of the essential chemical reactions in cells must occur quickly and precisely for the cell to survive For a chemical

More information

TA Section Day/Time. Organic Chemistry FINAL EXAM A (250 points)

TA Section Day/Time. Organic Chemistry FINAL EXAM A (250 points) UCSC, Binder ame TA Section Day/Time rganic Chemistry FIAL EXAM A (250 points) D T BEGI TE EXAM TU TE PAGE UTIL ISTUCTED T D S. In the meantime, please read the instructions below. Use your knowledge of

More information

AMINO ACID METABOLISM. Sri Widia A Jusman Dept. of Biochemistry & Molecular Biology FMUI

AMINO ACID METABOLISM. Sri Widia A Jusman Dept. of Biochemistry & Molecular Biology FMUI AMINO ACID METABOLISM Sri Widia A Jusman Dept. of Biochemistry & Molecular Biology FMUI Amino acids derived from dietary protein absorbed from intestine through blood taken up by tissues used for biosynthesis

More information

Margaret A. Daugherty. Announcements! Fall Michaelis Menton Kinetics and Inhibition. Lecture 14: Enzymes & Kinetics III

Margaret A. Daugherty. Announcements! Fall Michaelis Menton Kinetics and Inhibition. Lecture 14: Enzymes & Kinetics III Lecture 14: Enzymes & Kinetics III Michaelis Menton Kinetics and Inhibition Margaret A. Daugherty Fall 2004 Announcements! Monday 10/11 lecture: starts at 10:15; Taught by Dr. Stephen Everse o ffice our/review

More information

Krebs cycle Energy Petr Tůma Eva Samcová

Krebs cycle Energy Petr Tůma Eva Samcová Krebs cycle Energy - 215 Petr Tůma Eva Samcová Overview of Citric Acid Cycle Key Concepts The citric acid cycle (Krebs cycle) is a multistep catalytic process that converts acetyl groups derived from carbohydrates,

More information

CHAPTER 21: Amino Acids, Proteins, & Enzymes. General, Organic, & Biological Chemistry Janice Gorzynski Smith

CHAPTER 21: Amino Acids, Proteins, & Enzymes. General, Organic, & Biological Chemistry Janice Gorzynski Smith CHAPTER 21: Amino Acids, Proteins, & Enzymes General, Organic, & Biological Chemistry Janice Gorzynski Smith CHAPTER 21: Amino Acids, Proteins, Enzymes Learning Objectives: q The 20 common, naturally occurring

More information

Midterm 2 Results. Standard Deviation:

Midterm 2 Results. Standard Deviation: Midterm 2 Results High: Low: Mean: Standard Deviation: 97.5% 16% 58% 16.3 Lecture 17 Amino Acid Metabolism Urea Cycle N and S assimilation Last cofactors: THF and SAM Dietary (Exogenous) Proteins Hydrolyzed

More information

Biochemistry 2 Recita0on Amino Acid Metabolism

Biochemistry 2 Recita0on Amino Acid Metabolism Biochemistry 2 Recita0on Amino Acid Metabolism 04-20- 2015 Glutamine and Glutamate as key entry points for NH 4 + Amino acid catabolism Glutamine synthetase enables toxic NH 4 + to combine with glutamate

More information

Catabolism of Carbon skeletons of Amino acids. Amino acid metabolism

Catabolism of Carbon skeletons of Amino acids. Amino acid metabolism Catabolism of Carbon skeletons of Amino acids Amino acid metabolism Carbon skeleton Carbon Skeleton a carbon skeleton is the internal structure of organic molecules. Carbon Arrangements The arrangement

More information

Slide 1. Slide 2. Slide 3. Chapter 5- Enzymes. State Standard. Enzymes Speed Up Chemical Reactions. Standard 1.b.

Slide 1. Slide 2. Slide 3. Chapter 5- Enzymes. State Standard. Enzymes Speed Up Chemical Reactions. Standard 1.b. Slide 1 Chapter 5- Enzymes Slide 2 State Standard Standard 1.b. Slide 3 Enzymes Speed Up Chemical Reactions Most of the essential chemical reactions in cells must occur quickly and precisely for the cell

More information

Objective: You will be able to explain how the subcomponents of

Objective: You will be able to explain how the subcomponents of Objective: You will be able to explain how the subcomponents of nucleic acids determine the properties of that polymer. Do Now: Read the first two paragraphs from enduring understanding 4.A Essential knowledge:

More information

Nafith Abu Tarboush DDS, MSc, PhD

Nafith Abu Tarboush DDS, MSc, PhD Nafith Abu Tarboush DDS, MSc, PhD natarboush@ju.edu.jo www.facebook.com/natarboush Biochemical Kinetics: the science that studies rates of chemical reactions An example is the reaction (A P), The velocity,

More information

CHAPTER 10: REGULATORY STRATEGIES. Traffic signals control the flow of traffic

CHAPTER 10: REGULATORY STRATEGIES. Traffic signals control the flow of traffic CHAPTER 10: REGULATORY STRATEGIES Traffic signals control the flow of traffic INTRODUCTION CHAPTER 10 The activity of enzymes must often be regulated so that they function at the proper time and place.

More information

Enzymes: The Catalysts of Life

Enzymes: The Catalysts of Life Chapter 6 Enzymes: The Catalysts of Life Lectures by Kathleen Fitzpatrick Simon Fraser University Activation Energy and the Metastable State Many thermodynamically feasible reactions in a cell that could

More information

Nitrogen Metabolism. Overview

Nitrogen Metabolism. Overview Nitrogen Metabolism Pratt and Cornely Chapter 18 Overview Nitrogen assimilation Amino acid biosynthesis Nonessential aa Essential aa Nucleotide biosynthesis Amino Acid Catabolism Urea Cycle Juicy Steak

More information

Classification of amino acids: -

Classification of amino acids: - Page 1 of 8 P roteinogenic amino acids, also known as standard, normal or primary amino acids are 20 amino acids that are incorporated in proteins and that are coded in the standard genetic code (subunit

More information

BIOCHEMISTRY REVIEW. Overview of Biomolecules. Chapter 4 Protein Sequence

BIOCHEMISTRY REVIEW. Overview of Biomolecules. Chapter 4 Protein Sequence BIOCHEMISTRY REVIEW Overview of Biomolecules Chapter 4 Protein Sequence 2 3 4 Are You Getting It?? A molecule of hemoglobin is compared with a molecule of lysozyme. Which characteristics do they share?

More information

Hind Abu Tawileh. Moh Tarek & Razi Kittaneh. Ma moun

Hind Abu Tawileh. Moh Tarek & Razi Kittaneh. Ma moun 26 Hind Abu Tawileh Moh Tarek & Razi Kittaneh... Ma moun Cofactors are non-protein compounds, they are divided into 3 types: Protein-based. Metals: if they are bounded tightly (covalently) to the enzyme

More information

MCB 102 Discussion, Spring 2012

MCB 102 Discussion, Spring 2012 MB Discussion, Spring 2012 Practice Problems 1. Effect of enzymes on reactions Which of the listed effects would be brought about by any enzyme catalyzing the following simple reaction? k 1 S P where K

More information

COO - l. H 3 N C a H l R 1

COO - l. H 3 N C a H l R 1 COO - l + H 3 N C a H l R 1 Amino acids There are 20 standard amino acids. All proteins are built from the same amino acids. The most important criteria for classification is affinity to water: hydrophilic

More information

Enzymes. Gibbs Free Energy of Reaction. Parameters affecting Enzyme Catalysis. Enzyme Commission Number

Enzymes. Gibbs Free Energy of Reaction. Parameters affecting Enzyme Catalysis. Enzyme Commission Number SCBC203 Enzymes Jirundon Yuvaniyama, Ph.D. Department of Biochemistry Faculty of Science Mahidol University Gibbs Free Energy of Reaction Free Energy A B + H 2 O A OH + B H Activation Energy Amount of

More information

Gentilucci, Amino Acids, Peptides, and Proteins. Peptides and proteins are polymers of amino acids linked together by amide bonds CH 3

Gentilucci, Amino Acids, Peptides, and Proteins. Peptides and proteins are polymers of amino acids linked together by amide bonds CH 3 Amino Acids Peptides and proteins are polymers of amino acids linked together by amide bonds Aliphatic Side-Chain Amino Acids - - H CH glycine alanine 3 proline valine CH CH 3 - leucine - isoleucine CH

More information

Antibiotics and Ribosomes as Drug Targets

Antibiotics and Ribosomes as Drug Targets Antibiotics and Ribosomes as Drug Targets www.biochemj.org/bj/330/0581/bj3300581.htm Professor Vassie Ware Bioscience in the 21 st Century November 5, 2012 PERSPECTIVE Widespread use of antibiotics after

More information

BIOCHEMISTRY AS A SUBJECT, ITS TASKS. ENZYMES: STRUCTURE, COMMON PROPERTIES, MECHANISM OF ACTION AND CLASSIFICATION

BIOCHEMISTRY AS A SUBJECT, ITS TASKS. ENZYMES: STRUCTURE, COMMON PROPERTIES, MECHANISM OF ACTION AND CLASSIFICATION THE MINISTRY OF PUBLIC HEALTH OF UKRAINE ZAPORIZHZHIA STATE MEDICAL UNIVERSITY BIOCHEMISTRY DEPARTMENT BIOCHEMISTRY AS A SUBJECT, ITS TASKS. ENZYMES: STRUCTURE, COMMON PROPERTIES, MECHANISM OF ACTION AND

More information

Proteins are sometimes only produced in one cell type or cell compartment (brain has 15,000 expressed proteins, gut has 2,000).

Proteins are sometimes only produced in one cell type or cell compartment (brain has 15,000 expressed proteins, gut has 2,000). Lecture 2: Principles of Protein Structure: Amino Acids Why study proteins? Proteins underpin every aspect of biological activity and therefore are targets for drug design and medicinal therapy, and in

More information

7. Reverse transcription ID nucleophile and electrophile. Substitution reaction.

7. Reverse transcription ID nucleophile and electrophile. Substitution reaction. Spring 2018 Chem 12B Possible Bio or Industrial Reactions: 1. Naproxen synthesis from 2-naphthol (see ROH and epoxides slides) 2. aspirin synthesis from benzene 3. benzo[a]pyrene in cigarette smoke how

More information

CHM 341 C: Biochemistry I. Test 2: October 24, 2014

CHM 341 C: Biochemistry I. Test 2: October 24, 2014 CHM 341 C: Biochemistry I Test 2: ctober 24, 2014 This test consists of 14 questions worth points. Make sure that you read the entire question and answer each question clearly and completely. To receive

More information

Lecture 6: Allosteric regulation of enzymes

Lecture 6: Allosteric regulation of enzymes Chem*3560 Lecture 6: Allosteric regulation of enzymes Metabolic pathways do not run on a continuous basis, but are regulated according to need Catabolic pathways run if there is demand for ATP; for example

More information

Lipids: diverse group of hydrophobic molecules

Lipids: diverse group of hydrophobic molecules Lipids: diverse group of hydrophobic molecules Lipids only macromolecules that do not form polymers li3le or no affinity for water hydrophobic consist mostly of hydrocarbons nonpolar covalent bonds fats

More information

Biological systems interact, and these systems and their interactions possess complex properties. STOP at enduring understanding 4A

Biological systems interact, and these systems and their interactions possess complex properties. STOP at enduring understanding 4A Biological systems interact, and these systems and their interactions possess complex properties. STOP at enduring understanding 4A Homework Watch the Bozeman video called, Biological Molecules Objective:

More information

Enzyme Catalytic Mechanisms. Dr. Kevin Ahern

Enzyme Catalytic Mechanisms. Dr. Kevin Ahern Enzyme Catalytic Mechanisms Dr. Kevin Ahern Cleave Peptide Bonds Specificity of Cutting Common Active Site Composition/Structure Mechanistically Well Studied Chymotrypsin Chymotrypsin Catalysis H2O Chymotrypsin

More information

Molecular Biology. general transfer: occurs normally in cells. special transfer: occurs only in the laboratory in specific conditions.

Molecular Biology. general transfer: occurs normally in cells. special transfer: occurs only in the laboratory in specific conditions. Chapter 9: Proteins Molecular Biology replication general transfer: occurs normally in cells transcription special transfer: occurs only in the laboratory in specific conditions translation unknown transfer:

More information

AMINO ACID METABOLISM

AMINO ACID METABOLISM AMINO ACID METABOLISM Synthesis of Urea in Liver The series of reactions that form urea is known as the Urea Cycle or the Krebs-Henseleit Cycle. The urea cycle operates only to eliminate excess nitrogen.

More information

Lecture 16. Finish lipid metabolism (Triglycerides, Isoprenoids/Steroids, Glyoxylate cycle) Amino acid metabolism (Urea cycle) Google Man III

Lecture 16. Finish lipid metabolism (Triglycerides, Isoprenoids/Steroids, Glyoxylate cycle) Amino acid metabolism (Urea cycle) Google Man III Lecture 16 Finish lipid metabolism (Triglycerides, Isoprenoids/Steroids, Glyoxylate cycle) Amino acid metabolism (Urea cycle) Google Man III The Powertrain of Human Metabolism (verview) CARBHYDRATES PRTEINS

More information

Review of Energetics Intro

Review of Energetics Intro Review of Energetics Intro Learning Check The First Law of Thermodynamics states that energy can be Created Destroyed Converted All of the above Learning Check The second law of thermodynamics essentially

More information

Enzymes. Enzyme. Aim: understanding the basic concepts of enzyme catalysis and enzyme kinetics

Enzymes. Enzyme. Aim: understanding the basic concepts of enzyme catalysis and enzyme kinetics Enzymes Substrate Enzyme Product Aim: understanding the basic concepts of enzyme catalysis and enzyme kinetics Enzymes are efficient Enzyme Reaction Uncatalysed (k uncat s -1 ) Catalysed (k cat s -1 )

More information

Previous Class. Today. Detection of enzymatic intermediates: Protein tyrosine phosphatase mechanism. Protein Kinase Catalytic Properties

Previous Class. Today. Detection of enzymatic intermediates: Protein tyrosine phosphatase mechanism. Protein Kinase Catalytic Properties Previous Class Detection of enzymatic intermediates: Protein tyrosine phosphatase mechanism Today Protein Kinase Catalytic Properties Protein Phosphorylation Phosphorylation: key protein modification

More information

ENZYMES: CLASSIFICATION, STRUCTURE

ENZYMES: CLASSIFICATION, STRUCTURE ENZYMES: CLASSIFICATION, STRUCTURE Enzymes - catalysts of biological reactions Accelerate reactions by a millions fold Common features for enzymes and inorganic catalysts: 1. Catalyze only thermodynamically

More information

Molecular Graphics Perspective of Protein Structure and Function

Molecular Graphics Perspective of Protein Structure and Function Molecular Graphics Perspective of Protein Structure and Function VMD Highlights > 20,000 registered Users Platforms: Unix (16 builds) Windows MacOS X Display of large biomolecules and simulation trajectories

More information

CH395G FINAL (3 rd ) EXAM Kitto/Hackert - Fall 2003

CH395G FINAL (3 rd ) EXAM Kitto/Hackert - Fall 2003 CH395G FINAL (3 rd ) EXAM Kitto/Hackert - Fall 2003 1. A cell in an active, catabolic state has a. a high (ATP/ADP) and a high (NADH/NAD + ) ratio b. a high (ATP/ADP) and a low (NADH/NAD + ) ratio c. a

More information

tion egula R ymes Enz

tion egula R ymes Enz Enzymes Regulation Modes of regulation Isozymes Inhibition Conformation Amount None-specifically Isozymes (isoenzymes) The Differential K M Value Hexokinase What are isozymes? Same substrate & product,

More information

Microbial Metabolism (Chapter 5) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Eastern Campus

Microbial Metabolism (Chapter 5) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Eastern Campus Microbial Metabolism (Chapter 5) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Eastern Campus Primary Source for figures and content: Tortora, G.J. Microbiology An Introduction

More information

Enzymes. Enzymes : are protein catalysts that increase the rate of reactions without being changed in the overall process.

Enzymes. Enzymes : are protein catalysts that increase the rate of reactions without being changed in the overall process. Enzymes Enzymes Enzymes : are protein catalysts that increase the rate of reactions without being changed in the overall process. All reactions in the body are mediated by enzymes A + B E C A, B: substrate

More information

Bio 366: Biological Chemistry II Test #2, 100 points total

Bio 366: Biological Chemistry II Test #2, 100 points total Bio 366: Biological Chemistry II Test #2, 100 points total Please neatly PRINT YOUR NAME on EACH PAGE. PRINT the l ast four digits of your SOCIAL SECURITY NUMBER on the BACK SIDE OF PAGE 11 of this test.

More information

Microbiology - Problem Drill 16: Antibiotics. Question No. 1 of 10. Question. Feedback. Question

Microbiology - Problem Drill 16: Antibiotics. Question No. 1 of 10. Question. Feedback. Question Microbiology - Problem Drill 16: Antibiotics No. 1 of 10 1. An effective chemotherapeutic drug should have. (A) Low therapeutic index (B) More toxicity (C) Selective toxicity (D) Mutation inducing properties

More information

Glycosidic bond cleavage

Glycosidic bond cleavage Glycosidases and Glycosyltransferases Introduction to Inverting/Retaining Mechanisms Inhibitor design Chemical Reaction Proposed catalytic mechanisms Multiple slides courtesy of Harry Gilbert with Wells

More information

Cofactors and coenzymes. Reversible, irreversible, competitive, and noncompetitive inhibitors. Allosteric enzymes. Feedback inhibition.

Cofactors and coenzymes. Reversible, irreversible, competitive, and noncompetitive inhibitors. Allosteric enzymes. Feedback inhibition. Enzyme regulation Cofactors and coenzymes. Reversible, irreversible, competitive, and noncompetitive inhibitors. Allosteric enzymes. Feedback inhibition. Introduction The genome of a typical organism,

More information

From Structure to Function (II): Enzyme Structure & Catalysis

From Structure to Function (II): Enzyme Structure & Catalysis BCHS 6229 Protein Structure and Function Lecture 5 (Oct 25, 2011) From Structure to Function (II): Enzyme Structure & Catalysis 1 Outline Catalysis: Overview Active site geometry Proximity and ground-state

More information

Nitrogen Metabolism. Pratt and Cornely Chapter 18

Nitrogen Metabolism. Pratt and Cornely Chapter 18 Nitrogen Metabolism Pratt and Cornely Chapter 18 Overview Nitrogen assimilation Amino acid biosynthesis Nonessential aa Essential aa Nucleotide biosynthesis Amino Acid Catabolism Urea Cycle Juicy Steak

More information

Page 8/6: The cell. Where to start: Proteins (control a cell) (start/end products)

Page 8/6: The cell. Where to start: Proteins (control a cell) (start/end products) Page 8/6: The cell Where to start: Proteins (control a cell) (start/end products) Page 11/10: Structural hierarchy Proteins Phenotype of organism 3 Dimensional structure Function by interaction THE PROTEIN

More information

Part III => METABOLISM and ENERGY. 3.5 Protein Catabolism 3.5a Protein Degradation 3.5b Amino Acid Breakdown 3.5c Urea Cycle

Part III => METABOLISM and ENERGY. 3.5 Protein Catabolism 3.5a Protein Degradation 3.5b Amino Acid Breakdown 3.5c Urea Cycle Part III => METABOLISM and ENERGY 3.5 Protein Catabolism 3.5a Protein Degradation 3.5b Amino Acid Breakdown 3.5c Urea Cycle Section 3.5a: Protein Degradation Synopsis 3.5a - Dietary proteins are degraded

More information

SIMPLE BASIC METABOLISM

SIMPLE BASIC METABOLISM SIMPLE BASIC METABOLISM When we eat food such as a tuna fish sandwich, the polysaccharides, lipids, and proteins are digested to smaller molecules that are absorbed into the cells of our body. As these

More information

Amino Acids. Amino Acids. Fundamentals. While their name implies that amino acids are compounds that contain an NH. 3 and CO NH 3

Amino Acids. Amino Acids. Fundamentals. While their name implies that amino acids are compounds that contain an NH. 3 and CO NH 3 Fundamentals While their name implies that amino acids are compounds that contain an 2 group and a 2 group, these groups are actually present as 3 and 2 respectively. They are classified as α, β, γ, etc..

More information

Enzymes for Flavour Development in Dairy Substrates. Presented by: Blanca Camarasa Senior Business Manager

Enzymes for Flavour Development in Dairy Substrates. Presented by: Blanca Camarasa Senior Business Manager Enzymes for Flavour Development in Dairy Substrates Presented by: Blanca Camarasa Senior Business Manager Cheese composition Cheese consists of proteins and fat from milk, usually the milk of cows, goat,

More information

Review of Biochemistry

Review of Biochemistry Review of Biochemistry Chemical bond Functional Groups Amino Acid Protein Structure and Function Proteins are polymers of amino acids. Each amino acids in a protein contains a amino group, - NH 2,

More information

Four melanocyte-stimulating hormones have the following amino acid sequences:

Four melanocyte-stimulating hormones have the following amino acid sequences: Assignment 14: Melanocyte-stimulating hormone belongs to a group called the melanocortins. This group includes ACTH, alpha-msh, beta-msh and gamma-msh; these peptides are all cleavage products of a large

More information