CHEM/MBIO 2370 Biochemistry 2: Catabolism, Synthesis and Information Pathways--Syllabus

Size: px
Start display at page:

Download "CHEM/MBIO 2370 Biochemistry 2: Catabolism, Synthesis and Information Pathways--Syllabus"

Transcription

1 An introductory course dealing with the basic metabolic processes that occur in living cells including the production and use of metabolic energy, the breakdown and synthesis of biomolecules, the synthesis of DNA, RNA and proteins; and the regulation of these processes. In order to register in this course, a grade of C or better is required for both Biochemistry 1 (2360) and Organic Chemistry 1 (2210). Instructors: Dr. P. Pelka <pelkap@cc.umanitoba.ca>, 427 Buller Bldg. Dr. P. C. Loewen <ploewen@ms.umanitoba.ca>, 410 Buller Bldg. Dr. E. Nichols <umnichoe@cc.umanitoba.ca>, 413 Parker Bldg. Marking: Mid-term exam: 25% Lab-Write ups: 15% Lab exam: 10% Final Exam: 50%

2 Exam Format: 1. The midterm exam will include short and long answer questions with no laboratory questions included. It is scheduled for the evening of TBA (a 2 hour exam). The exam will be written in rooms 100 and 200 Fletcher Argue and 231 and 235 Isbister. Specific room assignments will be announced in class and in an update to this page. 2. The lab exam worth 10% of the final grade is scheduled for Monday April from 7 to 8 PM. 3. The final exam will include short and long answer questions and will be scheduled by Student Records in mid-april as a three hour exam. 4. Copies of course notes and previous midterm and final examinations can be found on a web page at peter.loewenlabs.ca and click on the CHEM/MBIO button.

3 Texts: 1. Lehninger Principles of Biochemistry by Nelson and Cox, 5 th Edition. 2. Laboratory Manual, 2013 Labs: Students wanting an exemption must enquire at the Chemistry General Office, Room 350 Parker, and must register in B99. Laboratories start the week of Monday, January 14, The biochemistry laboratories are located on the 4th floor of the Parker Building. You must attend the laboratory for which you are registered.

4 Course Outline: GLYCOLYSIS and PENTOSE-PHOSPHATE PATHWAY (~3 Lectures) - details glucose degradation including structures and enzymes - alcoholic fermentation - PPP as an alternate path for glucose oxidation TCA CYCLE (~ 1 lecture) - detailed description of pyruvate dehydrogenase and the production of acetyl-s-coa - details of cycle including structures and enzymes ETC AND OXIDATIVE PHOSPHORYLATION (~2 Lectures) - description of the intermediates and structure - emphasis on electron flow and energy release - ATP synthesis - chemiosmotic mechanism BALANCING REACTIONS & REGULATION (~1 Lecture) - anaplerotic or balancing reactions - regulation of glycolysis and TCA cycle

5 FATTY ACID OXIDATION (~2 Lectures) - role of lipases and phospholipases - transport and the carnitine cycle - β-oxidation of saturated, straight-chain, even #C atoms - fate of propionyl-s-coa derived from odd #C atoms AMINO ACID OXIDATION & UREA PRODUCTION (~3 Lectures) - transamination, significance and mechanism - oxidative deamination - production of gln and its use N transporter in mammalian blood - urea cycle - amino acid degradation including asp, ala, glu and gln - three examples of degradation pathways: thr/gly/ser, tyr/phe and val

6 CARBOHYDRATE SYNTHESIS (~4 Lectures) - the overall reactions of photosynthesis - the light reactions and generation of ATP and NADPH - the dark reactions in both C-3 and C-4 plants - gluconeogenesis - life on acetate (glyoxylate cycle) - glycogen synthesis and regulation LIPID SYNTHESIS (~2 Lectures) - fatty acid synthesis of palmitic acid - introduction of unsaturations - triacylglycerol and membrane phospholipid synthesis - cholesterol metabolism N-FIXATION, AMINO ACID NUCLEOTIDE SYNTHESIS (~3 Lectures) - N-cycle and N-fixation - N assimilation involving glu and gln

7 N-FIXATION, AMINO ACID NUCLEOTIDE SYNTHESIS (cont d) - three examples of amino acid synthesis: ser/gly, val, asp/thr/ile - purine nucleotide synthesis by the de novo and salvage pathways - pyrimidine nucleotide synthesis - nucleotide kinases, pyrophosphorylases, CTP synthesis - deoxynucleotide synthesis including dtmp NUCLEIC ACID METABOLISM (~2 Lecture) - DNA replication including the semi-conservative model and enzymology - transcription and RNA polymerase c. PROTEIN SYNTHESIS (~1 Lecture) - mechanism of translation including initiation, elongation, termination - genetic code and the Wobble Hypothesis REGULATION (~1 Lecture) - control of enzyme activity including branched pathways - control in catabolic and anabolic operons using the lac and trp operons as examples

DEPARTMENT OF SCIENCE COURSE OUTLINE Fall 2018 BC 2000 INTRODUCTORY BIOCHEMISTRY 3 (3-0-0) 45 HOURS FOR 15 WEEKS

DEPARTMENT OF SCIENCE COURSE OUTLINE Fall 2018 BC 2000 INTRODUCTORY BIOCHEMISTRY 3 (3-0-0) 45 HOURS FOR 15 WEEKS DEPARTMENT OF SCIENCE COURSE OUTLINE Fall 2018 BC 2000 INTRODUCTORY BIOCHEMISTRY 3 (3-0-0) 45 HOURS FOR 15 WEEKS INSTRUCTOR: Beatrice Amar Ph.D. PHONE: 780-539-2031 OFFICE: J208 E-MAIL: Bamar@gprc.ab.ca

More information

DEPARTMENT OF SCIENCE

DEPARTMENT OF SCIENCE DEPARTMENT OF SCIENCE COURSE OUTLINE Winter 2017-18 BC 2000 INTRODUCTORY BIOCHEMISTRY 3 (3-0-0) 45 HOURS FOR 15 WEEKS INSTRUCTOR: Philip Johnson PHONE: 780-539-2863 OFFICE: J224 E-MAIL: PJohnson@gprc.ab.ca

More information

DEPARTMENT OF SCIENCE

DEPARTMENT OF SCIENCE DEPARTMENT OF SCIENCE COURSE OUTLINE Fall 2017 BC 2000 INTRODUCTORY BIOCHEMISTRY 3 (3-0-0) 45 HOURS FOR 15 WEEKS INSTRUCTOR: Philip Johnson PHONE: 780-539-2863 OFFICE: J224 E-MAIL: PJohnson@gprc.ab.ca

More information

DEPARTMENT OF SCIENCE

DEPARTMENT OF SCIENCE DEPARTMENT OF SCIENCE COURSE OUTLINE Fall 2015 BC 2000 INTRODUCTORY BIOCHEMISTRY INSTRUCTOR: Philip Johnson PHONE: 780-539-2863 OFFICE: J224 E-MAIL: PJohnson@gprc.ab.ca OFFICE HOURS: Tuesdays 1000-1120

More information

Course Outline Biochemistry 301 Winter 2016 Brad Hamilton. Office: 1410A Office Phone:

Course Outline Biochemistry 301 Winter 2016 Brad Hamilton. Office: 1410A Office Phone: Course Outline Biochemistry 301 Winter 2016 Brad Hamilton Office: 1410A Office Phone: 403-342-3212 E-mail: Bradley.Hamilton@rdc.ab.ca Class Time: M T Th 12:30-1:20 Credit hours: 3 Academic Calendar Entry

More information

The University of Jordan. Accreditation & Quality Assurance Center. COURSE Syllabus

The University of Jordan. Accreditation & Quality Assurance Center. COURSE Syllabus The University of Jordan Accreditation & Quality Assurance Center COURSE Syllabus 1 Course title Biochemistry for Medical students 2 Course number 0501213 Credit hours (theory, practical) 3 3 Contact hours

More information

FARMINGDALE STATE COLLEGE DEPARTMENT OF CHEMISTRY

FARMINGDALE STATE COLLEGE DEPARTMENT OF CHEMISTRY COURSE TITLE: Advanced Biochemistry COURSE CODE: CHM 381 CREDITS: 3 CONTACT HOURS: Lecture: 3 CATALOG DESCRIPTION: A continuation of the concepts covered in Biochemistry. Students will examine the pathways,

More information

Summer A/C Semester, 2018

Summer A/C Semester, 2018 Credit: four (4) hours COURSE SYLLABUS BCH 4024: INTRODUCTION TO BIOCHEMISTRY AND MOLECULAR BIOLOGY COURSE COORDINATOR: Dr. William L. Zeile Summer A/C Semester, 2018 Course Description: BCH 4024 surveys

More information

*For complete material(s) information, refer to

*For complete material(s) information, refer to Butler Community College Science, Technology, Engineering, and Math Division Robert Carlson New Fall 2017 Implemented Fall 2018 COURSE OUTLINE Biochemistry Course Description CH 275. Biochemistry. 4 hours

More information

Sul Ross State University Syllabus for Biochemistry II: CHEM 4302 (Fall 2017) (Alpine and Midland)

Sul Ross State University Syllabus for Biochemistry II: CHEM 4302 (Fall 2017) (Alpine and Midland) Sul Ross State University Syllabus for Biochemistry II: CHEM 4302 (Fall 2017) (Alpine and Midland) Class: Biochemistry II Instructor: Dr. David Leaver Room: WSB 321 (Alpine) Office: WSB 318 Time: MWF 11:00-11:50am

More information

COURSE SYLLABUS BCH 4024: INTRODUCTION TO BIOCHEMISTRY AND MOLECULAR BIOLOGY COURSE COORDINATOR: Dr. Brian D. Cain. Spring Semester, 2018

COURSE SYLLABUS BCH 4024: INTRODUCTION TO BIOCHEMISTRY AND MOLECULAR BIOLOGY COURSE COORDINATOR: Dr. Brian D. Cain. Spring Semester, 2018 Credit: four (4) hours COURSE SYLLABUS BCH 4024: INTRODUCTION TO BIOCHEMISTRY AND MOLECULAR BIOLOGY COURSE COORDINATOR: Dr. Brian D. Cain Spring Semester, 2018 Course Description: BCH 4024 surveys the

More information

Integrative Metabolism: Significance

Integrative Metabolism: Significance Integrative Metabolism: Significance Energy Containing Nutrients Carbohydrates Fats Proteins Catabolism Energy Depleted End Products H 2 O NH 3 ADP + Pi NAD + NADP + FAD + Pi NADH+H + NADPH+H + FADH2 Cell

More information

COURSE SYLLABUS BCH 4024: INTRODUCTION TO BIOCHEMISTRY AND MOLECULAR BIOLOGY DISTANCE LEARNING COURSE COORDINATOR: Dr. Kevin D.

COURSE SYLLABUS BCH 4024: INTRODUCTION TO BIOCHEMISTRY AND MOLECULAR BIOLOGY DISTANCE LEARNING COURSE COORDINATOR: Dr. Kevin D. Credit: four (4) hours COURSE SYLLABUS BCH 4024: INTRODUCTION TO BIOCHEMISTRY AND MOLECULAR BIOLOGY DISTANCE LEARNING COURSE COORDINATOR: Dr. Kevin D. Brown Fall Semester, 2018 Course Description: BCH

More information

Unit 2 Biology Course Outline Winter BIOC 305 Molecular Biochemistry (3) TTh 8 a.m.- 9:20 a.m. Art 376

Unit 2 Biology Course Outline Winter BIOC 305 Molecular Biochemistry (3) TTh 8 a.m.- 9:20 a.m. Art 376 Unit 2 Biology Course Outline 2013 Winter BIOC 305 Molecular Biochemistry (3) TTh 8 a.m.- 9:20 a.m. Art 376 Instructor: Dr. Joyce Boon Office: Science 316 Phone: (250-807- 9545) Email: Joyce.Boon@ubc.ca

More information

Office number.

Office number. The University of Jordan Faculty: Pharmacy Department: Biopharmaceutics and Clinical Pharmacy Program: Pharmacy Academic Year/ Fall Semester: 2014/15 BIOCHEMISTRY 2 [1203253] Credit hours 3 Level 2 nd

More information

COURSE SYLLABUS BCH 4024: INTRODUCTION TO BIOCHEMISTRY AND MOLECULAR BIOLOGY SECTION 06D2 DISTANCE LEARNING COURSE COORDINATOR: Dr. Kevin D.

COURSE SYLLABUS BCH 4024: INTRODUCTION TO BIOCHEMISTRY AND MOLECULAR BIOLOGY SECTION 06D2 DISTANCE LEARNING COURSE COORDINATOR: Dr. Kevin D. Credit: four (4) hours COURSE SYLLABUS BCH 4024: INTRODUCTION TO BIOCHEMISTRY AND MOLECULAR BIOLOGY SECTION 06D2 DISTANCE LEARNING COURSE COORDINATOR: Dr. Kevin D. Brown Spring Semester, 2018 Course Description:

More information

Energy metabolism - the overview

Energy metabolism - the overview Energy metabolism - the overview Josef Fontana EC - 40 Overview of the lecture Important terms of the energy metabolism The overview of the energy metabolism The main pathways of the energy metabolism

More information

COURSE SYLLABUS GMS 5905: FUNDAMENTALS OF BIOCHEMISTRY AND MOLECULAR BIOLOGY DISTANCE LEARNING COURSE COORDINATOR: Dr. Kevin D.

COURSE SYLLABUS GMS 5905: FUNDAMENTALS OF BIOCHEMISTRY AND MOLECULAR BIOLOGY DISTANCE LEARNING COURSE COORDINATOR: Dr. Kevin D. Credit: four (4) hours COURSE SYLLABUS GMS 5905: FUNDAMENTALS OF BIOCHEMISTRY AND MOLECULAR BIOLOGY DISTANCE LEARNING COURSE COORDINATOR: Dr. Kevin D. Brown Summer Semester, 2016 Course Description: GMS

More information

CH395G FINAL (3 rd ) EXAM Kitto/Hackert - Fall 2003

CH395G FINAL (3 rd ) EXAM Kitto/Hackert - Fall 2003 CH395G FINAL (3 rd ) EXAM Kitto/Hackert - Fall 2003 1. A cell in an active, catabolic state has a. a high (ATP/ADP) and a high (NADH/NAD + ) ratio b. a high (ATP/ADP) and a low (NADH/NAD + ) ratio c. a

More information

COURSE SYLLABUS GMS 5905: FUNDAMENTALS OF BIOCHEMISTRY AND MOLECULAR BIOLOGY DISTANCE LEARNING COURSE COORDINATOR: Dr. Kevin D.

COURSE SYLLABUS GMS 5905: FUNDAMENTALS OF BIOCHEMISTRY AND MOLECULAR BIOLOGY DISTANCE LEARNING COURSE COORDINATOR: Dr. Kevin D. Credit: four (4) hours COURSE SYLLABUS GMS 5905: FUNDAMENTALS OF BIOCHEMISTRY AND MOLECULAR BIOLOGY DISTANCE LEARNING COURSE COORDINATOR: Dr. Kevin D. Brown Fall Semester, 2017 Course Description: GMS

More information

COURSE OUTLINE CHEMISTRY II 2018

COURSE OUTLINE CHEMISTRY II 2018 COURSE OUTLINE CHEMISTRY II 2018 Course: Course Code: Times & Location: Course Coordinator: Instructors/Teaching Assistants: E-mail: Office Hours: Office Location: Chemistry II : Foundations of Chemistry

More information

COURSE SYLLABUS GMS 5905: FUNDAMENTALS OF BIOCHEMISTRY AND MOLECULAR BIOLOGY DISTANCE LEARNING COURSE COORDINATOR: Dr. Kevin D.

COURSE SYLLABUS GMS 5905: FUNDAMENTALS OF BIOCHEMISTRY AND MOLECULAR BIOLOGY DISTANCE LEARNING COURSE COORDINATOR: Dr. Kevin D. Credit: four (4) hours COURSE SYLLABUS GMS 5905: FUNDAMENTALS OF BIOCHEMISTRY AND MOLECULAR BIOLOGY DISTANCE LEARNING COURSE COORDINATOR: Dr. Kevin D. Brown Spring Semester, 2019 Course Description: GMS

More information

Physiological Chemistry II Exam IV Dr. Melissa Kelley April 13, 2004

Physiological Chemistry II Exam IV Dr. Melissa Kelley April 13, 2004 Name Write your name on the back of the exam Physiological Chemistry II Exam IV Dr. Melissa Kelley April 13, 2004 This examination consists of forty-four questions, each having 2 points. The remaining

More information

SYLLABUS. Departmental Syllabus DEPARTMENTAL SYLLABUS DEPARTMENTAL SYLLABUS DEPARTMENTAL SYLLABUS DEPARTMENTAL SYLLABUS

SYLLABUS. Departmental Syllabus DEPARTMENTAL SYLLABUS DEPARTMENTAL SYLLABUS DEPARTMENTAL SYLLABUS DEPARTMENTAL SYLLABUS SYLLABUS DATE OF LAST REVIEW: 05/2018 CIP CODE: 24.0101 SEMESTER: COURSE TITLE: COURSE NUMBER: Departmental Syllabus Biochemistry CHEM-0250 CREDIT HOURS: 4 INSTRUCTOR: OFFICE LOCATION: OFFICE HOURS: TELEPHONE:

More information

DEPARTMENT: Chemistry

DEPARTMENT: Chemistry CODE: CHEM-236 TITLE: Biochemistry Institute: STEM DEPARTMENT: Chemistry COURSE DESCRIPTION: Upon completion of this course the student will be able to recognize and draw the structure and state the nature

More information

Reg. No. : Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester BT 6201 BIOCHEMISTRY

Reg. No. : Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester BT 6201 BIOCHEMISTRY Ws 5 Reg. No. : Question Paper Code : 27075 B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015. Time : Three hours Second Semester Biotechnology BT 6201 BIOCHEMISTRY (Common to Pharmaceutical Technology)

More information

FARMINGDALE STATE COLLEGE DEPARTMENT OF CHEMISTRY. April CONTACT HOURS: Lecture: 3 Laboratory: 3

FARMINGDALE STATE COLLEGE DEPARTMENT OF CHEMISTRY. April CONTACT HOURS: Lecture: 3 Laboratory: 3 FARMINGDALE STATE COLLEGE DEPARTMENT OF CHEMISTRY COURSE OUTLINE: COURSE TITLE: Prepared by Dr. Glen Hinckley April 2017 Biochemistry COURSE CODE: CHM 380 CREDITS: 4 CONTACT HOURS: Lecture: 3 Laboratory:

More information

CHAPTER 5 MICROBIAL METABOLISM

CHAPTER 5 MICROBIAL METABOLISM CHAPTER 5 MICROBIAL METABOLISM I. Catabolic and Anabolic Reactions A. Metabolism - The sum of all chemical reactions within a living cell either releasing or requiring energy. (Overhead) Fig 5.1 1. Catabolism

More information

Metabolic integration and Regulation

Metabolic integration and Regulation Metabolic integration and Regulation 109700: Graduate Biochemistry Trimester 2/2016 Assistant Prof. Dr. Panida Khunkaewla kpanida@sut.ac.th School of Chemistry Suranaree University of Technology 1 Overview

More information

BIOCHEMISTRY 302 / BIOLOGY 302 / 502 BIOCHEMISTRY: METABOLIC ASPECTS

BIOCHEMISTRY 302 / BIOLOGY 302 / 502 BIOCHEMISTRY: METABOLIC ASPECTS BIOCHEMISTRY 302 / BIOLOGY 302 / 502 BIOCHEMISTRY: METABOLIC ASPECTS Dr. Anna Tan-Wilson Spring 2004 For more information on the course including how to contact your instructor and teaching assistant,

More information

NBCE Mock Board Questions Biochemistry

NBCE Mock Board Questions Biochemistry 1. Fluid mosaic describes. A. Tertiary structure of proteins B. Ribosomal subunits C. DNA structure D. Plasma membrane structure NBCE Mock Board Questions Biochemistry 2. Where in the cell does beta oxidation

More information

Medical Biochemistry CHEM 1005 Renee LeClair, Ph.D.

Medical Biochemistry CHEM 1005 Renee LeClair, Ph.D. Medical Biochemistry CHEM 1005 Renee LeClair, Ph.D. I. Overview. Medical Biochemistry is a four credit hour course designed to lay the foundation for other basic and clinical medical sciences. The goal

More information

Multiple choice: Circle the best answer on this exam. There are 12 multiple choice questions, each question is worth 3 points.

Multiple choice: Circle the best answer on this exam. There are 12 multiple choice questions, each question is worth 3 points. CHEM 4420 Exam 4 Spring 2015 Dr. Stone Page 1 of 6 Name Use complete sentences when requested. There are 120 possible points on this exam. Therefore there are 20 bonus points. Multiple choice: Circle the

More information

We will use the text, Lehninger: Principles of Biochemistry, as the primary supplement to topics presented in lecture.

We will use the text, Lehninger: Principles of Biochemistry, as the primary supplement to topics presented in lecture. Biochemical Pathways Biology 361, Spring 2015 Instructor: Office: Office Time: Email: Lecture: Text: Lecture Notes: Course Website: Gregory Johnson, Ph.D. Thompson 257d T, 1-2:30 pm and W, 10:00-11:30

More information

If you ate a clown, would it taste funny? Oh, wait, that s cannibalism . Anabolism

If you ate a clown, would it taste funny? Oh, wait, that s cannibalism . Anabolism If you ate a clown, would it taste funny? Oh, wait, that s cannibalism. Anabolism is about putting things together. Anabolism: The Use of Energy in Biosynthesis Anabolism energy from catabolism is used

More information

BBSG 501 Section 4 Metabolic Fuels, Energy and Order Fall 2003 Semester

BBSG 501 Section 4 Metabolic Fuels, Energy and Order Fall 2003 Semester BBSG 501 Section 4 Metabolic Fuels, Energy and Order Fall 2003 Semester Section Director: Dave Ford, Ph.D. Office: MS 141: ext. 8129: e-mail: fordda@slu.edu Lecturers: Michael Moxley, Ph.D. Office: MS

More information

Biochemistry: The Molecular Basis of Life

Biochemistry: The Molecular Basis of Life Biochemistry: The Molecular Basis of Life McKee, Trudy ISBN-13: 9780195305753 Table of Contents * New to this edition Preface 1. WHAT IS LIFE? 1.1 The Living World Bacteria Archaea Eukarya 1.3 Biomolecules

More information

Intermediary metabolism. Eva Samcová

Intermediary metabolism. Eva Samcová Intermediary metabolism Eva Samcová Metabolic roles of tissues Four major tissues play a dominant role in fuel metabolism : liver, adipose, muscle, and brain. These tissues do not function in isolation.

More information

CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM /19 BY: MOHAMAD FAHRURRAZI TOMPANG

CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM /19 BY: MOHAMAD FAHRURRAZI TOMPANG CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM 1 2018/19 BY: MOHAMAD FAHRURRAZI TOMPANG Chapter Outline (19-1) The central role of the citric acid cycle in metabolism (19-2) The overall pathway of the citric

More information

BCM 221 LECTURES OJEMEKELE O.

BCM 221 LECTURES OJEMEKELE O. BCM 221 LECTURES BY OJEMEKELE O. OUTLINE INTRODUCTION TO LIPID CHEMISTRY STORAGE OF ENERGY IN ADIPOCYTES MOBILIZATION OF ENERGY STORES IN ADIPOCYTES KETONE BODIES AND KETOSIS PYRUVATE DEHYDROGENASE COMPLEX

More information

SCBC203 Amino Acid Metabolism

SCBC203 Amino Acid Metabolism Breakdown of proteins Route I: Dietary protein breakdown SCBC203 Amino Acid Metabolism Dr Sarawut Jitrapakdee Professor of Biochemistry Department of Biochemistry Faculty of Science Mahidol University

More information

2/25/2013. The Mechanism of Enzymatic Action

2/25/2013. The Mechanism of Enzymatic Action 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Chapter 5 Microbial Metabolism Catabolic and Anabolic Reactions Metabolism: The sum of the chemical reactions in an organism Catabolic and Anabolic Reactions Catabolism:

More information

Chapter 8. Metabolism. Topics in lectures 15 and 16. Chemical foundations Catabolism Biosynthesis

Chapter 8. Metabolism. Topics in lectures 15 and 16. Chemical foundations Catabolism Biosynthesis Chapter 8 Topics in lectures 15 and 16 Metabolism Chemical foundations Catabolism Biosynthesis 1 Metabolism Chemical Foundations Enzymes REDOX Catabolism Pathways Anabolism Principles and pathways 2 Enzymes

More information

Integration Of Metabolism

Integration Of Metabolism Integration Of Metabolism Metabolism Consist of Highly Interconnected Pathways The basic strategy of catabolic metabolism is to form ATP, NADPH, and building blocks for biosyntheses. 1. ATP is the universal

More information

Student Number: A 10 ml volume of the skeletal muscle extract was applied to each of the two columns.

Student Number: A 10 ml volume of the skeletal muscle extract was applied to each of the two columns. Name: Student Number: THE UNIVERSITY OF MANITOBA April 21, 2010, 1:30 PM -4:30 PM Page 1 (of 4) Biochemistry II Laboratory Section Final Examination Examiner: Dr. A. Scoot 1. Answer ALL questions in the

More information

Regulation. 1. Short term control 8-1

Regulation. 1. Short term control 8-1 Regulation Several aspects of regulation have been alluded to or described in detail as we have progressed through the various sections of the course. These include: (a) compartmentation: This was not

More information

Metabolism. Chapter 5. Catabolism Drives Anabolism 8/29/11. Complete Catabolism of Glucose

Metabolism. Chapter 5. Catabolism Drives Anabolism 8/29/11. Complete Catabolism of Glucose 8/29/11 Metabolism Chapter 5 All of the reactions in the body that require energy transfer. Can be divided into: Cell Respiration and Metabolism Anabolism: requires the input of energy to synthesize large

More information

Chemistry 1120 Exam 4 Study Guide

Chemistry 1120 Exam 4 Study Guide Chemistry 1120 Exam 4 Study Guide Chapter 12 12.1 Identify and differentiate between macronutrients (lipids, amino acids and saccharides) and micronutrients (vitamins and minerals). Master Tutor Section

More information

Introduction to Metabolism Cell Structure and Function

Introduction to Metabolism Cell Structure and Function Introduction to Metabolism Cell Structure and Function Cells can be divided into two primary types prokaryotes - Almost all prokaryotes are bacteria eukaryotes - Eukaryotes include all cells of multicellular

More information

Lipid Metabolism. Catabolism Overview

Lipid Metabolism. Catabolism Overview Lipid Metabolism Pratt & Cornely, Chapter 17 Catabolism Overview Lipids as a fuel source from diet Beta oxidation Mechanism ATP production Ketone bodies as fuel 1 High energy More reduced Little water

More information

Introduction to Carbohydrate metabolism

Introduction to Carbohydrate metabolism Introduction to Carbohydrate metabolism Some metabolic pathways of carbohydrates 1- Glycolysis 2- Krebs cycle 3- Glycogenesis 4- Glycogenolysis 5- Glyconeogenesis - Pentose Phosphate Pathway (PPP) - Curi

More information

Krebs cycle Energy Petr Tůma Eva Samcová

Krebs cycle Energy Petr Tůma Eva Samcová Krebs cycle Energy - 215 Petr Tůma Eva Samcová Overview of Citric Acid Cycle Key Concepts The citric acid cycle (Krebs cycle) is a multistep catalytic process that converts acetyl groups derived from carbohydrates,

More information

The Structure and Function of Biomolecules

The Structure and Function of Biomolecules The Structure and Function of Biomolecules The student is expected to: 9A compare the structures and functions of different types of biomolecules, including carbohydrates, lipids, proteins, and nucleic

More information

INTRODUCTORY BIOCHEMISTRY. BI 28 Second Midterm Examination April 3, 2007

INTRODUCTORY BIOCHEMISTRY. BI 28 Second Midterm Examination April 3, 2007 INTRODUCTORY BIOCHEMISTRY BI 28 Second Midterm Examination April 3, 2007 Name SIS # Make sure that your name or SIS # is on every page. This is the only way we have of matching you with your exam after

More information

Chapter 24 Lecture Outline

Chapter 24 Lecture Outline Chapter 24 Lecture Outline Carbohydrate Lipid and Protein! Metabolism! In the catabolism of carbohydrates, glycolysis converts glucose into pyruvate, which is then metabolized into acetyl CoA. Prepared

More information

In glycolysis, glucose is converted to pyruvate. If the pyruvate is reduced to lactate, the pathway does not require O 2 and is called anaerobic

In glycolysis, glucose is converted to pyruvate. If the pyruvate is reduced to lactate, the pathway does not require O 2 and is called anaerobic Glycolysis 1 In glycolysis, glucose is converted to pyruvate. If the pyruvate is reduced to lactate, the pathway does not require O 2 and is called anaerobic glycolysis. If this pyruvate is converted instead

More information

Biochemistry 2: CHEM-UA

Biochemistry 2: CHEM-UA Biochemistry 2: CHEM-UA.882001 Dr. Burt Goldberg, Professor of Biochemistry/Chemistry Chemistry Department Room: 664 Brown MDI Email: bg43@nyu.edu or burt.goldberg@nyu.edu or burt.goldberg@gmail.com Phone:

More information

Chemistry 107 Exam 4 Study Guide

Chemistry 107 Exam 4 Study Guide Chemistry 107 Exam 4 Study Guide Chapter 10 10.1 Recognize that enzyme catalyze reactions by lowering activation energies. Know the definition of a catalyst. Differentiate between absolute, relative and

More information

Lecture 16. Finish lipid metabolism (Triglycerides, Isoprenoids/Steroids, Glyoxylate cycle) Amino acid metabolism (Urea cycle) Google Man III

Lecture 16. Finish lipid metabolism (Triglycerides, Isoprenoids/Steroids, Glyoxylate cycle) Amino acid metabolism (Urea cycle) Google Man III Lecture 16 Finish lipid metabolism (Triglycerides, Isoprenoids/Steroids, Glyoxylate cycle) Amino acid metabolism (Urea cycle) Google Man III The Powertrain of Human Metabolism (verview) CARBHYDRATES PRTEINS

More information

BMB 401 Summer 2018 Comprehensive Biochemistry

BMB 401 Summer 2018 Comprehensive Biochemistry BMB 401 Summer 2018 Comprehensive Biochemistry Class begins 5/14/18 Midterm Exam Times: 3-4 PM Eastern on these Thursdays ONLY: June 7, June 28, July 19, and August 9 from 3-4pm EST. Comprehensive 5th

More information

Nitrogen Metabolism. Overview

Nitrogen Metabolism. Overview Nitrogen Metabolism Pratt and Cornely Chapter 18 Overview Nitrogen assimilation Amino acid biosynthesis Nonessential aa Essential aa Nucleotide biosynthesis Amino Acid Catabolism Urea Cycle Juicy Steak

More information

Plant Biochemistry, Spring 2017 BOT 6935, section 1E55, 4 credits

Plant Biochemistry, Spring 2017 BOT 6935, section 1E55, 4 credits Plant Biochemistry, Spring 2017 BOT 6935, section 1E55, 4 credits Meeting time and place MTWTh, 4 th Period, 236 Cancer/Genetics Research Complex Instructors Dr. Alice Harmon, 621 Carr Hall, harmon@ufl.edu,

More information

CHAPTER 24: Carbohydrate, Lipid, & Protein Metabolism. General, Organic, & Biological Chemistry Janice Gorzynski Smith

CHAPTER 24: Carbohydrate, Lipid, & Protein Metabolism. General, Organic, & Biological Chemistry Janice Gorzynski Smith CHAPTER 24: Carbohydrate, Lipid, & Protein Metabolism General, Organic, & Biological Chemistry Janice Gorzynski Smith CHAPTER 24: Carbohydrate, Lipid, & Protein Metabolism Learning Objectives: q Role in

More information

Midterm 2. Low: 14 Mean: 61.3 High: 98. Standard Deviation: 17.7

Midterm 2. Low: 14 Mean: 61.3 High: 98. Standard Deviation: 17.7 Midterm 2 Low: 14 Mean: 61.3 High: 98 Standard Deviation: 17.7 Lecture 17 Amino Acid Metabolism Review of Urea Cycle N and S assimilation Last cofactors: THF and SAM Synthesis of few amino acids Dietary

More information

CHY2026: General Biochemistry UNIT 7& 8: CARBOHYDRATE METABOLISM

CHY2026: General Biochemistry UNIT 7& 8: CARBOHYDRATE METABOLISM CHY2026: General Biochemistry UNIT 7& 8: CARBOHYDRATE METABOLISM Metabolism Bioenergetics is the transfer and utilization of energy in biological systems The direction and extent to which a chemical reaction

More information

Chap 3 Metabolism and Growth

Chap 3 Metabolism and Growth Chap 3 Metabolism and Growth I. Metabolism Definitions: Metabolism includes two parts: anabolism and catabolism Catabolism: Anabolism: Aerobic metabolism: catabolism anabolis m catabolis anabolis m Anaerobic

More information

Microbial Metabolism. PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R

Microbial Metabolism. PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R 5 Microbial Metabolism Big Picture: Metabolism Metabolism is the buildup and breakdown of nutrients

More information

Cellular Respiration Other Metabolites & Control of Respiration. AP Biology

Cellular Respiration Other Metabolites & Control of Respiration. AP Biology Cellular Respiration Other Metabolites & Control of Respiration Cellular respiration: Beyond glucose: Other carbohydrates: Glycolysis accepts a wide range of carbohydrates fuels. polysaccharides glucose

More information

Nitrogen Metabolism. Pratt and Cornely Chapter 18

Nitrogen Metabolism. Pratt and Cornely Chapter 18 Nitrogen Metabolism Pratt and Cornely Chapter 18 Overview Nitrogen assimilation Amino acid biosynthesis Nonessential aa Essential aa Nucleotide biosynthesis Amino Acid Catabolism Urea Cycle Juicy Steak

More information

Amino acid Catabolism

Amino acid Catabolism Enzymatic digestion of dietary proteins in gastrointestinal-tract. Amino acid Catabolism Amino acids: 1. There are 20 different amino acid, they are monomeric constituents of proteins 2. They act as precursors

More information

ANSC/NUTR 618 Lipids & Lipid Metabolism

ANSC/NUTR 618 Lipids & Lipid Metabolism I. Overall concepts A. Definitions ANC/NUTR 618 Lipids & Lipid Metabolism 1. De novo synthesis = synthesis from non-fatty acid precursors a. Carbohydrate precursors (glucose, lactate, and pyruvate) b.

More information

February 2009 [KU 504] Sub. Code : 4055 FIRST M.B.B.S. DEGREE EXAMINATION. Revised (Non-Semester) Regulations Paper V BIOCHEMISTRY I Q. P. Code : 5240

February 2009 [KU 504] Sub. Code : 4055 FIRST M.B.B.S. DEGREE EXAMINATION. Revised (Non-Semester) Regulations Paper V BIOCHEMISTRY I Q. P. Code : 5240 February 2009 [KU 504] Sub. Code : 4055 FIRST M.B.B.S. DEGREE EXAMINATION. Revised (Non-Semester) Regulations Paper V BIOCHEMISTRY I Q. P. Code : 524055 Time : Three hours Maximum: 100 Marks Answer ALL

More information

BIOC*3560. Structure and Function in Biochemistry. Fall 2015

BIOC*3560. Structure and Function in Biochemistry. Fall 2015 BIOC*3560 Structure and Function in Biochemistry Fall 2015 Instructors: Dr. Marc Coppolino Dr. Rod Merrill Rm. 2245 Science Complex Rm. 2250 Science Complex Ext. 53031 Ext. 53806 E-mail: bioc356w@uoguelph.ca

More information

Biochemistry: A Short Course

Biochemistry: A Short Course Tymoczko Berg Stryer Biochemistry: A Short Course Second Edition CHAPTER 27 Fatty Acid Degradation Dietary Lipid (Triacylglycerol) Metabolism - In the small intestine, fat particles are coated with bile

More information

Jeopardy Q $100 Q $100 Q $100 Q $100 Q $100 Q $200 Q $200 Q $200 Q $200 Q $200 Q $300 Q $300 Q $300 Q $300 Q $300 Q $400 Q $400 Q $400 Q $400 Q $400

Jeopardy Q $100 Q $100 Q $100 Q $100 Q $100 Q $200 Q $200 Q $200 Q $200 Q $200 Q $300 Q $300 Q $300 Q $300 Q $300 Q $400 Q $400 Q $400 Q $400 Q $400 Jeopardy Proteins Carbohydrates Lipids Nucleic Acids Energy & Reactions Q $100 Q $200 Q $300 Q $400 Q $500 Q $100 Q $100 Q $100 Q $100 Q $200 Q $200 Q $200 Q $200 Q $300 Q $300 Q $300 Q $300 Q $400 Q $400

More information

E.coli Core Model: Metabolic Core

E.coli Core Model: Metabolic Core 1 E.coli Core Model: Metabolic Core 2 LEARNING OBJECTIVES Each student should be able to: Describe the glycolysis pathway in the core model. Describe the TCA cycle in the core model. Explain gluconeogenesis.

More information

MG4010 Course Information. Syllabus

MG4010 Course Information. Syllabus MG4010 Course Information Syllabus A one- semester course designed to introduce students to the basic tenets of biochemistry. The topics that will be discussed have been chosen to comply with the guidelines

More information

Lecture: Amino Acid catabolism: Nitrogen-The Urea cycle

Lecture: Amino Acid catabolism: Nitrogen-The Urea cycle BIOC 423: Introductory Biochemistry Biochemistry Education Department of Biochemistry & Molecular Biology University of New Mexico Lecture: Amino Acid catabolism: Nitrogen-The Urea cycle OBJECTIVES Describe

More information

Energy Transformation: Cellular Respiration Outline 1. Sources of cellular ATP 2. Turning chemical energy of covalent bonds between C-C into energy

Energy Transformation: Cellular Respiration Outline 1. Sources of cellular ATP 2. Turning chemical energy of covalent bonds between C-C into energy Energy Transformation: Cellular Respiration Outline 1. Sources of cellular ATP 2. Turning chemical energy of covalent bonds between C-C into energy for cellular work (ATP) 3. Importance of electrons and

More information

Plant Biochemistry, Spring 2014 BOT 6935, section 4264, 4 credits

Plant Biochemistry, Spring 2014 BOT 6935, section 4264, 4 credits Plant Biochemistry, Spring 2014 BOT 6935, section 4264, 4 credits Meeting time and place MTWTh, 4 th Period, 133 Cancer/Genetics Research Complex Instructors Dr. Alice Harmon, 621 Carr Hall, harmon@ufl.edu,

More information

Welcome to Class 14! Class 14: Outline and Objectives. Overview of amino acid catabolism! Introductory Biochemistry!

Welcome to Class 14! Class 14: Outline and Objectives. Overview of amino acid catabolism! Introductory Biochemistry! Welcome to Class 14 Introductory Biochemistry Class 14: Outline and Objectives Amino Acid Catabolism Fates of amino groups transamination urea cycle Fates of carbon skeletons important cofactors metabolic

More information

BASIC SCIENCES & BIOCHEMISTRY FOR BETZPAENIC BRIMBLERS

BASIC SCIENCES & BIOCHEMISTRY FOR BETZPAENIC BRIMBLERS BASIC SCIENCES & BIOCHEMISTRY FOR BETZPAENIC BRIMBLERS Lymphatic Vessels One main lymph vessel receives lymph from the right upper arm and the right side of the head and the thorax and empties into the

More information

Student Number: THE UNIVERSITY OF MANITOBA April 10, 2000, 9:00 AM - 12:00 PM Page 1 (of 4) Biochemistry II Lab Section Final Examination

Student Number: THE UNIVERSITY OF MANITOBA April 10, 2000, 9:00 AM - 12:00 PM Page 1 (of 4) Biochemistry II Lab Section Final Examination Name: Student Number: THE UNIVERSITY OF MANITOBA April 10, 2000, 9:00 AM - 12:00 PM Page 1 (of 4) Biochemistry II Lab Section Final Examination Examiner: Dr. A. Scoot 1. Answer ALL questions.. 2. Questions

More information

Physiology Unit 1 METABOLISM OF LIPIDS AND PROTEINS

Physiology Unit 1 METABOLISM OF LIPIDS AND PROTEINS Physiology Unit 1 METABOLISM OF LIPIDS AND PROTEINS Alternate Fuel Sources When glucose levels are low Proteins and Triglycerides will be metabolized Tissues will use different fuel sources depending on:

More information

Summary of fatty acid synthesis

Summary of fatty acid synthesis Lipid Metabolism, part 2 1 Summary of fatty acid synthesis 8 acetyl CoA + 14 NADPH + 14 H+ + 7 ATP palmitic acid (16:0) + 8 CoA + 14 NADP + + 7 ADP + 7 Pi + 7 H20 1. The major suppliers of NADPH for fatty

More information

Molecular Basis of Medicine (SMD 571) Class Schedule 2016

Molecular Basis of Medicine (SMD 571) Class Schedule 2016 Molecular Basis of Medicine (SMD 571) Class Schedule 2016 Week 1 Day 1 Monday, October 10 8:00-8:30 am Introduction / Onady Introduction Chemical Principles 8:30-9:30 am Introduction to Acid-Base Day 2

More information

Biological oxidation II. The Cytric acid cycle

Biological oxidation II. The Cytric acid cycle Biological oxidation II The Cytric acid cycle Outline The Cytric acid cycle (TCA tricarboxylic acid) Central role of Acetyl-CoA Regulation of the TCA cycle Anaplerotic reactions The Glyoxylate cycle Localization

More information

Bio 366: Biological Chemistry II Test #1, 100 points (7 pages)

Bio 366: Biological Chemistry II Test #1, 100 points (7 pages) Bio 366: Biological Chemistry II Test #1, 100 points (7 pages) READ THIS: Take a numbered test and sit in the seat with that number on it. Remove the numbered sticker from the desk, and stick it on the

More information

AMINO ACID METABOLISM. Sri Widia A Jusman Dept. of Biochemistry & Molecular Biology FMUI

AMINO ACID METABOLISM. Sri Widia A Jusman Dept. of Biochemistry & Molecular Biology FMUI AMINO ACID METABOLISM Sri Widia A Jusman Dept. of Biochemistry & Molecular Biology FMUI Amino acids derived from dietary protein absorbed from intestine through blood taken up by tissues used for biosynthesis

More information

Cellular Pathways That Harvest Chemical Energy. Cellular Pathways That Harvest Chemical Energy. Cellular Pathways In General

Cellular Pathways That Harvest Chemical Energy. Cellular Pathways That Harvest Chemical Energy. Cellular Pathways In General Cellular Pathways That Harvest Chemical Energy A. Obtaining Energy and Electrons from Glucose Lecture Series 12 Cellular Pathways That Harvest Chemical Energy B. An Overview: Releasing Energy from Glucose

More information

METABOLISM Biosynthetic Pathways

METABOLISM Biosynthetic Pathways METABOLISM Biosynthetic Pathways Metabolism Metabolism involves : Catabolic reactions that break down large, complex molecules to provide energy and smaller molecules. Anabolic reactions that use ATP energy

More information

Chapter 5: Major Metabolic Pathways

Chapter 5: Major Metabolic Pathways Chapter 5: Major Metabolic Pathways David Shonnard Department of Chemical Engineering 1 Presentation Outline: Introduction to Metabolism Glucose Metabolism Glycolysis, Kreb s Cycle, Respiration Biosysthesis

More information

三 主要内容与学时安排 章主要内容及要求学时安排 1 Chapter 1 Introduction to Biochemistry 1.1 Basic concepts of biochemistry 1.2 Biochemistry as a chemical science 1.

三 主要内容与学时安排 章主要内容及要求学时安排 1 Chapter 1 Introduction to Biochemistry 1.1 Basic concepts of biochemistry 1.2 Biochemistry as a chemical science 1. 三 主要内容与学时安排 章主要内容及要求学时安排 1 Chapter 1 Introduction to Biochemistry 1.1 Basic concepts of biochemistry 1.2 Biochemistry as a chemical science 1.3 Distinction between inanimate matter from living organisms

More information

Biochemistry. Metabolic pathways

Biochemistry. Metabolic pathways Biochemistry Metabolic pathways 07.11.2017 01.12.2017 Gerhild van Echten-Deckert Tel. 73 2703 E-mail: g.echten.deckert@uni-bonn.de www.limes-institut-bonn.de Objectives of the course: Energy metabolism

More information

COURSE IN BIOCHEMISTRY FOR STUDENTS OF FACULTY OF MEDICINE DEPARTMENT OF BIOCHEMISTRY

COURSE IN BIOCHEMISTRY FOR STUDENTS OF FACULTY OF MEDICINE DEPARTMENT OF BIOCHEMISTRY COURSE IN BIOCHEMISTRY FOR STUDENTS OF FACULTY OF MEDICINE DEPARTMENT OF BIOCHEMISTRY The name of Unit in which the subject is realized: Department of Biochemistry Head: Prof. Dariusz Chlubek M.D., Ph.D.

More information

Introductory Biochemistry

Introductory Biochemistry BCH3023 Introductory Biochemistry BCH3023 Introductory Biochemistry Course Description: This course surveys the fundamental components of biochemistry. In this course, students will learn concepts such

More information

We must be able to make glucose

We must be able to make glucose Biosynthesis of Carbohydrates Synthesis of glucose (gluconeogenesis) Glycogen Formation of pentoses and NADPH Photosynthesis We must be able to make glucose Compulsory need for glucose (above all the brain)

More information

BIOC*3560. Structure and Function in Biochemistry. Summer 2016

BIOC*3560. Structure and Function in Biochemistry. Summer 2016 BIOC*3560 Structure and Function in Biochemistry Summer 2016 Instructor: Dr. Manfred Brauer Rm. 3520 Science Complex, Ext. 53795 E-mail: mbrauer@uoguelph.ca Lectures: Tuesday & Thursday: 8:30 a.m. - 9:50

More information

number Done by Corrected by Doctor

number Done by Corrected by Doctor number 20 Done by Corrected by Rana Ghassan Doctor Only 4 questions in the mid-term exam are based on the 4 lectures to be given by Dr Faisal. Dr Faisal will give us 10 lectures, the first 4 are included

More information