Hearing Impairment 2

Size: px
Start display at page:

Download "Hearing Impairment 2"

Transcription

1 Hearing Impairment 2 Zdebik AA, Wangemann P, & Jentsch TJ (2009). Potassium ion movement in the inner ear: Insights from genetic disease and mouse models. Physiology, 24, Kujawa SG, Liberman MC (2009). Adding Insult to Injury: Cochlear Nerve Degeneration after Temporary Noise-Induced Hearing Loss. J. Neurosci 29: (2009). Schmiedt RA, Lang H, Okamura H, Schulte BA Effects of furosemide applied chronically to the round window: A model of metabolic presbyacusis. J. Neurosci 22: (2002). Zeng FG, Kong YY, Michalewski HJ, Starr A (2005). Perceptual consequences of disrupted auditory nerve activity. J Neurophysiol 93: Cai S, Ma W-LD, Young ED (2009) Encoding intensity in VCN following acoustic trauma: Implications for loudness recruitment. JARO 10:5-22. Buran BN, Strenzke N, Neef A, Gundelfinger ED, Moser T, Liberman MC (2010). Onset coding is degraded in auditory nerve fibers from mutant mice lacking synaptic ribbons. J Neurosci 30: The most common genetic cause of deafness is a mutation in the connexin 26 gene (DNFB1), which codes for a gap junction channel. This suggests that the potassium recycling system of the cochlea is damaged, the red arrows marked 1. 1

2 Largely on the basis of anatomical evidence, it has been suggested that potassium recycling occurs by a complex intracellular pathway through supporting cells and fibrocytes in the walls of the scala media and the spiral limbus. Spicer and Schulte, 1998 Spicer and Schulte caption: A schematic representation of the proposed medial and lateral! transcellular routes for dispersal and conservation of K + effluxed from inner and outer hair cells during auditory transduction. Ions released from inner hair cells (IH) diffuse medially through border cells (BP), inner sulcus cells (IS) and lateral interdental cell (LI) columns to the undersurface of the tectorial membrane and from ISCs through stellate fibrocytes (SF) to capillaries (Cap) or to central interdental cells (CI) and the scala media. K + pumped from scala vestibuli into supralimbal cells (SL) flows downgradient to light fibrocytes (LF) and medial interdental cells (MI) for return to scala media.! In the lateral route, K + fluxing from outer hair cells (OH) is resorbed by Deiters (D) and tectal cells (T) and flows via gap junctions through Hensen (H), Claudius (C), and outer sulcus cells (OS) and their root processes (RP) to flux into stroma maintained at a low K + level by the Na,K-ATPase activity of type II fibrocytes. K + subsequently diffuses via gap junctions through type I fibrocytes (Ia,Ib) and strial basal (B) and intermediate cells (I) into the intrastrial compartment kept low in K + by the pumping activity of strial marginal cells (M). K + resorbed by type V fibrocytes from scala vestibuli diffuses downhill through Ib then Ia fibrocytes to the stria. B=basal cell; BP=border cell; Cap=capillary; C=Claudius cell; CI =central interdental cell; D=Deiters cell; H=Hensen cell; I=intermediate cell; IH=inner hair cell; IS=inner sulcus cell; M=marginal cell; MI=medial interdental cell; LF =light fibrocyte; LI=lateral interdental cell; OH=outer hair cell; OS=outer sulcus cell; RP=root process; SF =stellate fibrocyte; SL=supralimbal fibrocyte; T=tectal cell; Ia, Ib, II, IV, and V=types of lateral wall fibrocytes. 2

3 The current concept of endolymph production involves potassium transport through a multicellular system in the stria vascularis. The energy for production of the high K + concentration in endolymph and the EP is the Na-K ATPase in the strial marginal cells. The rest of the K + transport steps are thought to be passive. Note that the source of potassium is thought to be intracellular in fibrocytes of the lateral wall. Mutations of KCNQ1 and KCNJ10 are deafness genes, and knockouts of SLC12A2 (the Na-2Cl-K cotransporter) lead to a collapse of the endolymphatic space, suggesting no endolymph production. Also mutations of the tight junctions (claudin 11) between basal cells reduces the EP. Wangemann, 2002 A compartmental model showing the potassium recycling system. Transport is all passive except for the two active transports. Endolymphatic space: High K + Low Na + and Ca mv potential Perilymph space: Low K + High Na + 0 potential Kikuchi et al

4 Immunocytochemical evidence for the location of the relevant transporter systems from the model (mouse cochlea). Note the localization of the transporters as postulated in the model on the previous slide. Note also the distribution of connexin 26 along most of the pathway. H & E Na-K ATPase Na-K-Cl 2 xporter Connexin 26 Kikuchi et al An evidence that favors the intracellular K + recycling pathway is that one of the most common deafness genes ( 25% of cases) is connexin (DFNB1). Connexins form gap junctions, which are non-selective ion channels that directly connect the interiors of cells. Connexins are found in the supporting cells and fibrocytes of the cochlea. They appear about the same time that the EP develops and are thought to provide the intracellular route for K+ recycling. Kikuchi et al

5 The connection of presbyacusis to degeneration of the stria-vascularis/ep/endolymph system was provided by Schmiedt, Schulte, Mills, and colleagues. In aging (3 yrs old) gerbils that are not exposed to noise, hearing degenerates but hair cells are reasonably normal. The largest change is a reduction in the EP (from mv in young animals to mv in aged animals). It is the EP change that matters because the K + concentration is normal in the aged animals. Sewell has shown that EP reduction lowers the spontaneous activity of auditory-nerve fibers (-0.02 log units of rate/mv) and increases the threshold (0.9 db/mv), presumably by reducing the electrochemical potential driving transducer currents into hair cells. Support for the connection between loss of EP and loss of hearing in aged animals is provided by the fact that a similar hearing loss can be produced by furosemide treatment of the cochlea in young animals. Furosemide blocks the Na/2Cl/K cotransporter and reduces the EP, presumably without affecting hair cells or transduction. Schmiedt et al.,

6 Recent attention has shifted away from hearing impairment attributable to cochlear transduction, toward effects on the auditory nerve and circuits in the central nervous system. After recovery from an acoustic trauma that does not destroy hair cells, auditory nerve fiber synapses disappear from the hair cells. Much later (64 weeks below) spiral ganglion cells degenerate. There is evidence that this is an excitotoxic effect, damage to nerve fibers by excessive glutamate released from hair cells during the trauma. Kujawa and Liberman

7 The loss of AN terminals and eventually spiral ganglion cells causes a decrease in the amplitude of the ABR (central neuron responses), even though DPOAEs (OHC) recover from the trauma. TTS TTS Note that the DPOAE recovers, whereas the ABR does not. HOWEVER, the ABR threshold does not change. This fact has important implications for auditory testing, which frequently emphasizes thresholds rather than suprathreshold amplitudes. Kujawa and Liberman 2009 A long decline in spiral ganglion cell numbers is observed in human temporal bones. This occurs uniformly along the cochlea and is not obviously associated with a pathological process. Makary et al

8 The properties of either cochlear or auditory nerve degeneration do not seem to match the properties of auditory neuropathy. Neuropathy seems to affect temporal measures of auditory perception such as pitch discrimination at low frequencies temporal integration temporal modulation detection gap detection backward and forward masking signal detection in noise binaural beats interaural time differences. It has less effect on intensity-related perception, such as loudness discrimination, pitch discrimination at high frequencies, and sound localization using interaural level differences. The distribution of effects of cochlear or auditory nerve degeneration are more or less the opposite. (Zeng et al. J Neurophysiol 93: , 2005.) One possible animal model for neuropathy is the bassoon mutant, a mouse which is missing an essential component of the hair-cell synaptic ribbon. This seems to lead to a temporal disordering of some aspects of auditory nerve responses. The DPOAEs are normal, whereas the ABR threshold is substantially elevated Most aspects of auditory-nerve spike trains are normal, including phase locking, except that first-spike latencies are quite sloppy. ABRs Buran et al

9 Loudness recruitment is a prominent feature of hearing impairment. Recruitment means the growth of loudness is steepened (left plot).! To explain this, note that the responses of the BM response become steeper in impaired ears (right plot), but...!?!?! Buus and Florintine 2002! Ruggero et al. 1997!... if cochlear responses are the explanation for recruitment, then the growth of response in the auditory nerve fibers would also be steeper. In fact, it is the same or somewhat less steep.!?! Heinz and Young 2004! 9

10 ... if cochlear responses are the explanation for recruitment, then the growth of response in the auditory nerve fibers would also be steeper. In fact, it is the same or somewhat less steep.! X!?! (histograms of the slope measurements of ANFs)! Heinz and Young 2004! Loudness is probably determined by the summated activity of groups of auditory neurons, not by single neurons.! frequency! 10

11 To enable a comparison of psychophysical and physiological data, use binaural loudness balance.! A listener with one impaired ear equates the loudness of sounds between the better and the impaired ear. Recruitment is clear in such subjects:! If the two ears are both good (or equally bad) then the data should lie on the lines with slope 1.! The steep slope of these curves shows that loudness grows faster in the impaired ear.! Stillman et al. 1993! Auditory nerve fibers do not show recruitment when analyzed with loudness balance. The assumption here is that equal summated rates should correspond to equal loudness! X!?! Summated rate! Rate balance! The expected behavior!! Actual neural balances have slopes <1.! Heinz, Issa, Young 2006! 11

12 Cell types in ventral cochlear nucleus differ in the way auditory nerve inputs are integrated in their dendrites.! bushy multipolar After Osen and Roth 1969; Sento and Ryugo 1989; Ostapoff et al. 1994; Wu and Oertel 1984; Ferragamo et al ! Recruitment seems to occur at the first synapse in some neurons in the central auditory system.! Bushy and multipolar neurons change their rate responses in opposite ways following acoustic trauma.! bushy X!!! multipolar X! Cai, Ma, Young 2009! 12

13 The neural loudness balances correspond exactly to behavioral results for the multipolar population, but not the bushy population.! Thus an important component of recruitment seems to occur in the cochlear nucleus and not in the cochlea.!!! X! bushy multipolar Cai, Ma, Young 2008! Following moderate acoustic trauma, degeneration and formation of new synaptic terminals is seen in the cochlear nucleus for up to 32 weeks. There is a tendency for a shift toward more excitatory versus inhibitory terminals. 4 khz octave noise band, 3 hrs, 108 db. There is substantial OHC loss and mild nerve-fiber and IHC loss. Kim, Gross, Morest, Potashner

14 Neurons generally receive a mixture of excitatory and inhibitory inputs and show corresponding responses to sound.! DCN! Cochlea! Inf. collic.! Auditory nerve! sound level! frequency! Spirou and Young 1991! Following moderate acoustic trauma (~50 db), inhibitory responses of neurons are reduced. The examples below are from the dorsal cochlear nucleus. Presumably, this changes the signal-processing function of such neurons.! Cochlea Inf. collic. Aud. nerve Normal! Trauma! Note broadly tuned responses with little inhibition.! Ma and Young 2006! 14

15 Plasticity in the connections from cochlea to the inferior colliculus (IC): the mapping from cochlea to the inferior IC can be demonstrated by electrically stimulating a point in the cochlea and measuring the thresholds of IC neurons. If done in an acute preparation, the tuning is consistent with point-to-point connections. CI stimulation Neuron recording inferior colliculus Leake et al, 2000 The location of the responsive neurons moves with the site of stimulation in the cochlea. CI stimulation Neuron recording inferior colliculus Leake et al,

16 If stimulation is done chronically for a few weeks, the precision of the mapping decreases, suggesting a reorganization of the anatomical connections that decreases the precision of the tonotopic pattern. acute CI stimulation Neuron recording chronic inferior colliculus Leake et al, 2000 Moving the stimulation site again moves the response pattern in the inferior colliculus, but the representation is again broadened. CI stimulation Neuron recording acute chronic inferior colliculus Leake et al,

17 Presumably the damage is done by the misapplication of plasticity that connects neurons activated by the same or similar stimuli. Ordinarily this form of plasticity (Hebbian) organizes neural circuits. The problem in this situation is that the electrical stimulation activates much of the whole auditory nerve simultaneously, not a natural, tonotopic pattern. Thus the inappropriate plasticity. Note that with moderate hearing impairment, natural acoustic stimulation produces a similar widespread activation pattern in the auditory nerve. Central degenerative processes may continue throughout the auditory system, even up to the cortex. The plasticity may be subject to modification by the acoustic environment. The data show maps of the tonotopic organization of auditory cortex before (A) and after (B,C) a mild acoustic trauma (20-40 db threshold shift). A B C Following acoustic trauma, Group 1 was untreated but Group 2 was exposed to moderate-level complex stimuli designed to produce activity in the damaged region of the cochlea. The tonotopic map of cortex was maintained.! Noreña & Eggermont

Auditory nerve. Amanda M. Lauer, Ph.D. Dept. of Otolaryngology-HNS

Auditory nerve. Amanda M. Lauer, Ph.D. Dept. of Otolaryngology-HNS Auditory nerve Amanda M. Lauer, Ph.D. Dept. of Otolaryngology-HNS May 30, 2016 Overview Pathways (structural organization) Responses Damage Basic structure of the auditory nerve Auditory nerve in the cochlea

More information

Central Auditory System Basics and the Effects of Abnormal Auditory Input to the Brain. Amanda M. Lauer, Ph.D. July 3,

Central Auditory System Basics and the Effects of Abnormal Auditory Input to the Brain. Amanda M. Lauer, Ph.D. July 3, Central Auditory System Basics and the Effects of Abnormal Auditory Input to the Brain Amanda M. Lauer, Ph.D. July 3, 2012 1 Overview Auditory system tasks Peripheral auditory system Central pathways -Ascending

More information

Cochlear anatomy, function and pathology III. Professor Dave Furness Keele University

Cochlear anatomy, function and pathology III. Professor Dave Furness Keele University Cochlear anatomy, function and pathology III Professor Dave Furness Keele University d.n.furness@keele.ac.uk Aims and objectives of this lecture Focus (3) on the cochlear lateral wall and Reissner s membrane:

More information

Processing in The Cochlear Nucleus

Processing in The Cochlear Nucleus Processing in The Cochlear Nucleus Alan R. Palmer Medical Research Council Institute of Hearing Research University Park Nottingham NG7 RD, UK The Auditory Nervous System Cortex Cortex MGB Medial Geniculate

More information

Lauer et al Olivocochlear efferents. Amanda M. Lauer, Ph.D. Dept. of Otolaryngology-HNS

Lauer et al Olivocochlear efferents. Amanda M. Lauer, Ph.D. Dept. of Otolaryngology-HNS Lauer et al. 2012 Olivocochlear efferents Amanda M. Lauer, Ph.D. Dept. of Otolaryngology-HNS May 30, 2016 Overview Structural organization Responses Hypothesized roles in hearing Olivocochlear efferent

More information

Auditory System Feedback

Auditory System Feedback Feedback Auditory System Feedback Using all or a portion of the information from the output of a system to regulate or control the processes or inputs in order to modify the output. Central control of

More information

Required Slide. Session Objectives

Required Slide. Session Objectives Auditory Physiology Required Slide Session Objectives Auditory System: At the end of this session, students will be able to: 1. Characterize the range of normal human hearing. 2. Understand the components

More information

Systems Neuroscience Oct. 16, Auditory system. http:

Systems Neuroscience Oct. 16, Auditory system. http: Systems Neuroscience Oct. 16, 2018 Auditory system http: www.ini.unizh.ch/~kiper/system_neurosci.html The physics of sound Measuring sound intensity We are sensitive to an enormous range of intensities,

More information

Deafness and hearing impairment

Deafness and hearing impairment Auditory Physiology Deafness and hearing impairment About one in every 10 Americans has some degree of hearing loss. The great majority develop hearing loss as they age. Hearing impairment in very early

More information

Cochlear anatomy, function and pathology I. Professor Dave Furness Keele University

Cochlear anatomy, function and pathology I. Professor Dave Furness Keele University Cochlear anatomy, function and pathology I Professor Dave Furness Keele University d.n.furness@keele.ac.uk Aims and objectives of these lectures Introduction to gross anatomy of the cochlea Focus (1) on

More information

Auditory System. Barb Rohrer (SEI )

Auditory System. Barb Rohrer (SEI ) Auditory System Barb Rohrer (SEI614 2-5086) Sounds arise from mechanical vibration (creating zones of compression and rarefaction; which ripple outwards) Transmitted through gaseous, aqueous or solid medium

More information

Synaptopathy Research Uwe Andreas Hermann

Synaptopathy Research Uwe Andreas Hermann Potential diagnose and basic understanding of hidden hearing loss Synaptopathy Research Uwe Andreas Hermann Motivation Synaptopathy is a current hot topic in the research field because it focuses on a

More information

Sound waves from the auditory environment all combine in the ear canal to form a complex waveform. This waveform is deconstructed by the cochlea with

Sound waves from the auditory environment all combine in the ear canal to form a complex waveform. This waveform is deconstructed by the cochlea with 1 Sound waves from the auditory environment all combine in the ear canal to form a complex waveform. This waveform is deconstructed by the cochlea with respect to time, loudness, and frequency and neural

More information

Cochlear Synaptopathy and Neurodegeneration in Hidden and Overt Hearing Loss

Cochlear Synaptopathy and Neurodegeneration in Hidden and Overt Hearing Loss Cochlear Synaptopathy and Neurodegeneration in Hidden and Overt Hearing Loss Sharon G. Kujawa Massachusetts Eye and Ear Infirmary Harvard Medical School National Hearing Conservation Association San Antonio,

More information

The mammalian cochlea possesses two classes of afferent neurons and two classes of efferent neurons.

The mammalian cochlea possesses two classes of afferent neurons and two classes of efferent neurons. 1 2 The mammalian cochlea possesses two classes of afferent neurons and two classes of efferent neurons. Type I afferents contact single inner hair cells to provide acoustic analysis as we know it. Type

More information

Before we talk about the auditory system we will talk about the sound and waves

Before we talk about the auditory system we will talk about the sound and waves The Auditory System PHYSIO: #3 DR.LOAI ZAGOUL 24/3/2014 Refer to the slides for some photos. Before we talk about the auditory system we will talk about the sound and waves All waves have basic characteristics:

More information

Chapter 11: Sound, The Auditory System, and Pitch Perception

Chapter 11: Sound, The Auditory System, and Pitch Perception Chapter 11: Sound, The Auditory System, and Pitch Perception Overview of Questions What is it that makes sounds high pitched or low pitched? How do sound vibrations inside the ear lead to the perception

More information

So now to The Ear. Drawings from Max Brodel, an Austrian artist who came to Johns Hopkins in the 1920s. My point in showing this figure is to

So now to The Ear. Drawings from Max Brodel, an Austrian artist who came to Johns Hopkins in the 1920s. My point in showing this figure is to So now to The Ear. Drawings from Max Brodel, an Austrian artist who came to Johns Hopkins in the 1920s. My point in showing this figure is to emphasize the intricate and well-protected structure of the

More information

Auditory Physiology Richard M. Costanzo, Ph.D.

Auditory Physiology Richard M. Costanzo, Ph.D. Auditory Physiology Richard M. Costanzo, Ph.D. OBJECTIVES After studying the material of this lecture, the student should be able to: 1. Describe the morphology and function of the following structures:

More information

Acoustics, signals & systems for audiology. Psychoacoustics of hearing impairment

Acoustics, signals & systems for audiology. Psychoacoustics of hearing impairment Acoustics, signals & systems for audiology Psychoacoustics of hearing impairment Three main types of hearing impairment Conductive Sound is not properly transmitted from the outer to the inner ear Sensorineural

More information

Cochlear anatomy, function and pathology II. Professor Dave Furness Keele University

Cochlear anatomy, function and pathology II. Professor Dave Furness Keele University Cochlear anatomy, function and pathology II Professor Dave Furness Keele University d.n.furness@keele.ac.uk Aims and objectives of this lecture Focus (2) on the biophysics of the cochlea, the dual roles

More information

Chapter 3: Anatomy and physiology of the sensory auditory mechanism

Chapter 3: Anatomy and physiology of the sensory auditory mechanism Chapter 3: Anatomy and physiology of the sensory auditory mechanism Objectives (1) Anatomy of the inner ear Functions of the cochlear and vestibular systems Three compartments within the cochlea and membranes

More information

J Jeffress model, 3, 66ff

J Jeffress model, 3, 66ff Index A Absolute pitch, 102 Afferent projections, inferior colliculus, 131 132 Amplitude modulation, coincidence detector, 152ff inferior colliculus, 152ff inhibition models, 156ff models, 152ff Anatomy,

More information

to vibrate the fluid. The ossicles amplify the pressure. The surface area of the oval window is

to vibrate the fluid. The ossicles amplify the pressure. The surface area of the oval window is Page 1 of 6 Question 1: How is the conduction of sound to the cochlea facilitated by the ossicles of the middle ear? Answer: Sound waves traveling through air move the tympanic membrane, which, in turn,

More information

The Structure and Function of the Auditory Nerve

The Structure and Function of the Auditory Nerve The Structure and Function of the Auditory Nerve Brad May Structure and Function of the Auditory and Vestibular Systems (BME 580.626) September 21, 2010 1 Objectives Anatomy Basic response patterns Frequency

More information

How is the stimulus represented in the nervous system?

How is the stimulus represented in the nervous system? How is the stimulus represented in the nervous system? Eric Young F Rieke et al Spikes MIT Press (1997) Especially chapter 2 I Nelken et al Encoding stimulus information by spike numbers and mean response

More information

Auditory System & Hearing

Auditory System & Hearing Auditory System & Hearing Chapters 9 and 10 Lecture 17 Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Spring 2015 1 Cochlea: physical device tuned to frequency! place code: tuning of different

More information

COM3502/4502/6502 SPEECH PROCESSING

COM3502/4502/6502 SPEECH PROCESSING COM3502/4502/6502 SPEECH PROCESSING Lecture 4 Hearing COM3502/4502/6502 Speech Processing: Lecture 4, slide 1 The Speech Chain SPEAKER Ear LISTENER Feedback Link Vocal Muscles Ear Sound Waves Taken from:

More information

What is the effect on the hair cell if the stereocilia are bent away from the kinocilium?

What is the effect on the hair cell if the stereocilia are bent away from the kinocilium? CASE 44 A 53-year-old man presents to his primary care physician with complaints of feeling like the room is spinning, dizziness, decreased hearing, ringing in the ears, and fullness in both ears. He states

More information

Representation of sound in the auditory nerve

Representation of sound in the auditory nerve Representation of sound in the auditory nerve Eric D. Young Department of Biomedical Engineering Johns Hopkins University Young, ED. Neural representation of spectral and temporal information in speech.

More information

SPECIAL SENSES: THE AUDITORY SYSTEM

SPECIAL SENSES: THE AUDITORY SYSTEM SPECIAL SENSES: THE AUDITORY SYSTEM REVISION OF PHYSICS: WAVES A wave is an oscillation of power, sound waves have two main characteristics: amplitude, which is the maximum displacement or the power of

More information

Brad May, PhD Johns Hopkins University

Brad May, PhD Johns Hopkins University Brad May, PhD Johns Hopkins University When the ear cannot function normally, the brain changes. Brain deafness contributes to poor speech comprehension, problems listening in noise, abnormal loudness

More information

Innervation of the Cochlea. Reading: Yost Ch. 8

Innervation of the Cochlea. Reading: Yost Ch. 8 Innervation of the Cochlea Reading: Yost Ch. 8 Fine Structure of the Organ of Corti Auditory Nerve Auditory nerve (AN) is a branch of the VIII th cranial nerve (other branch is vestibular). AN is composed

More information

Auditory Physiology PSY 310 Greg Francis. Lecture 29. Hearing

Auditory Physiology PSY 310 Greg Francis. Lecture 29. Hearing Auditory Physiology PSY 310 Greg Francis Lecture 29 A dangerous device. Hearing The sound stimulus is changes in pressure The simplest sounds vary in: Frequency: Hertz, cycles per second. How fast the

More information

PSY 310: Sensory and Perceptual Processes 1

PSY 310: Sensory and Perceptual Processes 1 Auditory Physiology PSY 310 Greg Francis Lecture 29 A dangerous device. Hearing The sound stimulus is changes in pressure The simplest sounds vary in: Frequency: Hertz, cycles per second. How fast the

More information

21/01/2013. Binaural Phenomena. Aim. To understand binaural hearing Objectives. Understand the cues used to determine the location of a sound source

21/01/2013. Binaural Phenomena. Aim. To understand binaural hearing Objectives. Understand the cues used to determine the location of a sound source Binaural Phenomena Aim To understand binaural hearing Objectives Understand the cues used to determine the location of a sound source Understand sensitivity to binaural spatial cues, including interaural

More information

Effects of Remaining Hair Cells on Cochlear Implant Function

Effects of Remaining Hair Cells on Cochlear Implant Function Effects of Remaining Hair Cells on Cochlear Implant Function N1-DC-2-15QPR1 Neural Prosthesis Program N. Hu, P.J. Abbas, C.A. Miller, B.K. Robinson, K.V. Nourski, F. Jeng, B.A. Abkes, J.M. Nichols Department

More information

Structure, Energy Transmission and Function. Gross Anatomy. Structure, Function & Process. External Auditory Meatus or Canal (EAM, EAC) Outer Ear

Structure, Energy Transmission and Function. Gross Anatomy. Structure, Function & Process. External Auditory Meatus or Canal (EAM, EAC) Outer Ear Gross Anatomy Structure, Energy Transmission and Function IE N O ME 1 Structure, Function & Process 4 External Auditory Meatus or Canal (EAM, EAC) Outer third is cartilaginous Inner 2/3 is osseous Junction

More information

THE COCHLEA AND AUDITORY PATHWAY

THE COCHLEA AND AUDITORY PATHWAY Dental Neuroanatomy Suzanne S. Stensaas, PhD February 23, 2012 Reading: Waxman, Chapter 16, Review pictures in a Histology book Computer Resources: http://www.cochlea.org/ - Promenade around the Cochlea

More information

Persistent Hair Cell Malfunction Contributes to Hidden Hearing Loss. The Auditory Laboratory, School of Human Sciences, The University of Western

Persistent Hair Cell Malfunction Contributes to Hidden Hearing Loss. The Auditory Laboratory, School of Human Sciences, The University of Western 1 Persistent Hair Cell Malfunction Contributes to Hidden Hearing Loss 2 3 4 5 Wilhelmina H.A.M. Mulders 1,2, Ian L. Chin 1, Donald Robertson 1 6 7 8 1 The Auditory Laboratory, School of Human Sciences,

More information

Unit VIII Problem 9 Physiology: Hearing

Unit VIII Problem 9 Physiology: Hearing Unit VIII Problem 9 Physiology: Hearing - We can hear a limited range of frequency between 20 Hz 20,000 Hz (human hearing acuity is between 1000 Hz 4000 Hz). - The ear is divided into 3 parts. Those are:

More information

Neural Recording Methods

Neural Recording Methods Neural Recording Methods Types of neural recording 1. evoked potentials 2. extracellular, one neuron at a time 3. extracellular, many neurons at a time 4. intracellular (sharp or patch), one neuron at

More information

Otoconia: Calcium carbonate crystals Gelatinous mass. Cilia. Hair cells. Vestibular nerve. Vestibular ganglion

Otoconia: Calcium carbonate crystals Gelatinous mass. Cilia. Hair cells. Vestibular nerve. Vestibular ganglion VESTIBULAR SYSTEM (Balance/Equilibrium) The vestibular stimulus is provided by Earth s, and. Located in the of the inner ear, in two components: 1. Vestibular sacs - gravity & head direction 2. Semicircular

More information

Dorsal Cochlear Nucleus September 14, 2005

Dorsal Cochlear Nucleus September 14, 2005 HST.722 Brain Mechanisms of Speech and Hearing Fall 2005 Dorsal Cochlear Nucleus September 14, 2005 Ken Hancock Dorsal Cochlear Nucleus (DCN) Overview of the cochlear nucleus and its subdivisions Anatomy

More information

The cochlea: auditory sense. The cochlea: auditory sense

The cochlea: auditory sense. The cochlea: auditory sense Inner ear apparatus 1- Vestibule macula and sacculus sensing acceleration of the head and direction of gravity 2- Semicircular canals mainly for sensing direction of rotation of the head 1 3- cochlea in

More information

THE COCHLEA AND AUDITORY PATHWAY

THE COCHLEA AND AUDITORY PATHWAY Dental Neuroanatomy Suzanne S. Stensaas, PhD April 14, 2010 Reading: Waxman, Chapter 16, Review pictures in a Histology book Computer Resources: http://www.cochlea.org/ - Promenade around the Cochlea HyperBrain

More information

9.01 Introduction to Neuroscience Fall 2007

9.01 Introduction to Neuroscience Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 9.01 Introduction to Neuroscience Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 9.01 Recitation (R02)

More information

HST 721 Efferent Control Lecture October 2004

HST 721 Efferent Control Lecture October 2004 HST 721 Efferent Control Lecture October 2004 1 Stapedius Muscle Central Circuitry 2 Hypotheses for MEM Function A. Stapedius 1. Extend Dynamic Range - a gain control system 2. Protect the Inner Ear from

More information

Electrophysiology. General Neurophysiology. Action Potentials

Electrophysiology. General Neurophysiology. Action Potentials 5 Electrophysiology Cochlear implants should aim to reproduce the coding of sound in the auditory system as closely as possible, for best sound perception. The cochlear implant is in part the result of

More information

The Central Auditory System

The Central Auditory System THE AUDITORY SYSTEM Each auditory nerve sends information to the cochlear nucleus. The Central Auditory System From there, projections diverge to many different pathways. The Central Auditory System There

More information

Receptors / physiology

Receptors / physiology Hearing: physiology Receptors / physiology Energy transduction First goal of a sensory/perceptual system? Transduce environmental energy into neural energy (or energy that can be interpreted by perceptual

More information

Development of Tinnitus-Related Neuronal Hyperactivity through Homeostatic Plasticity after Hearing Loss: A Computational Model

Development of Tinnitus-Related Neuronal Hyperactivity through Homeostatic Plasticity after Hearing Loss: A Computational Model Development of Tinnitus-Related Neuronal Hyperactivity through Homeostatic Plasticity after Hearing Loss: A Computational Model Roland Schaette 1 and Richard Kempter 1 2 3 Affiliations: Running Head: 1

More information

AUDL GS08/GAV1 Signals, systems, acoustics and the ear. Pitch & Binaural listening

AUDL GS08/GAV1 Signals, systems, acoustics and the ear. Pitch & Binaural listening AUDL GS08/GAV1 Signals, systems, acoustics and the ear Pitch & Binaural listening Review 25 20 15 10 5 0-5 100 1000 10000 25 20 15 10 5 0-5 100 1000 10000 Part I: Auditory frequency selectivity Tuning

More information

Using Electrocochleography to Assess the Afferent Pathway in the Cochlea. Senior Thesis

Using Electrocochleography to Assess the Afferent Pathway in the Cochlea. Senior Thesis Cochlear afferent pathway 1 RUNNING HEAD: Cochlear afferent pathway Using Electrocochleography to Assess the Afferent Pathway in the Cochlea Senior Thesis Presented in Partial Fulfillment of the Requirements

More information

Dorsal Cochlear Nucleus. Amanda M. Lauer, Ph.D. Dept. of Otolaryngology-HNS

Dorsal Cochlear Nucleus. Amanda M. Lauer, Ph.D. Dept. of Otolaryngology-HNS Dorsal Cochlear Nucleus Amanda M. Lauer, Ph.D. Dept. of Otolaryngology-HNS May 30, 2016 Overview Structure Response properties Hypothesized roles in hearing Review of VCN-DCN circuits and projections Structure

More information

Hidden Hearing Loss? Effects of Recreational Noise on Evoked Potential Amplitude and Other Auditory Test Metrics

Hidden Hearing Loss? Effects of Recreational Noise on Evoked Potential Amplitude and Other Auditory Test Metrics Hidden Hearing Loss? Effects of Recreational Noise on Evoked Potential Amplitude and Other Auditory Test Metrics Colleen G. Le Prell, Ph.D. University of Texas at Dallas School of Behavioral and Brain

More information

FINE-TUNING THE AUDITORY SUBCORTEX Measuring processing dynamics along the auditory hierarchy. Christopher Slugocki (Widex ORCA) WAS 5.3.

FINE-TUNING THE AUDITORY SUBCORTEX Measuring processing dynamics along the auditory hierarchy. Christopher Slugocki (Widex ORCA) WAS 5.3. FINE-TUNING THE AUDITORY SUBCORTEX Measuring processing dynamics along the auditory hierarchy. Christopher Slugocki (Widex ORCA) WAS 5.3.2017 AUDITORY DISCRIMINATION AUDITORY DISCRIMINATION /pi//k/ /pi//t/

More information

Auditory and vestibular system

Auditory and vestibular system Auditory and vestibular system Sensory organs on the inner ear inner ear: audition (exteroceptor) and vestibular apparatus (proprioceptor) bony and membranous labyrinths within the temporal bone (os temporale)

More information

Theme 2: Cellular mechanisms in the Cochlear Nucleus

Theme 2: Cellular mechanisms in the Cochlear Nucleus Theme 2: Cellular mechanisms in the Cochlear Nucleus The Cochlear Nucleus (CN) presents a unique opportunity for quantitatively studying input-output transformations by neurons because it gives rise to

More information

Carlson (7e) PowerPoint Lecture Outline Chapter 7: Audition, the Body Senses, and the Chemical Senses

Carlson (7e) PowerPoint Lecture Outline Chapter 7: Audition, the Body Senses, and the Chemical Senses Carlson (7e) PowerPoint Lecture Outline Chapter 7: Audition, the Body Senses, and the Chemical Senses This multimedia product and its contents are protected under copyright law. The following are prohibited

More information

Auditory System & Hearing

Auditory System & Hearing Auditory System & Hearing Chapters 9 part II Lecture 16 Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Spring 2019 1 Phase locking: Firing locked to period of a sound wave example of a temporal

More information

Spectrograms (revisited)

Spectrograms (revisited) Spectrograms (revisited) We begin the lecture by reviewing the units of spectrograms, which I had only glossed over when I covered spectrograms at the end of lecture 19. We then relate the blocks of a

More information

Neurobiology Biomed 509 Sensory transduction References: Luo , ( ), , M4.1, M6.2

Neurobiology Biomed 509 Sensory transduction References: Luo , ( ), , M4.1, M6.2 Neurobiology Biomed 509 Sensory transduction References: Luo 4.1 4.8, (4.9 4.23), 6.22 6.24, M4.1, M6.2 I. Transduction The role of sensory systems is to convert external energy into electrical signals

More information

PSY 215 Lecture 10 Topic: Hearing Chapter 7, pages

PSY 215 Lecture 10 Topic: Hearing Chapter 7, pages PSY 215 Lecture 10 Topic: Hearing Chapter 7, pages 189-197 Corrections: NTC 09-1, page 3, the Superior Colliculus is in the midbrain (Mesencephalon). Announcements: Movie next Monday: Case of the frozen

More information

SOLUTIONS Homework #3. Introduction to Engineering in Medicine and Biology ECEN 1001 Due Tues. 9/30/03

SOLUTIONS Homework #3. Introduction to Engineering in Medicine and Biology ECEN 1001 Due Tues. 9/30/03 SOLUTIONS Homework #3 Introduction to Engineering in Medicine and Biology ECEN 1001 Due Tues. 9/30/03 Problem 1: a) Where in the cochlea would you say the process of "fourier decomposition" of the incoming

More information

Chapter x. Causes of Hearing Damage. 1. Introduction.

Chapter x. Causes of Hearing Damage. 1. Introduction. Chapter x Causes of Hearing Damage 1. Introduction. 2. Noise induced hearing damage. 3. Other causes of hearing loss. 4. Tests and Exercises. 5. References. 1. Introduction. This chapter explains the main

More information

Who are cochlear implants for?

Who are cochlear implants for? Who are cochlear implants for? People with little or no hearing and little conductive component to the loss who receive little or no benefit from a hearing aid. Implants seem to work best in adults who

More information

Binaurally-coherent jitter improves neural and perceptual ITD sensitivity in normal and electric hearing

Binaurally-coherent jitter improves neural and perceptual ITD sensitivity in normal and electric hearing Binaurally-coherent jitter improves neural and perceptual ITD sensitivity in normal and electric hearing M. Goupell 1 (matt.goupell@gmail.com), K. Hancock 2 (ken_hancock@meei.harvard.edu), P. Majdak 1

More information

PSY 214 Lecture 16 (11/09/2011) (Sound, auditory system & pitch perception) Dr. Achtman PSY 214

PSY 214 Lecture 16 (11/09/2011) (Sound, auditory system & pitch perception) Dr. Achtman PSY 214 PSY 214 Lecture 16 Topic: Sound, auditory system, & pitch perception Chapter 11, pages 268-288 Corrections: None needed Announcements: At the beginning of class, we went over some demos from the virtual

More information

35-2 The Nervous System Slide 1 of 38

35-2 The Nervous System Slide 1 of 38 1 of 38 35-2 The Nervous System The nervous system controls and coordinates functions throughout the body and responds to internal and external stimuli. 2 of 38 Neurons Neurons The messages carried by

More information

BIOLOGY 2050 LECTURE NOTES ANATOMY & PHYSIOLOGY I (A. IMHOLTZ) FUNDAMENTALS OF THE NERVOUS SYSTEM AND NERVOUS TISSUE P1 OF 5

BIOLOGY 2050 LECTURE NOTES ANATOMY & PHYSIOLOGY I (A. IMHOLTZ) FUNDAMENTALS OF THE NERVOUS SYSTEM AND NERVOUS TISSUE P1 OF 5 P1 OF 5 The nervous system controls/coordinates the activities of cells, tissues, & organs. The endocrine system also plays a role in control/coordination. The nervous system is more dominant. Its mechanisms

More information

Lecture 3: Perception

Lecture 3: Perception ELEN E4896 MUSIC SIGNAL PROCESSING Lecture 3: Perception 1. Ear Physiology 2. Auditory Psychophysics 3. Pitch Perception 4. Music Perception Dan Ellis Dept. Electrical Engineering, Columbia University

More information

Acoustics Research Institute

Acoustics Research Institute Austrian Academy of Sciences Acoustics Research Institute Modeling Modelingof ofauditory AuditoryPerception Perception Bernhard BernhardLaback Labackand andpiotr PiotrMajdak Majdak http://www.kfs.oeaw.ac.at

More information

PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland

PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland AD Award Number: W81XWH-11-1-414 TITLE: Prevention and Treatment of Noise-Induced Tinnitus PRINCIPAL INVESTIGATOR: Dr. Richard A. Altschuler CONTRACTING ORGANIZATION: University of Michigan Ann Arbor,

More information

Improving the diagnostic power of otoacoustic emissions. Arturo Moleti Physics Department University of Roma Tor Vergata

Improving the diagnostic power of otoacoustic emissions. Arturo Moleti Physics Department University of Roma Tor Vergata Improving the diagnostic power of otoacoustic emissions Arturo Moleti Physics Department University of Roma Tor Vergata The human ear Ear canal: resonant cavity Middle ear: impedance adapter and pressure

More information

Comment by Delgutte and Anna. A. Dreyer (Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA)

Comment by Delgutte and Anna. A. Dreyer (Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA) Comments Comment by Delgutte and Anna. A. Dreyer (Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA) Is phase locking to transposed stimuli as good as phase locking to low-frequency

More information

Salamanca Study Abroad Program: Neurobiology of Hearing

Salamanca Study Abroad Program: Neurobiology of Hearing Salamanca Study Abroad Program: Neurobiology of Hearing Synaptics and the auditory nerve R. Keith Duncan University of Michigan rkduncan@umich.edu Review Resources Reviews: Safieddine et al., 2012, The

More information

Cellular Bioelectricity

Cellular Bioelectricity ELEC ENG 3BB3: Cellular Bioelectricity Notes for Lecture 24 Thursday, March 6, 2014 8. NEURAL ELECTROPHYSIOLOGY We will look at: Structure of the nervous system Sensory transducers and neurons Neural coding

More information

Auditory Neuropathy Spectrum Disorder. Yvonne S. Sininger PhD Professor of Head & Neck Surgery University of California Los Angeles

Auditory Neuropathy Spectrum Disorder. Yvonne S. Sininger PhD Professor of Head & Neck Surgery University of California Los Angeles Auditory Neuropathy Spectrum Disorder Yvonne S. Sininger PhD Professor of Head & Neck Surgery University of California Los Angeles 1 Financial Disclosure Information I have no relevant financial relationship

More information

What does it mean to analyze the frequency components of a sound? A spectrogram such as that shown here is the usual display of frequency components

What does it mean to analyze the frequency components of a sound? A spectrogram such as that shown here is the usual display of frequency components 1 2 3 4 What does it mean to analyze the frequency components of a sound? A spectrogram such as that shown here is the usual display of frequency components as a function of time here during the production

More information

The Auditory Nervous System

The Auditory Nervous System Processing in The Superior Olivary Complex The Auditory Nervous System Cortex Cortex Alan R. Palmer MGB Excitatory GABAergic IC Glycinergic Interaural Level Differences Medial Geniculate Body Inferior

More information

ENT 318 Artificial Organs Physiology of Ear

ENT 318 Artificial Organs Physiology of Ear ENT 318 Artificial Organs Physiology of Ear Lecturer: Ahmad Nasrul Norali The Ear The Ear Components of hearing mechanism - Outer Ear - Middle Ear - Inner Ear - Central Auditory Nervous System Major Divisions

More information

Processing in The Superior Olivary Complex

Processing in The Superior Olivary Complex Processing in The Superior Olivary Complex Alan R. Palmer Medical Research Council Institute of Hearing Research University Park Nottingham NG7 2RD, UK Binaural cues for Localising Sounds in Space time

More information

HEARING AND COCHLEAR IMPLANTS

HEARING AND COCHLEAR IMPLANTS HEARING AND COCHLEAR IMPLANTS FRANCIS CREIGHTON, MD NEUROTOLOGY & SKULL BASE SURGERY FELLOW JOHNS HOPKINS SCHOOL OF MEDICINE NOV 9 TH, 2017 THANKS TO: CHARLIE DELLA SANTINA, HEIDI NAKAJIMA AND DOUG MATTOX

More information

Essential feature. Who are cochlear implants for? People with little or no hearing. substitute for faulty or missing inner hair

Essential feature. Who are cochlear implants for? People with little or no hearing. substitute for faulty or missing inner hair Who are cochlear implants for? Essential feature People with little or no hearing and little conductive component to the loss who receive little or no benefit from a hearing aid. Implants seem to work

More information

Hearing and the Auditory System: Overview

Hearing and the Auditory System: Overview Harvard-MIT Division of Health Sciences and Technology HST.723: Neural Coding and Perception of Sound Instructor: Bertrand Delgutte, and Andrew Oxenham Hearing and the Auditory System: Overview Bertrand

More information

Signals, systems, acoustics and the ear. Week 5. The peripheral auditory system: The ear as a signal processor

Signals, systems, acoustics and the ear. Week 5. The peripheral auditory system: The ear as a signal processor Signals, systems, acoustics and the ear Week 5 The peripheral auditory system: The ear as a signal processor Think of this set of organs 2 as a collection of systems, transforming sounds to be sent to

More information

1) Drop off in the Bi 150 box outside Baxter 331 or to the head TA (jcolas).

1) Drop off in the Bi 150 box outside Baxter 331 or  to the head TA (jcolas). Bi/CNS/NB 150 Problem Set 3 Due: Tuesday, Oct. 27, at 4:30 pm Instructions: 1) Drop off in the Bi 150 box outside Baxter 331 or e-mail to the head TA (jcolas). 2) Submit with this cover page. 3) Use a

More information

ABR assesses the integrity of the peripheral auditory system and auditory brainstem pathway.

ABR assesses the integrity of the peripheral auditory system and auditory brainstem pathway. By Prof Ossama Sobhy What is an ABR? The Auditory Brainstem Response is the representation of electrical activity generated by the eighth cranial nerve and brainstem in response to auditory stimulation.

More information

Ear. Utricle & saccule in the vestibule Connected to each other and to the endolymphatic sac by a utriculosaccular duct

Ear. Utricle & saccule in the vestibule Connected to each other and to the endolymphatic sac by a utriculosaccular duct Rahaf Jreisat *You don t have to go back to the slides. Ear Inner Ear Membranous Labyrinth It is a reflection of bony labyrinth but inside. Membranous labyrinth = set of membranous tubes containing sensory

More information

Week 5. Fall 2016 Part 2: Structure and Function of Auditory System 1

Week 5. Fall 2016 Part 2: Structure and Function of Auditory System 1 This outline summarizes major points covered in lecture. It is not intended to replace your own lecture notes. Week 5 How sound is heard: EAR Mechanical energy reaches the eardrum, moves to the middle

More information

BCS 221: Auditory Perception BCS 521 & PSY 221

BCS 221: Auditory Perception BCS 521 & PSY 221 BCS 221: Auditory Perception BCS 521 & PSY 221 Time: MW 10:25 11:40 AM Recitation: F 10:25 11:25 AM Room: Hutchinson 473 Lecturer: Dr. Kevin Davis Office: 303E Meliora Hall Office hours: M 1 3 PM kevin_davis@urmc.rochester.edu

More information

Chapter 17, Part 2! The Special Senses! Hearing and Equilibrium!

Chapter 17, Part 2! The Special Senses! Hearing and Equilibrium! Chapter 17, Part 2! The Special Senses! Hearing and Equilibrium! SECTION 17-5! Equilibrium sensations originate within the inner ear, while hearing involves the detection and interpretation of sound waves!

More information

Chapter 17, Part 2! Chapter 17 Part 2 Special Senses! The Special Senses! Hearing and Equilibrium!

Chapter 17, Part 2! Chapter 17 Part 2 Special Senses! The Special Senses! Hearing and Equilibrium! Chapter 17, Part 2! The Special Senses! Hearing and Equilibrium! SECTION 17-5! Equilibrium sensations originate within the inner ear, while hearing involves the detection and interpretation of sound waves!

More information

Hearing Lectures. Acoustics of Speech and Hearing. Auditory Lighthouse. Facts about Timbre. Analysis of Complex Sounds

Hearing Lectures. Acoustics of Speech and Hearing. Auditory Lighthouse. Facts about Timbre. Analysis of Complex Sounds Hearing Lectures Acoustics of Speech and Hearing Week 2-10 Hearing 3: Auditory Filtering 1. Loudness of sinusoids mainly (see Web tutorial for more) 2. Pitch of sinusoids mainly (see Web tutorial for more)

More information

Healthy Organ of Corti. Loss of OHCs. How to use and interpret the TEN(HL) test for diagnosis of Dead Regions in the cochlea

Healthy Organ of Corti. Loss of OHCs. How to use and interpret the TEN(HL) test for diagnosis of Dead Regions in the cochlea 'How we do it' Healthy Organ of Corti How to use and interpret the TEN(HL) test for diagnosis of s in the cochlea Karolina Kluk¹ Brian C.J. Moore² Mouse IHCs OHCs ¹ Audiology and Deafness Research Group,

More information

Subjective Hearing Problems in Normal-Hearing Tinnitus Subjects. Background

Subjective Hearing Problems in Normal-Hearing Tinnitus Subjects. Background Subjective Hearing Problems in Normal-Hearing Tinnitus Subjects Background Most experts agree that the tinnitus signal is generated at least in part by discordant damage of outer hair cells (OHCs). Discordant

More information

Hearing research relevant to communication acoustics

Hearing research relevant to communication acoustics PROCEEDINGS of the 22 nd International Congress on Acoustics Communication Acoustics: Paper ICA2016-790 Hearing research relevant to communication acoustics Barbara Shinn-Cunningham (a) (a) Boston University,

More information

Hearing: Physiology and Psychoacoustics

Hearing: Physiology and Psychoacoustics 9 Hearing: Physiology and Psychoacoustics Click Chapter to edit 9 Hearing: Master title Physiology style and Psychoacoustics The Function of Hearing What Is Sound? Basic Structure of the Mammalian Auditory

More information

January 22 nd to 26 th, 2008

January 22 nd to 26 th, 2008 Advanced theoretical and practical training course on Hearing in Mammals January 22 nd to 26 th, 2008 F ro m M o l e c u l e s t o A u d i t o r y P h y s i o l o g y ORGANIZERS Tobias Moser FACULTY Frank,

More information