Chapter 10. The Muscular System 11-1

Size: px
Start display at page:

Download "Chapter 10. The Muscular System 11-1"

Transcription

1 Chapter 10 The Muscular System 11-1

2 The Muscular System Structural and functional organization of muscles Muscles of the head and neck Muscles of the trunk Muscles acting on the shoulder and upper limb Muscles acting on the hip and lower limb 11-2

3 Organization of Muscles 600 Human skeletal muscles General structural and functional topics muscle shape and function connective tissues of muscle coordinated actions of muscle groups intrinsic and extrinsic muscles muscle innervation Regional descriptions 11-3

4 The Functions of Muscles Movement of body parts and organ contents Maintain posture and prevent movement Communication - speech, expression and writing Control of openings and passageways Heat production 11-4

5 Connective Tissues of a Muscle Epimysium Tendon Deep fascia Perimysium Endomysium 11-5

6 Connective Tissues of a Muscle Epimysium covers whole muscle belly blends into CT between muscles Perimysium slightly thicker layer of connective tissue surrounds bundle of cells called a fascicle Endomysium thin areolar tissue around each cell allows room for capillaries and nerve fibers 11-6

7 Location of Fascia Deep fascia found between adjacent muscles Superficial fascia (hypodermis) adipose between skin and muscles Superficial Fascia Deep Fascia 11-7

8 Muscle Attachments Tendon bone to muscle Aponeuroses- Flat sheetlike tendon located beneath the scalp; also includes attachments in the abdominal, lumbar, hand and foot areas. Retinaculum connective tissue that groups together several tendons from separate muscles like a bracelet at the wrist. 11-8

9 Chapter 11 Muscle Tissue 11-9

10 Muscle Tissue Types and characteristics of muscular tissue Microscopic anatomy of skeletal muscle Nerve-Muscle relationship Behavior of skeletal muscle fibers Behavior of whole muscles 11-10

11 Introduction to Muscle Movement is a fundamental characteristic of all living things Cells capable of shortening and converting the chemical energy of ATP into mechanical energy Types of muscle skeletal, cardiac and smooth Physiology of skeletal muscle basis of warm-up, strength, endurance and fatigue 11-11

12 Characteristics of Muscle Responsiveness (excitability) to chemical signals, stretch and electrical changes across the plasma membrane Conductivity local electrical change triggers a wave of excitation that travels along the muscle fiber Contractility -- shortens when stimulated Extensibility -- capable of being stretched Elasticity -- returns to its original resting length after being stretched 11-12

13 Skeletal Muscle Voluntary striated muscle attached to bones Muscle fibers (myofibers) as long as 30 cm Exhibits alternating light and dark transverse bands or striations reflects overlapping arrangement of internal contractile proteins Under conscious control (voluntary) 11-13

14 Connective Tissue Elements Attachments between muscle and bone endomysium, perimysium, epimysium, fascia, tendon Collagen is extensible and elastic stretches slightly under tension and recoils when released protects muscle from injury returns muscle to its resting length Elastic components parallel components parallel muscle cells series components joined to ends of muscle 11-14

15 Skeletal Muscle Fiber The Muscle Fiber Muscle Fiber 11-15

16 Muscle Fibers Multiple flattened nuclei inside cell membrane fusion of multiple myoblasts during development unfused satellite cells nearby can multiply to produce a small number of new myofibers Sarcolemma has tunnel-like infoldings or transverse (T) tubules that penetrate the cell carry electric current to cell interior 11-16

17 Muscle Fibers 2 Sarcoplasm is filled with myofibrils (bundles of myofilaments) glycogen for stored energy and myoglobin for binding oxygen Sarcoplasmic reticulum = smooth ER network around each myofibril dilated end-sacs (terminal cisternea) store calcium triad = T tubule and 2 terminal cisternea 11-17

18 Thick Filaments Made of 200 to 500 myosin molecules 2 entwined polypeptides (golf clubs) Arranged in a bundle with heads directed outward in a spiral array around the bundled tails central area is a bare zone with no heads 11-18

19 Thin Filaments Two intertwined strands fibrous (F) actin globular (G) actin with an active site Groove holds tropomyosin molecules each blocking 6 or 7 active sites of G actins One small, calcium-binding troponin molecule on each tropomyosin molecule 11-19

20 Elastic Filaments Springy proteins called titin Anchor each thick filament to Z disc Prevents overstretching of sarcomere 11-20

21 Regulatory and Contractile Proteins Myosin and actin are contractile proteins Tropomyosin and troponin = regulatory proteins switch that starts and stops shortening of muscle cell contraction activated by release of calcium into sarcoplasm and its binding to troponin, troponin moves tropomyosin off the actin active sites 11-21

22 Overlap of Thick and Thin Filaments 11-22

23 Striations = Organization of Filaments Dark A bands (regions) alternating with lighter I bands (regions) anisotrophic (A) and isotropic (I) stand for the way these regions affect polarized light A band is thick filament region lighter, central H band area contains no thin filaments I band is thin filament region bisected by Z disc protein called Sliding Filament connectin, anchoring elastic and thin filaments from one Z disc (Z line) to the next is a sarcomere 11-23

24 Striations and Sarcomeres 11-24

25 Relaxed and Contracted Sarcomeres Muscle cells shorten because their individual sarcomeres shorten pulling Z discs closer together pulls on sarcolemma Notice neither thick nor thin filaments change length during shortening Their overlap changes as sarcomeres shorten 11-25

26 Nerve-Muscle Relationships Skeletal muscle must be stimulated by a nerve or it will not contract Cell bodies of somatic motor neurons in brainstem or spinal cord Axons of somatic motor neurons = somatic motor fibers terminal branches supply one muscle fiber Each motor neuron and all the muscle fibers it innervates = motor unit 11-26

27 Motor Units A motor neuron and the muscle fibers it innervates dispersed throughout the muscle when contract together causes weak contraction over wide area provides ability to sustain long-term contraction as motor units take turns resting (postural control) Fine control small motor units contain as few as 20 muscle fibers per nerve fiber eye muscles Strength control gastrocnemius muscle has 1000 fibers per nerve fiber 11-27

28 Neuromuscular Junctions (Synapse) Functional connection between nerve fiber and muscle cell Neurotransmitter (acetylcholine/ach) released from nerve fiber stimulates muscle cell Components of synapse (NMJ) synaptic knob is swollen end of nerve fiber (contains ACh) junctional folds region of sarcolemma increases surface area for ACh receptors contains acetylcholinesterase that breaks down ACh and causes relaxation synaptic cleft = tiny gap between nerve and muscle cells Basal lamina = thin layer of collagen and glycoprotein over all of muscle fiber 11-28

29 The Neuromuscular Junction Neuromuscular Junction 11-29

30 Neuromuscular Toxins Pesticides (cholinesterase inhibitors) bind to acetylcholinesterase and prevent it from degrading ACh spastic paralysis and possible suffocation Tetanus or lockjaw is spastic paralysis caused by toxin of Clostridium bacteria blocks glycine release in the spinal cord and causes overstimulation of the muscles Flaccid paralysis (limp muscles) due to curare that competes with ACh respiratory arrest 11-30

31 Electrically Excitable Cells Plasma membrane is polarized or charged resting membrane potential due to Na+ outside of cell and K+ and other anions inside of cell difference in charge across the membrane = resting membrane potential (-90 mv cell) Stimulation opens ion gates in membrane ion gates open (Na+ rushes into cell and K+ rushes out of cell) quick up-and-down voltage shift = action potential spreads over cell surface as nerve signal 11-31

32 Muscle Contraction and Relaxation Four actions involved in this process excitation = nerve action potentials lead to action potentials in muscle fiber excitation-contraction coupling = action potentials on the sarcolemma activate myofilaments contraction = shortening of muscle fiber relaxation = return to resting length Images will be used to demonstrate the steps of each of these actions 11-32

33 Excitation of a Muscle Fiber Excitation of a Muscle Fiber 11-33

34 Excitation (steps 1 and 2) Nerve signal opens voltage-gated calcium channels. Calcium stimulates exocytosis of synaptic vesicles containing ACh = ACh release into synaptic cleft

35 Excitation (steps 3 and 4) Binding of ACh to receptor proteins opens Na+ and K+ channels resulting in jump in RMP from -90mV to +75mV forming an end-plate potential (EPP)

36 Excitation (step 5) Voltage change in end-plate region (EPP) opens nearby voltage-gated channels producing an action potential 11-36

37 Excitation-Contraction Coupling Excitation and Contraction - animation 11-37

38 Excitation-Contraction Coupling (steps 6 and 7) Action potential spreading over sarcolemma enters T tubules -- voltage-gated channels open in T tubules causing calcium gates to open in SR 11-38

39 Excitation-Contraction Coupling (steps 8 and 9) Calcium released by SR binds to troponin Troponin-tropomyosin complex changes shape and exposes active sites on actin

40 Contraction (steps 10 and 11) Myosin ATPase in myosin head hydrolyzes an ATP molecule, activating the head and cocking it in an extended position It binds to actin active site forming a cross-bridge 11-40

41 Contraction (steps 12 and 13) Power stroke = myosin head releases ADP and phosphate as it flexes pulling the thin filament past the thick With the binding of more ATP, the myosin head extends to attach to a new active site half of the heads are bound to a thin filament at one time preventing slippage thin and thick filaments do not become shorter, just slide past each other (sliding filament theory) 11-41

42 Relaxation (steps 14 and 15) Nerve stimulation ceases and acetylcholinesterase removes ACh from receptors. Stimulation of the muscle cell ceases

43 Relaxation (step 16) Active transport needed to pump calcium back into SR to bind to calsequestrin ATP is needed for muscle relaxation as well as muscle contraction 11-43

44 Relaxation (steps 17 and 18) Loss of calcium from sarcoplasm moves troponin-tropomyosin complex over active sites stops the production or maintenance of tension Muscle fiber returns to its resting length due to recoil of series-elastic components and contraction of antagonistic muscles 11-44

45 Rigor Mortis Stiffening of the body beginning 3 to 4 hours after death Deteriorating sarcoplasmic reticulum releases calcium Calcium activates myosin-actin cross-bridging and muscle contracts, but can not relax. Muscle relaxation requires ATP and ATP production is no longer produced after death Fibers remain contracted until myofilaments decay 11-45

46 Length-Tension Relationship Amount of tension generated depends on length of muscle before it was stimulated length-tension relationship (see graph next slide) Overly contracted (weak contraction results) thick filaments too close to Z discs and can t slide Too stretched (weak contraction results) little overlap of thin and thick does not allow for very many cross bridges too form Optimum resting length produces greatest force when muscle contracts central nervous system maintains optimal length producing muscle tone or partial contraction 11-46

47 Length-Tension Curve 11-47

48 Muscle Twitch in Frog Threshold = voltage producing an action potential a single brief stimulus at that voltage produces a quick cycle of contraction and relaxation called a twitch (lasting less than 1/10 second) A single twitch contraction is not strong enough to do any useful work 11-48

49 Muscle Twitch in Frog 2 Phases of a twitch contraction latent period (2 msec delay) only internal tension is generated no visible contraction occurs since only elastic components are being stretched contraction phase external tension develops as muscle shortens relaxation phase loss of tension and return to resting length as calcium returns to SR 11-49

50 Contraction Strength of Twitches Threshold stimuli produces twitches Twitches unchanged despite increased voltage Muscle fiber obeys an all-or-none law contracting to its maximum or not at all not a true statement since twitches vary in strength depending upon, Ca2+ concentration, previous stretch of the muscle, temperature, ph and hydration Closer stimuli produce stronger twitches 11-50

51 Recruitment and Stimulus Intensity Stimulating the whole nerve with higher and higher voltage produces stronger contractions More motor units are being recruited called multiple motor unit summation lift a glass of milk versus a whole gallon of milk 11-51

52 Twitch and Treppe Contractions Muscle stimulation at variable frequencies low frequency each stimulus produces an identical twitch response moderate frequency each twitch has time to recover but develops more tension than the one before (treppe phenomenon) calcium was not completely put back into SR heat of tissue increases myosin ATPase efficiency 11-52

53 Incomplete and Complete Tetanus Higher frequency stimulation generates gradually more strength of contraction each stimuli arrives before last one recovers temporal summation or wave summation incomplete tetanus = sustained fluttering contractions Maximum frequency stimulation muscle has no time to relax at all twitches fuse into smooth, prolonged contraction called complete tetanus rarely occurs in the body 11-53

54 ATP Sources All muscle contraction depends on ATP Pathways of ATP synthesis anaerobic fermentation (ATP production limited) without oxygen, produces toxic lactic acid aerobic respiration (more ATP produced) requires continuous oxygen supply, produces H2O and CO

55 Immediate Energy Needs Short, intense exercise (100 m dash) oxygen need is supplied by myoglobin Phosphagen system myokinase transfers P i groups from one ADP to another forming ATP creatine kinase transfers Pi groups from creatine phosphate to make ATP Result is power enough for 1 minute brisk walk or 6 seconds of sprinting 11-55

56 Short-Term Energy Needs Glycogen-lactic acid system takes over produces ATP for seconds of maximum activity playing basketball or running around baseball diamonds muscles obtain glucose from blood and stored glycogen 11-56

57 Long-Term Energy Needs Aerobic respiration needed for prolonged exercise Produces 36 ATPs/glucose molecule After 40 seconds of exercise, respiratory and cardiovascular systems must deliver enough oxygen for aerobic respiration oxygen consumption rate increases for first 3-4 minutes and then levels off to a steady state Limits are set by depletion of glycogen and blood glucose, loss of fluid and electrolytes 11-57

58 Oxygen Debt Heavy breathing after strenuous exercise known as excess postexercise oxygen consumption (EPOC) typically about 11 liters extra is consumed Purposes for extra oxygen replace oxygen reserves (myoglobin, blood hemoglobin, in air in the lungs and dissolved in plasma) replenishing the phosphagen system reconverting lactic acid to glucose in kidneys and liver serving the elevated metabolic rate that occurs as long as the body temperature remains elevated by exercise 11-58

59 Slow- and Fast-Twitch Fibers Slow oxidative, slow-twitch fibers more mitochondria, myoglobin and capillaries adapted for aerobic respiration and resistant to fatigue soleus and postural muscles of the back (100msec/twitch) 11-59

60 Slow and Fast-Twitch Fibers Fast glycolytic, fast-twitch fibers rich in enzymes for phosphagen and glycogen-lactic acid systems sarcoplasmic reticulum releases calcium quickly so contractions are quicker (7.5 msec/twitch) extraocular eye muscles, gastrocnemius and biceps brachii Proportions genetically determined 11-60

Chapter 10 Muscle Tissue Lecture Outline

Chapter 10 Muscle Tissue Lecture Outline Chapter 10 Muscle Tissue Lecture Outline Muscle tissue types 1. Skeletal muscle = voluntary striated 2. Cardiac muscle = involuntary striated 3. Smooth muscle = involuntary nonstriated Characteristics

More information

Chapter 9 - Muscle and Muscle Tissue

Chapter 9 - Muscle and Muscle Tissue Chapter 9 - Muscle and Muscle Tissue I. Overview of muscle tissue A. Three muscle types in the body: B. Special characteristics 1. Excitability: able to receive and respond to a stimulus 2. Contractility:

More information

Anatomy and Physiology 1 Chapter 10 self quiz Pro, Dima Darwish,MD.

Anatomy and Physiology 1 Chapter 10 self quiz Pro, Dima Darwish,MD. Anatomy and Physiology 1 Chapter 10 self quiz Pro, Dima Darwish,MD. 1) Which of the following is a recognized function of skeletal muscle? A) produce movement B) maintain posture C) maintain body temperature

More information

Ch.10 Muscle Tissue. Copyright 2009, John Wiley & Sons, Inc.

Ch.10 Muscle Tissue. Copyright 2009, John Wiley & Sons, Inc. Ch.10 Muscle Tissue Preview Chapter 10 In groups we will define the following terms 1. Skeletal muscle 2. Smooth muscle 3. Cardiac muscle 4. Sarcomere 5. Myofibril 6. Myofilament 7. Sarcoplasmic reticulum

More information

MODULE 6 MUSCLE PHYSIOLOGY

MODULE 6 MUSCLE PHYSIOLOGY MODULE 6 MUSCLE PHYSIOLOGY III SEMESTER BOTANY Syllabi: Striated, Non striated and Cardiac muscle, Ultra structure of striated muscle fibre, Mechanism of muscle contraction, Threshold and spike potential,

More information

Fig Copyright McGraw-Hill Education. Permission required for reproduction or display. Nucleus. Muscle fiber. Endomysium. Striations.

Fig Copyright McGraw-Hill Education. Permission required for reproduction or display. Nucleus. Muscle fiber. Endomysium. Striations. Fig. 11.1 Nucleus Muscle fiber Endomysium Striations Ed Reschke 1 Fig. 11.2 Muscle fiber Nucleus I band A band Z disc Mitochondria Openings into transverse tubules Sarcoplasmic reticulum Triad: Terminal

More information

MUSCLE TISSUE (MUSCLE PHYSIOLOGY) PART I: MUSCLE STRUCTURE

MUSCLE TISSUE (MUSCLE PHYSIOLOGY) PART I: MUSCLE STRUCTURE PART I: MUSCLE STRUCTURE Muscle Tissue A primary tissue type, divided into: skeletal muscle cardiac muscle smooth muscle Functions of Skeletal Muscles Produce skeletal movement Maintain body position Support

More information

Chapter 8 Notes. Muscles

Chapter 8 Notes. Muscles Chapter 8 Notes Muscles 8.1 Intro Three muscle types Skeletal Smooth cardiac 8.2 Structure of Skeletal Muscle Composition Skeletal muscle tissue Nervous tissue Blood Connective tissue Connective tissue

More information

Muscle Physiology. Introduction. Four Characteristics of Muscle tissue. Skeletal Muscle

Muscle Physiology. Introduction. Four Characteristics of Muscle tissue. Skeletal Muscle Muscle Physiology Introduction Muscle = tissue capable of forceful shortening or contraction Converts chemical energy (ATP) into mechanical energy Important in: Respiration Urine collection & flow Gastrointestinal

More information

10 - Muscular Contraction. Taft College Human Physiology

10 - Muscular Contraction. Taft College Human Physiology 10 - Muscular Contraction Taft College Human Physiology Muscular Contraction Sliding filament theory (Hanson and Huxley, 1954) These 2 investigators proposed that skeletal muscle shortens during contraction

More information

Muscle and Muscle Tissue

Muscle and Muscle Tissue Muscle and Muscle Tissue Make up about half of total body mass Exerts force by converting chemical energy, ATP, to mechanical energy Muscle tissue is classified based on Shape Number and position of nuclei

More information

BIOH111. o Cell Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system

BIOH111. o Cell Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system BIOH111 o Cell Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system Endeavour College of Natural Health endeavour.edu.au 1 TEXTBOOK AND REQUIRED/RECOMMENDED

More information

2/19/2018. Learn and Understand:

2/19/2018. Learn and Understand: Muscular System with Special Emphasis on Skeletal Muscle Anatomy and Physiology Learn and Understand: The definition of cell changes again The contractile unit of muscle is the sarcomere. ATP and Ca 2+

More information

About This Chapter. Skeletal muscle Mechanics of body movement Smooth muscle Cardiac muscle Pearson Education, Inc.

About This Chapter. Skeletal muscle Mechanics of body movement Smooth muscle Cardiac muscle Pearson Education, Inc. About This Chapter Skeletal muscle Mechanics of body movement Smooth muscle Cardiac muscle Skeletal Muscle Usually attached to bones by tendons Origin: closest to the trunk or to more stationary bone Insertion:

More information

Chapter Skeletal Muscle Structure and Function

Chapter Skeletal Muscle Structure and Function Chapter 10.2 Skeletal Muscle Structure and Function Introduction to Muscle Physiology Movement is a fundamental characteristic of all living things All muscle cells (skeletal, cardiac, and smooth) are

More information

Ch 12: Muscles sarcolemma, t-tubules, sarcoplasmic reticulum, myofibrils, myofilaments, sarcomere...

Ch 12: Muscles sarcolemma, t-tubules, sarcoplasmic reticulum, myofibrils, myofilaments, sarcomere... Ch 12: Muscles Review micro-anatomy of muscle tissue Terminology examples: sarcolemma, t-tubules, sarcoplasmic reticulum, myofibrils, myofilaments, sarcomere... SLOs Differentiate levels of muscle structure:

More information

Muscle Tissue- 3 Types

Muscle Tissue- 3 Types AN INTRODUCTION TO MUSCLE TISSUE Muscle Tissue- 3 Types Skeletal muscle (focus on these) Cardiac muscle Smooth muscle FUNCTIONS OF SKELETAL MUSCLES Produce movement of the skeleton Maintain posture and

More information

Muscular System. This chapter will focus on muscle cells and tissues. Muscle tissue has several functions:

Muscular System. This chapter will focus on muscle cells and tissues. Muscle tissue has several functions: Muscular System Slide 2 This chapter will focus on muscle cells and tissues. Muscle tissue has several functions: Movement: Muscles work as pulleys on bones to help create changes in body position. Muscles

More information

The All-or-None Principle Motor units also comply to a rule known as the all-ornone principle (or law).

The All-or-None Principle Motor units also comply to a rule known as the all-ornone principle (or law). The All-or-None Principle Motor units also comply to a rule known as the all-ornone principle (or law). This principle stipulates that, when a motor unit is stimulated to contract, it will do so to its

More information

CHAPTER 6 2/9/2016. Learning Objectives List the four traits that all muscle types have in common.

CHAPTER 6 2/9/2016. Learning Objectives List the four traits that all muscle types have in common. Learning Objectives List the four traits that all muscle types have in common. CHAPTER 6 The Muscular System Demonstrate and explain the use of antagonistic muscle pairs. Describe the attachment of muscle

More information

Muscle Tissue. Alternating contraction and relaxation of cells. Chemical energy changed into mechanical energy

Muscle Tissue. Alternating contraction and relaxation of cells. Chemical energy changed into mechanical energy Know these muscles Muscle Tissue Alternating contraction and relaxation of cells Chemical energy changed into mechanical energy 3 Types of Muscle Tissue Skeletal muscle attaches to bone, skin or fascia

More information

Skeletal Muscle. Connective tissue: Binding, support and insulation. Blood vessels

Skeletal Muscle. Connective tissue: Binding, support and insulation. Blood vessels Chapter 12 Muscle Physiology Outline o Skeletal Muscle Structure o The mechanism of Force Generation in Muscle o The mechanics of Skeletal Muscle Contraction o Skeletal Muscle Metabolism o Control of Skeletal

More information

Muscles and Muscle Tissue

Muscles and Muscle Tissue 1 Muscles and Muscle Tissue Chapter 9 2 Overview of Muscle Tissues Compare and Contrast the three basic types of muscle tissue List four important functions of muscle tissue 3 Muscle Terminology Muscle

More information

Skeletal Muscle. Skeletal Muscle

Skeletal Muscle. Skeletal Muscle Skeletal Muscle Skeletal Muscle Types of muscle Skeletal muscle-moves the skeleton by pulling on the tendons that are connected to the bones Cardiac muscle-pumps blood through the heart and blood vessels

More information

Chapter 10 Muscle Tissue and Physiology Chapter Outline

Chapter 10 Muscle Tissue and Physiology Chapter Outline Chapter 10 Muscle Tissue and Physiology Chapter Outline Module 10.1 Overview of muscle tissue (Figures 10.1 10.2) A. Types of Muscle Tissue (Figure 10.1) 1. The three types of cells in muscle tissue are,,

More information

Nerve Muscle Relationship and Neural Muscular Junction Quiz. Remember, you need to know the structure and the function!

Nerve Muscle Relationship and Neural Muscular Junction Quiz. Remember, you need to know the structure and the function! Nerve Muscle Relationship and Neural Muscular Junction Quiz Remember, you need to know the structure and the function! What is this called? What is this? Schwann cell What is this called? Basal lamina

More information

Chapter 9 Muscle. Types of muscle Skeletal muscle Cardiac muscle Smooth muscle. Striated muscle

Chapter 9 Muscle. Types of muscle Skeletal muscle Cardiac muscle Smooth muscle. Striated muscle Chapter 9 Muscle Types of muscle Skeletal muscle Cardiac muscle Smooth muscle Striated muscle Chapter 9 Muscle (cont.) The sliding filament mechanism, in which myosin filaments bind to and move actin

More information

Human Anatomy. Muscle Tissue and Organization. DR.SADIQ ALI (K.E Medalist) 10-1

Human Anatomy. Muscle Tissue and Organization. DR.SADIQ ALI (K.E Medalist) 10-1 Human Anatomy Muscle Tissue and Organization DR.SADIQ ALI (K.E Medalist) 10-1 Tissue and Organization Over 700 skeletal muscles have been named. Form the muscular system. Muscle tissue is distributed almost

More information

MUSCULAR SYSTEM CHAPTER 09 BIO 211: ANATOMY & PHYSIOLOGY I

MUSCULAR SYSTEM CHAPTER 09 BIO 211: ANATOMY & PHYSIOLOGY I 1 BIO 211: ANATOMY & PHYSIOLOGY I 1 CHAPTER 09 MUSCULAR SYSTEM Part 2 of 2 Dr. Dr. Lawrence G. G. Altman www.lawrencegaltman.com Some illustrations are courtesy of McGraw-Hill. Some illustrations are courtesy

More information

Skeletal Muscle Tissue

Skeletal Muscle Tissue Functions of Skeletal Muscle Skeletal Muscle Tissue Keri Muma Bio 6 Movement muscles attach directly or indirectly to bone, pull on bone or tissue when they contract Maintain posture / body position muscles

More information

Muscle Tissue. PowerPoint Lecture Presentations prepared by Jason LaPres. Lone Star College North Harris Pearson Education, Inc.

Muscle Tissue. PowerPoint Lecture Presentations prepared by Jason LaPres. Lone Star College North Harris Pearson Education, Inc. 10 Muscle Tissue PowerPoint Lecture Presentations prepared by Jason LaPres Lone Star College North Harris An Introduction to Muscle Tissue Muscle Tissue A primary tissue type, divided into: Skeletal muscle

More information

Smooth Cardiac Skeletal Location Around tubes Heart tissue attached to skeleton Moves stuff thru Heart beat pumps Moves body parts

Smooth Cardiac Skeletal Location Around tubes Heart tissue attached to skeleton Moves stuff thru Heart beat pumps Moves body parts Biology 067 - Muscular system A. Type of muscles: Smooth Cardiac Skeletal Location Around tubes Heart tissue attached to skeleton Function Moves stuff thru Heart beat pumps Moves body parts tubes blood

More information

1/4/2017. Introduction. Connective Tissue Coverings. 9.1: Structure of a Skeletal Muscle. Skeletal Muscle Fibers. Connective Tissue Coverings

1/4/2017. Introduction. Connective Tissue Coverings. 9.1: Structure of a Skeletal Muscle. Skeletal Muscle Fibers. Connective Tissue Coverings Introduction Chapter 09 Lecture Outline See separate PowerPoint slides for all figures and tables preinserted into PowerPoint without notes. Copyright McGraw-Hill Education. Permission required for reproduction

More information

Concept 50.5: The physical interaction of protein filaments is required for muscle function

Concept 50.5: The physical interaction of protein filaments is required for muscle function Concept 50.5: The physical interaction of protein filaments is required for muscle function Muscle activity is a response to input from the nervous system The action of a muscle is always to contract Vertebrate

More information

Chapter 10 -Muscle Tissue

Chapter 10 -Muscle Tissue Chapter 10 -Muscle Tissue Muscles: 1. Overview of Muscle Tissue A. Review 5 functions of muscle tissue. B. Review the 5 properties of muscle tissue. WHICH do they share with nervous tissue? (2, plus the

More information

Muscle Tissue. Muscle Tissue Outline. General Function of Muscle Tissue

Muscle Tissue. Muscle Tissue Outline. General Function of Muscle Tissue Muscle Tissue Muscle Tissue Outline General Functions of Muscle Tissue Characteristics of Muscle Tissue Classification of Muscle Tissue Skeletal Muscle Structure and Function Muscle Energetics Muscle Mechanics

More information

Microanatomy of Muscles. Anatomy & Physiology Class

Microanatomy of Muscles. Anatomy & Physiology Class Microanatomy of Muscles Anatomy & Physiology Class Three Main Muscle Types Objectives: By the end of this presentation you will have the information to: 1. 2. 3. 4. 5. 6. Describe the 3 main types of muscles.

More information

Chapter 8: Skeletal Muscle: Structure and Function

Chapter 8: Skeletal Muscle: Structure and Function Chapter 8: Skeletal Muscle: Structure and Function Objectives Draw & label the microstructure of skeletal muscle Outline the steps leading to muscle shortening Define the concentric and isometric Discuss:

More information

Muscle Cell Anatomy & Function (mainly striated muscle tissue)

Muscle Cell Anatomy & Function (mainly striated muscle tissue) Muscle Cell Anatomy & Function (mainly striated muscle tissue) General Structure of Muscle Cells (skeletal) several nuclei (skeletal muscle) skeletal muscles are formed when embryonic cells fuse together

More information

Muscle Tissue. Alternating contraction and relaxation of cells Chemical energy changed into mechanical energy 10:32

Muscle Tissue. Alternating contraction and relaxation of cells Chemical energy changed into mechanical energy 10:32 Muscle Tissue Alternating contraction and relaxation of cells Chemical energy changed into mechanical energy 1 Properties of Muscle Tissue Excitability responds to chemical messengers (neurotransmitters)

More information

CLASS SET Unit 4: The Muscular System STUDY GUIDE

CLASS SET Unit 4: The Muscular System STUDY GUIDE NPHS Anatomy & Physiology Questions to answer: 1) List three functions of the muscular system. 1) movement 2) thermogenesis (generates heat) 3) posture & body/joint support CLASS SET Unit 4: The Muscular

More information

Types of Muscle. Skeletal striated & voluntary Smooth involuntary Cardiac - heart

Types of Muscle. Skeletal striated & voluntary Smooth involuntary Cardiac - heart Muscular System Types of Muscle Skeletal striated & voluntary Smooth involuntary Cardiac - heart The word striated means striped. Skeletal muscle appears striped under a microscope. Muscles and Muscle

More information

Skeletal Muscle Qiang XIA (

Skeletal Muscle Qiang XIA ( Skeletal Muscle Qiang XIA ( 夏强 ), PhD Department of Physiology Rm C518, Block C, Research Building, School of Medicine Tel: 88208252 Email: xiaqiang@zju.edu.cn Course website: http://10.71.121.151/physiology

More information

MUSCULAR TISSUE. Dr. Gary Mumaugh

MUSCULAR TISSUE. Dr. Gary Mumaugh MUSCULAR TISSUE Dr. Gary Mumaugh MUSCLE OVERVIEW The three types of muscle tissue are skeletal, cardiac, and smooth These types differ in structure, location, function, and means of activation FUNCTIONAL

More information

Principles of Anatomy and Physiology

Principles of Anatomy and Physiology Principles of Anatomy and Physiology 14 th Edition CHAPTER 10 Muscular Tissue Introduction The purpose of the chapter is to: 1. Learn about the structure and function of the 3 types of muscular tissue

More information

1. Locomotion. 2. Repositioning. 3. Internal movement

1. Locomotion. 2. Repositioning. 3. Internal movement MUSCLE and MOVEMENT Chapters 20, 8, 21 1. Locomotion A. Movement B. 2. Repositioning A. 3. Internal movement A. 1 Muscle Cells 1. Contractile 2. Myocytes 3. Striated A. Skeletal B. Cardiac 4. Smooth 5.

More information

1. Locomotion. 2. Repositioning. 3. Internal movement

1. Locomotion. 2. Repositioning. 3. Internal movement MUSCLE and MOVEMENT Chapters 20, 8, 21 1. Locomotion A. Movement B. 2. Repositioning A. 3. Internal movement A. Muscle Cells 1. Contractile 2. Myocytes 3. Striated A. Skeletal B. Cardiac 4. Smooth 5. Striated

More information

Chapter 10: Muscles. Vocabulary: aponeurosis, fatigue

Chapter 10: Muscles. Vocabulary: aponeurosis, fatigue Chapter 10: Muscles 37. Describe the structural components of skeletal muscle tissue from the molecular to the organ level. 38. Describe the structure, function, and importance of sarcomeres. 39. Identify

More information

Human Anatomy and Physiology - Problem Drill 09: The Muscular System

Human Anatomy and Physiology - Problem Drill 09: The Muscular System Human Anatomy and Physiology - Problem Drill 09: The Muscular System Question No. 1 of 10 The muscular system of the human body fulfills many different roles. Which of the following statements about the

More information

Page 1. Chapter 9: Muscle Tissue. Types of Muscle Tissue: Skeletal Muscle Cardiac Muscle Smooth Muscle. Gross Anatomy of Muscle:

Page 1. Chapter 9: Muscle Tissue. Types of Muscle Tissue: Skeletal Muscle Cardiac Muscle Smooth Muscle. Gross Anatomy of Muscle: 1 Chapter 9: Muscle Tissue Types of Muscle Tissue: Skeletal Muscle Cardiac Muscle Smooth Muscle Characteristics: Attaches to skeleton Voluntary control Striated / multi-nucleated Characteristics: Composes

More information

Outline. Bio 105: Muscular System. Muscular System. Types of Muscles. Smooth Muscle. Cardiac Muscle 4/6/2016

Outline. Bio 105: Muscular System. Muscular System. Types of Muscles. Smooth Muscle. Cardiac Muscle 4/6/2016 Outline Bio 105: Muscular System Lecture 11 Chapter 6 Characteristics of muscles 3 types of muscles Functions of muscles Structure of skeletal muscles Mechanics of muscle contraction Energy sources for

More information

Page 1. Chapter 9: Muscle Tissue. Types of Muscle Tissue: Skeletal Muscle Cardiac Muscle Smooth Muscle. Characteristics of Muscle:

Page 1. Chapter 9: Muscle Tissue. Types of Muscle Tissue: Skeletal Muscle Cardiac Muscle Smooth Muscle. Characteristics of Muscle: 1 Chapter 9: Muscle Tissue Muscle little mouse Types of Muscle Tissue: Skeletal Muscle Cardiac Muscle Smooth Muscle Characteristics: Attaches to skeleton Voluntary control Striated / multi-nucleated Characteristics:

More information

Chapter 10: Muscle Tissue

Chapter 10: Muscle Tissue Chapter 10: Muscle Tissue Muscle is one of the 4 primary types of tissue. It is subdivided into skeletal, cardiac and smooth muscle. I. Skeletal Muscle Tissue and the Muscular System, p. 284 Objective

More information

Hole s Human Anatomy and Physiology Eleventh Edition. Mrs. Hummer. Chapter 9 Muscular System

Hole s Human Anatomy and Physiology Eleventh Edition. Mrs. Hummer. Chapter 9 Muscular System Hole s Human Anatomy and Physiology Eleventh Edition Mrs. Hummer Chapter 9 Muscular System 1 Chapter 9 Muscular System Skeletal Muscle usually attached to bones under conscious control striated Three Types

More information

Muscle Tissue. C h a p t e r. PowerPoint Lecture Slides prepared by Jason LaPres Lone Star College - North Harris

Muscle Tissue. C h a p t e r. PowerPoint Lecture Slides prepared by Jason LaPres Lone Star College - North Harris C h a p t e r 10 Muscle Tissue PowerPoint Lecture Slides prepared by Jason LaPres Lone Star College - North Harris Copyright 2009 Pearson Education, Inc., publishing as Pearson Benjamin Cummings An Introduction

More information

Chapter 10! Chapter 10, Part 2 Muscle. Muscle Tissue - Part 2! Pages !

Chapter 10! Chapter 10, Part 2 Muscle. Muscle Tissue - Part 2! Pages ! ! Chapter 10, Part 2 Muscle Chapter 10! Muscle Tissue - Part 2! Pages 308-324! SECTION 10-5! Sarcomere shortening and muscle fiber stimulation produce tension! 2! Tension Production - Muscle FIBER! All-or-none

More information

Essentials of Human Anatomy & Physiology. The Muscular System

Essentials of Human Anatomy & Physiology. The Muscular System Essentials of Human Anatomy & Physiology The Muscular System The Muscular System Muscles are responsible for all types of body movement they contract or shorten and are the machine of the body Three basic

More information

Lecture Overview. Muscular System. Marieb s Human Anatomy and Physiology. Chapter 9 Muscles and Muscle Tissue Lecture 16

Lecture Overview. Muscular System. Marieb s Human Anatomy and Physiology. Chapter 9 Muscles and Muscle Tissue Lecture 16 Marieb s Human Anatomy and Physiology Marieb Hoehn Chapter 9 Muscles and Muscle Tissue Lecture 16 1 Lecture Overview Types, characteristics, functions of muscle Structure of skeletal muscle Mechanism of

More information

Anatomy & Physiology. Unit Two. Muscular System URLs Frog Dissection

Anatomy & Physiology. Unit Two. Muscular System URLs Frog Dissection Anatomy & Physiology 9 Muscular System URLs Frog Dissection http://curry.edschool.virginia.edu/go/frog/home.html Cat Dissection http://www.mhhe.com/biosci/ap/cat_dissect/index.htm List of Muscles http://www.meddean.luc.edu/lumen/meded/

More information

The Muscular System PART A

The Muscular System PART A 6 The Muscular System PART A PowerPoint Lecture Slide Presentation by Jerry L. Cook, Sam Houston University ESSENTIALS OF HUMAN ANATOMY & PHYSIOLOGY EIGHTH EDITION ELAINE N. MARIEB The Muscular System

More information

Muscle Tissue. PowerPoint Lecture Presentations prepared by Jason LaPres. Lone Star College North Harris Pearson Education, Inc.

Muscle Tissue. PowerPoint Lecture Presentations prepared by Jason LaPres. Lone Star College North Harris Pearson Education, Inc. 10 Muscle Tissue PowerPoint Lecture Presentations prepared by Jason LaPres Lone Star College North Harris 10-1 An Introduction to Muscle Tissue Learning Outcomes 10-1 Specify the functions of skeletal

More information

Bio 103 Muscular System 61

Bio 103 Muscular System 61 61 Lecture Outline: MUSCULAR SYSTEM [Chapter 9] A. Functions of Skeletal Muscle 1. Movement 2. Maintain posture 3. Support 4. Guard openings 5. Maintain body temperature (thermogenesis) B. Muscle Tissue

More information

Muscular Tissue. Functions of Muscular Tissue. Types of Muscular Tissue. Skeletal Muscular Tissue. Properties of Muscular Tissue

Muscular Tissue. Functions of Muscular Tissue. Types of Muscular Tissue. Skeletal Muscular Tissue. Properties of Muscular Tissue Muscular Tissue Functions of Muscular Tissue Muscle makes up a large percentage of the body s weight (40-50%) Their main functions are to: Create motion muscles work with nerves, bones, and joints to produce

More information

Muscle Tissue. Dr. Heba Kalbouneh Associate Professor of Anatomy and Histology

Muscle Tissue. Dr. Heba Kalbouneh Associate Professor of Anatomy and Histology Muscle Tissue Dr. Heba Kalbouneh Associate Professor of Anatomy and Histology Functions of muscle tissue Movement Maintenance of posture Joint stabilization Heat generation Tendon Belly Tendon Types of

More information

Muscle Physiology. Dr. Ebneshahidi Ebneshahidi

Muscle Physiology. Dr. Ebneshahidi Ebneshahidi Muscle Physiology Dr. Ebneshahidi Skeletal Muscle Figure 9.2 (a) Functions of the muscular system 1. Locomotion body movements are due to skeletal muscle contraction. 2. Vasoconstriction and vasodilatation

More information

BIOH111. o Cell Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system

BIOH111. o Cell Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system BIOH111 o Cell Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system Endeavour College of Natural Health endeavour.edu.au 1 Textbook and required/recommended

More information

Chapter 10 Muscle Tissue

Chapter 10 Muscle Tissue Chapter 10 Muscle Tissue Skeletal muscle, cardiac muscle and smooth muscle. Differ in their microscopic anatomy, location and how they are controlled by the endocrine and nervous system. 3 Types of Muscle

More information

How many skeletal muscles are present in our body? Muscles are excitable & contractile, extensible and elastic to some extent.

How many skeletal muscles are present in our body? Muscles are excitable & contractile, extensible and elastic to some extent. Muscles How many skeletal muscles are present in our body? -646 muscles The functions of the muscles are: Movement Maintenance of posture Generation of heat Stabilization of joints : amount of muscle surrounding

More information

Biology 201-Worksheet on Muscle System (Answers are in your power point outlines-there is no key!)

Biology 201-Worksheet on Muscle System (Answers are in your power point outlines-there is no key!) Bio 201 Tissues and Skin 1 February 23, 2011 Biology 201-Worksheet on Muscle System (Answers are in your power point outlines-there is no key!) 1. Name and define 5 characteristics of the muscle system.

More information

I. Overview of Muscle Tissues

I. Overview of Muscle Tissues I. Overview of Muscle Tissues A. Types of Muscle Tissue 1. Terminology 1. Muscle fibers = muscle cells are greatly elongated therefore known as fibers; true for skeletal and smooth muscles only 2. Myo

More information

Chapter 50. You re on your own for: Sensory Reception Mechanoreceptors Gravity, Hearing and Equilibrium. Chemoreception taste and smell

Chapter 50. You re on your own for: Sensory Reception Mechanoreceptors Gravity, Hearing and Equilibrium. Chemoreception taste and smell 1 Sensory and Motor Mechanisms 2 Chapter 50 You re on your own for: Sensory Reception Mechanoreceptors Gravity, Hearing and Equilibrium Chemoreception taste and smell Photoreceptors vision It s interesting.

More information

Medical Biology. Dr. Khalida Ibrahim

Medical Biology. Dr. Khalida Ibrahim Dr. Khalida Ibrahim Medical Biology MUSCLE TISSUE 1. Muscle tissue is characterized by its well-developed properties of contraction. 2. Muscle is responsible for the movements of the body and the various

More information

Skeletal Muscle and the Molecular Basis of Contraction. Lanny Shulman, O.D., Ph.D. University of Houston College of Optometry

Skeletal Muscle and the Molecular Basis of Contraction. Lanny Shulman, O.D., Ph.D. University of Houston College of Optometry Skeletal Muscle and the Molecular Basis of Contraction Lanny Shulman, O.D., Ph.D. University of Houston College of Optometry Like neurons, all muscle cells can be excited chemically, electrically, and

More information

SKELETAL MUSCLE CHARACTERISTICS

SKELETAL MUSCLE CHARACTERISTICS THE MUSCULAR SYSTEM SKELETAL MUSCLE CHARACTERISTICS Most are attached by tendons to bones Cells are multinucleate Striated have visible banding Voluntary subject to conscious control Cells are surrounded

More information

Organismic Biology Bio 207. Lecture 6. Muscle and movement; sliding filaments; E-C coupling; length-tension relationships; biomechanics. Prof.

Organismic Biology Bio 207. Lecture 6. Muscle and movement; sliding filaments; E-C coupling; length-tension relationships; biomechanics. Prof. Organismic Biology Bio 207 Lecture 6 Muscle and movement; sliding filaments; E-C coupling; length-tension relationships; biomechanics Prof. Simchon Today s Agenda Skeletal muscle Neuro Muscular Junction

More information

Anatomy & Physiology Muscular System Worksheet

Anatomy & Physiology Muscular System Worksheet Anatomy & Physiology Muscular System Worksheet 1. What are the three categories of muscle tissue? a) b) c) 2. The smallest functional unit of a muscle fiber is called a. 3. What are the four characteristics

More information

Session 3-Part 2: Skeletal Muscle

Session 3-Part 2: Skeletal Muscle Session 3-Part 2: Skeletal Muscle Course: Introduction to Exercise Science-Level 2 (Exercise Physiology) Presentation Created by Ken Baldwin, M.ED, ACSM-H/FI Copyright EFS Inc. All Rights Reserved. Skeletal

More information

Muscles & Muscle Tissue

Muscles & Muscle Tissue Muscles & Muscle Tissue Chapter 6 I. Overview of Muscle 1 A. MUSCLE TYPES SKELETAL: striated, voluntary CARDIAC: only in heart involuntary striated SMOOTH: walls of organs involuntary nonstriated All Muscle

More information

PSK4U THE NEUROMUSCULAR SYSTEM

PSK4U THE NEUROMUSCULAR SYSTEM PSK4U THE NEUROMUSCULAR SYSTEM REVIEW Review of muscle so we can see how the neuromuscular system works This is not on today's note Skeletal Muscle Cell: Cellular System A) Excitation System Electrical

More information

Nerve Cell (aka neuron)

Nerve Cell (aka neuron) Nerve Cell (aka neuron) Neuromuscular Junction Nerve cell Muscle fiber (cell) The Nerve Stimulus and Action Potential The Nerve Stimulus and Action Potential Skeletal muscles must be stimulated by a motor

More information

Chapter 10 Lecture Outline

Chapter 10 Lecture Outline Chapter 10 Lecture Outline See separate PowerPoint slides for all figures and tables preinserted into PowerPoint without notes. Copyright McGraw-Hill Education. Permission required for reproduction or

More information

Functions of Muscle Tissue

Functions of Muscle Tissue The Muscular System Functions of Muscle Tissue Movement Facilitation Thermogenesis Postural Support Regulation of Organ Volume Protects Internal Organs Pumps Blood (HEART) Characteristics of Muscle Tissue

More information

Types of Muscle. Skeletal striated & voluntary Smooth involuntary Cardiac - heart

Types of Muscle. Skeletal striated & voluntary Smooth involuntary Cardiac - heart Muscular System Types of Muscle Skeletal striated & voluntary Smooth involuntary Cardiac - heart The word striated means striped. Skeletal muscle appears striped under a microscope. Muscles and Muscle

More information

Behavior of Whole Muscles

Behavior of Whole Muscles Tension Stimulus voltage Muscle tension Length-Tension Relationship Amount of tension and force of contraction depends on how stretched or contracted muscle was before it s stimulated Length-Tension Relationship

More information

Chapter 10! Muscle Tissue - Part 2! Pages ! SECTION 10-5! Sarcomere shortening and muscle fiber stimulation produce tension!

Chapter 10! Muscle Tissue - Part 2! Pages ! SECTION 10-5! Sarcomere shortening and muscle fiber stimulation produce tension! ! Chapter 10, Part 2 Muscle Chapter 10! Muscle Tissue - Part 2! Pages 308-324! SECTION 10-5! Sarcomere shortening and muscle fiber stimulation produce tension! 2! 1 Tension Production - MUSCLE FIBER! All-or-none

More information

2/28/18. Muscular System. 1 Copyright 2016 by Elsevier Inc. All rights reserved. Introduction. Physiology. Anatomy. Muscle Fiber

2/28/18. Muscular System. 1 Copyright 2016 by Elsevier Inc. All rights reserved. Introduction. Physiology. Anatomy. Muscle Fiber Introduction Muscular System Chapter 20 Shortening or lengthening of a muscle results from changes in relative positions of one small part of a muscle cell to another To understand contraction, we will

More information

2/28/18. Muscular System. Introduction. Anatomy. Chapter 20

2/28/18. Muscular System. Introduction. Anatomy. Chapter 20 Muscular System Chapter 20 1 Introduction Shortening or lengthening of a muscle results from changes in relative positions of one small part of a muscle cell to another To understand contraction, we will

More information

The Muscular System. Specialized tissue that enable the body and its parts to move.

The Muscular System. Specialized tissue that enable the body and its parts to move. The Muscular System Specialized tissue that enable the body and its parts to move. Anterior View Posterior View TRIVIA! How many muscles are there in the human body? Answer: 640 Muscles The muscles make

More information

Ch 10: Skeletal Muscle Tissue (Myology)

Ch 10: Skeletal Muscle Tissue (Myology) Ch 10: Skeletal Muscle Tissue (Myology) main objectives: Describe the distinguishing characteristics of the different muscle tissues Discuss the organization of skeletal muscle Explain the micro-anatomy

More information

Ch 12 can be done in one lecture

Ch 12 can be done in one lecture Ch 12 can be done in one lecture Developed by John Gallagher, MS, DVM Chapter 12: Muscles Review muscle anatomy (esp. microanatomy of skeletal muscle) Terminology: sarcolemma t-tubules sarcoplasmic reticulum

More information

Muscles and Muscle Tissue

Muscles and Muscle Tissue Chapter 9 Part A Muscles and Muscle Tissue Annie Leibovitz/Contact Press Images PowerPoint Lecture Slides prepared by Karen Dunbar Kareiva Ivy Tech Community College Why This Matters Understanding skeletal

More information

Skeletal Muscle. Bởi: OpenStaxCollege

Skeletal Muscle. Bởi: OpenStaxCollege Bởi: OpenStaxCollege The best-known feature of skeletal muscle is its ability to contract and cause movement. Skeletal muscles act not only to produce movement but also to stop movement, such as resisting

More information

Muscle Histology. Dr. Heba Kalbouneh Assistant Professor of Anatomy and Histology

Muscle Histology. Dr. Heba Kalbouneh Assistant Professor of Anatomy and Histology Muscle Histology Dr. Heba Kalbouneh Assistant Professor of Anatomy and Histology Functions of muscle tissue Movement Maintenance of posture Joint stabilization Heat generation Types of Muscle Tissue Skeletal

More information

Muscular System Module 3: Contraction and Relaxation *

Muscular System Module 3: Contraction and Relaxation * OpenStax-CNX module: m48498 1 Muscular System Module 3: Contraction and Relaxation * Donna Browne Based on Muscle Fiber Contraction and Relaxation by OpenStax This work is produced by OpenStax-CNX and

More information

(c) sarcolemma with acethylcholine (protein) receptors

(c) sarcolemma with acethylcholine (protein) receptors (slide 1) Lecture Notes: Muscular System I. (slide 2) Introduction to Muscular System A) Tissues of the Muscular System: 1) Connective Tissues (a) dense fibrous (tendons and ligaments) 2) Nervous Tissue

More information

1. General characteristics of muscle tissues: 2. A. Skeletal muscle tissue ("striated muscle tissue")

1. General characteristics of muscle tissues: 2. A. Skeletal muscle tissue (striated muscle tissue) 1. General characteristics of muscle tissues: Muscle fibers, AKA, muscle cells Vascularized. Other tissues dense and loose C.T. nerves and nerve fibers Muscle fibers (muscle cells) close together. From

More information

Human Anatomy & Physiology I with Dr. Hubley

Human Anatomy & Physiology I with Dr. Hubley Human Anatomy & Physiology I with Dr. Hubley Sample Final Exam Name: Instructions This exam consists of 50 questions. You may write on the exam itself, but be sure to answer all your questions on a Scantron

More information

DOWNLOAD PDF STRUCTURE AND REGULATION OF CARDIAC AND SKELETAL MUSCLE THIN FILAMENTS

DOWNLOAD PDF STRUCTURE AND REGULATION OF CARDIAC AND SKELETAL MUSCLE THIN FILAMENTS Chapter 1 : ACTC1 - Wikipedia LARRY S. TOBACMAN STRUCTURE AND REGULATION OF CARDIAC AND The biological production of force and movement can be understood only when it is. Structure[ edit ] There are three

More information

Muscle Physiology Chapter 11

Muscle Physiology Chapter 11 Characteristics of Muscle Tissue Types of Muscle Skeletal Muscle Motor Units Skeletal Muscle Contraction Skeletal Muscle Metabolism Cardiac Muscle Smooth Muscle Muscle Physiology Chapter 11 Characteristics

More information

#1 20. physiology. Muscle tissue 30/9/2015. Ahmad Adel Sallal. Mohammad Qudah

#1 20. physiology. Muscle tissue 30/9/2015. Ahmad Adel Sallal. Mohammad Qudah # 20 physiology Muscle tissue Ahmad Adel Sallal 30/9/205 Mohammad Qudah MUSCLES PHYSIOLOGY Awn, welcome to the first physiology lecture in the MSS, I wish you a perfect exams with high grades, and never

More information