Alterações na Pressão Arterial durante Ventilação Mecânica. Rafael Lisboa de Souza Especialista em Medicina Intensiva pela UFSC e AMIB

Size: px
Start display at page:

Download "Alterações na Pressão Arterial durante Ventilação Mecânica. Rafael Lisboa de Souza Especialista em Medicina Intensiva pela UFSC e AMIB"

Transcription

1 Alterações na Pressão Arterial durante Ventilação Mecânica Rafael Lisboa de Souza Especialista em Medicina Intensiva pela UFSC e AMIB

2

3

4

5 Changes in Arterial Pressure during Mechanical Ven4la4on. Michard, Frederic Anesthesiology. 103(2): , August Fig. 2 Phasic flow tracings of vena cava blood flow, pulmonary artery blood flow, and aorrc blood flow. PosiRve- pressure inspiraron induces successively a decrease in vena cava blood flow ( 1), a decrease in pulmonary artery blood flow (2), and a decrease in aorrc blood flow (3). From Morgan et al. 31; used with permission American Society of Anesthesiologists, Inc. Published by Lippinco@ Williams & Wilkins, Inc. 3

6

7 Changes in Arterial Pressure during Mechanical Ven4la4on. Michard, Frederic Anesthesiology. 103(2): , August Fig. 3 Physiologic effects of mechanical venrlaron in hypovolemic condirons. Right ventricular preload decreases because the increase in pleural pressure induces a compression of the superior vena cava ( 1) and an increase in intramural right atrial pressure (2), while the transmural right atrial pressure decreases. In West zones I (pulmonary arterial pressure 3). In West zones III (alveolar pressure 4). The increase in pleural pressure induces a decrease in lex ventricular axerload (5). LA = lex atrium; LV = lex ventricle; Palv = alveolar pressure; Ppl = pleural pressure; RA = right atrium; RV = right ventricle American Society of Anesthesiologists, Inc. Published by Lippinco@ Williams & Wilkins, Inc. 4

8 Changes in Arterial Pressure during Mechanical Ven4la4on. Michard, Frederic Anesthesiology. 103(2): , August Fig. 4 Physiologic effects of mechanical venrlaron in hypervolemic condirons. The vena cava and right atrium are poorly compliant and compressible and hence relarvely insensirve to changes in pleural pressure. West zones III (alveolar pressure 4). The increase in pleural pressure induces a decrease in lex ventricular axerload (5). LA = lex atrium; LV = lex ventricle; Palv = alveolar pressure; Ppl = pleural pressure; RA = right atrium; RV = right ventricle American Society of Anesthesiologists, Inc. Published by Lippinco@ Williams & Wilkins, Inc. 5

9 Changes in Arterial Pressure during Mechanical Ven4la4on. Michard, Frederic Anesthesiology. 103(2): , August Fig. 1 AnalyRcal descripron of respiratory changes in arterial pressure during mechanical venrlaron. The systolic pressure and the pulse pressure (systolic minus diastolic pressure) are maximum (SPmax and PPmax, respecrvely) during inspiraron and minimum (SPmin and PPmin, respecrvely) a few heartbeats later, i.e., during the expiratory period. The systolic pressure variaron (SPV) is the difference between SPmax and SPmin. The assessment of a reference systolic pressure (SPref) during an end- expiratory pause allows the discriminaron between the inspiratory increase ([DELTA]up) and the expiratory decrease ([DELTA]down) in systolic pressure. Pa = arterial pressure; Paw = airway pressure American Society of Anesthesiologists, Inc. Published by Lippinco@ Williams & Wilkins, Inc. 2

10

11

12

13

14

15

16

17

18

19

20 Changes in Arterial Pressure during Mechanical Ven4la4on. Michard, Frederic Anesthesiology. 103(2): , August Fig. 7 Techniques available at the bedside to assess the respiratory variaron in lex ventricular stroke volume induced by mechanical venrlaron. The abdominal aorrc blood velocity variaron and the pulse oximeter signal variaron have not been validated to predict fluid responsiveness American Society of Anesthesiologists, Inc. Published by Lippinco@ Williams & Wilkins, Inc. 8

21

22

23

24

25

26

27

28 Changes in Arterial Pressure during Mechanical Ven4la4on. Michard, Frederic Fig. 9 Anesthesiology. 103(2): , August Fig. 9 How to assess the respiratory variaron in arterial pressure in clinical pracrce. CO = cardiac output; [DELTA] PP = arterial pulse pressure variaron; PEEP = posirve end- expiratory pressure; SV = stroke volume; Svo2 = mixed venous oxygen saturaron; VT = Rdal volume American Society of Anesthesiologists, Inc. Published by Lippinco@ Williams & Wilkins, Inc. 11

29

30

31

32

33

34

35

36

37

38

39

40

41 OBRIGADO!

The Vigileo monitor by Edwards Lifesciences supports both the FloTrac Sensor for continuous cardiac output and the Edwards PreSep oximetry catheter

The Vigileo monitor by Edwards Lifesciences supports both the FloTrac Sensor for continuous cardiac output and the Edwards PreSep oximetry catheter 1 2 The Vigileo monitor by Edwards Lifesciences supports both the FloTrac Sensor for continuous cardiac output and the Edwards PreSep oximetry catheter for continuous central venous oximetry (ScvO2) 3

More information

Jan M. Headley, R.N. BS

Jan M. Headley, R.N. BS Fluid First: Using PLR & SVV to Optimize Volume Jan M. Headley, R.N. BS Disclosure Director, Clinical Marketing & Professional Education Edwards Lifesciences Does this Patient NEED Fluid?? WE Have a Problem

More information

Review Article. Interactive Physiology in Critical Illness : Pulmonary and Cardiovascular Systems. Introduction

Review Article. Interactive Physiology in Critical Illness : Pulmonary and Cardiovascular Systems. Introduction 310 Indian Deepak J Physiol Shrivastava Pharmacol 2016; 60(4) : 310 314 Indian J Physiol Pharmacol 2016; 60(4) Review Article Interactive Physiology in Critical Illness : Pulmonary and Cardiovascular Systems

More information

SIKLUS JANTUNG. Rahmatina B. Herman

SIKLUS JANTUNG. Rahmatina B. Herman SIKLUS JANTUNG Rahmatina B. Herman The Cardiac Cycle Definition: The cardiac events that occur from the beginning of one heartbeat to the beginning of the next The cardiac cycle consists of: - Diastole

More information

Changes in Arterial Pressure during Mechanical Ventilation Frédéric Michard, M.D., Ph.D.*

Changes in Arterial Pressure during Mechanical Ventilation Frédéric Michard, M.D., Ph.D.* REVIEW ARTICLES David C. Warltier, M.D., Ph.D., Editor Anesthesiology 2005; 103:419 28 2005 American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc. Changes in Arterial Pressure

More information

Hemodynamic monitoring beyond cardiac output

Hemodynamic monitoring beyond cardiac output Hemodynamic monitoring beyond cardiac output Prof Xavier MONNET Medical Intensive Care Unit Bicêtre Hospital Assistance publique Hôpitaux de Paris FRANCE Conflicts of interest Lilly GlaxoSmithKline Pulsion

More information

Swan Ganz catheter: Does it still have a role? Daniel De Backer Department of Intensive Care Erasme University Hospital Brussels, Belgium

Swan Ganz catheter: Does it still have a role? Daniel De Backer Department of Intensive Care Erasme University Hospital Brussels, Belgium Swan Ganz catheter: Does it still have a role? Daniel De Backer Department of Intensive Care Erasme University Hospital Brussels, Belgium How can cardiac output be measured? Thermodilution Arterial waveform

More information

Prof. Dr. Iman Riad Mohamed Abdel Aal

Prof. Dr. Iman Riad Mohamed Abdel Aal The Use of New Ultrasound Indices to Evaluate Volume Status and Fluid Responsiveness in Septic Shock Patients Thesis Submitted for partial fulfillment of MD degree in Anesthesiology, Surgical Intensive

More information

Respiratory Physiology and the Impact of Different Modes of Ventilation on the Photoplethysmographic Waveform

Respiratory Physiology and the Impact of Different Modes of Ventilation on the Photoplethysmographic Waveform Sensors 2012, 12, 2236-2254; doi:10.3390/s120202236 Review OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Respiratory Physiology and the Impact of Different Modes of Ventilation on the

More information

Definition- study of blood flow Haemodynamic monitoring refers to monitoring of blood in the cardiovascular system Uses Is NB in the critically ill

Definition- study of blood flow Haemodynamic monitoring refers to monitoring of blood in the cardiovascular system Uses Is NB in the critically ill By Craig Definition- study of blood flow Haemodynamic monitoring refers to monitoring of blood in the cardiovascular system Uses Is NB in the critically ill pt Can assist diagnosis and decision making

More information

AS Level OCR Cardiovascular System

AS Level OCR Cardiovascular System AS Level OCR Cardiovascular System Learning Objectives The link between the Cardiac Cycle and the Conduction system of the heart. The relationship between Stroke volume, Heart rate and Cardiac Output.

More information

The Mammalian Circulatory System

The Mammalian Circulatory System The Mammalian Heart The Mammalian Circulatory System Recall: What are the 3 cycles of the mammalian circulatory system? What are their functions? What are the three main vessel types in the mammalian circulatory

More information

Recent advances in the clinical application of heart-lung interactions Michael R. Pinsky, MD

Recent advances in the clinical application of heart-lung interactions Michael R. Pinsky, MD Recent advances in the clinical application of heart-lung interactions Michael R. Pinsky, MD Clinical applications of heart-lung interactions have centered on the impact of ventilation on regional blood

More information

Arterial Pulse Pressure Variation During Positive Pressure Ventilation and Passive Leg Raising

Arterial Pulse Pressure Variation During Positive Pressure Ventilation and Passive Leg Raising Arterial Pulse Pressure Variation During Positive Pressure Ventilation and Passive Leg Raising J.-L. Teboul, X. Monnet, and C. Richard Introduction Inadequate cardiac preload can play a major role in the

More information

Invasive Cardiac Output Monitoring and Pulse Contour Analysis. Harshad B. Ranchod Paediatric Intensivist Chris Hani Baragwanath Hospital COPICON 2011

Invasive Cardiac Output Monitoring and Pulse Contour Analysis. Harshad B. Ranchod Paediatric Intensivist Chris Hani Baragwanath Hospital COPICON 2011 Invasive Cardiac Output Monitoring and Pulse Contour Analysis Harshad B. Ranchod Paediatric Intensivist Chris Hani Baragwanath Hospital COPICON 2011 Introduction The primary goal of haemodynamic monitoring

More information

Ch.15 Cardiovascular System Pgs {15-12} {15-13}

Ch.15 Cardiovascular System Pgs {15-12} {15-13} Ch.15 Cardiovascular System Pgs {15-12} {15-13} E. Skeleton of the Heart 1. The skeleton of the heart is composed of rings of dense connective tissue and other masses of connective tissue in the interventricular

More information

Hemodynamic Monitoring

Hemodynamic Monitoring Perform Procedure And Interpret Results Hemodynamic Monitoring Tracheal Tube Cuff Pressure Dean R. Hess PhD RRT FAARC Hemodynamic Monitoring Cardiac Rate and Rhythm Arterial Blood Pressure Central Venous

More information

The Use of Dynamic Parameters in Perioperative Fluid Management

The Use of Dynamic Parameters in Perioperative Fluid Management The Use of Dynamic Parameters in Perioperative Fluid Management Gerard R. Manecke Jr., M.D. Chief, Cardiac Anesthesia UCSD Medical Center San Diego, CA, USA Thanks to Tom Higgins, M.D. 1 Goals of today

More information

Clinical Applications of The Pleth. Variability Index (PVI):

Clinical Applications of The Pleth. Variability Index (PVI): Clinical Applications of The Pleth. Variability Index (PVI): A non invasive and continuous monitoring of fluid responsiveness J.PIRSON, MD 26 nov. 2011 Preoperative hypovolemia after an overnight fasting

More information

Principles of Biomedical Systems & Devices. Lecture 8: Cardiovascular Dynamics Dr. Maria Tahamont

Principles of Biomedical Systems & Devices. Lecture 8: Cardiovascular Dynamics Dr. Maria Tahamont Principles of Biomedical Systems & Devices Lecture 8: Cardiovascular Dynamics Dr. Maria Tahamont Review of Cardiac Anatomy Four chambers Two atria-receive blood from the vena cave and pulmonary veins Two

More information

Cardiorespiratory Interactions:

Cardiorespiratory Interactions: Cardiorespiratory Interactions: The Heart - Lung Connection Jon N. Meliones, MD, MS, FCCM Professor of Pediatrics Duke University Medical Director PCVICU Optimizing CRI Cardiorespiratory Economics O2:

More information

Cardiovascular Physiology. Heart Physiology. Introduction. The heart. Electrophysiology of the heart

Cardiovascular Physiology. Heart Physiology. Introduction. The heart. Electrophysiology of the heart Cardiovascular Physiology Heart Physiology Introduction The cardiovascular system consists of the heart and two vascular systems, the systemic and pulmonary circulations. The heart pumps blood through

More information

QUIZ 1. Tuesday, March 2, 2004

QUIZ 1. Tuesday, March 2, 2004 Harvard-MIT Division of Health Sciences and Technology HST.542J: Quantitative Physiology: Organ Transport Systems Instructors: Roger Mark and Jose Venegas MASSACHUSETTS INSTITUTE OF TECHNOLOGY Departments

More information

Major Function of the Cardiovascular System. Transportation. Structures of the Cardiovascular System. Heart - muscular pump

Major Function of the Cardiovascular System. Transportation. Structures of the Cardiovascular System. Heart - muscular pump Structures of the Cardiovascular System Heart - muscular pump Blood vessels - network of tubes Blood - liquid transport vehicle brachiocephalic trunk superior vena cava right pulmonary arteries right pulmonary

More information

PCV and PAOP Old habits die hard!

PCV and PAOP Old habits die hard! PCV and PAOP Old habits die hard! F Javier Belda MD, PhD Head of Department Associate Professor Anaesthesia and Critical Care Hospital Clínico Universitario Valencia (SPAIN) An old example TOBACO SMOKING

More information

Step 2: Basic monitoring and assessment of global perfusion

Step 2: Basic monitoring and assessment of global perfusion techniques are known as the downstream markers. Since patients oxygen and metabolic needs vary with different stressors and at different times, monitoring downstream variables can be helpful. The current

More information

The Cardiovascular System (Heart)

The Cardiovascular System (Heart) The Cardiovascular System The Cardiovascular System (Heart) A closed system of the heart and blood vessels The heart pumps blood Blood vessels allow blood to circulate to all parts of the body The function

More information

Topics to be Covered. Cardiac Measurements. Distribution of Blood Volume. Distribution of Pulmonary Ventilation & Blood Flow

Topics to be Covered. Cardiac Measurements. Distribution of Blood Volume. Distribution of Pulmonary Ventilation & Blood Flow Topics to be Covered MODULE F HEMODYNAMIC MONITORING Cardiac Output Determinants of Stroke Volume Hemodynamic Measurements Pulmonary Artery Catheterization Control of Blood Pressure Heart Failure Cardiac

More information

The Cardiac Cycle Clive M. Baumgarten, Ph.D.

The Cardiac Cycle Clive M. Baumgarten, Ph.D. The Cardiac Cycle Clive M. Baumgarten, Ph.D. OBJECTIVES: 1. Describe periods comprising cardiac cycle and events within each period 2. Describe the temporal relationships between pressure, blood flow,

More information

Selected age-associated changes in the cardiovascular system

Selected age-associated changes in the cardiovascular system Selected age-associated changes in the cardiovascular system Tamara Harris, M.D., M.S. Chief, Interdisciplinary Studies of Aging Acting Co-Chief, Laboratory of Epidemiology and Population Sciences Intramural

More information

Doppler Basic & Hemodynamic Calculations

Doppler Basic & Hemodynamic Calculations Doppler Basic & Hemodynamic Calculations August 19, 2017 Smonporn Boonyaratavej MD Division of Cardiology, Department of Medicine Chulalongkorn University Cardiac Center, King Chulalongkorn Memorial Hospital

More information

Chapter 38: Pulmonary Circulation, Pulmonary Edema, Pleural Fluid UNIT VII. Slides by Robert L. Hester, PhD

Chapter 38: Pulmonary Circulation, Pulmonary Edema, Pleural Fluid UNIT VII. Slides by Robert L. Hester, PhD UNIT VII Chapter 38: Pulmonary Circulation, Pulmonary Edema, Pleural Fluid Slides by Robert L. Hester, PhD Objectives Describe the pulmonary circulation Describe the pulmonary blood pressures List the

More information

Practice Exercises for the Cardiovascular System

Practice Exercises for the Cardiovascular System Practice Exercises for the Cardiovascular System On the diagram below, color the oxygen-rich blood red and the oxygen-poor blood blue. Label the parts: Continued on the next page... Label the parts on

More information

FUNDAMENTALS OF HEMODYNAMICS, VASOACTIVE DRUGS AND IABP IN THE FAILING HEART

FUNDAMENTALS OF HEMODYNAMICS, VASOACTIVE DRUGS AND IABP IN THE FAILING HEART FUNDAMENTALS OF HEMODYNAMICS, VASOACTIVE DRUGS AND IABP IN THE FAILING HEART CINDY BITHER, MSN, ANP, ANP, AACC, CHFN CHIEF NP, ADV HF PROGRAM MEDSTAR WASHINGTON HOSPITAL CENTER CONFLICTS OF INTEREST NONE

More information

Echocardiography as a diagnostic and management tool in medical emergencies

Echocardiography as a diagnostic and management tool in medical emergencies Echocardiography as a diagnostic and management tool in medical emergencies Frank van der Heusen MD Department of Anesthesia and perioperative Care UCSF Medical Center Objective of this presentation Indications

More information

Cardiovascular System Notes: Physiology of the Heart

Cardiovascular System Notes: Physiology of the Heart Cardiovascular System Notes: Physiology of the Heart Interesting Heart Fact Capillaries are so small it takes ten of them to equal the thickness of a human hair. Review What are the 3 parts of the cardiovascular

More information

FLUIDS AND SOLUTIONS IN THE CRITICALLY ILL. Daniel De Backer Department of Intensive Care Erasme University Hospital Brussels, Belgium

FLUIDS AND SOLUTIONS IN THE CRITICALLY ILL. Daniel De Backer Department of Intensive Care Erasme University Hospital Brussels, Belgium FLUIDS AND SOLUTIONS IN THE CRITICALLY ILL Daniel De Backer Department of Intensive Care Erasme University Hospital Brussels, Belgium Why do we want to administer fluids? To correct hypovolemia? To increase

More information

Using Functional Hemodynamic Indicators to Guide Fluid Therapy

Using Functional Hemodynamic Indicators to Guide Fluid Therapy CE 2.6 HOURS Continuing Education Using Functional Hemodynamic Indicators to Guide Fluid Therapy A more accurate and less invasive way to gauge responsiveness to iv volume replacement. OVERVIEW: Hemodynamic

More information

UPMC Critical Care

UPMC Critical Care UPMC Critical Care www.ccm.pitt.edu Cardiovascular insufficiency with Initiation and Withdrawal of Mechanical Ventilation Michael R. Pinsky, MD, Dr hc Department of Critical Care Medicine University of

More information

Biology Unit 3 The Human Heart P

Biology Unit 3 The Human Heart P Biology 2201 Unit 3 The Human Heart P 314-321 Structure and Function of the Human Heart Structure of the Human Heart Has four Chambers (2 Atria and 2 Ventricles) Made of Cardiac Muscle Found in Chest Cavity

More information

Circulatory Systems. All cells need to take in nutrients and expel metabolic wastes.

Circulatory Systems. All cells need to take in nutrients and expel metabolic wastes. Circulatory Systems All cells need to take in nutrients and expel metabolic wastes. Single celled organisms: nutrients from the environment can diffuse (or be actively transported) directly in to the cell

More information

HOW LOW CAN YOU GO? HYPOTENSION AND THE ANESTHETIZED PATIENT.

HOW LOW CAN YOU GO? HYPOTENSION AND THE ANESTHETIZED PATIENT. HOW LOW CAN YOU GO? HYPOTENSION AND THE ANESTHETIZED PATIENT. Donna M. Sisak, CVT, LVT, VTS (Anesthesia/Analgesia) Seattle Veterinary Specialists Kirkland, WA dsisak@svsvet.com THE ANESTHETIZED PATIENT

More information

The Cardiovascular System

The Cardiovascular System Essentials of Human Anatomy & Physiology Elaine N. Marieb Seventh Edition Chapter 11 The Cardiovascular System Slides 11.1 11.19 Lecture Slides in PowerPoint by Jerry L. Cook The Cardiovascular System

More information

Using Ventilator and Cardiovascular Graphics in the Patient Who Is Hemodynamically Unstable

Using Ventilator and Cardiovascular Graphics in the Patient Who Is Hemodynamically Unstable Using Ventilator and Cardiovascular Graphics in the Patient Who Is Hemodynamically Unstable Bryant A Murphy MD and Charles G Durbin Jr MD FAARC Introduction Venous Return and Intrathoracic Pressure Variation

More information

PHYSIOLOGY MeQ'S (Morgan) All the following statements related to blood volume are correct except for: 5 A. Blood volume is about 5 litres. B.

PHYSIOLOGY MeQ'S (Morgan) All the following statements related to blood volume are correct except for: 5 A. Blood volume is about 5 litres. B. PHYSIOLOGY MeQ'S (Morgan) Chapter 5 All the following statements related to capillary Starling's forces are correct except for: 1 A. Hydrostatic pressure at arterial end is greater than at venous end.

More information

Cardiovascular System

Cardiovascular System Cardiovascular System The Heart Cardiovascular System The Heart Overview What does the heart do? By timed muscular contractions creates pressure gradients blood moves then from high pressure to low pressure

More information

Principles of Anatomy and Physiology

Principles of Anatomy and Physiology Principles of Anatomy and Physiology 14 th Edition CHAPTER 20 The Cardiovascular System: The Heart Introduction The purpose of the chapter is to: 1. Learn about the components of the cardiovascular system

More information

Evolutionary origins of the right ventricle. S Magder Department of Critical Care, McGill University Health Centre

Evolutionary origins of the right ventricle. S Magder Department of Critical Care, McGill University Health Centre Evolutionary origins of the right ventricle S Magder Department of Critical Care, McGill University Health Centre Fully separated four chamber heart only evolved in birds and mammals What are the evolutionary

More information

stroke volume in cardiac tamponade

stroke volume in cardiac tamponade British Heart journal, 1970, 32, 592-596. Effect of respiration on venous return and stroke volume in cardiac tamponade I. T. Gabe, D. T. Mason, J. H. Gault, J. Ross, Jr., R. Zelis, C. J. Mills, E. Braunwald,

More information

Revision of 10/27/2017 Form #280 Page 1 of 12 PVDOMICS STUDY Clinical Center Right Heart Catheterization (RHC) Results Form #280

Revision of 10/27/2017 Form #280 Page 1 of 12 PVDOMICS STUDY Clinical Center Right Heart Catheterization (RHC) Results Form #280 Revision of 10/27/2017 Form #280 Page 1 of 12 PVDOMICS STUDY Clinical Center Right Heart Catheterization (RHC) Results Form #280 Instructions: Review PVDOMICS MOP Chapter 100 prior to completing right

More information

10. Thick deposits of lipids on the walls of blood vessels, called, can lead to serious circulatory issues. A. aneurysm B. atherosclerosis C.

10. Thick deposits of lipids on the walls of blood vessels, called, can lead to serious circulatory issues. A. aneurysm B. atherosclerosis C. Heart Student: 1. carry blood away from the heart. A. Arteries B. Veins C. Capillaries 2. What is the leading cause of heart attack and stroke in North America? A. alcohol B. smoking C. arteriosclerosis

More information

COPYRIGHTED MATERIAL. The fetal circulation CHAPTER 1. Postnatal circulation

COPYRIGHTED MATERIAL. The fetal circulation CHAPTER 1. Postnatal circulation 1 CHAPTER 1 The fetal circulation The circulation in the fetus differs from that in the adult. Knowledge of the course and distribution of the fetal circulation is important to our understanding of the

More information

Lecture 8. Heart and Circulatory System. Lecture 8

Lecture 8. Heart and Circulatory System. Lecture 8 Lecture 8 Heart and Circulatory System Lecture 8 1. Introduction 2. Blood 3. Blood Vessels & Blood Pressure 4. The Heart 5. Cardiovascular (Circulatory) System 2 1 Circulatory System Function 1. Transport

More information

The Cardiovascular System

The Cardiovascular System 11 PART A The Cardiovascular System PowerPoint Lecture Slide Presentation by Jerry L. Cook, Sam Houston University ESSENTIALS OF HUMAN ANATOMY & PHYSIOLOGY EIGHTH EDITION ELAINE N. MARIEB The Cardiovascular

More information

Cardiovascular Structure & Function

Cardiovascular Structure & Function Cardiovascular Structure & Function Cardiovascular system: The heart Arteries Veins Capillaries Lymphatic vessels Weighting of the heart ceremony: Ancient Egyptians William Harvey and Blood Flow April

More information

suggested by Katz and Gauchat (3) for the ex- diaphragm during inspiration, traction is applied Dornhorst, Howard, and Leathart (2), using an

suggested by Katz and Gauchat (3) for the ex- diaphragm during inspiration, traction is applied Dornhorst, Howard, and Leathart (2), using an Journal of Clinical Investigation Vol. 42, No. 2, 1963 THE MECHANISM OF PULSUS PARADOXUS DURING ACUTE PERICARDIAL TAMPONADE * By RICHARD J. GOLINKO,t NEVILLE KAPLAN, AND ABRAHAM M. RUDOLPH t (From the

More information

Anatomy Review: The Heart Graphics are used with permission of A.D.A.M. Software, Inc. and Benjamin/Cummings Publishing Co.

Anatomy Review: The Heart Graphics are used with permission of A.D.A.M. Software, Inc. and Benjamin/Cummings Publishing Co. Anatomy Review: The Heart Graphics are used with permission of A.D.A.M. Software, Inc. and Benjamin/Cummings Publishing Co. Anatomy Views Label the diagrams of the heart below: Interactive Physiology Study

More information

Changes in the Venous Pulse Waveform in Pericardial Effusion Revealed by Doppler. Benoy N Shah MD(Res) MRCP FESC & Dhrubo J Rakhit PhD FRCP FACC

Changes in the Venous Pulse Waveform in Pericardial Effusion Revealed by Doppler. Benoy N Shah MD(Res) MRCP FESC & Dhrubo J Rakhit PhD FRCP FACC Page 1 of 5 Title of image and video article Changes in the Venous Pulse Waveform in Pericardial Effusion Revealed by Doppler Echocardiography of the Superior Vena Cava Authors Benoy N Shah MD(Res) MRCP

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Harvard-MIT Division of Health Sciences and Technology HST.542J: Quantitative Physiology: Organ Transport Systems Instructors: Roger Mark and Jose Venegas MASSACHUSETTS INSTITUTE OF TECHNOLOGY Departments

More information

HISTORY. Question: What category of heart disease is suggested by this history? CHIEF COMPLAINT: Heart murmur present since early infancy.

HISTORY. Question: What category of heart disease is suggested by this history? CHIEF COMPLAINT: Heart murmur present since early infancy. HISTORY 18-year-old man. CHIEF COMPLAINT: Heart murmur present since early infancy. PRESENT ILLNESS: Although normal at birth, a heart murmur was heard at the six week check-up and has persisted since

More information

1. Distinguish among the types of blood vessels on the basis of their structure and function.

1. Distinguish among the types of blood vessels on the basis of their structure and function. Blood Vessels and Circulation Objectives This chapter describes the structure and functions of the blood vessels Additional subjects contained in Chapter 13 include cardiovascular physiology, regulation,

More information

Lesson 10 Circulatory System (Nelson p.88-93)

Lesson 10 Circulatory System (Nelson p.88-93) Name: Date: Lesson 10 Circulatory System (Nelson p.88-93) Learning Goals: A. I can explain the primary functions of the circulatory system in animals. B. I can identify and explain all the parts of the

More information

Chapter 27 The Heart and Blood Vessels

Chapter 27 The Heart and Blood Vessels Chapter 27 The Heart and Blood Vessels Most animals have a closed blood system. The blood flows continuously in vessels back to the heart. In an open system the blood is pumped into open ended tubes and

More information

Copyright 2011, 2007 by Mosby, Inc., an affiliate of Elsevier Inc. Normal Cardiac Anatomy

Copyright 2011, 2007 by Mosby, Inc., an affiliate of Elsevier Inc. Normal Cardiac Anatomy Mosby,, an affiliate of Elsevier Normal Cardiac Anatomy Impaired cardiac pumping Results in vasoconstriction & fluid retention Characterized by ventricular dysfunction, reduced exercise tolerance, diminished

More information

The Heart. Made up of 3 different tissue: cardiac muscle tissue, nerve tissue, and connective tissue.

The Heart. Made up of 3 different tissue: cardiac muscle tissue, nerve tissue, and connective tissue. The Heart The Heart Made up of 3 different tissue: cardiac muscle tissue, nerve tissue, and connective tissue. Your heart pumps with a regular beat (Heart Rate) Your heart rate can change depending on

More information

ADVANCED ASSESSMENT Cardiovascular System

ADVANCED ASSESSMENT Cardiovascular System ONTARIO BASE HOSPITAL GROUP QUIT ADVANCED ASSESSMENT Cardiovascular System 2007 Ontario Base Hospital Group ADVANCED ASSESSMENT Cardiovascular System AUTHORS Mike Muir AEMCA, ACP, BHSc Paramedic Program

More information

Point-of-Care Ultrasound Closer look at the Inferior Vena Cavae &

Point-of-Care Ultrasound Closer look at the Inferior Vena Cavae & Point-of-Care Ultrasound Closer look at the Inferior Vena Cavae & Brief Introduction to Gross Systolic Function Omar S. Darwish, MS, DO Certified in Point-of-Care Ultrasound Hospitalist University of California,

More information

DESIGNER RESUSCITATION: TITRATING TO TISSUE NEEDS

DESIGNER RESUSCITATION: TITRATING TO TISSUE NEEDS DESIGNER RESUSCITATION: TITRATING TO TISSUE NEEDS R. Phillip Dellinger MD, MSc, MCCM Professor and Chair of Medicine Cooper Medical School of Rowan University Chief of Medicine Cooper University Hospital

More information

The Doppler Examination. Katie Twomley, MD Wake Forest Baptist Health - Lexington

The Doppler Examination. Katie Twomley, MD Wake Forest Baptist Health - Lexington The Doppler Examination Katie Twomley, MD Wake Forest Baptist Health - Lexington OUTLINE Principles/Physics Use in valvular assessment Aortic stenosis (continuity equation) Aortic regurgitation (pressure

More information

Level 2 Anatomy and Physiology Bite size revision. Respiratory System. The order of the passage of oxygen into the body (inhalation/inspiration) is: -

Level 2 Anatomy and Physiology Bite size revision. Respiratory System. The order of the passage of oxygen into the body (inhalation/inspiration) is: - Respiratory System Function of the respiratory system The lungs are located in the chest cavity and their function is to intake oxygen and remove carbon dioxide from the body. Structure of the respiratory

More information

CHAPTER 13. Fluid Responsiveness

CHAPTER 13. Fluid Responsiveness CHAPTER 13 Fluid Responsiveness SECTION 1 Introduction Administration of an intravenous fluid challenge is a common medical intervention in the hypotensive or hypovolemic patient. Ideally, a fluid challenge

More information

Circulatory System Review

Circulatory System Review Circulatory System Review 1. Know the diagrams of the heart, internal and external. a) What is the pericardium? What is myocardium? What is the septum? b) Explain the 4 valves of the heart. What is their

More information

Hemodynamics: Cardiac and Vascular Jeff Davis, RRT, RCIS

Hemodynamics: Cardiac and Vascular Jeff Davis, RRT, RCIS Hemodynamics: Cardiac and Vascular Jeff Davis, RRT, RCIS Program Director, Cardiovascular Technology Florida SouthWestern State College Fort Myers, FL Disclosures Speaker s Bureau: None Stockholder: None

More information

Diastolic Function: What the Sonographer Needs to Know. Echocardiographic Assessment of Diastolic Function: Basic Concepts 2/8/2012

Diastolic Function: What the Sonographer Needs to Know. Echocardiographic Assessment of Diastolic Function: Basic Concepts 2/8/2012 Diastolic Function: What the Sonographer Needs to Know Pat Bailey, RDCS, FASE Technical Director Beaumont Health System Echocardiographic Assessment of Diastolic Function: Basic Concepts Practical Hints

More information

Effect of positive pressure ventilation and static effective lung compliance upon pulmonary artery and wedge pressures

Effect of positive pressure ventilation and static effective lung compliance upon pulmonary artery and wedge pressures Effect of positive pressure ventilation and static effective lung compliance upon pulmonary artery and wedge pressures Item Type text; Thesis-Reproduction (electronic) Authors Van Sciver, Patricia Ann

More information

The Cardiovascular System

The Cardiovascular System The Cardiovascular System The Manila Times College of Subic Prepared by: Stevens B. Badar, RN, MANc THE HEART Anatomy of the Heart Location and Size approx. the size of a person s fist, hollow and cone-shaped,

More information

Lecture 13: The Cardiovascular System ref: Cardiovascular Physiology, D. Mohrman and L. Heller, 4th ed. McGraw-Hill (1997)

Lecture 13: The Cardiovascular System ref: Cardiovascular Physiology, D. Mohrman and L. Heller, 4th ed. McGraw-Hill (1997) Lecture 13: The Cardiovascular System ref: Cardiovascular Physiology, D. Mohrman and L. Heller, 4th ed. McGraw-Hill (1997) Blood Heart Blood Vessels Arteries - capillaries - Veins Ventilation-Perfusion

More information

CORRELATION OF SYSTOLIC PRESSURE VARIATION, PULSE PRESSURE VARIATION AND STROKE VOLUME VARIATION IN DIFFERENT PRELOAD CONDITIONS FOLLOWING A

CORRELATION OF SYSTOLIC PRESSURE VARIATION, PULSE PRESSURE VARIATION AND STROKE VOLUME VARIATION IN DIFFERENT PRELOAD CONDITIONS FOLLOWING A CORRELATION OF SYSTOLIC PRESSURE VARIATION, PULSE PRESSURE VARIATION AND STROKE VOLUME VARIATION IN DIFFERENT PRELOAD CONDITIONS FOLLOWING A SINGLE DOSE MANNITOL INFUSION IN ELECTIVE NEUROSURGICAL PATIENTS

More information

Use of the Total Artificial Heart in the Failing Fontan Circulation J William Gaynor, M.D.

Use of the Total Artificial Heart in the Failing Fontan Circulation J William Gaynor, M.D. Use of the Total Artificial Heart in the Failing Fontan Circulation J William Gaynor, M.D. Daniel M. Tabas Endowed Chair in Pediatric Cardiothoracic Surgery at The Children s Hospital of Philadelphia The

More information

Useful Ectopics: Case Study. Effects of vasodilation and the diagnostic value of ectopic heartbeats

Useful Ectopics: Case Study. Effects of vasodilation and the diagnostic value of ectopic heartbeats Effects of vasodilation and the diagnostic value of ectopic heartbeats 83 year old man, weight 66 kg, height 177 cm, BSA 1.82m 2. Closure of colostomy. No cardiac history. Screenshot 1 Baseline at start

More information

IB TOPIC 6.2 THE BLOOD SYSTEM

IB TOPIC 6.2 THE BLOOD SYSTEM IB TOPIC 6.2 THE BLOOD SYSTEM TERMS TO KNOW circulation ventricle artery vein THE BLOOD SYSTEM 6.2.U1 - Arteries convey blood at high pressure from the ventricles to the tissues of the body Circulation

More information

Review Using heart lung interactions to assess fluid responsiveness during mechanical ventilation Frédéric Michard and Jean-Louis Teboul

Review Using heart lung interactions to assess fluid responsiveness during mechanical ventilation Frédéric Michard and Jean-Louis Teboul Review Using heart lung interactions to assess fluid responsiveness during mechanical ventilation Frédéric Michard and Jean-Louis Teboul Université Paris XI, Kremlin Bicêtre, France Received: 21 July 2000

More information

Preload optimisation in severe sepsis and septic shock

Preload optimisation in severe sepsis and septic shock Preload optimisation in severe sepsis and septic shock Prof. Jean-Louis TEBOUL Medical ICU Bicetre hospital University Paris South France Conflicts of interest Member of themedical Advisory Board ofpulsion

More information

Mr. Epithelium s Anatomy and Physiology Test SSSS

Mr. Epithelium s Anatomy and Physiology Test SSSS Mr. Epithelium s Anatomy and Physiology Test SSSS You have 50 minutes to complete this test packet. One 8.5 x 11 cheat sheet is allowed, along with 1 non-programmable calculator dedicated to computation.

More information

Georgios C. Bompotis Cardiologist, Director of Cardiological Department, Papageorgiou Hospital,

Georgios C. Bompotis Cardiologist, Director of Cardiological Department, Papageorgiou Hospital, Georgios C. Bompotis Cardiologist, Director of Cardiological Department, Papageorgiou Hospital, Disclosure Statement of Financial Interest I, Georgios Bompotis DO NOT have a financial interest/arrangement

More information

The Heart. Happy Friday! #takeoutyournotes #testnotgradedyet

The Heart. Happy Friday! #takeoutyournotes #testnotgradedyet The Heart Happy Friday! #takeoutyournotes #testnotgradedyet Introduction Cardiovascular system distributes blood Pump (heart) Distribution areas (capillaries) Heart has 4 compartments 2 receive blood (atria)

More information

37 1 The Circulatory System

37 1 The Circulatory System H T H E E A R T 37 1 The Circulatory System The circulatory system and respiratory system work together to supply cells with the nutrients and oxygen they need to stay alive. a) The respiratory system:

More information

CATCH A WAVE.. INTRODUCTION NONINVASIVE HEMODYNAMIC MONITORING 4/12/2018

CATCH A WAVE.. INTRODUCTION NONINVASIVE HEMODYNAMIC MONITORING 4/12/2018 WAVES CATCH A WAVE.. W I S C O N S I N P A R A M E D I C S E M I N A R A P R I L 2 0 1 8 K E R I W Y D N E R K R A U S E R N, C C R N, E M T - P Have you considered that if you don't make waves, nobody

More information

Chapter 18 - Heart. I. Heart Anatomy: size of your fist; located in mediastinum (medial cavity)

Chapter 18 - Heart. I. Heart Anatomy: size of your fist; located in mediastinum (medial cavity) Chapter 18 - Heart I. Heart Anatomy: size of your fist; located in mediastinum (medial cavity) A. Coverings: heart enclosed in double walled sac called the pericardium 1. Fibrous pericardium: dense connective

More information

SymBioSys Exercise 2 Cardiac Function Revised and reformatted by C. S. Tritt, Ph.D. Last updated March 20, 2006

SymBioSys Exercise 2 Cardiac Function Revised and reformatted by C. S. Tritt, Ph.D. Last updated March 20, 2006 SymBioSys Exercise 2 Cardiac Function Revised and reformatted by C. S. Tritt, Ph.D. Last updated March 20, 2006 The goal of this exercise to explore the behavior of the heart as a mechanical pump. For

More information

Heart. Structure Physiology of blood pressure and heartbeat

Heart. Structure Physiology of blood pressure and heartbeat Heart Structure Physiology of blood pressure and heartbeat Location and Anatomy Location and Anatomy Pericardial cavity: surrounds, isolates, and anchors heart Parietal pericardium lined with serous membrane

More information

Chapter 21. Flail Chest. Mosby items and derived items 2011, 2006 by Mosby, Inc., an affiliate of Elsevier Inc.

Chapter 21. Flail Chest. Mosby items and derived items 2011, 2006 by Mosby, Inc., an affiliate of Elsevier Inc. Chapter 21 Flail Chest 1 Figure 21-1. Flail chest. Double fractures of three or more adjacent ribs produce instability of the chest wall and paradoxical motion of the thorax. Inset, Atelectasis, a common

More information

Evaluation of Left Ventricular Diastolic Dysfunction by Doppler and 2D Speckle-tracking Imaging in Patients with Primary Pulmonary Hypertension

Evaluation of Left Ventricular Diastolic Dysfunction by Doppler and 2D Speckle-tracking Imaging in Patients with Primary Pulmonary Hypertension ESC Congress 2011.No 85975 Evaluation of Left Ventricular Diastolic Dysfunction by Doppler and 2D Speckle-tracking Imaging in Patients with Primary Pulmonary Hypertension Second Department of Internal

More information

Heart Pump and Cardiac Cycle. Faisal I. Mohammed, MD, PhD

Heart Pump and Cardiac Cycle. Faisal I. Mohammed, MD, PhD Heart Pump and Cardiac Cycle Faisal I. Mohammed, MD, PhD 1 Objectives To understand the volume, mechanical, pressure and electrical changes during the cardiac cycle To understand the inter-relationship

More information

Circulation: Chapter 25. Cardiac Output. The Mammalian Heart Fig Right side of the heart

Circulation: Chapter 25. Cardiac Output. The Mammalian Heart Fig Right side of the heart Circulation: Chapter 25 1. Limits of Diffusion A. Small organisms use diffusion B. rapid over small distances 2. Most animals have circulatory systems A. Blood B. Pump (Heart) or propulsive structures

More information

Chapter 27 -The Heart & Blood Vessels

Chapter 27 -The Heart & Blood Vessels Chapter 27 -The Heart & Blood Vessels 3.2 Learning Objectives 3.2.2 Organisational Complexity of the human 1. Describe the structures and organisation of tissues in the closed circulatory system. 2. Discuss

More information

The Vigileo monitor by Edwards Lifesciences supports both the FloTrac Sensor for continuous cardiac output and the PreSep oximetry catheter for

The Vigileo monitor by Edwards Lifesciences supports both the FloTrac Sensor for continuous cardiac output and the PreSep oximetry catheter for 1 2 The Vigileo monitor by Edwards Lifesciences supports both the FloTrac Sensor for continuous cardiac output and the PreSep oximetry catheter for continuous central venous oximetry (ScvO 2 ) 3 The Vigileo

More information

Large Arteries of Heart

Large Arteries of Heart Cardiovascular System (Part A-2) Module 5 -Chapter 8 Overview Arteries Capillaries Veins Heart Anatomy Conduction System Blood pressure Fetal circulation Susie Turner, M.D. 1/5/13 Large Arteries of Heart

More information

Blood flows away from the heart in arteries, to the capillaries and back to the heart in the veins

Blood flows away from the heart in arteries, to the capillaries and back to the heart in the veins Cardiovascular System Summary Notes The cardiovascular system includes: The heart, a muscular pump The blood, a fluid connective tissue The blood vessels, arteries, veins and capillaries Blood flows away

More information