Clinical Study The Microcirculation Is Unchanged in Neonates with Severe Respiratory Failure after the Initiation of ECMO Treatment

Size: px
Start display at page:

Download "Clinical Study The Microcirculation Is Unchanged in Neonates with Severe Respiratory Failure after the Initiation of ECMO Treatment"

Transcription

1 Hindawi Publishing Corporation Critical Care Research and Practice Volume 2012, Article ID , 7 pages doi: /2012/ Clinical Study The Microcirculation Is Unchanged in Neonates with Severe Respiratory Failure after the Initiation of ECMO Treatment Anke P. C. Top, 1, 2 Erik A. B. Buijs, 1 PatrickH.M.Schouwenberg, 1 Monique van Dijk, 1 Dick Tibboel, 1 and Can Ince 3 1 Intensive Care, Erasmus Medical Center-Sophia Children s Hospital, University Medical Center, P.O. Box 2060, 3000 CB, Rotterdam, The Netherlands 2 Pediatric Intensive Care Unit, Addenbrooke s Hospital, Cambridge CB2 0QQ, UK 3 Department of Intensive Care, Erasmus Medical Center, University Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands Correspondence should be addressed to Anke P. C. Top, anke.top@addenbrookes.nhs.uk Received 29 December 2011; Revised 13 March 2012; Accepted 22 March 2012 Academic Editor: Arnaldo Dubin Copyright 2012 Anke P. C. Top et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Purpose. Venoarterial extracorporeal membrane oxygenation (VA-ECMO) is known to improve cardiorespiratory function and outcome in neonates with severe respiratory failure. We tested the hypothesis that VA-ECMO therapy improves the microcirculation in neonates with severe respiratory failure. Methods. This single-center prospective observational pilot study took place in an intensive care unit of a level III university children s hospital. Twenty-one-term neonates, who received VA-ECMO treatment, were included. The microcirculation was assessed in the buccal mucosa, using Orthogonal Polarization Spectral imaging, within 24 hours before (T1) and within the first 24 hours after initiation of ECMO treatment (T2). Data were compared to data of a ventilated control group (N = 7). Results. At baseline (T1), median functional capillary density (FCD), microvascular flow index (MFI), and heterogeneity index (HI) did not differ between the ECMO group and the control group. At T2 the median FCD was lower in the control group (median [range]: 2.4 [ ] versus 4.3 [ ] cm/cm 2 ; P value <0.001). For MFI and HI there were no differences at T2 between the two groups. Conclusion. The perfusion of the microcirculation does not change after initiation of VA-ECMO treatment in neonates with severe respiratory failure. 1. Introduction Extracorporeal membrane oxygenation (ECMO) is a cardiopulmonary bypass technique used as life support in selected newborns and children with acute reversible cardiorespiratory failure when conventional management is not successful [1, 2]. Worldwide, over 24,000 neonates have been treated with ECMO for respiratory problems [1 3]. ECMO therapy gives time to restore normal pulmonary oxygenation in neonates with severe respiratory failure who do not respond to maximal conventional therapy and is regarded as a bridge to recovery [1, 2, 4]. The institution of venoarterial ECMO (VA-ECMO) partly takes over oxygenation, and carbon dioxide removal and thereby allows ventilator settings to be reduced and restores circulation [4]. The institution of an ECMO circuit in neonates results in an expansion of the circulating volume by approximately factor 2.5. In VA-ECMO, the heart is bypassed and flow in the systemic circulation is generated mostly by the ECMO pump, producing nonpulsatile flow. Especially during high ECMO flow rate ( ml/kg/min), this results in disturbance of the physiologic blood flow, which can be represented by a flattening of the arterial pulse waves on invasive blood pressure monitoring [4, 5]. In neonatal patients with severe respiratory failure, who meet the criteria for ECMO treatment [4], the circulation and oxygenation are severely compromised. Reflecting this condition, these patients microcirculatory parameters are significantly reduced before VA-ECMO [6]. At the time when the patient no longer needs ECMO, the microcirculatory

2 2 Critical Care Research and Practice parameters are improved, correlating well with an improvement in clinical condition [6]. After VA-ECMO initiation, circulation and oxygenation generally improve rapidly and patients show a decrease in the need for vasoactive medication. Direct effects of artificial, nonpulsatile ECMO flow on the microcirculation are still not completely understood. Based on clinical observations and the instant decrease of need for vasoactive medication after the start of ECMO therapy, we hypothesize that microcirculatory alterations observed in neonates with severe respiratory failure improve with the initiation of ECMO therapy. 2. Materials and Methods 2.1. Patients. Neonatal patients (aged 28 days) admitted to our intensive care unit and treated with VA-ECMO were enrolled in this study. Patients were treated with ECMO, according to our unit specific policy. Patients suffering from congenital heart disease were excluded. In accordance with the guidelines of the medical ethical review board of our hospital, informed consent was waived when standard therapy is monitored by noninvasive techniques. Patients in the study group had severe cardiorespiratory failure and hypoxemia despite adequate conventional treatments such as mechanical ventilation, sedation, muscle paralysis, vasoactive drugs, and nitric oxide inhalation. All patients met the established entry criteria for ECMO [4]. Starting ECMO treatment in a newborn implies a massive increase of the circulating volume (the priming volume of the used system is ±350 ml, which is about 1.5 times the circulating volume of a newborn baby). The ECMO system was primed with a combination of Ringer s lactate, packed red blood cells and albumen. Bicarbonate and calcium were added based on bloodgas analysis of the priming fluid. Initially the aimed ECMO flow rate was ml/kg/min and after 24 hours weaning of the flow was started under guidance of changes in arterial po 2 and signs of pulmonary hypertension. In addition to the microvascular measurements, patient s demographic and clinical parameters, such as gender, birth weight, gestational age, postnatal age, diagnosis, ECMO flow, heart rate, blood pressure, mean arterial blood pressure, body temperature, administered medication, hemoglobin, and hematocrit levels were recorded. Data were compared to data of control subjects, with severe respiratory failure, who did not receive ECMO treatment. In the control group, patients were measured several consecutive days after admission. The first two measurements on consecutive days were taken to serve as control for T1 and T2 and to evaluate the changes without ECMO treatment Procedures. The microcirculation was assessed within 24 hours before start of ECMO (T1) and within 24 hours after start of ECMO (T2). OPS imaging [7] was used to visualize the microvascular network of the buccal mucosa. The measurements were done with a CYTOSCAN E-II Backfocustype device (Cytometrics, Philadelphia, PA, USA), using the 5x objective. Before the measurements, saliva was gently removed with gauze. The lens of the OPS-imaging device was covered with a disposable sterile cap and was applied to the buccal mucosa without pressure, as described before [6]. Images from 3 different regions were obtained and stored on digital videotapes, using a Sony DSR-20P digital video recorder. Segments of 5 seconds were selected and captured in AVI (audio video interleave) format. Video segments that did not meet quality criteria were discarded [6, 8]. For every measurement, the functional capillary density (FCD), microvascular flow index (MFI), and heterogeneity index (HI) of the different video segments were averaged. If only one segment met the quality criteria, this score was taken. (This was the case for 2 ECMO patients at T2 and 1 control patient at T1) Microcirculatory Analysis. Quantification of the images was performed as described previously [6, 7]. To investigate vessel density, the images were analyzed with the Capiscope software program (version , KK Technology ). For the FCD calculation, the analyst is required to trace out the path of the moving red blood cells within the capillaries (vessels, smaller than 10 µm). A functional capillary is defined as a capillary that has at least one red blood cell moving through it, during the observation period. Dividing the length of the perfused capillaries by the area gives the functional capillary density value expressed in cm/cm 2. The flow pattern was studied using the MFI, and the HI [8]. For MFI the predominant type of flow for small, medium, and large vessels in every quadrant of the images was determined, as described before by Boerma et al. [9]. For every measurement, the scores for the different video segments were averaged. If only one segment met the quality criteria, this score was taken. HI was calculated as the highest site flow velocity minus the lowest site flow velocity, divided by the mean flow velocity of all sites per measurement [8] Statistical Analysis. The data were analyzed using SPSS Continuous data are presented as median and range, discrete data as number and percentage. The intergroup differences at T1 were assessed using the Mann Whitney test. Changes over time were assessed using analysis of covariance (ANCOVA) with the T2 measurement as outcome variable, the groups as factor, and the T1 measurement as covariate. In this way, differences at T2 are corrected for the baseline measurements. The level of significance was set at P< Results During the study period, 31 VA-ECMO patients were eligible for inclusion. Twenty-one patients were included in the study. Four patients were missed for inclusion due to logistic reasons (a researcher was not contacted in time or no investigator or camera available). Six patients were excluded because their video segments did not meet the quality criteria [6]. The excluded ECMO patients did not differ from the included ECMO patient group for gestational age, postnatal age, diagnosis, duration of ECMO treatment, or mortality. In the control group, four patients were missed for inclusion

3 Critical Care Research and Practice 3 Table 1: Demographic data. ECMO N = 21 Controls N = 7 Gestational age [weeks] 39.0 ( ) 38.1 ( ) Birth weight [kilograms] 3.1 ( ) 3.0 ( ) Gender [males] (%) 12 (57) 4 (57) Diagnosis [n] (%) CDH 10 (48) 7 (100) MAS 5 (24) PPHN 5 (24) CCAM 1 (5) Survival [n] (%) 18 (86) 7 (100) Continuous data are presented as medians and range, discrete data as number and percentage. CDH: congenital diaphragmatic hernia, MAS: meconium aspiration syndrome, PPHN: persistent pulmonary hypertension of the neonate, CCAM: congenital cystic adenomatoid malformation. and seven patients had to be excluded due to insufficient quality of the images. Demographic data are presented in Table 1, clinical data in Table 2, and microcirculatory data obtained by SDF are presented in Table 3. At baseline (T1), median FCD did not differ between the ECMO group and the control group (median [range]: 4.5 [ ] versus 5.0 [ ] cm/cm 2, P value = 0.811) (Figure 1). ANCOVA analysis indicated that at T2 the median FCD was 1.9 cm/cm 2 lower in the control group than it was in the ECMO group (median [range]: 2.4 [ ] versus 4.3 [ ] cm/cm 2 ; P value <0.001). For MFI and HI, there was neither a difference at T1 nor a difference at T2 between the two groups (see Table 3 for absolute MFI values and HI values per vessel type as well as the associated P values). At baseline, the disease severity indices oxygenation index (median [range]: 31 [5 94] versus 5 [3 13]; P value = 0.004) and the PELOD score (median [range]: 20 [11 31] versus 11 [11 20]; P value = 0.006) were more unfavourable for the ECMO patients than for the control patients. The heart rate was higher in the ECMO patients (median [range]: 180 [ ] versus 138 [ ] bpm; P value = 0.046), whereas the mean arterial blood pressure and the pulse pressure did not differ. The need for vasoactive medication as indicated by the vasopressor score did not differ between the two groups at T1. Mean airway pressure (median [range]: 18 [12 27] versus 14 [9 16] cm H 2 O; P value = 0.019) and the median dosage of inhaled nitric oxide (median [range]: 20 [0 40] versus 0 [0 19] ppm; P value = 0.012) were both higher in the ECMO patients than in the control patients. At T2, ANCOVA analysis indicated that there was no difference in OI between the ECMO group and the control group. The heart rate and the mean arterial blood pressure did not differ. Pulse pressure was lower in the ECMO patients than in the control patients (median [range]: 10 [0 33] versus 24 [15 32]; P value <0.001). The vasopressor score did not differ at T2, nor did the mean airway pressure. Regarding the dosage of inhaled nitric oxide, ANCOVA analysis indicated that the need for more inhaled nitric oxide in the ECMO patients at T1 had disappeared at T2. All patients in the control group survived. Three patients in the ECMO-treated group (2 diagnosed with CDH, 1 with CCAM) did not survive, due to recurrent and therapyresistant pulmonary hypertension. Subanalysis showed that neither FCD nor MFI, nor HI differed between the ECMO survivors and the ECMO nonsurvivors at T1 and at T2. 4. Discussion The main finding of this study was that there was no change in microcirculatory parameters after the start of VA-ECMO therapy in patients with severe respiratory failure. In both the ECMO and the control group, the FCD at T1 was significantly lower than FCD values of neonates without any respiratory or cardiovascular problems (who served as a control group in a previous study [6]). The FCD in those patients was 8.1 cm/cm 2 (range, ). MFI values in both study groups were relatively high and HI values relatively low, in contrast to observations in patients with sepsis. There was no difference in MFI and HI between the two groups at T1 and T2. Deterioration of the FCD was observed in patients with severe respiratory failure, who did not receive ECMO treatment. Despite the fact that patients in the ECMO group were more severely ill, in comparison to the patients in the ventilated control group (Oxygenation Index and PELOD score in ECMO group significantly higher), ECMO succeeded to better microcirculatory support compared to solely conservative treatment with mechanical ventilation and pharmacologic support. Thus,ECMOseemstopreventafurtherdeterioration of microcirculatory perfusion. The start of ECMO instigates an instant improvement in oxygenation, which makes vasopressors and the use of high mean airway pressures instantly redundant. No correlation between the vasopressor score or the main airway pressure and FCD was found. Deterioration of microvascular perfusion in patients in the ventilated control group was not correlated with mortality. This is in contrast with observations in patients with severe sepsis [10 12]. The underlying pathophysiology in patients in our study is different from sepsis. Therefore, data from patients with sepsis cannot be extrapolated to this patient group. Both patient groups revealed a relatively normal flow pattern and selectively affected vessel density. At this stage, it is not clear if this could be explained by their specific hemodynamic pattern. Patients in this study suffered from hypoxic respiratory failure, mainly due to failure of adequate feto-neonatal transition of the circulation.

4 4 Critical Care Research and Practice Table 2: Macrocirculatory data. T1 ECMO T2 ECMO T1 Controls T2 Controls P value at baseline P value over time N = 21 N = 21 N = 7 N = 7 Age [days] 1 (0 12) 1 (0 12) 1 (0 6) 1 (0 7) NA Time to or from start ECMO [hours] 2 (0.5 24) 2 (0.5 24) NA NA Time to or from ICU admission [hours] 2.5 ( ) 6.4 ( ) 12.4 ( ) 33.5 ( ) NA NA Time between SDF measurements [hours] 4.0 ( ) 26.8 ( ) Heart rate [beats/min] 180 ( ) 150 ( ) 138 ( ) 129 ( ) Mean blood pressure [mmhg] 49 (29 77) 49 (35 86) 44 (32 60) 52 (41 63) Pulse pressure [mmhg] 19 (10 40) 10 (0 33) 25 (12 36) 24 (15 32) <0.001 Vasopressor score 40 (0 140) 10 (0 108) 15 (0 75) 19 (0 66) Dopamine [mcg/kg/min] 10 (0 20) 0 (0 20) 10 (0 21) 16 (0 21) NA NA Dobutamine [mcg/kg/min] 10 (0 20) 5 (0 20) 10 (0 20) 5 (0 20) NA NA Norepinephrine [mcg/kg/min] 0.1 ( ) 0.0 ( ) 0.0 ( ) 0.0 ( ) NA NA Mean airway pressure [cm H2O] 18 (12 27) 11 (7 21) 14 (9 16) 13 (8 16) Inhaled nitric oxide [ppm] 20 (0 40) 0 (0-0) 0 (0 19) 0 (0 20) Oxygenation index 31 (5 94) 2 (1 21) 5 (3 13) 3 (0 7) PELOD 20 (11 31) 11 (11 20) Hemoglobin [mmol/l] 9.2 ( ) 8.7 ( ) 8.7 ( ) 8.5 ( ) Hematocrit [L/L] 0.45 ( ) 0.41 ( ) 0.43 ( ) 0.40 ( ) Fluid amount administered [ml/kg] 63 (10 145) 54 (26 112) NA NA Fluid balance [ml/kg] 33 (6 139) 26 ( 25 56) NA NA Temperature [degrees Celsius] 37.4 ( ) 36.9 ( ) 37.3 ( ) 36.8 ( ) NA NA ECMO flow [ml/kg/min] 140 ( ) NA NA Data are presented as median and range. Intergroup differences at T1 were assessed using Mann-Whitney test. For the time-dependent variables differences at T2 were assessed using ANCOVA with the baseline measurement as covariate. NA: not assessed, : not relevant, ECMO: extracorporeal membrane oxygenation, ICU: intensive Care Unit, PELOD: pediatric logistic organ dysfunction.

5 Critical Care Research and Practice 5 Table 3: Microcirculatory values. T1 ECMO T2 ECMO T1 Controls T2 Controls P value at baseline P value over time N = 21 N = 21 N = 7 N = 7 FCD [cm/cm 2 ] 4.5 ( ) 4.3 ( ) 5.0 ( ) 2.4 ( ) <0.001 MFI Large 2.76 ( ) 2.88 ( ) 2.92 ( ) 3.00 ( ) MFI Medium 2.67 ( ) 2.75 ( ) 2.75 ( ) 2.81 ( ) MFI Small 2.75 ( ) 2.75 ( ) 2.88 ( ) 2.90 ( ) HI Large 0.10 ( ) 0.09 ( ) 0.09 ( ) 0.00 ( ) HI Medium 0.14 ( ) 0.11 ( ) 0.10 ( ) 0.00 ( ) HI Small 0.18 ( ) 0.09 ( ) 0.09 ( ) 0.00 ( ) Data are presented as median and range. Intergroup differences at T1 were assessed using Mann-Whitney test. For the time-dependent variables, differences at T2 were assessed using ANCOVA with the baseline measurement as covariate. FCD: functional capillary density, MFI: microvascular flow index, HI: heterogeneity index. 10 ECMO patients Control patients 9 8 P< FCD (cm/cm 2 ) T1 T2 T1 T2 (a) (b) Figure 1: Diagram showing the functional capillary density (FCD). (a): ECMO patients, (b): ventilated control patients. No difference in median FCD was seen at T1 between the two groups: 4.5 cm/cm 2 (range ) versus 5.0 cm/cm 2 (range ), P value = At T2, FCD was higher in ECMO group than in the control group: 4.3 cm/cm 2 (range ) versus 2.4 cm/cm 2 (range ), P value < Typically, these patients display a hemodynamic pattern with persistent pulmonary hypertension of the neonate (PPHN), which is clinically characterized by a persistent high pulmonary vascular resistance and an abnormal vascular response, leading to worsening of gas exchange and shunting (intracardiac, extracardial, and intrapulmonary) and right ventricular failure. PPHN occurs as a primary disease or in association with abnormal lung development, for example, in congenital diaphragmatic hernia and is a critical determinant of morbidity and mortality [13]. All patients had pulmonary hypertension, assessed by echocardiography and differences in the pre- and postductal oxygen saturation (due to shunting through persistent fetal pathways such as the ductus arteriosus). This can compromise the pulmonary venous return and preload of the left ventricle and, therefore, influence global hemodynamics. No measures of cardiac output (CO) were available in this study, so this cannot be verified. During cardiopulmonary bypass (CPB) in adults, microcirculatory alterations have been described before [14 17]. We found one report on microcirculatory alterations during CPB in neonates where OPS was used, which shows a reduction in vessel density during CPB [18]. The circulatory volume increases by about 150%, when a newborn is attached to an ECMO circuit. Therefore, it is necessary that the system is primed with blood products. The addition of these products is titrated against normal values for the age. Thus, with ECMO, blood is transfused, which could improve the microcirculation [19]. However, there was no increment in the hemoglobin level, to support this. With the attachment of the system, a large amount of fluid is administered, which could influence the perfusion of

6 6 Critical Care Research and Practice the microcirculation [20]. Due to the relatively largeamount of circulating volume in the system, it is difficult to comment on volume expansion in the patient in absolute numbers. During cannulation and shortly afterwards extra fluid was administered on discretion of the treating physician, based on clinical judgment and following standard unit policies and procedures. Disturbance of physiologic flow also triggers the catecholamine system leading to vasoconstriction and altered tissue perfusion [21]. Although the mechanism behind this is notcompletelyunderstood, Agatietal. [22 24] reported that in cardiac patients on CPB nonpulsatile flow seemed to affect the microcirculation and organ perfusion in a more negative way than pulsatile flow did. No correlation between ECMO flow and FCD was seen in our study. All in all, the initiation of ECMO therapy instigates many changes in the homeostasis of the critically ill patient. It is difficult to unravel the complex processes that take place and to assess separate factors, in order to understand the effect of the different components of the treatment. Nowadays, the importance of microcirculatory improvement is recognized [25, 26]. With this paper, we have shown that the current way of using ECMO treatment stabilizes the microcirculation, but does not restore microvascular density. More research is needed to explore the different factors that have influence on the microcirculation. In addition, follow-up investigations of the microcirculation are necessary as well as comparison of survivors and nonsurvivors within the group that received ECMO treatment. In this way, the prognostic value of microcirculatory parameters can be determined. There were some limitations to our study. First, the lack of CO measurements limits the possibility to relate microvascular observations to global hemodynamics. Changes in CO could possibly play a role in the decrease of FCD between T1 and T2 in the control group. In children, mixed venous saturation and cardiac output are not routinely measured. A prerequisite for adequate CO monitoring is a tool that is accurate, is easy to use, and has an acceptable riskbenefit profile. These three factors have constituted the major hurdle to bedside pediatric cardiac output measurement to date [27]. The reliability of echocardiography evaluation of cardiac output in children is debatable because even in the hands of experienced operators the inter- and intraindividual variation is large [28]. Second, the control group consisted entirely of patients with CDH, while the ECMO group also contained patients with severe respiratory failure and pulmonary hypertension due to other causes. Patients with CDH suffer from a specific hemodynamic pattern, based on a structural congenital abnormality [13]. This could possibly have different implications on the development of global hemodynamics and the microcirculation. Unfortunately, the exact amounts of priming fluids and fluids, given during or shortly after the cannulation procedure prior to T2, are not well documented. In addition, 12 of the 21 ECMO patients were first measured within 2 hours of IC admission. In these patients, no reliable data on the amount of fluid administration prior to admission was available. Therefore, we are unable to provide reliable data for fluid balance, fluid amount, and type of fluids administered for ECMO patients in this study. In this pilot study, the microcirculation was assessed before and after the start of ECMO; therefore, long-term effects of ECMO could not be evaluated. In addition, the median time interval for the subsequent SDF measurements in the ECMO group was shorter than that of the control group. The earlier microcirculatory evaluation in the ECMO group might be of influence on our results. Finally, this study is observational and not randomized controlled, which skews outcome data. If children in the control group had disposed progressive respiratory and/or circulatory failure, they would have received ECMO treatment. From an ethical perspective, randomization for this type of treatments is unacceptable. 5. Conclusion The perfusion of the microcirculation does not change after initiation of VA-ECMO treatment in neonates with severe respiratory failure. References [1] A. M. Gaffney, S. M. Wildhirt, M. J. Griffin, G. M. Annich, and M. W. Radomski, Extracorporeal life support, British Medical Journal, vol. 341, Article ID c5317, [2] R. H. Bartlett and L. Gattinoni, Current status of extracorporeal life support (ECMO) for cardiopulmonary failure, Minerva Anestesiologica, vol. 76, no. 7, pp , [3] Extracorporeal Life Support Organization (ELSO), ECLS Registry Report, International Summary, July [4] B.L.Short,M.K.Miller,andK.D.Anderson, Extracorporeal membrane oxygenation in the management of respiratory failure in the newborn, Clinics in Perinatology,vol.14,no.3,pp , [5] K. van Meurs, ECMO Extracorporeal Cardiopulmonary Support in Critical Care, 3rd edition, [6] A. P. C. Top, C. Ince, M. van Dijk, and D. Tibboel, Changes in buccal microcirculation following extracorporeal membrane oxygenation in term neonates with severe respiratory failure, Critical Care Medicine, vol. 37, no. 3, pp , [7] W. Groner, J. W. Winkelman, A. G. Harris et al., Orthogonal polarization spectral imaging: a new method for study of the microcirculation, Nature Medicine, vol. 5, no. 10, pp , [8] D. De Backer, S. Hollenberg, C. Boerma et al., How to evaluate the microcirculation: report of a round table conference, Critical Care, vol. 11, article R101, [9] E. C. Boerma, K. R. Mathura, P. H. van der Voort, P. E. Spronk, and C. Ince, Quantifying bedside-derived imaging of microcirculatory abnormalities in septic patients: a prospective validation study, Critical Care, vol. 9, no. 6, pp. R601 R606, [10] A. P. C. Top, C. Ince, N. De Meij, M. van Dijk, and D. Tibboel, Persistent low microcirculatory vessel density in nonsurvivors of sepsis in pediatric intensive care, Critical Care Medicine, vol. 39, no. 1, pp. 8 13, [11] Y. Sakr, M. J. Dubois, D. De Backer, J. Creteur, and J. L. Vincent, Persistent-microcirculatory alterations are associated

7 Critical Care Research and Practice 7 with organ failure and death in patients with septic shock, Critical Care Medicine, vol. 32, no. 9, pp , [12] M. Chierego, C. Verdant, and D. De Backer, Microcirculatory alterations in critically ill patients, Minerva Anestesiologica, vol. 72, no. 4, pp , [13] I. Sluiter, I. Reiss, U. Kraemer, R. D. Krijger, D. Tibboel, and R. J. Rottier, Vascular abnormalities in human newborns with pulmonary hypertension, Expert Review of Respiratory Medicine, vol. 5, no. 2, pp , [14] C. A. den Uil, W. K. Lagrand, P. E. Spronk et al., Impaired sublingual microvascular perfusion during surgery with cardiopulmonary bypass: a pilot study, Journal of Thoracic and Cardiovascular Surgery, vol. 136, no. 1, pp , [15] A. Bauer, S. Kofler, M. Thiel, S. Eifert, and F. Christ, Monitoring of the sublingual microcirculation in cardiac surgery using orthogonal polarization spectral imaging: preliminary results, Anesthesiology, vol. 107, no. 6, pp , [16] M. J. Dubois, D. De Backer, D. Schmartz, and J. L. Vincent, Microcirculatory alterations in cardiac surgery with and without cardiopulmonary bypass, The Annals of Thoracic Surgery, vol. 28, p. S76, [17] D. De Backer, M. J. Dubois, D. Schmartz et al., Microcirculatory alterations in cardiac surgery: effects of cardiopulmonary bypass and anesthesia, The Annals of Thoracic Surgery, vol. 88, no. 5, pp , [18] F. G. Christ, S. Schaudig, M. Niklas et al., Monitoring of the microcirculation in cardiac surgery and neonates using orthogonal polarization spectral imaging, Progress in Applied Microcirculation, vol. 24, pp , [19] O. Genzel-Boroviczény, F. Christ, and V. Glas, Blood transfusion increases functional capillary density in the skin of anemic preterm infants, Pediatric Research,vol.56,no.5,pp , [20] J. Boldt and C. Ince, The impact of fluid therapy on microcirculation and tissue oxygenation in hypovolemic patients: a review, Intensive Care Medicine, vol. 36, no. 8, pp , [21] G. J. Peek and R. K. Firmin, The inflammatory and coagulative response to prolonged extracorporeal membrane oxygenation, ASAIO Journal, vol. 45, no. 4, pp , [22] S. Agati, C. Mignosa, G. Ciccarello, S. Dario, and A. Ündar, Pulsatile ECMO in neonates and infants: first European clinical experience with a new device, ASAIO Journal, vol. 51, no. 5, pp , [23] S. Agati, C. Mignosa, G. Ciccarello, D. Salvo, and A. Ündar, Initial European clinical experience with pulsatile extracorporeal membrane oxygenation, The Journal of Heart and Lung Transplantation, vol. 25, no. 4, pp , [24] S. Agati, G. Ciccarello, D. Salvo, A. Undar, and C. Mignosa, Pulsatile ECMO as bridge to recovery and cardiac transplantation in pediatric population: a comparative study, The Journal of Heart and Lung Transplantation, vol. 26, no. 2, supplement, p. S87, [25] R. P. Dellinger, M. M. Levy, J. M. Carlet et al., Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2008, Intensive Care Medicine, vol. 34, no. 1, pp , [26]S.Trzeciak,J.V.McCoy,R.PhillipDellingeretal., Early increases in microcirculatory perfusion during protocoldirected resuscitation are associated with reduced multi-organ failure at 24 h in patients with sepsis., Intensive Care Medicine, vol. 34, no. 12, pp , [27] S. Tibby, Transpulmonary thermodilution: finally, a gold standard for pediatric cardiac output measurement, Pediatric Critical Care Medicine, vol. 9, no. 3, pp , [28] W. P. de Boode, Cardiac output monitoring in newborns, Early Human Development, vol. 86, no. 3, pp , 2010.

USE OF INHALED NITRIC OXIDE IN THE NICU East Bay Newborn Specialists Guideline Prepared by P Joe, G Dudell, A D Harlingue Revised 7/9/2014

USE OF INHALED NITRIC OXIDE IN THE NICU East Bay Newborn Specialists Guideline Prepared by P Joe, G Dudell, A D Harlingue Revised 7/9/2014 USE OF INHALED NITRIC OXIDE IN THE NICU East Bay Newborn Specialists Guideline Prepared by P Joe, G Dudell, A D Harlingue Revised 7/9/2014 ino for Late Preterm and Term Infants with Severe PPHN Background:

More information

Research Article Identifying Prognostic Criteria for Survival after Resuscitation Assisted by Extracorporeal Membrane Oxygenation

Research Article Identifying Prognostic Criteria for Survival after Resuscitation Assisted by Extracorporeal Membrane Oxygenation Critical Care Research and Practice Volume 2016, Article ID 9521091, 5 pages http://dx.doi.org/10.1155/2016/9521091 Research Article Identifying Prognostic Criteria for Survival after Resuscitation Assisted

More information

Extracorporeal Membrane Oxygenation (ECMO)

Extracorporeal Membrane Oxygenation (ECMO) Extracorporeal Membrane Oxygenation (ECMO) Policy Number: Original Effective Date: MM.12.006 05/16/2006 Line(s) of Business: Current Effective Date: HMO; PPO; QUEST Integration 01/01/2017 Section: Other/Miscellaneous

More information

1

1 1 2 3 RIFAI 5 6 Dublin cohort, retrospective review. Milrinone was commenced at an initial dose of 0.50 μg/kg/minute up to 0.75 μg/kg/minute and was continued depending on clinical response. No loading

More information

10/16/2017. Review the indications for ECMO in patients with. Respiratory failure Cardiac failure Cardiorespiratory failure

10/16/2017. Review the indications for ECMO in patients with. Respiratory failure Cardiac failure Cardiorespiratory failure Review the indications for ECMO in patients with Respiratory failure Cardiac failure Cardiorespiratory failure 1 Extracorporeal membrane lung and/or cardiac support. A support therapy, in no way definitive.

More information

Extracorporeal Membrane Oxygenation (ECMO)

Extracorporeal Membrane Oxygenation (ECMO) Extracorporeal Membrane Oxygenation (ECMO) Policy Number: Original Effective Date: MM.12.006 05/16/2006 Line(s) of Business: Current Effective Date: HMO; PPO; QUEST Integration 11/01/2014 Section: Other/Miscellaneous

More information

Lesta Whalen, MD Medical Director, Sanford ECMO Pediatric Critical Care

Lesta Whalen, MD Medical Director, Sanford ECMO Pediatric Critical Care Lesta Whalen, MD Medical Director, Sanford ECMO Pediatric Critical Care Disclosures I have no financial disclosures. The use of certain devises for providing long-term cardiopulmonary support is investigational.

More information

Adult Extracorporeal Life Support (ECLS)

Adult Extracorporeal Life Support (ECLS) Adult Extracorporeal Life Support (ECLS) Steven Scott, M.D., F.A.C.S. Piedmont Heart Institute Cardiothoracic Surgery Disclosures None ECMO = ECLS A technique of life support that involves a continuous

More information

Evidence-Based. Management of Severe Sepsis. What is the BP Target?

Evidence-Based. Management of Severe Sepsis. What is the BP Target? Evidence-Based Management of Severe Sepsis Michael A. Gropper, MD, PhD Professor and Vice Chair of Anesthesia Director, Critical Care Medicine Chair, Quality Improvment University of California San Francisco

More information

ECMO Primer A View to the Future

ECMO Primer A View to the Future ECMO Primer A View to the Future Todd J. Kilbaugh Assistant Professor of Anesthesiology, Critical Care Medicine, and Pediatrics Director of The ECMO Center at the Children s Hospital of Philadelphia Disclosures

More information

Extracorporeal Membrane Oxygenation (ECMO) Referrals

Extracorporeal Membrane Oxygenation (ECMO) Referrals Children s Acute Transport Service Clinical Guideline Extracorporeal Membrane Oxygenation (ECMO) Referrals Document Control Information Author ECMO/CATS Author Position Service Coordinator Document Owner

More information

EFFECT OF EARLY VASOPRESSIN VS NOREPINEPHRINE ON KIDNEY FAILURE IN PATIENTS WITH SEPTIC SHOCK. Alexandria Rydz

EFFECT OF EARLY VASOPRESSIN VS NOREPINEPHRINE ON KIDNEY FAILURE IN PATIENTS WITH SEPTIC SHOCK. Alexandria Rydz EFFECT OF EARLY VASOPRESSIN VS NOREPINEPHRINE ON KIDNEY FAILURE IN PATIENTS WITH SEPTIC SHOCK Alexandria Rydz BACKGROUND- SEPSIS Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated

More information

Extracorporeal Life Support Organization (ELSO) Guidelines for Pediatric Respiratory Failure

Extracorporeal Life Support Organization (ELSO) Guidelines for Pediatric Respiratory Failure Extracorporeal Life Support Organization (ELSO) Guidelines for Pediatric Respiratory Failure Introduction This pediatric respiratory failure guideline is a supplement to ELSO s General Guidelines for all

More information

Surviving Sepsis Campaign. Guidelines for Management of Severe Sepsis/Septic Shock. An Overview

Surviving Sepsis Campaign. Guidelines for Management of Severe Sepsis/Septic Shock. An Overview Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis/Septic Shock An Overview Mechanical Ventilation of Sepsis-Induced ALI/ARDS ARDSnet Mechanical Ventilation Protocol Results: Mortality

More information

SCVMC RESPIRATORY CARE PROCEDURE

SCVMC RESPIRATORY CARE PROCEDURE Page 1 of 7 New: 12/08 R: 4/11 R NC: 7/11, 7/12 B7180-63 Definitions: Inhaled nitric oxide (i) is a medical gas with selective pulmonary vasodilator properties. Vaso-reactivity is the evidence of acute

More information

Policy Specific Section: May 16, 1984 April 9, 2014

Policy Specific Section: May 16, 1984 April 9, 2014 Medical Policy Heart Transplant Type: Medical Necessity and Investigational / Experimental Policy Specific Section: Transplant Original Policy Date: Effective Date: May 16, 1984 April 9, 2014 Definitions

More information

Radboud University Nijmegen Medical Centre Why measure cardiac output in critically ill children?

Radboud University Nijmegen Medical Centre Why measure cardiac output in critically ill children? Radboud University Nijmegen Medical Centre Why measure cardiac output in critically ill children? J. Lemson Anesthesiologist/(pediatric)intensivist Case; Girl 2 years, 12 kg, severe meningococcal septic

More information

Monitoring the microcirculation to guide resuscitation

Monitoring the microcirculation to guide resuscitation Monitoring the microcirculation to guide resuscitation Daniel De Backer Head Dept Intensive Care, CHIREC hospitals, Belgium Professor of Intensive Care, Université Libre de Bruxelles President European

More information

Department of Intensive Care Medicine UNDERSTANDING CIRCULATORY FAILURE IN SEPSIS

Department of Intensive Care Medicine UNDERSTANDING CIRCULATORY FAILURE IN SEPSIS Department of Intensive Care Medicine UNDERSTANDING CIRCULATORY FAILURE IN SEPSIS UNDERSTANDING CIRCULATORY FAILURE IN SEPSIS a mismatch between tissue perfusion and metabolic demands the heart, the vasculature

More information

The Pharmacology of Hypotension: Vasopressor Choices for HIE patients. Keliana O Mara, PharmD August 4, 2018

The Pharmacology of Hypotension: Vasopressor Choices for HIE patients. Keliana O Mara, PharmD August 4, 2018 The Pharmacology of Hypotension: Vasopressor Choices for HIE patients Keliana O Mara, PharmD August 4, 2018 Objectives Review the pathophysiology of hypotension in neonates Discuss the role of vasopressors

More information

Keep. with life MEDICATION TECHNOLOGY SERVICES INSPIRED BY YOUR NEEDS

Keep. with life MEDICATION TECHNOLOGY SERVICES INSPIRED BY YOUR NEEDS Keep with life MEDICATION TECHNOLOGY SERVICES INSPIRED BY YOUR NEEDS 2 KINOX MEDICATION KINOX, inhaled nitric oxide, is a selective pulmonary vasodilator developed by Air Liquide Healthcare and characterized

More information

Introduction. Invasive Hemodynamic Monitoring. Determinants of Cardiovascular Function. Cardiovascular System. Hemodynamic Monitoring

Introduction. Invasive Hemodynamic Monitoring. Determinants of Cardiovascular Function. Cardiovascular System. Hemodynamic Monitoring Introduction Invasive Hemodynamic Monitoring Audis Bethea, Pharm.D. Assistant Professor Therapeutics IV January 21, 2004 Hemodynamic monitoring is necessary to assess and manage shock Information obtained

More information

SHOCK. Emergency pediatric PICU division Pediatric Department Medical Faculty, University of Sumatera Utara H. Adam Malik Hospital

SHOCK. Emergency pediatric PICU division Pediatric Department Medical Faculty, University of Sumatera Utara H. Adam Malik Hospital SHOCK Emergency pediatric PICU division Pediatric Department Medical Faculty, University of Sumatera Utara H. Adam Malik Hospital 1 Definition Shock is an acute, complex state of circulatory dysfunction

More information

Nitric Resource Manual

Nitric Resource Manual Nitric Resource Manual OBJECTIVES Describe the biologic basis for inhaled nitric oxide therapy Describe the indications for inhaled nitric oxide therapy Describe the potential hazards, side effects and

More information

SWISS SOCIETY OF NEONATOLOGY. Preterm infant with. pulmonary hypertension and hypopituitarism

SWISS SOCIETY OF NEONATOLOGY. Preterm infant with. pulmonary hypertension and hypopituitarism SWISS SOCIETY OF NEONATOLOGY Preterm infant with pulmonary hypertension and hypopituitarism November 2007 2 Pilgrim S, Stocker M, Neonatal and Pediatric Intensiv Care Unit, Children s Hospital of Lucerne,

More information

Evaluation of sublingual microcirculation in a paediatric intensive care unit: prospective observational study about its feasibility and utility

Evaluation of sublingual microcirculation in a paediatric intensive care unit: prospective observational study about its feasibility and utility González et al. BMC Pediatrics (2017) 17:75 DOI 10.1186/s12887-017-0837-5 RESEARCH ARTICLE Evaluation of sublingual microcirculation in a paediatric intensive care unit: prospective observational study

More information

Fluid Resuscitation and Monitoring in Sepsis. Deepa Gotur, MD, FCCP Anne Rain T. Brown, PharmD, BCPS

Fluid Resuscitation and Monitoring in Sepsis. Deepa Gotur, MD, FCCP Anne Rain T. Brown, PharmD, BCPS Fluid Resuscitation and Monitoring in Sepsis Deepa Gotur, MD, FCCP Anne Rain T. Brown, PharmD, BCPS Learning Objectives Compare and contrast fluid resuscitation strategies in septic shock Discuss available

More information

ECMO Experience from ECMO-ICU, Karolinska

ECMO Experience from ECMO-ICU, Karolinska ECMO Experience from ECMO-ICU, Karolinska X Curso de Ventilacion Mecanica en Anestesia, Cuidados Criticos y Transplantes Madrid 2012 International numbers Totally since 1989; 46500 patients as of July

More information

FOCUS CONFERENCE 2018

FOCUS CONFERENCE 2018 FOCUS CONFERENCE 2018 Current Practice in Pediatric and Neonatal Extracorporeal Life Support Daniel W. Chipman, RRT Assistant Director of Respiratory Care Massachusetts General Hospital Boston, Massachusetts

More information

PPHN (see also ECMO guideline)

PPHN (see also ECMO guideline) Children s Acute Transport Service Clinical Guidelines PPHN (see also ECMO guideline) Document Control Information Author P Brooke E.Randle Author Position Medical Student Consultant Document Owner E.

More information

ino in neonates with cardiac disorders

ino in neonates with cardiac disorders ino in neonates with cardiac disorders Duncan Macrae Paediatric Critical Care Terminology PAP Pulmonary artery pressure PVR Pulmonary vascular resistance PHT Pulmonary hypertension - PAP > 25, PVR >3,

More information

WELCOME. Welcome to the Children s Hospital PICU (Pediatric Intensive Care Unit). We consider it a privilege to care for your child and your family.

WELCOME. Welcome to the Children s Hospital PICU (Pediatric Intensive Care Unit). We consider it a privilege to care for your child and your family. ECMO FAMILY GUIDE WELCOME Welcome to the Children s Hospital PICU (Pediatric Intensive Care Unit). We consider it a privilege to care for your child and your family. This book was created to give you the

More information

Congenital diaphragmatic hernia: to repair on or off extracorporeal membrane oxygenation?

Congenital diaphragmatic hernia: to repair on or off extracorporeal membrane oxygenation? Journal of Pediatric Surgery (2012) 47, 631 636 www.elsevier.com/locate/jpedsurg Original articles Congenital diaphragmatic hernia: to repair on or off extracorporeal membrane oxygenation? Richard Keijzer

More information

The Blue Baby. Network Stabilisation of the Term Infant Study Day 15 th March 2017 Joanna Behrsin

The Blue Baby. Network Stabilisation of the Term Infant Study Day 15 th March 2017 Joanna Behrsin The Blue Baby Network Stabilisation of the Term Infant Study Day 15 th March 2017 Joanna Behrsin Session Structure Definitions and assessment of cyanosis Causes of blue baby Structured approach to assessing

More information

AllinaHealthSystem 1

AllinaHealthSystem 1 : Definition End-organ hypoperfusion secondary to cardiac failure Venoarterial ECMO: Patient Selection Michael A. Samara, MD FACC Advanced Heart Failure, Cardiac Transplant & Mechanical Circulatory Support

More information

Perioperative Management of TAPVC

Perioperative Management of TAPVC Perioperative Management of TAPVC Professor Andrew Wolf Rush University Medical Center,Chicago USA Bristol Royal Children s Hospital UK I have no financial disclosures relevant to this presentation TAPVC

More information

Use of Blood Lactate Measurements in the Critical Care Setting

Use of Blood Lactate Measurements in the Critical Care Setting Use of Blood Lactate Measurements in the Critical Care Setting John G Toffaletti, PhD Director of Blood Gas and Clinical Pediatric Labs Professor of Pathology Duke University Medical Center Chief, VAMC

More information

Case scenario V AV ECMO. Dr Pranay Oza

Case scenario V AV ECMO. Dr Pranay Oza Case scenario V AV ECMO Dr Pranay Oza Case Summary 53 y/m, k/c/o MVP with myxomatous mitral valve with severe Mitral regurgitation underwent Mitral valve replacement with mini thoracotomy Pump time nearly

More information

ECMO for Severe Hypoxemic Respiratory Failure: Pro-Con Debate. Carolyn Calfee, MD MAS Mark Eisner, MD MPH

ECMO for Severe Hypoxemic Respiratory Failure: Pro-Con Debate. Carolyn Calfee, MD MAS Mark Eisner, MD MPH ECMO for Severe Hypoxemic Respiratory Failure: Pro-Con Debate Carolyn Calfee, MD MAS Mark Eisner, MD MPH June 3, 2010 Case Presentation Setting: Community hospital, November 2009 29 year old woman with

More information

NEONATAL CLINICAL PRACTICE GUIDELINE

NEONATAL CLINICAL PRACTICE GUIDELINE NEONATAL CLINICAL PRACTICE GUIDELINE Title: Brain Oxygen Monitoring in Newborns Using Near Infrared Spectroscopy (NIRS) Approval Date: Pages: June 2016 Approved by: Neonatal Patient Care Teams, HSC & SBH

More information

MANAGEMENT OF CIRCULATORY FAILURE

MANAGEMENT OF CIRCULATORY FAILURE MANAGEMENT OF CIRCULATORY FAILURE BACKGROUND AND DEFINITION There is no consensus on the definition of circulatory failure or shock in newborns; it can be defined as global tissue hypoxia secondary to

More information

7/4/2015. diffuse lung injury resulting in noncardiogenic pulmonary edema due to increase in capillary permeability

7/4/2015. diffuse lung injury resulting in noncardiogenic pulmonary edema due to increase in capillary permeability Leanna R. Miller, RN, MN, CCRN-CMC, PCCN-CSC, CEN, CNRN, CMSRN, NP Education Specialist LRM Consulting Nashville, TN Objectives Identify the 5 criteria for the diagnosis of ARDS. Discuss the common etiologies

More information

Fluid bolus of 20% Albumin in post-cardiac surgical patient: a prospective observational study of effect duration

Fluid bolus of 20% Albumin in post-cardiac surgical patient: a prospective observational study of effect duration Fluid bolus of 20% Albumin in post-cardiac surgical patient: a prospective observational study of effect duration Investigators: Salvatore Cutuli, Eduardo Osawa, Rinaldo Bellomo Affiliations: 1. Department

More information

IABP to prevent pulmonary edema under VA-ECMO

IABP to prevent pulmonary edema under VA-ECMO IABP to prevent pulmonary edema under VA-ECMO Alain Combes Service de Réanimation ican, Institute of Cardiometabolism and Nutrition Hôpital Pitié-Salpêtrière, AP-HP, Paris Université Pierre et Marie Curie,

More information

Sepsis: Identification and Management in an Acute Care Setting

Sepsis: Identification and Management in an Acute Care Setting Sepsis: Identification and Management in an Acute Care Setting Dr. Barbara M. Mills DNP Director Rapid Response Team/ Code Resuscitation Stony Brook University Medical Center SEPSIS LECTURE NPA 2018 OBJECTIVES

More information

Neonatal/Pediatric Cardiopulmonary Care. Persistent Pulmonary Hypertension of the Neonate (PPHN) PPHN. Other. Other Diseases

Neonatal/Pediatric Cardiopulmonary Care. Persistent Pulmonary Hypertension of the Neonate (PPHN) PPHN. Other. Other Diseases Neonatal/Pediatric Cardiopulmonary Care Other Diseases Persistent Pulmonary Hypertension of the Neonate (PPHN) PPHN 3 Also known as Persistent Fetal Circulation (PFC) Seen most frequently in term, post-term

More information

Acute heart failure: ECMO Cardiology & Vascular Medicine 2012

Acute heart failure: ECMO Cardiology & Vascular Medicine 2012 Acute heart failure: ECMO Cardiology & Vascular Medicine 2012 Lucia Jewbali cardiologist-intensivist 14 beds/8 ICU beds Acute coronary syndromes Heart failure/ Cardiogenic shock Post cardiotomy Heart

More information

ISPUB.COM. Concepts Of Neonatal ECMO. D Thakar, A Sinha, O Wenker HISTORY PATIENT SELECTION AND ECMO CRITERIA

ISPUB.COM. Concepts Of Neonatal ECMO. D Thakar, A Sinha, O Wenker HISTORY PATIENT SELECTION AND ECMO CRITERIA ISPUB.COM The Internet Journal of Emergency and Intensive Care Medicine Volume 5 Number 2 D Thakar, A Sinha, O Wenker Citation D Thakar, A Sinha, O Wenker.. The Internet Journal of Emergency and Intensive

More information

Sepsis Wave II Webinar Series. Sepsis Reassessment

Sepsis Wave II Webinar Series. Sepsis Reassessment Sepsis Wave II Webinar Series Sepsis Reassessment Presenters Nova Panebianco, MD Todd Slesinger, MD Fluid Reassessment in Sepsis Todd L. Slesinger, MD, FACEP, FCCM, FCCP, FAAEM Residency Program Director

More information

ino_rmp version 4.1_2016 Module Risk-management system NO-RMP-V 2.1

ino_rmp version 4.1_2016 Module Risk-management system NO-RMP-V 2.1 VI.2 Elements for a Public Summary VI.2.1 Overview of disease epidemiology Persistent pulmonary hypertension of the newborn (PPHN) Persistent pulmonary hypertension of the newborn is a life threatening

More information

University of Wisconsin - Madison Cardiovascular Medicine Fellowship Program UW CICU Rotation Goals and Objectives

University of Wisconsin - Madison Cardiovascular Medicine Fellowship Program UW CICU Rotation Goals and Objectives Background: The field of critical care cardiology has evolved considerably over the past 2 decades. Contemporary critical care cardiology is increasingly focused on the management of patients with advanced

More information

How to resuscitate the patient in early sepsis? A physiological approach. J.G. van der Hoeven, Nijmegen

How to resuscitate the patient in early sepsis? A physiological approach. J.G. van der Hoeven, Nijmegen How to resuscitate the patient in early sepsis? A physiological approach J.G. van der Hoeven, Nijmegen Disclosure interests speaker (potential) conflict of interest Potentially relevant relationships with

More information

PRE-CONGRESS Thursday, 7 th May 2015

PRE-CONGRESS Thursday, 7 th May 2015 PRE-CONGRESS Thursday, 7 th May 2015 Lecture Theater A2 Helicopter Room a Room b Room c Room C4 Hangar 12 :00 13 :00 Congress Registration 13 :00 14 :45 Session A: Practical ECLS in 2015 aspects of ECLS

More information

Objectives. Management of Septic Shock. Definitions Progression of sepsis. Epidemiology of severe sepsis. Major goals of therapy

Objectives. Management of Septic Shock. Definitions Progression of sepsis. Epidemiology of severe sepsis. Major goals of therapy Objectives Management of Septic Shock Review of the Evidence and Implementation of Pediatric Guidelines at Christus Santa Rosa Manish Desai, M.D. PL 5 2 nd year Pediatric Critical Care Fellow Review of

More information

NEONATAL CLINICAL PRACTICE GUIDELINE

NEONATAL CLINICAL PRACTICE GUIDELINE NEONATAL CLINICAL PRACTICE GUIDELINE Title: Integrated Evaluation of Neonatal Hemodynamics (IENH) and Targeted Echocardiogram Approval Date: January 2015 Approved by: Neonatal Patient Care Teams, HSC &

More information

PEER REVIEW HISTORY ARTICLE DETAILS TITLE (PROVISIONAL)

PEER REVIEW HISTORY ARTICLE DETAILS TITLE (PROVISIONAL) PEER REVIEW HISTORY BMJ Open publishes all reviews undertaken for accepted manuscripts. Reviewers are asked to complete a checklist review form (see an example) and are provided with free text boxes to

More information

PFIZER INC. THERAPEUTIC AREA AND FDA APPROVED INDICATIONS: See USPI.

PFIZER INC. THERAPEUTIC AREA AND FDA APPROVED INDICATIONS: See USPI. PFIZER INC. These results are supplied for informational purposes only. Prescribing decisions should be made based on the approved package insert. For publications based on this study, see associated bibliography.

More information

Nutrition in ECMO. Elize Craucamp RD(SA)

Nutrition in ECMO. Elize Craucamp RD(SA) Nutrition in ECMO Elize Craucamp RD(SA) ECMO What now!? KEEP CALM AND FEED THE ECMO PATIENT Despite the fact that little is known about nutritional strategies for adult ECMO patients! Neither overcomplicate

More information

Earlier Use of Inhaled Nitric Oxide in Term and Near-Term Neonates With Hypoxic Respiratory Failure (HRF) and Pulmonary Hypertension (PH)

Earlier Use of Inhaled Nitric Oxide in Term and Near-Term Neonates With Hypoxic Respiratory Failure (HRF) and Pulmonary Hypertension (PH) Earlier Use of Inhaled Nitric Oxide in Term and Near-Term Neonates With Hypoxic Respiratory Failure (HRF) and Pulmonary Hypertension (PH) 2013 Ikaria, Inc. 1 Disclosure Information This program is sponsored

More information

Three Decades of Managing Congenital Diaphragmatic Hernia

Three Decades of Managing Congenital Diaphragmatic Hernia Three Decades of Managing Congenital Diaphragmatic Hernia Desmond Bohn The Department of Critical Care Medicine The Hospital for Sick Children, Toronto Robert E Gross Congenital Diaphragmatic Hernia 1960-80

More information

New Strategies in the Management of Patients with Severe Sepsis

New Strategies in the Management of Patients with Severe Sepsis New Strategies in the Management of Patients with Severe Sepsis Michael Zgoda, MD, MBA President, Medical Staff Medical Director, ICU CMC-University, Charlotte, NC Factors of increases in the dx. of severe

More information

Index. Note: Page numbers of article titles are in boldface type

Index. Note: Page numbers of article titles are in boldface type Index Note: Page numbers of article titles are in boldface type A Acute coronary syndrome, perioperative oxygen in, 599 600 Acute lung injury (ALI). See Lung injury and Acute respiratory distress syndrome.

More information

Hypotension in the Neonate

Hypotension in the Neonate Neonatal Nursing Education Brief: Hypotension in the Neonate http://www.seattlechildrens.org/healthcare-professionals/education/continuing-medicalnursing-education/neonatal-nursing-education-briefs/ Neonatal

More information

Cardiovascular Institute

Cardiovascular Institute Allegheny Health Network Cardiovascular Institute Extracorporeal Membrane Oxygenation (ECMO) Program Our patient survival rate is higher than the national average. ECMO experts. Multidisciplinary team.

More information

Fluid Boluses in Preterm Babies with Poor Perfusion: A Hot Potato. Win Tin The James Cook University Hospital University of Durham

Fluid Boluses in Preterm Babies with Poor Perfusion: A Hot Potato. Win Tin The James Cook University Hospital University of Durham Fluid Boluses in Preterm Babies with Poor Perfusion: A Hot Potato Win Tin The James Cook University Hospital University of Durham Introduction Fluid Bolus/es (Intravascular Volume Expansion) - One of the

More information

INTRODUCTION The effect of CPAP works on lung mechanics to improve oxygenation (PaO 2

INTRODUCTION The effect of CPAP works on lung mechanics to improve oxygenation (PaO 2 2 Effects of CPAP INTRODUCTION The effect of CPAP works on lung mechanics to improve oxygenation (PaO 2 ). The effect on CO 2 is only secondary to the primary process of improvement in lung volume and

More information

Duct Dependant Congenital Heart Disease

Duct Dependant Congenital Heart Disease Children s Acute Transport Service Clinical Guidelines Duct Dependant Congenital Heart Disease This guideline has been agreed by both NTS & CATS Document Control Information Author CATS/NTS Author Position

More information

Goal-directed resuscitation in sepsis; a case-based approach

Goal-directed resuscitation in sepsis; a case-based approach Goal-directed resuscitation in sepsis; a case-based approach Jorge A Guzman, MD, FCCM Head, Section Critical Care Medicine Respiratory Institute Cleveland Clinic Foundation The challenges to managing septic

More information

-Cardiogenic: shock state resulting from impairment or failure of myocardium

-Cardiogenic: shock state resulting from impairment or failure of myocardium Shock chapter Shock -Condition in which tissue perfusion is inadequate to deliver oxygen, nutrients to support vital organs, cellular function -Affects all body systems -Classic signs of early shock: Tachycardia,tachypnea,restlessness,anxiety,

More information

Management of refractory ARDS. Saurabh maji

Management of refractory ARDS. Saurabh maji Management of refractory ARDS Saurabh maji Refractory hypoxemia as PaO2/FIO2 is less than 100 mm Hg, inability to keep plateau pressure below 30 cm H2O despite a VT of 4 ml/kg development of barotrauma

More information

ECMO as a bridge to durable LVAD therapy. Jonathan Haft, MD Department of Cardiac Surgery University of Michigan

ECMO as a bridge to durable LVAD therapy. Jonathan Haft, MD Department of Cardiac Surgery University of Michigan ECMO as a bridge to durable LVAD therapy Jonathan Haft, MD Department of Cardiac Surgery University of Michigan Systolic Heart Failure Prevalence 4.8 million U.S. 287,000 deaths per year $39 billion spent

More information

DESIGNER RESUSCITATION: TITRATING TO TISSUE NEEDS

DESIGNER RESUSCITATION: TITRATING TO TISSUE NEEDS DESIGNER RESUSCITATION: TITRATING TO TISSUE NEEDS R. Phillip Dellinger MD, MSc, MCCM Professor and Chair of Medicine Cooper Medical School of Rowan University Chief of Medicine Cooper University Hospital

More information

Artificial Lungs: A New Inspiration

Artificial Lungs: A New Inspiration Artificial Lungs: A New Inspiration Joseph B. Zwischenberger MD Johnston-Wright Professor and Chairman: Department of Surgery j.zwische@uky.edu The University of Kentucky Lexington, Kentucky Presenter

More information

Guidelines and Best Practices for Vapotherm High Velocity Nasal Insufflation (Hi-VNI ) NICU POCKET GUIDE

Guidelines and Best Practices for Vapotherm High Velocity Nasal Insufflation (Hi-VNI ) NICU POCKET GUIDE Guidelines and Best Practices for Vapotherm High Velocity Nasal Insufflation (Hi-VNI ) TM NICU POCKET GUIDE Patient Selection Diagnoses Patient presents with one or more of the following symptoms: These

More information

Extracorporeal support in acute respiratory failure. Dr Anthony Bastin Consultant in critical care Royal Brompton Hospital, London

Extracorporeal support in acute respiratory failure. Dr Anthony Bastin Consultant in critical care Royal Brompton Hospital, London Extracorporeal support in acute respiratory failure Dr Anthony Bastin Consultant in critical care Royal Brompton Hospital, London Objectives By the end of this session, you will be able to: Describe different

More information

Veno-Venous ECMO Support. Chris Cropsey, MD Sept. 21, 2015

Veno-Venous ECMO Support. Chris Cropsey, MD Sept. 21, 2015 Veno-Venous ECMO Support Chris Cropsey, MD Sept. 21, 2015 Objectives List indications and contraindications for ECMO Describe hemodynamics and oxygenation on ECMO Discuss evidence for ECMO outcomes Identify

More information

Title Extracorporeal membrane oxygenation in 61 neonates : CitationPediatrics international, 59(4): Issue Date Doc URL. Rights.

Title Extracorporeal membrane oxygenation in 61 neonates : CitationPediatrics international, 59(4): Issue Date Doc URL. Rights. Title Extracorporeal membrane oxygenation in 61 neonates : Hirakawa, Eiji; Ibara, Satoshi; Tokuhisa, Takuya; Ma Author(s) Hiroyuki; Naitou, Yoshiki; Yamamoto, Masakatsu; Kibe Kamitomo, Masato; Cho, Kazutoshi;

More information

9/17/2014. Good Morning! 14th Annual Western Kansas Respiratory Care Seminar. 14th Annual Western Kansas Respiratory Care Seminar 28th

9/17/2014. Good Morning! 14th Annual Western Kansas Respiratory Care Seminar. 14th Annual Western Kansas Respiratory Care Seminar 28th Good Morning! 14th Annual Western Kansas Respiratory Care Seminar Current Status of Extracorporeal Membrane Oxygenation (ECMO) in Infants and Adults Kelly D. Hedlund, MS, CCP Chief Perfusionist Michael

More information

Fluids in Sepsis: How much and what type? John Fowler, MD, FACEP Kent Hospital, İzmir Eisenhower Medical Center, USA American Hospital Dubai, UAE

Fluids in Sepsis: How much and what type? John Fowler, MD, FACEP Kent Hospital, İzmir Eisenhower Medical Center, USA American Hospital Dubai, UAE Fluids in Sepsis: How much and what type? John Fowler, MD, FACEP Kent Hospital, İzmir Eisenhower Medical Center, USA American Hospital Dubai, UAE In critically ill patients: too little fluid Low preload,

More information

Staging Sepsis for the Emergency Department: Physician

Staging Sepsis for the Emergency Department: Physician Staging Sepsis for the Emergency Department: Physician Sepsis Continuum 1 Sepsis Continuum SIRS = 2 or more clinical criteria, resulting in Systemic Inflammatory Response Syndrome Sepsis = SIRS + proven/suspected

More information

ECMO CPR. Ravi R. Thiagarajan MBBS, MPH. Cardiac Intensive Care Unit

ECMO CPR. Ravi R. Thiagarajan MBBS, MPH. Cardiac Intensive Care Unit ECMO CPR Ravi R. Thiagarajan MBBS, MPH Staff Intensivist Cardiac Intensive Care Unit Children s Hospital Boston PCICS 2008, Miami, FL No disclosures Disclosures Outline Outcomes for Pediatric in-hospital

More information

ECMO for cardiac arrest patients: Update 2017

ECMO for cardiac arrest patients: Update 2017 ECMO for cardiac arrest patients: Update 2017 Lim Swee Han MBBS (NUS), FRCS Ed (A&E), FRCP (Edin), FAMS Senior Consultant, Department of Emergency Medicine, Singapore General Hospital Adjunct Associate

More information

Exclusion Criteria 1. Operator or supervisor feels specific intra- procedural laryngoscopy device will be required.

Exclusion Criteria 1. Operator or supervisor feels specific intra- procedural laryngoscopy device will be required. FELLOW Study Data Analysis Plan Direct Laryngoscopy vs Video Laryngoscopy Background Respiratory failure requiring endotracheal intubation occurs in as many as 40% of critically ill patients. Procedural

More information

TRAINING NEONATOLOGY SILVANA PARIS

TRAINING NEONATOLOGY SILVANA PARIS TRAINING ON NEONATOLOGY SILVANA PARIS RESUSCITATION IN DELIVERY ROOM INTRODUCTION THE GLOBAL RESUSCITATION BURDEN IN NEWBORN 136 MILL NEWBORN BABIES EACH YEAR (WHO WORLD REPORT) 5-8 MILL NEWBORN INFANTS

More information

ECMO na OAiIT fanaberia czy konieczność? ECMO in ICU a fancy toy or a necessity? AW Sosnowski Heart Link ECMO Center Glenfiled Hospital Leicester

ECMO na OAiIT fanaberia czy konieczność? ECMO in ICU a fancy toy or a necessity? AW Sosnowski Heart Link ECMO Center Glenfiled Hospital Leicester ECMO na OAiIT fanaberia czy konieczność? ECMO in ICU a fancy toy or a necessity? AW Sosnowski Heart Link ECMO Center Glenfiled Hospital Leicester Extra-Corporeal Membrane Oxygenation ECMO A technique of

More information

Stayin Alive: Pediatric Advanced Life Support (PALS) Updated Guidelines

Stayin Alive: Pediatric Advanced Life Support (PALS) Updated Guidelines Stayin Alive: Pediatric Advanced Life Support (PALS) Updated Guidelines Margaret Oates, PharmD, BCPPS Pediatric Critical Care Specialist GSHP Summer Meeting July 16, 2016 Disclosures I have nothing to

More information

Cardiorespiratory Interactions:

Cardiorespiratory Interactions: Cardiorespiratory Interactions: The Heart - Lung Connection Jon N. Meliones, MD, MS, FCCM Professor of Pediatrics Duke University Medical Director PCVICU Optimizing CRI Cardiorespiratory Economics O2:

More information

Scope: This guideline is aimed at all Health Care Professionals involved in the care of infants within the Neonatal Service.

Scope: This guideline is aimed at all Health Care Professionals involved in the care of infants within the Neonatal Service. Persistent Pulmonary Hypertension of the Newborn (PPHN) University Hospitals of Leicester NHS NHS Trust June 2018 June 2021 Scope: This guideline is aimed at all Health Care Professionals involved in the

More information

ECLS as Bridge to Transplant

ECLS as Bridge to Transplant ECLS as Bridge to Transplant Marcelo Cypel MD, MSc Assistant Professor of Surgery Division of Thoracic Surgery Toronto General Hospital University of Toronto Application of ECLS Bridge to lung recovery

More information

Provide guidelines for the management of mechanical ventilation in infants <34 weeks gestation.

Provide guidelines for the management of mechanical ventilation in infants <34 weeks gestation. Page 1 of 5 PURPOSE: Provide guidelines for the management of mechanical ventilation in infants

More information

Original Policy Date

Original Policy Date MP 8.01.17 Inhaled Nitric Oxide Medical Policy Section Therapy Issue 12/2013 Original Policy Date 12/2013 Last Review Status/Date Reviewed with literature search/12/2013 Return to Medical Policy Index

More information

Guideline for the Use of inhaled Nitric Oxide (NO) Catarina Silvestre Prof. Harish Vyas

Guideline for the Use of inhaled Nitric Oxide (NO) Catarina Silvestre Prof. Harish Vyas Inhaled Nitric Oxide Title of Guideline Guideline for the Use of inhaled Nitric Oxide (NO) 1a 2a 2b Contact Name and Job Title (author) Directorate & Speciality Date of submission October 2015 Date when

More information

Innovative ECMO Configurations in Adults

Innovative ECMO Configurations in Adults Innovative ECMO Configurations in Adults Practice at a Single Center with Platinum Level ELSO Award for Excellence in Life Support Monika Tukacs, BSN, RN, CCRN Columbia University Irving Medical Center,

More information

Late pulmonary hypertension in preterm infants How to sort things out? V.Gournay, FCPC, La Martinique, Nov 23,2015

Late pulmonary hypertension in preterm infants How to sort things out? V.Gournay, FCPC, La Martinique, Nov 23,2015 Late pulmonary hypertension in preterm infants How to sort things out? V.Gournay, FCPC, La Martinique, Nov 23,2015 Epidemiology Incidence of extreme prematurity (

More information

International Journal of Pediatrics and Neonatal Health

International Journal of Pediatrics and Neonatal Health International Journal of Pediatrics and Neonatal Health Research Article ISSN 2572-4355 Reduction in Deaths due to Severe Pneumonia with all-inclusive Treatment Subhashchandra Daga *1, Bela Verma 2, Chhaya

More information

ECLS. The Basics. Jeannine Hermens Intensive Care Center UMC Utrecht

ECLS. The Basics. Jeannine Hermens Intensive Care Center UMC Utrecht ECLS The Basics Jeannine Hermens Intensive Care Center UMC Utrecht Conflict of interest None Terminology ECMO - ExtraCorporeal Membrane Oxygenation ECLS - ExtraCorporeal Life Support PLS - Veno-venous

More information

Intra-operative Effects of Cardiac Surgery Influence on Post-operative care. Richard A Perryman

Intra-operative Effects of Cardiac Surgery Influence on Post-operative care. Richard A Perryman Intra-operative Effects of Cardiac Surgery Influence on Post-operative care Richard A Perryman Intra-operative Effects of Cardiac Surgery Cardiopulmonary Bypass Hypothermia Cannulation events Myocardial

More information

Vasopressors in septic shock

Vasopressors in septic shock Vasopressors in septic shock Prof. Jean-Louis TEBOUL Medical ICU Bicetre hospital University Paris-South France Questions 1- Why do we use vasopressors in septic shock? 2- Which first-line agent? 3- When

More information

NE refractoriness: From Definition To Treatment... Prof. Alain Combes

NE refractoriness: From Definition To Treatment... Prof. Alain Combes NE refractoriness: From Definition To Treatment... Prof. Alain Combes Service de Réanimation ican, Institute of Cardiometabolism and Nutrition Hôpital Pitié-Salpêtrière, AP-HP, Paris Université Pierre

More information

FLUIDS AND SOLUTIONS IN THE CRITICALLY ILL. Daniel De Backer Department of Intensive Care Erasme University Hospital Brussels, Belgium

FLUIDS AND SOLUTIONS IN THE CRITICALLY ILL. Daniel De Backer Department of Intensive Care Erasme University Hospital Brussels, Belgium FLUIDS AND SOLUTIONS IN THE CRITICALLY ILL Daniel De Backer Department of Intensive Care Erasme University Hospital Brussels, Belgium Why do we want to administer fluids? To correct hypovolemia? To increase

More information