Left Ventricle Segmentation from Heart MDCT

Size: px
Start display at page:

Download "Left Ventricle Segmentation from Heart MDCT"

Transcription

1 Left Ventricle Segmentation from Heart MDCT Samuel Silva, Beatriz Sousa Santos, Joaquim Madeira, and Augusto Silva DETI / IEETA University of Aveiro, Aveiro, Portugal sss@ua.pt Abstract. A semi-automatic method for left ventricle segmentation from MDCT exams is presented. It was developed using ITK and custom modules integrated in the MeVisLab platform. A preliminary qualitative evaluation shows that the provided segmentation, without any tweaking or manual edition, is reasonably close to the ideal segmentation as judged by experienced radiology technicians. 1 Introduction Multi-detector row computer tomography (MDCT) systems have been evolving at a fast pace enabling submillimeter spatial resolutions and low exam times, allowing full heart imaging in less than a breath-hold and providing 10+ heart volumes per cardiac cycle. The same data obtained for coronary angiography can be used to perform analysis of left ventricle function and myocardial perfusion with no need of extra radiation exposure, leading to additional information which can help the practitioner to attain a more complete diagnosis. In fact, recent studies (e.g., [1]) comparing data obtained from different imaging modalities, reveal that reliable left ventricle analysis can be performed using MDCT data. As stated by Cury et al. [2], the full potential of MDCT technology is just beginning to be explored and further advances are essential, concerning not only new automatically computed parameters but also improved tools to enable further insight into the wide range of data now becoming available (e.g., for left ventricle wall motion). At the ground level of such developments are segmentation methods. Different approaches regarding left ventricle segmentation for a variety of exam modalities have been widely described in the literature in the past years [3] and range from 2D methods (e.g., [4]) to more complex, model-based, approaches (e.g., [5]). Unfortunately, to the best of our knowledge, no off-the-shelf segmentation method is available which could be used as a basis for our work. Therefore, we engaged in the development of a segmentation method which should: 1) be as automatic as possible; 2) segment both left ventricle endocardium and epicardium; 3) provide a segmentation for all cardiac phases included in the MDCT exam; and 4) be validated by radiology technicians to ensure the reliability of the resulting data. This article describes a semi-automatic left ventricle segmentation method which was implemented using ITK ( and custom processing modules integrated in the MeVisLab ( H. Araujo et al. (Eds.): IbPRIA 2009, LNCS 5524, pp , c Springer-Verlag Berlin Heidelberg 2009

2 Left Ventricle Segmentation from Heart MDCT 307 platform. The results from a qualitative evaluation of the segmentation results, conducted with the collaboration of experienced radiology technicians, are presented and show that the resulting endocardium segmentation (without any parameter tweaking or manual edition) is of good quality, requiring, in general, minimum edition, while the epicardium segmentation performs reasonably but clearly requires further enhancements. In the next sections the implemented segmentation method is presented followed by a description of the evaluation process and obtained results. Finally, we present some ideas for future work. 2 Left Ventricle Segmentation Coronary angiography MDCT exams are used (i.e., with contrast agent present [6], mainly in the coronary arteries and left ventricle), containing 10 to 12 heart volumes, along one cardiac cycle, each having a resolution of voxels. To improve image quality before segmentation, two methods are used. First, a minimum intensity filter is applied along the YY axis using a three voxel neighborhood. Then, to partially attenuate noise, a smoothing filter is applied. The developed segmentation method has four main stages: 1) left ventricle principal axis estimation; 2) reference phase endocardium segmentation; 3) full exam endocardium segmentation; 4) full exam epicardium segmentation. The main aspects of each stage will be explained in the following sections. 2.1 Principal Axis Estimation Left ventricle axes must be estimated in order to select a proper orientation for the data and segment the left ventricle using slices along its principal axis. From the 10 to 12 cardiac phases available in each exam, the one corresponding to 60% of the cardiac cycle was chosen for left ventricle principal axis estimation, since it exhibited better image quality. This is due to the fact that it belongs to the diastolic phase of the cardiac cycle where structural motion is less significant and a higher amount of radiation is applied to ensure better image quality. During the remaining phases of the exam the radiation levels are kept to a minimum (to reduce radiation dosage [6]) resulting in images with worse quality. To estimate left ventricle position a coronal slice at midventricular level is analysed. A threshold is performed and the image is searched from right to left looking for active regions. The first region found with a large area (to exclude regions related with the coronary arteries, lungs, etc.) is considered part of the left ventricle. Region growing is then applied in order to isolate it from all other active regions on the image (including, eventually, portions of the right ventricle where some contrast agent might be present). Finally, the centroid of the segmented region is computed and stored to be used as a reference during the segmentation of the remaining slices. In order to ease the detection of slices close to the left ventricle apex (where area cannot be used as a detection criteria), 3D region growing is applied to the

3 308 S. Silva et al. Fig. 1. Slice showing the segmented endocardium not including the papillary muscles (left) and including them in the blood pool (right) entire set using the previously computed centroid as seed. This will isolate the left ventricle blood pool from other active regions related with the lungs and ribs which might result in classifying a region as part of the left ventricle too early (ribs) or out of place (lungs). The data set resulting from the previously performed 3D region growing is then processed, slice by slice, along the coronal plane, from the left ventricle apex to its base. Each slice is searched for an active region from right to left. To ensure that none of the possibly remaining regions are misclassified as left ventricle the one closest to the previously computed reference centroid is chosen. It follows region growing to segment that region and hole filling to ensure that holes related with the papillary muscles are closed. To detect the stopping slice, the leftmost pixel of each segmented region is computed. If a sudden decrease (i.e., it moves to the left of the image) occurs it means that the region where the left ventricle connects with the aorta has been reached (outflow tract). From that moment on, our method looks for a sudden increase in the leftmost pixel of the segmented region which is related with the entrance in the left atrium region and segmentation stops. Finally, the centroids for the first and last slices are used to compute the left ventricle principal axis. The exam is then rotated in order to position the left ventricle axis normally to the coronal plane and the remaining processing is performed using this orientation. 2.2 Reference Phase Segmentation Starting from the 60% phase (due to better image quality), the endocardium is segmented using a method similar to that used to estimate the principal axis. The blood pool centroid and maximum radius are computed at a midventricular slice and 3D region growing is applied using that voxel as seed. The resulting data set is processed, slice by slice, along the coronal plane, from the left ventricle apex to its base. Each slice is searched for an active region from right to left. To ensure that none of the possibly remaining regions are misclassified as left ventricle the one closest to the previously computed reference centroid is chosen. It follows region growing and hole filling to include the papillary muscles in the blood pool (see figure 1).

4 Left Ventricle Segmentation from Heart MDCT 309 (a) (b) Fig. 2. Segmented endocardium (a) and epicardium (b) for end-systolic and enddiastolic phases The stopping slice (i.e., one desirably at mitral valve level) is detected by a significant change of blood pool radius, when compared with the reference radius obtained earlier (entrance in the outflow tract and left atrium). 2.3 Full Exam Segmentation After segmenting the endocardium for the reference phase it followsendocardium and epicardium segmentation for all exam phases. Endocardium. The reference endocardium is scaled (to encompass a slightly larger blood volume for the end-diastolic phase) and used as a mask to isolate the left ventricle blood pool in all exam phases. Next, thresholding is applied followed by hole filling. Due to left ventricle motion the location of the mitral valve changes. Thus, further processing is necessary to estimate that plane for each phase. A reference blood pool radius is computed for a midventricular slice and the segmentation stopped when blood pool radius significantly exceeds that value (entrance in the left atrium and outflow tract). Figure 2(a) shows two segmentations obtained for end-sistole and end-diastole. Epicardium. Epicardium segmentation is harder to perform due to poor image quality, including a slight variation of the greylevel interval corresponding to the epicardium along the different exam phases, and due to the existence of pixels inside that interval in adjacent regions such as the right ventricle and liver. To minimize the effects arising from these issues, left ventricle radius is estimated for each phase in order to define a region of interest as narrow as possible and pixels are sampled along the epicardium to help define a suitable greylevel interval for segmentation using thresholding. Figure 2(b) shows two segmented epicardia for end-sistole and end-diastole. 3 Evaluation At this development stage we opted for a less-costly, preliminary qualitative evaluation that would allow the detection of any serious segmentation problem and inform further fine tuning of the proposed algorithm.

5 310 S. Silva et al. (a) (b) Fig. 3. (a) Unedited segmentation results provided by a TeraRecon Aquarius workstation; and (b) unedited segmentation results, for the same exam, provided by our method Such a preliminary evaluation has been performed with the help of radiology technicians with 3 to 4 years daily experience in analysing MDCT heart images. 3.1 Methods Eventhough our method segments all exam phases, in this evaluation only three phases were evaluated per exam: the end-systole and end-diastole, which are used to compute important parameters such as the ejection fraction [1], and the 60% phase which was used as a reference for the segmentation of all remaining phases. An important aspect of every segmentation method is that the resulting first segmentation (i.e, without manual parameter tweaking or edition) should be as accurate as possible in order to minimize correction time. Having that in mind we decided to evaluate the segmentation results using only the standard values for the different parameters (e.g., ratio value between reference endocardium radius and current slice radius to determine mitral valve plane; determined empirically along the development) and no manual edition. These first segmentations were shown to the technicians and were considered good first approaches with no major abnormalities and comparable to first segmentations (specially for the endocardium) provided, for example, by a TeraRecon Aquarius workstation which additionally requires a priori manual alignment of the data in three different planes. Figure 3 shows an example where, even with the three plane initialization, the TeraRecon workstation provides a worst first segmentation. Notice the segmentation problems in the apex and midventricular slices. After such preliminary results we decided to perform a more thorough evaluation by asking the technicians to classify the resulting segmentations as if they were final. They were asked to evaluate segmentation results for a set of seven exams taken randomly from that week s exams. Care was only taken to ensure that no serious movement artifacts were present which might influence the results. Each technician received a grid to guide the evaluation process and where the evaluations should be registered. Regarding the endocardium, the grid considered segmentation evaluation for four anatomical regions deemed of interest: apex,

6 Left Ventricle Segmentation from Heart MDCT 311 midventricular slices, mitral valve and outflow tract. For each region the segmentation could be generically classified as OK (optimum segmentation), EXCESS (the segmented region is larger than the ideal) and SHORTAGE (the segmented region is smaller than the ideal). For the last two cases, the technician had to classify the severity of the problem using a three-level scale (1 low significance: the segmentation is very good, although, for the sake of perfectness, it could include/exclude a very small region; 2 moderate: the segmentation is good but it could be significantly improved by the inclusion/exclusion of a small region; 3 serious: the segmentation cannot be used without the inclusion/exclusion of important regions). For the epicardium a similar evaluation scale was used and five anatomical regions were considered: apex and the lateral (external) and septal (between ventricles) regions for the midventricular slices and base. Before evaluating the segmentations for each exam, the technicians were allowed to adjust cutting planes in order to define what they considered the proper 4-chamber (ventricles + atria) and left ventricle short-axis visualizations (which they usually use to analyse the left ventricle). Next, they were presented with those two visualizations of the different exam phases, with the segmentation superimposed onto them, and allowed to scroll along the slices parallel to the cutting planes (which could be changed, at any time, to encompass their needs). The opacity of the segmented regions could be changed in order, e.g., to better examine the regions bellow the segmentation mask. The endocardium and epicardium segmentations could be visualized separately or at the same time. The technicians could take all the time they needed to evaluate each phase and were allowed to alternate between phases for comparison (e.g., in order to assess if the papillary muscles were coherently included/excluded). 3.2 Results Table 1A shows evaluation results concerning endocardium segmentation. Notice that for most exams and cardiac phases the apex and midventricular slices where considered to be well segmented. Concerning the mitral valve and outflow tract there are different problems with different severities. A worst case example is exam 2 with level 3 problems in four situations. Nevertheless, notice that this just means a segmentation that must be edited before usage and not a completely abnormal segmentation. Figure 4(a) shows the endocardium segmentation for the end-sistole of exam 2 as an example of the worst segmentation found for the mitral valve region. Figure 4(b) shows the corresponding automatic segmentation as provided by a Siemens Circulation workstation with a significant region wrongly segmented inside the left atrium. Remarkably, during the evaluation, we noticed that two different criteria might be used to evaluate outflow tract segmentation: one considering that the tract should not be included in left ventricle segmentation and another considering that all the tract up to the aortic valve should be considered. This issue requires clarification and a deeper investigation is being carried out. Concerning epicardium segmentation (evaluation results presented in Table 1B), the technicians found most of the severe problems in the septal sections of both

7 312 S. Silva et al. Table 1. Evaluation results for endocardium and epicardium segmentation A. Endocardium Segmentation Evaluation End-Sistole End-Diastole 60% Exam Apex Mid. Valve Tract Apex Mid. Valve Tract Apex Mid. Valve Tract 1 O O - O O O O O O O + O 2 O O O O O O O O O O O ++ O O O O O + O O --- O O O -- O O O O O O O B. Epicardium Segmentation Evaluation End-Sistole End-Diastole Exam Apex Mid. Base Apex Mid. Base L S L S L S L S 1 O O +++ O +++ O O +++ O O O O O O O O 3 - O O O O O O - ++ O O O O O O:Optimum + : Excess : Shortage Number of symbols conveys severity level, e.g.: +++ : level 3 excess - - : level 2 shortage (a) (b) (c) Fig. 4. Endocardium segmentation, as provided by our nethod (a), for the end-distolic phase of exam 2 and corresponding segmentation as provided by a Siemens Circulation workstation (b). In (c), example of epicardium segmentation problem found in the septal section. midventricular and basal slices. Eventhough our method tries to adapt the threshold interval to each phase and seems to work very reasonably for some exams, the greylevels found in the septal section are, in many exam phases (due to noise and low radiation dosage) similar to those found inside the right ventricle. The initial mask applied to the image, to define a restricted region of interest, is limiting the severity of some of the problems but epicardium segmentation clearly needs further improvements. Figure 4(c) shows an example of a segmentation problem found in the septal section of the midventricular slices. The segmentation should roughly end in the dashed line. 4 Conclusions and Future Work A semi-automatic left ventricle segmentation method implemented using ITK and custom modules integrated in the MeVisLab platform is presented. A

8 Left Ventricle Segmentation from Heart MDCT 313 preliminary qualitative evaluation conducted using a set of seven exams evaluated by experienced radiology technicians provided interesting results: the endocardium segmentation (without any parameter tweaking or manual edition) exhibits good quality and epicardium segmentation, although still needing further enhancements concerning the segmentation of the septal section of the ventricle wall, yields promising results. Motivated by these results the following lines of work are considered relevant: Provide a simple editing tool to adjust the resulting segmentation which would easily solve the majority of the segmentation problems found; Improve the epicardium segmentation by using more robust statistics to characterize greylevel distribution (e.g., outlier removal), around the endocardium and by defining an improved initial region of interest which better includes the apex; Conduct a more elaborate evaluation of the proposed method by asking radiology technicians to manually segment exams for comparison with our segmentations and by comparing our blood volumes and ejection fractions with those obtained using ecocardiography, considered a gold standard for this kind of measures. Acknowledgments The authors would like to thank the radiology technicians at the Cardiology Service of Vila Nova de Gaia Hospital Center for their collaboration. The first author s work is funded by grant SFRH/BD/38073/2007 awarded by the portuguese Science and Technology Foundation (FCT). References 1. Fischbach, R., Juergens, K., Ozgun, M., Maintz, D., Grude, M., Seifarth, H., Heindel, W., Wichter, T.: Assessment of regional left ventricular function with multidetectorrow computed tomography versus magnetic resonance imaging. European Radiology 17(4), (2007) 2. Cury, R., Nieman, K., Shapiro, M., Nasir, K., Cury, R.C., Brady, T.: Comprehensive cardiac CT study: Evaluation of coronary arteries, left ventricular function, and myocardial perfusion is it possible? J. of Nuclear Cardiology 14(2), (2007) 3. Suri, J.S.: Computer vision, pattern recognition and image processing in left ventricle segmentation: The last 50 years. Patt. Analysis & App. 3(3), (2000) 4. Jolly, M.P.: Automatic segmentation of the left ventricle in cardiac MR and CT images. International Journal of Computer Vision 70(2), (2006) 5. Zheng, Y., Barbu, B., Gergescu, B., Scheuering, M., Comaniciu, D.: Four-chamber heart modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space learning and steerable features. IEEE Transactions on Medical Imaging, Special Issue on Functional Imaging of the Heart 27(11), (2008) 6. Pannu, H.K., Flohr, T., Corl, F.M., Fishman, E.K.: Current concepts in multidetector row CT evaluation of the coronary arteries - pinciples, techniques, and anatomy. Radiographics 23, S111 S125 (2003)

Automated Volumetric Cardiac Ultrasound Analysis

Automated Volumetric Cardiac Ultrasound Analysis Whitepaper Automated Volumetric Cardiac Ultrasound Analysis ACUSON SC2000 Volume Imaging Ultrasound System Bogdan Georgescu, Ph.D. Siemens Corporate Research Princeton, New Jersey USA Answers for life.

More information

Automatic cardiac contour propagation in short axis cardiac MR images

Automatic cardiac contour propagation in short axis cardiac MR images International Congress Series 1281 (2005) 351 356 www.ics-elsevier.com Automatic cardiac contour propagation in short axis cardiac MR images G.L.T.F. Hautvast a,b, T, M. Breeuwer a, S. Lobregt a, A. Vilanova

More information

cardiac imaging planes planning basic cardiac & aortic views for MR

cardiac imaging planes planning basic cardiac & aortic views for MR cardiac imaging planes planning basic cardiac & aortic views for MR Dianna M. E. Bardo, M. D. Assistant Professor of Radiology & Cardiovascular Medicine Director of Cardiac Imaging cardiac imaging planes

More information

The Heart. Happy Friday! #takeoutyournotes #testnotgradedyet

The Heart. Happy Friday! #takeoutyournotes #testnotgradedyet The Heart Happy Friday! #takeoutyournotes #testnotgradedyet Introduction Cardiovascular system distributes blood Pump (heart) Distribution areas (capillaries) Heart has 4 compartments 2 receive blood (atria)

More information

Noncoronary Cardiac MDCT

Noncoronary Cardiac MDCT Noncoronary Cardiac MDCT David A. Bluemke, M.D., Ph.D. Professor, of Radiology and Medicine Johns Hopkins University School of Medicine Baltimore, Maryland Toshiba Disclosures Grant support Noncoronary

More information

General Cardiovascular Magnetic Resonance Imaging

General Cardiovascular Magnetic Resonance Imaging 2 General Cardiovascular Magnetic Resonance Imaging 19 Peter G. Danias, Cardiovascular MRI: 150 Multiple-Choice Questions and Answers Humana Press 2008 20 Cardiovascular MRI: 150 Multiple-Choice Questions

More information

Automatic Ascending Aorta Detection in CTA Datasets

Automatic Ascending Aorta Detection in CTA Datasets Automatic Ascending Aorta Detection in CTA Datasets Stefan C. Saur 1, Caroline Kühnel 2, Tobias Boskamp 2, Gábor Székely 1, Philippe Cattin 1,3 1 Computer Vision Laboratory, ETH Zurich, 8092 Zurich, Switzerland

More information

2019 Qualified Clinical Data Registry (QCDR) Performance Measures

2019 Qualified Clinical Data Registry (QCDR) Performance Measures 2019 Qualified Clinical Data Registry (QCDR) Performance Measures Description: This document contains the 18 performance measures approved by CMS for inclusion in the 2019 Qualified Clinical Data Registry

More information

PART II ECHOCARDIOGRAPHY LABORATORY OPERATIONS ADULT TRANSTHORACIC ECHOCARDIOGRAPHY TESTING

PART II ECHOCARDIOGRAPHY LABORATORY OPERATIONS ADULT TRANSTHORACIC ECHOCARDIOGRAPHY TESTING PART II ECHOCARDIOGRAPHY LABORATORY OPERATIONS ADULT TRANSTHORACIC ECHOCARDIOGRAPHY TESTING STANDARD - Primary Instrumentation 1.1 Cardiac Ultrasound Systems SECTION 1 Instrumentation Ultrasound instruments

More information

doi: /

doi: / Yiting Xie ; Matthew D. Cham ; Claudia Henschke ; David Yankelevitz ; Anthony P. Reeves; Automated coronary artery calcification detection on low-dose chest CT images. Proc. SPIE 9035, Medical Imaging

More information

Cardiac Radiology In-Training Test Questions for Diagnostic Radiology Residents

Cardiac Radiology In-Training Test Questions for Diagnostic Radiology Residents Cardiac Radiology In-Training Test Questions for Diagnostic Radiology Residents March, 2013 Sponsored by: Commission on Education Committee on Residency Training in Diagnostic Radiology 2013 by American

More information

Voxar 3D CardiaMetrix. Reference Guide

Voxar 3D CardiaMetrix. Reference Guide Voxar 3D CardiaMetrix Reference Guide The software described in this document is furnished under a license, and may be used or copied only according to the terms of such license. Toshiba means, Toshiba

More information

Improvement of Image Quality with ß-Blocker Premedication on ECG-Gated 16-MDCT Coronary Angiography

Improvement of Image Quality with ß-Blocker Premedication on ECG-Gated 16-MDCT Coronary Angiography 16-MDCT Coronary Angiography Shim et al. 16-MDCT Coronary Angiography Sung Shine Shim 1 Yookyung Kim Soo Mee Lim Received December 1, 2003; accepted after revision June 1, 2004. 1 All authors: Department

More information

Cardiac MRI in ACHD What We. ACHD Patients

Cardiac MRI in ACHD What We. ACHD Patients Cardiac MRI in ACHD What We Have Learned to Apply to ACHD Patients Faris Al Mousily, MBChB, FAAC, FACC Consultant, Pediatric Cardiology, KFSH&RC/Jeddah Adjunct Faculty, Division of Pediatric Cardiology

More information

, David Stultz, MD. Cardiac CT. David Stultz, MD Cardiology Fellow, PGY 6 March 28, 2006

, David Stultz, MD. Cardiac CT. David Stultz, MD Cardiology Fellow, PGY 6 March 28, 2006 Cardiac CT David Stultz, MD Cardiology Fellow, PGY 6 March 28, 2006 Courtesy Tom Kracus Courtesy Kettering Tom Medical Kracus Cente Kettering Medical Center 2003-2006, David Stultz, MD Courtesy Tom Kracus

More information

Introduction. Cardiac Imaging Modalities MRI. Overview. MRI (Continued) MRI (Continued) Arnaud Bistoquet 12/19/03

Introduction. Cardiac Imaging Modalities MRI. Overview. MRI (Continued) MRI (Continued) Arnaud Bistoquet 12/19/03 Introduction Cardiac Imaging Modalities Arnaud Bistoquet 12/19/03 Coronary heart disease: the vessels that supply oxygen-carrying blood to the heart, become narrowed and unable to carry a normal amount

More information

Adult Echocardiography Examination Content Outline

Adult Echocardiography Examination Content Outline Adult Echocardiography Examination Content Outline (Outline Summary) # Domain Subdomain Percentage 1 2 3 4 5 Anatomy and Physiology Pathology Clinical Care and Safety Measurement Techniques, Maneuvers,

More information

B-Mode measurements protocols:

B-Mode measurements protocols: Application Note How to Perform the Most Commonly Used Measurements from the Cardiac Measurements Package associated with Calculations of Cardiac Function using the Vevo Lab Objective The Vevo LAB offline

More information

CHAPTER. Quantification in cardiac MRI. This chapter was adapted from:

CHAPTER. Quantification in cardiac MRI. This chapter was adapted from: CHAPTER Quantification in cardiac MRI This chapter was adapted from: Quantification in cardiac MRI Rob J. van der Geest, Johan H.C. Reiber Journal of Magnetic Resonance Imaging 1999, Volume 10, Pages 602-608.

More information

Myocardial Delineation via Registration in a Polar Coordinate System

Myocardial Delineation via Registration in a Polar Coordinate System Myocardial Delineation via Registration in a Polar Coordinate System Nicholas M.I. Noble, Derek L.G. Hill, Marcel Breeuwer 2, JuliaA. Schnabel, David J. Hawkes, FransA. Gerritsen 2, and Reza Razavi Computer

More information

Enhanced Endocardial Boundary Detection in Echocardiography Images using B-Spline and Statistical Method

Enhanced Endocardial Boundary Detection in Echocardiography Images using B-Spline and Statistical Method Copyright 2014 American Scientific Publishers Advanced Science Letters All rights reserved Vol. 20, 1876 1880, 2014 Printed in the United States of America Enhanced Endocardial Boundary Detection in Echocardiography

More information

Ventricular function assessment using MRI: comparative study between cartesian and radial techniques of k-space filling

Ventricular function assessment using MRI: comparative study between cartesian and radial techniques of k-space filling Ventricular function assessment using MRI: comparative study between cartesian and radial techniques of k-space filling Poster No.: B-0681 Congress: ECR 014 Type: Scientific Paper Authors: C. Ferreira,

More information

Case 47 Clinical Presentation

Case 47 Clinical Presentation 93 Case 47 C Clinical Presentation 45-year-old man presents with chest pain and new onset of a murmur. Echocardiography shows severe aortic insufficiency. 94 RadCases Cardiac Imaging Imaging Findings C

More information

MR Advance Techniques. Cardiac Imaging. Class IV

MR Advance Techniques. Cardiac Imaging. Class IV MR Advance Techniques Cardiac Imaging Class IV Heart The heart is a muscular organ responsible for pumping blood through the blood vessels by repeated, rhythmic contractions. Layers of the heart Endocardium

More information

MSRS 6473 Vascular Noninvasive Imaging Procedures

MSRS 6473 Vascular Noninvasive Imaging Procedures MSRS 6473 Vascular Noninvasive Imaging Procedures Rex T. Christensen MHA RT (R) (MR) (CT) (ARRT) CIIP Basic Physics Equipment Cardiac Positioning Perfusion Pathology MRI 1 Animal Magnetism MRI Basic Physics

More information

Cardiac ultrasound protocols

Cardiac ultrasound protocols Cardiac ultrasound protocols IDEXX Telemedicine Consultants Two-dimensional and M-mode imaging planes Right parasternal long axis four chamber Obtained from the right side Displays the relative proportions

More information

Multiple Gated Acquisition (MUGA) Scanning

Multiple Gated Acquisition (MUGA) Scanning Multiple Gated Acquisition (MUGA) Scanning Dmitry Beyder MPA, CNMT Nuclear Medicine, Radiology Barnes-Jewish Hospital / Washington University St. Louis, MO Disclaimers/Relationships Standard of care research

More information

University of Groningen. Quantitative CT myocardial perfusion Pelgrim, Gert

University of Groningen. Quantitative CT myocardial perfusion Pelgrim, Gert University of Groningen Quantitative CT myocardial perfusion Pelgrim, Gert IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check

More information

CARDIAC MRI. Cardiovascular Disease. Cardiovascular Disease. Cardiovascular Disease. Overview

CARDIAC MRI. Cardiovascular Disease. Cardiovascular Disease. Cardiovascular Disease. Overview CARDIAC MRI Dr Yang Faridah A. Aziz Department of Biomedical Imaging University of Malaya Medical Centre Cardiovascular Disease Diseases of the circulatory system, also called cardiovascular disease (CVD),

More information

Fellows on this rotation are expected to attend nuclear conferences and multimodality imaging conference.

Fellows on this rotation are expected to attend nuclear conferences and multimodality imaging conference. Rotation: Imaging 1 Imaging 1 provides COCATS Level 1 experience for nuclear cardiology (including SPECT and PET) and cardiac CT. Fellows will administer, process, and read cardiac nuclear studies with

More information

The Cardiovascular System (Heart)

The Cardiovascular System (Heart) The Cardiovascular System The Cardiovascular System (Heart) A closed system of the heart and blood vessels The heart pumps blood Blood vessels allow blood to circulate to all parts of the body The function

More information

Calculation of the Ejection Fraction (EF) from MR Cardio-Images

Calculation of the Ejection Fraction (EF) from MR Cardio-Images Calculation of the Ejection Fraction (EF) from MR Cardio-Images Michael Lynch, Ovidiu Ghita and Paul F. Whelan Vision Systems Laboratory School of Electronic Engineering Dublin City University Dublin 9,

More information

UK Biobank. Imaging modality Cardiovascular Magnetic Resonance (CMR) Version th Oct 2015

UK Biobank. Imaging modality Cardiovascular Magnetic Resonance (CMR) Version th Oct 2015 Imaging modality Cardiovascular Magnetic Resonance (CMR) Version 1.0 http://www.ukbiobank.ac.uk/ 30 th Oct 2015 This document details the procedure for the CMR scan performed at an Imaging assessment centre

More information

Two semilunar valves. Two atrioventricular valves. Valves of the heart. Left atrioventricular or bicuspid valve Mitral valve

Two semilunar valves. Two atrioventricular valves. Valves of the heart. Left atrioventricular or bicuspid valve Mitral valve The Heart 3 Valves of the heart Two atrioventricular valves Two semilunar valves Right atrioventricular or tricuspid valve Left atrioventricular or bicuspid valve Mitral valve Aortic valve Pulmonary valve

More information

Vevo 2100 System Cardio Measurements. Dieter Fuchs, PhD FUJIFILM VisualSonics, Inc.

Vevo 2100 System Cardio Measurements. Dieter Fuchs, PhD FUJIFILM VisualSonics, Inc. Vevo 2100 System Cardio Measurements Dieter Fuchs, PhD FUJIFILM VisualSonics, Inc. dfuchs@visualsonics.com Instructions This document is a guideline on how to assess cardiac function in rodents imaged

More information

A Framework Combining Multi-sequence MRI for Fully Automated Quantitative Analysis of Cardiac Global And Regional Functions

A Framework Combining Multi-sequence MRI for Fully Automated Quantitative Analysis of Cardiac Global And Regional Functions A Framework Combining Multi-sequence MRI for Fully Automated Quantitative Analysis of Cardiac Global And Regional Functions Xiahai Zhuang 1,, Wenzhe Shi 2,SimonDuckett 3, Haiyan Wang 2, Reza Razavi 3,DavidHawkes

More information

Comparison of Cardiac MDCT with MRI and Echocardiography in the Assessement of Left Ventricular Function

Comparison of Cardiac MDCT with MRI and Echocardiography in the Assessement of Left Ventricular Function Comparison of Cardiac MDCT with MRI and Echocardiography in the Assessement of Left Ventricular Function Poster No.: C-0969 Congress: ECR 2012 Type: Scientific Exhibit Authors: B. Kara, Y. Paksoy, C. Erol,

More information

LEFT VENTRICLE SEGMENTATION AND MEASUREMENT Using Analyze

LEFT VENTRICLE SEGMENTATION AND MEASUREMENT Using Analyze LEFT VENTRICLE SEGMENTATION AND MEASUREMENT Using Analyze 2 Table of Contents 1. Introduction page 3 2. Segmentation page 4 3. Measurement Instructions page 11 4. Calculation Instructions page 14 5. References

More information

CARDIAC CYCLE CONTENTS. Divisions of cardiac cycle 11/13/13. Definition. Badri Paudel GMC

CARDIAC CYCLE CONTENTS. Divisions of cardiac cycle 11/13/13. Definition. Badri Paudel GMC CARDIAC CYCLE Badri Paudel GMC CONTENTS Ø DEFINATION Ø DIVISION OF CARDIAC CYCLE Ø SUB DIVISION AND DURATION OF CARDIAC CYCLE Ø SYSTOLE Ø DIASTOLE Ø DESCRIPTION OF EVENTS OF CARDIAC CYCLE Ø SUMMARY Ø ELECTROCARDIOGRAPHY

More information

Global left ventricular circumferential strain is a marker for both systolic and diastolic myocardial function

Global left ventricular circumferential strain is a marker for both systolic and diastolic myocardial function Global left ventricular circumferential strain is a marker for both systolic and diastolic myocardial function Toshinari Onishi 1, Samir K. Saha 2, Daniel Ludwig 1, Erik B. Schelbert 1, David Schwartzman

More information

Coronary Artery Anomalies from Birth to Adulthood; the Role of CT Coronary Angiography in Sudden Cardiac Death Screening

Coronary Artery Anomalies from Birth to Adulthood; the Role of CT Coronary Angiography in Sudden Cardiac Death Screening Coronary Artery Anomalies from Birth to Adulthood; the Role of CT Coronary Angiography in Sudden Cardiac Death Screening E O Dwyer 1, C O Brien 1, B Loo 1, A Snow Hogan 1, O Buckley1 2, B 1. Department

More information

Construction of 4D Left Ventricle and Coronary Artery Models

Construction of 4D Left Ventricle and Coronary Artery Models 1 Construction of 4D Left Ventricle and Coronary Artery Models Dong Ping Zhang Supervisors: Prof Daniel Rueckert, Dr Eddie Edwards 2 1 Background Conventional heart surgery is one of the most invasive

More information

CARDIOVASCULAR SYSTEM

CARDIOVASCULAR SYSTEM CARDIOVASCULAR SYSTEM Overview Heart and Vessels 2 Major Divisions Pulmonary Circuit Systemic Circuit Closed and Continuous Loop Location Aorta Superior vena cava Right lung Pulmonary trunk Base of heart

More information

Non Contrast MRA. Mayil Krishnam. Director, Cardiovascular and Thoracic Imaging University of California, Irvine

Non Contrast MRA. Mayil Krishnam. Director, Cardiovascular and Thoracic Imaging University of California, Irvine Non Contrast MRA Mayil Krishnam Director, Cardiovascular and Thoracic Imaging University of California, Irvine No disclosures Non contrast MRA-Why? Limitations of CTA Radiation exposure Iodinated contrast

More information

Copyright 2017 American College of Emergency Physicians. All rights reserved.

Copyright 2017 American College of Emergency Physicians. All rights reserved. POLICY Approved April 2017 Guidelines for the Use of Transesophageal Echocardiography (TEE) in the ED for Cardiac Arrest Approved by the ACEP Board of Directors April 2017 1. Introduction The American

More information

Measurement of Ventricular Volumes and Function: A Comparison of Gated PET and Cardiovascular Magnetic Resonance

Measurement of Ventricular Volumes and Function: A Comparison of Gated PET and Cardiovascular Magnetic Resonance BRIEF COMMUNICATION Measurement of Ventricular Volumes and Function: A Comparison of Gated PET and Cardiovascular Magnetic Resonance Kim Rajappan, MBBS 1,2 ; Lefteris Livieratos, MSc 2 ; Paolo G. Camici,

More information

A structured report for assessment of Tetralogy of Fallot by Cardiac MRI according to recent guidelines

A structured report for assessment of Tetralogy of Fallot by Cardiac MRI according to recent guidelines A structured report for assessment of Tetralogy of Fallot by Cardiac MRI according to recent guidelines Poster No.: C-0125 Congress: ECR 2016 Type: Educational Exhibit Authors: N. Stagnaro, G. Trocchio,

More information

Heart Dissection. 5. Locate the tip of the heart or the apex. Only the left ventricle extends all the way to the apex.

Heart Dissection. 5. Locate the tip of the heart or the apex. Only the left ventricle extends all the way to the apex. Heart Dissection Page 1 of 6 Background: The heart is a four-chambered, hollow organ composed primarily of cardiac muscle tissue. It is located in the center of the chest in between the lungs. It is the

More information

doi: /

doi: / Yiting Xie ; Yu Maw Htwe ; Jennifer Padgett ; Claudia Henschke ; David Yankelevitz ; Anthony P. Reeves; Automated aortic calcification detection in low-dose chest CT images. Proc. SPIE 9035, Medical Imaging

More information

The Cardiovascular System

The Cardiovascular System 11 PART A The Cardiovascular System PowerPoint Lecture Slide Presentation by Jerry L. Cook, Sam Houston University ESSENTIALS OF HUMAN ANATOMY & PHYSIOLOGY EIGHTH EDITION ELAINE N. MARIEB The Cardiovascular

More information

Matters of the Heart: Comprehensive Cardiology SARAH BEANLANDS RN BSCN MSC

Matters of the Heart: Comprehensive Cardiology SARAH BEANLANDS RN BSCN MSC Matters of the Heart: Comprehensive Cardiology SARAH BEANLANDS RN BSCN MSC Who am I? Class Outline Gross anatomy of the heart Trip around the heart Micro anatomy: cellular and tissue level Introduction

More information

PRACTICAL GUIDE TO FETAL ECHOCARDIOGRAPHY IC Huggon and LD Allan

PRACTICAL GUIDE TO FETAL ECHOCARDIOGRAPHY IC Huggon and LD Allan PRACTICAL GUIDE TO FETAL ECHOCARDIOGRAPHY IC Huggon and LD Allan Fetal Cardiology Unit, Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, UK IMPORTANCE OF PRENATAL

More information

12 Lead ECG Interpretation

12 Lead ECG Interpretation 12 Lead ECG Interpretation Julie Zimmerman, MSN, RN, CNS, CCRN Significant increase in mortality for every 15 minutes of delay! N Engl J Med 2007;357:1631-1638 Who should get a 12-lead ECG? Also include

More information

Circulatory Systems. All cells need to take in nutrients and expel metabolic wastes.

Circulatory Systems. All cells need to take in nutrients and expel metabolic wastes. Circulatory Systems All cells need to take in nutrients and expel metabolic wastes. Single celled organisms: nutrients from the environment can diffuse (or be actively transported) directly in to the cell

More information

Multimodality Imaging of Anomalous Left Coronary Artery from the Pulmonary

Multimodality Imaging of Anomalous Left Coronary Artery from the Pulmonary 1 IMAGES IN CARDIOVASCULAR ULTRASOUND 2 3 4 Multimodality Imaging of Anomalous Left Coronary Artery from the Pulmonary Artery 5 6 7 Byung Gyu Kim, MD 1, Sung Woo Cho, MD 1, Dae Hyun Hwang, MD 2 and Jong

More information

Impaired Regional Myocardial Function Detection Using the Standard Inter-Segmental Integration SINE Wave Curve On Magnetic Resonance Imaging

Impaired Regional Myocardial Function Detection Using the Standard Inter-Segmental Integration SINE Wave Curve On Magnetic Resonance Imaging Original Article Impaired Regional Myocardial Function Detection Using the Standard Inter-Segmental Integration Ngam-Maung B, RT email : chaothawee@yahoo.com Busakol Ngam-Maung, RT 1 Lertlak Chaothawee,

More information

Use of Nuclear Cardiology in Myocardial Viability Assessment and Introduction to PET and PET/CT for Advanced Users

Use of Nuclear Cardiology in Myocardial Viability Assessment and Introduction to PET and PET/CT for Advanced Users Use of Nuclear Cardiology in Myocardial Viability Assessment and Introduction to PET and PET/CT for Advanced Users February 1 5, 2011 University of Santo Tomas Hospital Angelo King A-V Auditorium Manila,

More information

Dr Felix Keng. Imaging of the heart is technically difficult because: Role of Cardiac MSCT. Current: Cardiac Motion Respiratory Motion

Dr Felix Keng. Imaging of the heart is technically difficult because: Role of Cardiac MSCT. Current: Cardiac Motion Respiratory Motion Siemens Philips Dr Felix Keng GE Toshiba Role of Cardiac MSCT Current: Structural / congenital heart imaging Extra-cardiac / Great vessel imaging Volumes and ejection fractions (cine + gating) Calcium

More information

Convolutional Neural Networks for Estimating Left Ventricular Volume

Convolutional Neural Networks for Estimating Left Ventricular Volume Convolutional Neural Networks for Estimating Left Ventricular Volume Ryan Silva Stanford University rdsilva@stanford.edu Maksim Korolev Stanford University mkorolev@stanford.edu Abstract End-systolic and

More information

the Cardiovascular System I

the Cardiovascular System I the Cardiovascular System I By: Dr. Nabil A Khouri MD, MsC, Ph.D MEDIASTINUM 1. Superior Mediastinum 2. inferior Mediastinum Anterior mediastinum. Middle mediastinum. Posterior mediastinum Anatomy of

More information

Automated Image Analysis Techniques for Cardiovascular Magnetic Resonance Imaging

Automated Image Analysis Techniques for Cardiovascular Magnetic Resonance Imaging Automated Image Analysis Techniques for Cardiovascular Magnetic Resonance Imaging Robertus Jacobus van der Geest 2011 Printed by: Drukkerij Mostert & van Onderen, Leiden. ISBN 978-94-90858-04-9 2011, R.J.

More information

New Cardiovascular Devices and Interventions: Non-Contrast MRI for TAVR Abhishek Chaturvedi Assistant Professor. Cardiothoracic Radiology

New Cardiovascular Devices and Interventions: Non-Contrast MRI for TAVR Abhishek Chaturvedi Assistant Professor. Cardiothoracic Radiology New Cardiovascular Devices and Interventions: Non-Contrast MRI for TAVR Abhishek Chaturvedi Assistant Professor Cardiothoracic Radiology Disclosure I have no disclosure pertinent to this presentation.

More information

05/02/ CPT Preauthorization Groupings Effective May 2, Computerized Tomography (CT) Abdomen 6. CPT Description SEGR CT01

05/02/ CPT Preauthorization Groupings Effective May 2, Computerized Tomography (CT) Abdomen 6. CPT Description SEGR CT01 Computerized Tomography (CT) 6 & 101 5 Upper Extremity 11 Lower Extremity 12 Head 3 Orbit 1 Sinus 2 Neck 4 7 Cervical Spine 8 Thoracic Spine 9 Lumbar Spine 10 Colon 13 CPT Preauthorization Groupings CPT

More information

Certificate in Clinician Performed Ultrasound (CCPU) Syllabus. Rapid Cardiac Echo (RCE)

Certificate in Clinician Performed Ultrasound (CCPU) Syllabus. Rapid Cardiac Echo (RCE) Certificate in Clinician Performed Ultrasound (CCPU) Syllabus Rapid Cardiac Echo (RCE) Purpose: Rapid Cardiac Echocardiography (RCE) This unit is designed to cover the theoretical and practical curriculum

More information

Fully Automatic Segmentation of Papillary Muscles in 3-D LGE-MRI

Fully Automatic Segmentation of Papillary Muscles in 3-D LGE-MRI Fully Automatic Segmentation of Papillary Muscles in 3-D LGE-MRI Tanja Kurzendorfer 1, Alexander Brost 2, Christoph Forman 3, Michaela Schmidt 3, Christoph Tillmanns 4, Andreas Maier 1 1 Pattern Recognition

More information

Objectives 8/17/2011. Challenges in Cardiac Imaging. Challenges in Cardiac Imaging. Basic Cardiac MRI Sequences

Objectives 8/17/2011. Challenges in Cardiac Imaging. Challenges in Cardiac Imaging. Basic Cardiac MRI Sequences 8/17/2011 Traditional Protocol Model for Tomographic Imaging Cardiac MRI Sequences and Protocols Frandics Chan, M.D., Ph.D. Stanford University Medical Center Interpretation Lucile Packard Children s Hospital

More information

ViosWorks: A Paradigm Shift in Cardiac MR Imaging

ViosWorks: A Paradigm Shift in Cardiac MR Imaging Figure 1. ViosWorks image of a patient with shunted pulmonary venous return. Image courtesy of Dr. Shreyas Vasanawala, Stanford University. ViosWorks: A Paradigm Shift in Cardiac MR Imaging The value of

More information

Michael Rose 1, Bernard Rubal 1, Edward Hulten 2, Jennifer N Slim 1, Kevin Steel 1, James L Furgerson 1, Todd C Villines 2 and Ahmad M Slim 1

Michael Rose 1, Bernard Rubal 1, Edward Hulten 2, Jennifer N Slim 1, Kevin Steel 1, James L Furgerson 1, Todd C Villines 2 and Ahmad M Slim 1 522789SMO0010.1177/2050312114522789SAGE Open MedicineRose et al. research-article2014 Original Article SAGE Open Medicine Chamber dimensions and functional assessment with coronary computed tomographic

More information

Can SCMR CMR protocol recommendations

Can SCMR CMR protocol recommendations Can SCMR CMR protocol recommendations V1.3 - April 2009 CanSCMR CMR Protocol and SOP Recommendation 2009 (15 minutes) 2 Planning of LV fct. real time multiple axes Realtime 3 cine long axis 6 long axes

More information

Managing Hypertrophic Cardiomyopathy with Imaging. Gisela C. Mueller University of Michigan Department of Radiology

Managing Hypertrophic Cardiomyopathy with Imaging. Gisela C. Mueller University of Michigan Department of Radiology Managing Hypertrophic Cardiomyopathy with Imaging Gisela C. Mueller University of Michigan Department of Radiology Disclosures Gadolinium contrast material for cardiac MRI Acronyms Afib CAD Atrial fibrillation

More information

Left atrial function. Aliakbar Arvandi MD

Left atrial function. Aliakbar Arvandi MD In the clinic Left atrial function Abstract The left atrium (LA) is a left posterior cardiac chamber which is located adjacent to the esophagus. It is separated from the right atrium by the inter-atrial

More information

Random Forest Based Left Ventricle Segmentation in LGE-MRI

Random Forest Based Left Ventricle Segmentation in LGE-MRI Random Forest Based Left Ventricle Segmentation in LGE-MRI Tanja Kurzendorfer 1, Christoph Forman 2, Alexander Brost 3 and Andreas Maier 1 1 Pattern Recognition Lab, Friedrich-Alexander University Erlangen-Nuremberg,

More information

ADVANCED CARDIOVASCULAR IMAGING. Medical Knowledge. Goals and Objectives PF EF MF LF Aspirational

ADVANCED CARDIOVASCULAR IMAGING. Medical Knowledge. Goals and Objectives PF EF MF LF Aspirational Medical Knowledge Goals and Objectives PF EF MF LF Aspirational Know the basic principles of magnetic resonance imaging (MRI) including the role of the magnetic fields and gradient coil systems, generation

More information

Myocardial Twist from X-ray Angiography

Myocardial Twist from X-ray Angiography Myocardial Twist from X-ray Angiography Can we Observe Left Ventricular Twist in Rotational Coronary Angiography? Tobias Geimer 1,2,, Mathias Unberath 1,2,, Johannes Höhn 1, Stephan Achenbach 3, Andreas

More information

The Cardiovascular System Part I: Heart Outline of class lecture After studying part I of this chapter you should be able to:

The Cardiovascular System Part I: Heart Outline of class lecture After studying part I of this chapter you should be able to: The Cardiovascular System Part I: Heart Outline of class lecture After studying part I of this chapter you should be able to: 1. Describe the functions of the heart 2. Describe the location of the heart,

More information

Anatomy of the Heart. Figure 20 2c

Anatomy of the Heart. Figure 20 2c Anatomy of the Heart Figure 20 2c Pericardium & Myocardium Remember, the heart sits in it s own cavity, known as the mediastinum. The heart is surrounded by the Pericardium, a double lining of the pericardial

More information

4D Auto LAQ (Left Atrial Quantification)

4D Auto LAQ (Left Atrial Quantification) 4D Auto LAQ (Left Atrial Quantification) Introduction There has been an increased interest in quantification of the left atrium (LA) for various types of diseases; e.g. heart failure, heart valve diseases,

More information

Radiation Exposure in Pregnancy. John R. Mayo UNIVERSITY OF BRITISH COLUMBIA

Radiation Exposure in Pregnancy. John R. Mayo UNIVERSITY OF BRITISH COLUMBIA Radiation Exposure in Pregnancy John R. Mayo UNIVERSITY OF BRITISH COLUMBIA Illustrative Clinical Scenario 32 year old female 34 weeks pregnant with recent onset shortness of breath and central chest pain

More information

Simon Nepveu 1, Irina Boldeanu 1, Yves Provost 1, Jean Chalaoui 1, Louis-Mathieu Stevens 2,3, Nicolas Noiseux 2,3, Carl Chartrand-Lefebvre 1,3

Simon Nepveu 1, Irina Boldeanu 1, Yves Provost 1, Jean Chalaoui 1, Louis-Mathieu Stevens 2,3, Nicolas Noiseux 2,3, Carl Chartrand-Lefebvre 1,3 Coronary Artery Bypass Graft Imaging with CT Angiography and Iterative Reconstruction: Quantitave Evaluation of Radiation Dose Reduction and Image Quality Simon Nepveu 1, Irina Boldeanu 1, Yves Provost

More information

Cardiac MRI: Clinical Application to Disease

Cardiac MRI: Clinical Application to Disease Cardiac MRI: Clinical Application to Disease Jessi Smith, MD Cardiothoracic imaging, Indiana University Slides courtesy of Stacy Rissing, MD Outline Imaging planes Disease findings Pulse sequences used

More information

Read Me. covering the Heart Anatomy. Labs. textbook. use. car: you

Read Me. covering the Heart Anatomy. Labs. textbook. use. car: you Heart Anatomy Lab Pre-Lab Exercises Read Me These exercises should be done before coming to lab, after watching the videos covering the Heart Anatomy Labs. Answer the questions in this guide using the

More information

Image processing for cardiac and vascular applications

Image processing for cardiac and vascular applications Image processing for cardiac and vascular applications Isabelle Bloch Isabelle.Bloch@telecom-paristech.fr http://perso.telecom-paristech.fr/bloch LTCI, Télécom ParisTech Cardio-vascular imaging p.1/26

More information

A Snapshot on Nuclear Cardiac Imaging

A Snapshot on Nuclear Cardiac Imaging Editorial A Snapshot on Nuclear Cardiac Imaging Khalil, M. Department of Physics, Faculty of Science, Helwan University. There is no doubt that nuclear medicine scanning devices are essential tool in the

More information

Cardiac CT Course Part A First step towards level 2 SCCT registration

Cardiac CT Course Part A First step towards level 2 SCCT registration 11-14 September 2015 Philips Customer Education Center Business Central Towers, Dubai Internet City, Sheikh Zayed Road, Dubai, UAE The use of Multi-Detector CT (MDCT) in the diagnosis of various cardiac

More information

Chapter 20 (1) The Heart

Chapter 20 (1) The Heart Chapter 20 (1) The Heart Learning Objectives Describe the location and structure of the heart Describe the path of a drop of blood from the superior vena cava or inferior vena cava through the heart out

More information

Cardiac MRI: Clinical Application to Disease

Cardiac MRI: Clinical Application to Disease Cardiac MRI: Clinical Application to Disease Stacy Rissing, MD! Cardiothoracic imaging, Indiana University! Outline Imaging planes Disease findings Pulse sequences used for each indication Pathophysiology

More information

Lab Activity 23. Cardiac Anatomy. Portland Community College BI 232

Lab Activity 23. Cardiac Anatomy. Portland Community College BI 232 Lab Activity 23 Cardiac Anatomy Portland Community College BI 232 Cardiac Muscle Histology Branching cells Intercalated disc: contains many gap junctions connecting the adjacent cell cytoplasm, creates

More information

ECG-gated multidetector-row computed tomography in the assessment of left ventricular function

ECG-gated multidetector-row computed tomography in the assessment of left ventricular function REVIEW ECG-gated multidetector-row computed tomography in the assessment of left ventricular function An accurate quantitative and qualitative assessment of cardiac function is critical for clinical diagnosis,

More information

Cardiac Imaging Tests

Cardiac Imaging Tests Cardiac Imaging Tests http://www.medpagetoday.com/upload/2010/11/15/23347.jpg Standard imaging tests include echocardiography, chest x-ray, CT, MRI, and various radionuclide techniques. Standard CT and

More information

Fulfilling the Promise

Fulfilling the Promise Fulfilling the Promise of Cardiac MR Non-contrast, free-breathing technique generates comprehensive evaluation of the coronary arteries By Maggie Fung, MR Cardiovascular Clinical Development Manager; Wei

More information

THE ROLE OF HIGH END MULTI DETECTOR CT IN CORONARY IMAGING ESSAY

THE ROLE OF HIGH END MULTI DETECTOR CT IN CORONARY IMAGING ESSAY THE ROLE OF HIGH END MULTI DETECTOR CT IN CORONARY IMAGING ESSAY Submitted for partial fulfillment of Master degree in Radiodiagnosis By Ahmed Yehia Ahmed (M.B.B.Ch., Cairo University) Supervisors Prof.

More information

Automatic Layer Generation for Scar Transmurality Visualization

Automatic Layer Generation for Scar Transmurality Visualization Automatic Layer Generation for Scar Transmurality Visualization S. Reiml 1,4, T. Kurzendorfer 1,4, D. Toth 2,5, P. Mountney 6, M. Panayiotou 2, J. M. Behar 2,3, C. A. Rinaldi 2,3, K. Rhode 2, A. Maier

More information

Cardiology Fellowship Manual. Goals & Objectives -Cardiac Imaging- 1 P a g e

Cardiology Fellowship Manual. Goals & Objectives -Cardiac Imaging- 1 P a g e Cardiology Fellowship Manual Goals & Objectives -Cardiac Imaging- 1 P a g e UNIV. OF NEBRASKA CHILDREN S HOSPITAL & MEDICAL CENTER DIVISION OF CARDIOLOGY FELLOWSHIP PROGRAM CARDIAC IMAGING ROTATION GOALS

More information

Photon Attenuation Correction in Misregistered Cardiac PET/CT

Photon Attenuation Correction in Misregistered Cardiac PET/CT Photon Attenuation Correction in Misregistered Cardiac PET/CT A. Martinez-Möller 1,2, N. Navab 2, M. Schwaiger 1, S. G. Nekolla 1 1 Nuklearmedizinische Klinik der TU München 2 Computer Assisted Medical

More information

Velocity Vector Imaging as a new approach for cardiac magnetic resonance: Comparison with echocardiography

Velocity Vector Imaging as a new approach for cardiac magnetic resonance: Comparison with echocardiography Velocity Vector Imaging as a new approach for cardiac magnetic resonance: Comparison with echocardiography Toshinari Onishi 1, Samir K. Saha 2, Daniel Ludwig 1, Erik B. Schelbert 1, David Schwartzman 1,

More information

Imaging of the Heart Todd Tessendorf MD FACC

Imaging of the Heart Todd Tessendorf MD FACC Imaging of the Heart Todd Tessendorf MD FACC Outline Imaging Modalities for Structural Heart Disease ECHO, MRI Imaging Modalities for Ischemic Heart Disease SPECT, PET, CCTA Show lots of pretty pictures

More information

CARDIAC CTA. The Curriculum is designed to promote six broad goals based on the ACGME Core Competencies:

CARDIAC CTA. The Curriculum is designed to promote six broad goals based on the ACGME Core Competencies: CARDIAC CTA Mission Statement: The mission of the Cardiac CT Angiography Center is the noninvasive imaging of the coronary artery anatomy, and to provide functional and anatomic cardiovascular information

More information

Normal LV Ejection Fraction Limits Using 4D-MSPECT: Comparisons of Gated Perfusion and Gated Blood Pool SPECT Data with Planar Blood Pool

Normal LV Ejection Fraction Limits Using 4D-MSPECT: Comparisons of Gated Perfusion and Gated Blood Pool SPECT Data with Planar Blood Pool Normal LV Ejection Fraction Limits Using 4D-MSPECT: Comparisons of Gated Perfusion and Gated Blood Pool SPECT Data with Planar Blood Pool EP Ficaro, JN Kritzman, JR Corbett University of Michigan Health

More information

Cardiac Computed Tomography

Cardiac Computed Tomography Cardiac Computed Tomography Authored and approved by Koen Nieman Stephan Achenbach Francesca Pugliese Bernard Cosyns Patrizio Lancellotti Anastasia Kitsiou Contents CARDIAC COMPUTED TOMOGRAPHY Page 1.

More information