Berkovits, E.E. (Ing.),? Walter Zuckerman, M.D., and Dwight E. Harken, M.D.

Size: px
Start display at page:

Download "Berkovits, E.E. (Ing.),? Walter Zuckerman, M.D., and Dwight E. Harken, M.D."

Transcription

1 NOTES An Implantable Demand Pacemaker Lawrence I. Zaroff, M.D.,* Barouh V. Berkovits, E.E. (Ing.),? Walter Zuckerman, M.D., and Dwight E. Harken, M.D. E lectrical stimulation in the treatment of heart block is now commonly accepted. With fixed-rate pacemakers, stimulation is continued following resumption of normal sinus conduction. A variety of recent publications confirm the danger of competitive stimulation associated with fixed-rate pacemakers [2, 4-6, 9, 10, 121. A new instrument for stimulation was introduced in June, 1964 [7, 81. This instrument imitates the natural escape mechanism and initiates only nonparasystolic escape beats. The beats are stimulated only when the interval after the last QRS complex exceeds the repolarization time of the artificial pacemaker. The demand pacemaker thus acts as a natural automatic fiber with controlled repolarization time. The new implantable demand pacemaker provides both sensing and stimulation through the same electrode. The demand pacemaker was first designed for extracorporeal bedside use. Development of an implantable unit was reported on by one of us (B.V.B.) in May, 1965 [ll. Experimental work with this implantable demand pacemaker using intrathoracic direct myocardial electrodes in eight animals is reported here. MATERIALS AND METHODS The implantable unit measures 6 x 5 X 2 cm. A preliminary model was enclosed in a paraffin case initially, but the later modifications have been enclosed From the Departments of Surgery, Harvard Medical School and Peter Bent Brighnm Hospital, Boston, Mass. *Present address: Department of Surgery, Rochester General Hospital, University of Rochester School of Medicine, Rochester, N.Y. tdirector of Research and Development, American Optical Company, Boston, Mass. This work was supported by U.S. Public Health Service Grants No. 5 T1 HE , HE 8G98-02, and ROl-HE Accepted for publication June 14, VOL. 4, NO. 5, NOV.,

2 ZAROFF, BERKOVITS, ZUCKERMAN, AND HARKEN in permanent stainless-steel cases covered by Silastic. The electrodes have been of the Chardack type, implanted close to the apex of the left ventricle. Although myocardial electrodes were used in all experiments, this unit is also adaptable for intravenous use. Four animals without heart block had pacemakers inserted through a thoracotomy incision with implantation of the power unit in the subcutaneous tissues or beneath the latissimus dorsi. In these four animals arrest or bradycardia was produced by administering acetylcholine, thus affording an opportunity for the demand pacemaker to take over the ventricular pacing. In four additional animals, after implantation of the electrodes through a right thoracotomy incision, permanent heart block was produced by suture of the conducting bundle utilizing inflow occlusion [l I]. In these animals isoproterenol-induced ventricular tachycardia was the mechanism used to produce a heart rate sufficient to verify cancellation of the pacemaker stimulus. The generator contains a switch which may be activated by an external magnet to convert from demand pacing to continuous pacing for testing purposes. Thus, testing at increasing time intervals after the QRS complex assessed the ability of the power unit to initiate stimulation and ventricular contraction, whereas the production of ventricular tachycardia established the ability of the same type of unit to turn itself off. Testing was also carried out by switching from a demand to a continuous mode in all animals. RESULTS In the four animals without permanent, surgically-induced heart block, temporary block was induced by acetylcholine administration with testing of the pacemaker immediately after insertion and at weekly intervals. In each instance on the demand mode setting, the pacemaker immediately began to stimulate as soon as asystole developed. A minute dose of acetylcholine causing even one dropped beat was sensed instantly (Fig. 1). In animal T858, operation was performed in April, The pacemaker functioned well for 2% months, at which time the paraffin case was found to be damaged. This was replaced with a stainless-steel encased model that has functioned perfectly since. Whenever the pacemaker was turned to the continuous mode, competition always resulted. Of the four animals with permanent heart block, one animal chewed through a paraffin case that had been placed too far laterally on the chest wall one week postoperatively. A second animal, No. T356, died on the fourth postoperative day of congestive heart failure because he had been left on a demand rate of 80 beats per minute, too slow for many dogs. Figure 2 illustrates the cessation of pacing when a blocked animal is given isoproterenol. In view of the disasters that have been reported in which electrical appliances, automobile starters, and other commonplace devices encountered in our FIG. 1. The administration of a small dose of acetylcholine to an animal in normal sinus rhythm caused a single dropped beat; the pacemaker detected it and deliuered an impulse. 464 THE ANNALS OF THORACIC SURGERY

3 NOTE: Demand Pacemaker FIG. 2. The administration of isoproterenol to an animal in heart block nccelcrated the intrinsic ventricular rate and turned the pacemaker of. FIG. 3. A 60-cycle 25 ma. A.C. current applied to an animal an complete block who was being paced in the demand mode. The top tracing is a continuous arterial pressure; the bottom tracing is the EGG. The blackened area is the period of electrical interference. There is no malfunction of the pacemaker. Animal TABLE 1. ~ ~~ ~~ Without heart block T470 T858 U66 U25 With heart block T238 T356 T302 U516 RESULTS OF DEMAND PACING IN EIGHT DOGS Results Paraffin unit replaced after 2% months with unit enclosed in stainless steel; continued excellent function function until animal destroyed case one week after implant, but animal died on fourth postoperative day of congestive heart failure (rate too slow) initially, but animal died in 1 month of empyema

4 ZAROFF, BERKOVITS, ZUCKERMAN, AND HARKEN daily lives have interfered with pacing, an experiment to test these interfering sources was carried out. Dog U516 was utilized for a special experiment of this type. Heart block was produced, and a demand pacemaker set at a rate of 120 was inserted. The arterial blood pressure was monitored directly through a femoral artery with a straingauge and recorder. The dog was then tested for electrical interference with the pacemaker by an electric shaver, by a standard surgical electric cautery, and then directly by 10 to 25 ma. of A.C. 60-cycle current between the right upper extremity and the left lower extremity and then other areas at random. These explorations for electrical interference were conducted under Nembutal anesthesia. There was absolutely no interference with the sensing or discharging of the pacemaker function under any of these circumstances (Fig. 3). This pacemaker continued to work well for a month, but the dog later died of intercurrent infection. Table 1 summarizes the results in all the animals. DISCUSSION Standard pacemakers function at fixed rates and deliver impulses to the myocardium with no regard to the intrinsic activity of the heart. Thus, artificial impulses may fall into any phase of the cardiac cycle, including the vulnerable period. Recent evidence has indicated that such stimulation can result in ventricular fibrillation. Even in the voltages used, such effects certainly do exist; although the threshold to ventricular fibrillation is not exceeded commonly, it is apparent now that transient lowering of fibrillation threshold can endanger the patient [3, 131. Our experience with the implantable pacemaker unit has been uniformly excellent. Except for instances when the temporary paraffin case has been violated, the unit has functioned perfectly at all times. We have not observed malfunction of the demand mode. Should this occur, continuous pacing would begin at once. Another point worthy of emphasis is that the demand unit functioned accurately despite pronounced electrical interference, as demonstrated in dog U5 16. This accurate function is due to the special circuitry that provides selective recognition of the QRS complex without 60-cycle interference. The laboratory evidence is such that clinical trial is warranted." Such a demand unit would be particularly useful in treating varying and intermittent heart block as well as in treating heart block that may be temporary, such as occurs after myocardial infarction or open-heart surgery. SUMMARY An implantable demand pacemaker has been inserted in eight dogs, with excellent functional results. By monitoring the QRS com- *At present, eight demand pacemakers of this design have been implanted successfully in human beings and will he reported separately. 466 THE ANNALS OF THORACIC SURGERY

5 NOTE: Demand Pacemaker plex, this pacemaker programs the artificial stimulation to avoid competitive beats by imitating the natural escape mechanism of the heart. Environmental electrical activity does not interfere with this unit s function. REFERENCES 1. Berkovits, B. V. The Demand Pacemaker. Presented at the Electrical Control of Cardiac Activity Graduate Symposium, Buffalo, N.Y., May, Bonnabeau, R. C., Jr., Bilgutay, A. M., Stearns, L. P., Wingiore, R., and Lillehei, C. W. Observations on sudden death during pacemaker stimulation in complete atrioventricular block leading to development of P wave pacemaker without atrial leads. Trans. Amer. SOC. Artif. Intern. Organs 9:158, Castellanos, A., Jr., Centurian, M. J., Lemberg, L., and Berkovits, B. V. Concealed digitalis toxicity exposed by pacemaker stimuli. Clin. Res. 14:241, Castellanos, A., Jr., Lemberg, L., Jude, J., and Berkovits, B. Repetitive firing occurring during synchronized electrical stimulation of the heart. J. Thorac. Cardiov. Surg. 51:334, Dressler, W., Jonas, S., and Rubin, R. Observations in patients with implanted cardiac pacemaker: IV. Repetitive responses to electrical stimuli. Amer. J. Cardiol. 15:391, Elmqvist, R., Landegren, J., Pettersson, S. O., Senning, A., and William- Olsson, G. Artificial pacemaker for treatment of Adams-Stokes syndrome and slow heart rate. Amer. Heart J. 65:731, Lemberg, L., Castellanos, A., Jr., and Berkovits, B. V. Pacemaking on demand in AV block. J.A.M.A. 191:12, Lemberg, L., Castellanos, A., Jr., Berkovits, B., and Gosselin, A. The Demand Cardiac Pacemaker: A New Instrument for the Treatment of A-V Conduction Disturbances. Presented at the Interamerican College of Cardiology Meeting, Montreal, Quebec, Canada, June, Sowton, E. Artificial pacemaking and sinus rhythm. Brit. Heart J. 27:311, Taval, M. E., and Fisch, C. Repetitive ventricular arrhythmia resulting from artificial internal pacemaker. Circulation 30:494, Weirich, W. L., Gott, V. L., and Lillehei, C. W. The treatment of complete heart block by the combined use of a myocardial electrode and an artificial pacemaker. Surg. Forum 8:360, Widmann, W. D., Eisenberg, L., Levitsky, S., Mauro, A., and Glenn, W. W. L. Ventricular fibrillation complicating electrical pacemaking. Surg. Forurn 14:260, Wiggers, C. J., Wegria, R., and Pinera, B. Effects of myocardial ischemia on fibrillation threshold: Mechanism of spontaneous ventricular fibrillation following coronary occlusion. Amer. J. Physiol. 131:309, VOL. 4, NO. 5, NOV.,

Pacemaker Concepts and Terminology*

Pacemaker Concepts and Terminology* Pacemaker Concepts and Terminology* BAROUH V BERKOVITS, E.E., Ing. Associate in Surgery, Harvard Medical School, Boston, Mass., Associate in Electrophysiology, Miami University, Miami, Fla., Senior Research

More information

Radioelectrocardiography in Diagnosis of Rhythm

Radioelectrocardiography in Diagnosis of Rhythm Brit. Heart J., 1969, 31. 480. Radioelectrocardiography in Diagnosis of Rhythm Disturbances in Patients with Implanted Cardiac Pacemakers MARIUSZ JAN STOPCZYK, ZYTA KRASZEWSKA, AND RYSZARD JACEK ZOCHOWSKI

More information

The Results of Demand Pacing

The Results of Demand Pacing The Results of Demand Pacing in Cardiac Arrhythmias Peter Allen, M.D., and C. Eve Rotem, M.D. I n the majority of patients with established 3" heart block the fixedrate cardiac pacemaker has successfully

More information

Electrocardiography Abnormalities (Arrhythmias) 7. Faisal I. Mohammed, MD, PhD

Electrocardiography Abnormalities (Arrhythmias) 7. Faisal I. Mohammed, MD, PhD Electrocardiography Abnormalities (Arrhythmias) 7 Faisal I. Mohammed, MD, PhD 1 Causes of Cardiac Arrythmias Abnormal rhythmicity of the pacemaker Shift of pacemaker from sinus node Blocks at different

More information

The heart's "natural" pacemaker is called the sinoatrial (SA) node or sinus node.

The heart's natural pacemaker is called the sinoatrial (SA) node or sinus node. PACEMAKER Natural pacemaker: The heart's "natural" pacemaker is called the sinoatrial (SA) node or sinus node. Artificial pacemaker: It is a small, battery-operated device that helps the heart beat in

More information

Implantable Demand Pacemaker

Implantable Demand Pacemaker Brit. Heart J., 1968, 30, 29. Implantable Demand Pacemaker AGUSTIN CASTELLANOS, JR., LOUIS LEMBERG, JAMES R. JUDE, KAZI MOBIN-UDDIN, AND BAROUH V. BERKOVITS From the University of Miami School of Medicine,

More information

Electrocardiography for Healthcare Professionals

Electrocardiography for Healthcare Professionals Electrocardiography for Healthcare Professionals Kathryn A. Booth Thomas O Brien Chapter 10: Pacemaker Rhythms and Bundle Branch Block Learning Outcomes 10.1 Describe the various pacemaker rhythms. 10.2

More information

PERMANENT PACEMAKERS AND IMPLANTABLE DEFIBRILLATORS Considerations for intensivists

PERMANENT PACEMAKERS AND IMPLANTABLE DEFIBRILLATORS Considerations for intensivists PERMANENT PACEMAKERS AND IMPLANTABLE DEFIBRILLATORS Considerations for intensivists Craig A. McPherson, MD, FACC Associate Professor of Medicine Constantine Manthous, MD, FACP, FCCP Associate Clinical

More information

The Electrocardiogram

The Electrocardiogram The Electrocardiogram Chapters 11 and 13 AUTUMN WEDAN AND NATASHA MCDOUGAL The Normal Electrocardiogram P-wave Generated when the atria depolarizes QRS-Complex Ventricles depolarizing before a contraction

More information

Figure 2. Normal ECG tracing. Table 1.

Figure 2. Normal ECG tracing. Table 1. Figure 2. Normal ECG tracing that navigates through the left ventricle. Following these bundle branches the impulse finally passes to the terminal points called Purkinje fibers. These Purkinje fibers are

More information

TEST BANK FOR ECGS MADE EASY 5TH EDITION BY AEHLERT

TEST BANK FOR ECGS MADE EASY 5TH EDITION BY AEHLERT Link download full: http://testbankair.com/download/test-bank-for-ecgs-made-easy-5thedition-by-aehlert/ TEST BANK FOR ECGS MADE EASY 5TH EDITION BY AEHLERT Chapter 5 TRUE/FALSE 1. The AV junction consists

More information

A Mechanism for "False" Inhibition of Demand Pacemakers

A Mechanism for False Inhibition of Demand Pacemakers A Mechanism for "False" Inhibition of Demand Pacemakers By KENNETH C. LASSETER, M.D., JACK W. BUCHANAN, JR., M.S.E.E., AND KARL F. YOSHONIS, M.D. SUMMARY Certain variations in discharge rate of demand

More information

Cardiac Implanted Electronic Devices Pacemakers, Defibrillators, Cardiac Resynchronization Devices, Loop Recorders, etc.

Cardiac Implanted Electronic Devices Pacemakers, Defibrillators, Cardiac Resynchronization Devices, Loop Recorders, etc. Cardiac Implanted Electronic Devices Pacemakers, Defibrillators, Cardiac Resynchronization Devices, Loop Recorders, etc. The Miracle of Living February 21, 2018 Matthew Ostrom MD,FACC,FHRS Division of

More information

Full file at

Full file at MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) What electrical event must occur for atrial kick to occur? 1) A) Atrial repolarization B) Ventricular

More information

Presented By: Barbara Furry, RN-BC, MS, CCRN, FAHA Director The Center of Excellence in Education Director of HERO

Presented By: Barbara Furry, RN-BC, MS, CCRN, FAHA Director The Center of Excellence in Education Director of HERO Presented By: Barbara Furry, RN-BC, MS, CCRN, FAHA Director The Center of Excellence in Education Director of HERO Follow me on Twitter! CEE Med Updates@BarbaraFurryRN Like me on Facebook! What is a

More information

RN-BC, MS, CCRN, FAHA

RN-BC, MS, CCRN, FAHA Presented By: Barbara Furry, RN-BC, MS, CCRN, FAHA Director The Center of Excellence in Education Director of HERO Follow me on Twitter! CEE Med Updates@BarbaraFurryRN Like me on Facebook! 1 A. Atropine

More information

Permanent Pacemaker Implantation Post Cardiac Surgery: A Cautionary Tale

Permanent Pacemaker Implantation Post Cardiac Surgery: A Cautionary Tale Permanent Pacemaker Implantation Post Cardiac Surgery: A Cautionary Tale Jason Collinson & Stuart Tan Essex Cardiothoracic Centre, Basildon and Thurrock University Hospital. Contact: jason.collinson@nhs.net

More information

National Coverage Determination (NCD) for Cardiac Pacemakers (20.8)

National Coverage Determination (NCD) for Cardiac Pacemakers (20.8) Page 1 of 12 Centers for Medicare & Medicaid Services National Coverage Determination (NCD) for Cardiac Pacemakers (20.8) Tracking Information Publication Number 100-3 Manual Section Number 20.8 Manual

More information

Cardiac Pacing. Learning outcomes. Introduction. The cardiac impulse - its formation and its failure CHAPTER. To understand:

Cardiac Pacing. Learning outcomes. Introduction. The cardiac impulse - its formation and its failure CHAPTER. To understand: Cardiac Pacing CHAPTER 10 Learning outcomes To understand: The indications for cardiac pacing in the peri-arrest setting How to perform percussion pacing How to apply non-invasive, transcutaneous electrical

More information

HTEC 91. Performing ECGs: Procedure. Normal Sinus Rhythm (NSR) Topic for Today: Sinus Rhythms. Characteristics of NSR. Conduction Pathway

HTEC 91. Performing ECGs: Procedure. Normal Sinus Rhythm (NSR) Topic for Today: Sinus Rhythms. Characteristics of NSR. Conduction Pathway HTEC 91 Medical Office Diagnostic Tests Week 3 Performing ECGs: Procedure o ECG protocol: you may NOT do ECG if you have not signed up! If you are signed up and the room is occupied with people who did

More information

Cardiac arrhythmias. Janusz Witowski. Department of Pathophysiology Poznan University of Medical Sciences. J. Witowski

Cardiac arrhythmias. Janusz Witowski. Department of Pathophysiology Poznan University of Medical Sciences. J. Witowski Cardiac arrhythmias Janusz Witowski Department of Pathophysiology Poznan University of Medical Sciences A 68-year old man presents to the emergency department late one evening complaining of increasing

More information

Puzzling Pacemakers Cheryl Herrmann, APN, CCRN, CCNS-CSC-CMC

Puzzling Pacemakers Cheryl Herrmann, APN, CCRN, CCNS-CSC-CMC Puzzling Pacemakers Cheryl Herrmann, APN, CCRN, CCNS-CSC-CMC Pacemaker: An electric device implanted in the body to regulate the heart beat. Delivers electrical stimuli over leads with electrodes in contact

More information

CRC 431 ECG Basics. Bill Pruitt, MBA, RRT, CPFT, AE-C

CRC 431 ECG Basics. Bill Pruitt, MBA, RRT, CPFT, AE-C CRC 431 ECG Basics Bill Pruitt, MBA, RRT, CPFT, AE-C Resources White s 5 th ed. Ch 6 Electrocardiography Einthoven s Triangle Chest leads and limb leads Egan s 10 th ed. Ch 17 Interpreting the Electrocardiogram

More information

PACEMAKER INTERPRETATION AND DEVICE MANAGEMENT PART I

PACEMAKER INTERPRETATION AND DEVICE MANAGEMENT PART I 1 PACEMAKER INTERPRETATION AND DEVICE MANAGEMENT PART I Cynthia Webner DNP, RN, CCNS, CCRN-CMC Karen Marzlin DNP, RN, CCNS, CCRN-CMC 2 PROFESSIONAL NURSING PRACTICE CAN ONLY ADVANCE AS MUCH AS INDIVIDUAL

More information

CASE 10. What would the ST segment of this ECG look like? On which leads would you see this ST segment change? What does the T wave represent?

CASE 10. What would the ST segment of this ECG look like? On which leads would you see this ST segment change? What does the T wave represent? CASE 10 A 57-year-old man presents to the emergency center with complaints of chest pain with radiation to the left arm and jaw. He reports feeling anxious, diaphoretic, and short of breath. His past history

More information

The ECG Course. Boone County Fire Protection District EMS Education

The ECG Course. Boone County Fire Protection District EMS Education The ECG Course Level I G rated material AV Blocks What Causes AV Block? Long list of bad things that includes ischemia and.. Old age / disease Medications or drugs Electrolyte imbalances Physiologic Blocks

More information

EKG Competency for Agency

EKG Competency for Agency EKG Competency for Agency Name: Date: Agency: 1. The upper chambers of the heart are known as the: a. Atria b. Ventricles c. Mitral Valve d. Aortic Valve 2. The lower chambers of the heart are known as

More information

Contents. Example: Pacemaker in DDD Mode. I. Introduction II. Website and Relevant Documents III. Background Information IV.

Contents. Example: Pacemaker in DDD Mode. I. Introduction II. Website and Relevant Documents III. Background Information IV. Contents I. Introduction II. Website and Relevant Documents III. Background Information IV. Pacemaker System V. i. Components ii. Operating Modes iii. Parameters Example: Pacemaker in DDD Mode Pacemaker

More information

Chapter 20 (2) The Heart

Chapter 20 (2) The Heart Chapter 20 (2) The Heart ----------------------------------------------------------------------------------------------------------------------------------------- Describe the component and function of

More information

DEFIBRILLATORS ATRIAL AND VENTRICULAR FIBRILLATION

DEFIBRILLATORS ATRIAL AND VENTRICULAR FIBRILLATION 1 DEFIBRILLATORS The two atria contract together and pump blood through the valves into the two ventricles, when the action potentials spread rapidly across the atria surface. After a critical time delay,

More information

OBJECTIVE. 1. Define defibrillation. 2. Describe Need and history of defibrillation. 3. Describe the principle and mechanism of defibrillation.

OBJECTIVE. 1. Define defibrillation. 2. Describe Need and history of defibrillation. 3. Describe the principle and mechanism of defibrillation. Defibrillators OBJECTIVE 1. Define defibrillation. 2. Describe Need and history of defibrillation. 3. Describe the principle and mechanism of defibrillation. 4. Types and classes of defibrillator 5. Describe

More information

CORONARY ARTERIES. LAD Anterior wall of the left vent Lateral wall of left vent Anterior 2/3 of interventricluar septum R & L bundle branches

CORONARY ARTERIES. LAD Anterior wall of the left vent Lateral wall of left vent Anterior 2/3 of interventricluar septum R & L bundle branches CORONARY ARTERIES RCA Right atrium Right ventricle SA node 55% AV node 90% Posterior wall of left ventricle in 90% Posterior third of interventricular septum 90% LAD Anterior wall of the left vent Lateral

More information

ECG ABNORMALITIES D R. T AM A R A AL Q U D AH

ECG ABNORMALITIES D R. T AM A R A AL Q U D AH ECG ABNORMALITIES D R. T AM A R A AL Q U D AH When we interpret an ECG we compare it instantaneously with the normal ECG and normal variants stored in our memory; these memories are stored visually in

More information

Lab 2. The Intrinsic Cardiac Conduction System. 1/23/2016 MDufilho 1

Lab 2. The Intrinsic Cardiac Conduction System. 1/23/2016 MDufilho 1 Lab 2 he Intrinsic Cardiac Conduction System 1/23/2016 MDufilho 1 Figure 18.13 Intrinsic cardiac conduction system and action potential succession during one heartbeat. Superior vena cava ight atrium 1

More information

Epicardial Pacemaker Implantation for Complete Heart Block

Epicardial Pacemaker Implantation for Complete Heart Block for Complete Heart Block Donald G. Mulder, M.D., and C. Gordon Frank, M.D. S udden death or progressive cardiac failure threatens life in the patient with complete heart block. The slow heart rate and

More information

UNDERSTANDING YOUR ECG: A REVIEW

UNDERSTANDING YOUR ECG: A REVIEW UNDERSTANDING YOUR ECG: A REVIEW Health professionals use the electrocardiograph (ECG) rhythm strip to systematically analyse the cardiac rhythm. Before the systematic process of ECG analysis is described

More information

Intraoperative and Postoperative Arrhythmias: Diagnosis and Treatment

Intraoperative and Postoperative Arrhythmias: Diagnosis and Treatment Intraoperative and Postoperative Arrhythmias: Diagnosis and Treatment Karen L. Booth, MD, Lucile Packard Children s Hospital Arrhythmias are common after congenital heart surgery [1]. Postoperative electrolyte

More information

-RHYTHM PRACTICE- By Dr.moanes Msc.cardiology Assistant Lecturer of Cardiology Al Azhar University. OBHG Education Subcommittee

-RHYTHM PRACTICE- By Dr.moanes Msc.cardiology Assistant Lecturer of Cardiology Al Azhar University. OBHG Education Subcommittee -RHYTHM PRACTICE- By Dr.moanes Msc.cardiology Assistant Lecturer of Cardiology Al Azhar University The Normal Conduction System Sinus Node Normal Sinus Rhythm (NSR) Sinus Bradycardia Sinus Tachycardia

More information

Cardiac Telemetry Self Study: Part One Cardiovascular Review 2017 THINGS TO REMEMBER

Cardiac Telemetry Self Study: Part One Cardiovascular Review 2017 THINGS TO REMEMBER Please review the above anatomy of the heart. THINGS TO REMEMBER There are 3 electrolytes that affect cardiac function o Sodium, Potassium, and Calcium When any of these electrolytes are out of the normal

More information

Where are the normal pacemaker and the backup pacemakers of the heart located?

Where are the normal pacemaker and the backup pacemakers of the heart located? CASE 9 A 68-year-old woman presents to the emergency center with shortness of breath, light-headedness, and chest pain described as being like an elephant sitting on her chest. She is diagnosed with a

More information

Preoperative Evaluation: Patients with Cardiac Disease

Preoperative Evaluation: Patients with Cardiac Disease Advances in Internal Medicine 2012 Preoperative Evaluation: Patients with Cardiac Disease Mary O. Gray, MD Professor of Medicine UC San Francisco Circulation 2007:100:e418-e500 (1) Cardiac Risk Assessment

More information

BIPN100 F15 Human Physiology I (Kristan) Problem set #5 p. 1

BIPN100 F15 Human Physiology I (Kristan) Problem set #5 p. 1 BIPN100 F15 Human Physiology I (Kristan) Problem set #5 p. 1 1. Dantrolene has the same effect on smooth muscles as it has on skeletal muscle: it relaxes them by blocking the release of Ca ++ from the

More information

Cardiovascular System Notes: Heart Disease & Disorders

Cardiovascular System Notes: Heart Disease & Disorders Cardiovascular System Notes: Heart Disease & Disorders Interesting Heart Facts The Electrocardiograph (ECG) was invented in 1902 by Willem Einthoven Dutch Physiologist. This test is still used to evaluate

More information

Transcoronary Chemical Ablation of Atrioventricular Conduction

Transcoronary Chemical Ablation of Atrioventricular Conduction 757 Transcoronary Chemical Ablation of Atrioventricular Conduction Pedro Brugada, MD, Hans de Swart, MD, Joep Smeets, MD, and Hein J.J. Wellens, MD In seven patients with symptomatic atrial fibrillation

More information

SJM MRI ACTIVATOR HANDHELD DEVICE WORKFLOW Model: EX4000. SJM-EDTR Item approved for U.S. use only.

SJM MRI ACTIVATOR HANDHELD DEVICE WORKFLOW Model: EX4000. SJM-EDTR Item approved for U.S. use only. SJM MRI ACTIVATOR HANDHELD DEVICE WORKFLOW Model: EX4000 1 APPROVED MRI SCAN CONDITIONS 1.5 TESLA FULL BODY 2 SETUP SJM MRI ACTIVATOR HANDHELD DEVICE The SJM MRI Activator handheld device must be enabled

More information

Sinus rhythm with premature atrial beats 2 and 6 (see Lead II).

Sinus rhythm with premature atrial beats 2 and 6 (see Lead II). Cardiac Pacemaker Premature Beats When one of ectopic foci becomes irritable, it may spontaneously fire, leading to one or more premature beats. Atrial and junctional foci may become irritable from excess

More information

Reversion of ventricular tachycardia by pacemaker stimulation

Reversion of ventricular tachycardia by pacemaker stimulation British Heart Journal, 1971, 33, 922-927. Reversion of ventricular tachycardia by pacemaker stimulation M. A. Bennett and B. L. Pentecost From the General Hospital, Birmingham 4 Reversion of ventricular

More information

Permanent Transvenous Cardiac Pacing Via the Left Cephalic Vein

Permanent Transvenous Cardiac Pacing Via the Left Cephalic Vein NOTES Permanent Transvenous Cardiac Pacing Via the Left Cephalic Vein Samuel M. King, M.D.,* Joe 0. Arrington, M.D., and Martin L. Dalton, M.D. A n estimated 25,000 cases of heart block with associated

More information

This leaflet is intended for patients with permanent pacemakers and their parents.

This leaflet is intended for patients with permanent pacemakers and their parents. Permanent PACEMAKER This leaflet is intended for patients with permanent pacemakers and their parents. It serves as an information tool and a guide that offers some advice in order to live safely. General

More information

CORONARY ARTERIES HEART

CORONARY ARTERIES HEART CARDIAC/ECG MODULE THE HEART CORONARY ARTERIES FIBRILLATING HEART CORONARY ARTERIES HEART PRACTICE RHYTHMS PRACTICE RHYTHMS ELECTRICAL CONDUCTION SA Node (60 100) Primary pacemaker AV Node (40 60) ***Creates

More information

Cardiac Pacemakers» 2013 HOSPITAL REIMBURSEMENT GUIDE

Cardiac Pacemakers» 2013 HOSPITAL REIMBURSEMENT GUIDE Cardiac Pacemakers» 2013 HOSPITAL REIMBURSEMENT GUIDE 2 Contents Page Introduction Medicare Coding and Payment Overview Hospital Inpatient Hospital Outpatient HCPCS Device Category C-Codes Coverage for

More information

PATIENT WITH ARRHYTHMIA IN DENTIST S OFFICE. Małgorzata Kurpesa, MD., PhD. Chair&Department of Cardiology

PATIENT WITH ARRHYTHMIA IN DENTIST S OFFICE. Małgorzata Kurpesa, MD., PhD. Chair&Department of Cardiology PATIENT WITH ARRHYTHMIA IN DENTIST S OFFICE Małgorzata Kurpesa, MD., PhD. Chair&Department of Cardiology Medical University of Łódź The heart is made up of four chambers Left Atrium Right Atrium Left Ventricle

More information

THE HEART THE CIRCULATORY SYSTEM

THE HEART THE CIRCULATORY SYSTEM THE HEART THE CIRCULATORY SYSTEM There are three primary closed cycles: 1) Cardiac circulation pathway of blood within the heart 2) Pulmonary circulation blood from the heart to lungs and back 3) Systemic

More information

DEFIBRILLATORS. Prof. Yasser Mostafa Kadah

DEFIBRILLATORS. Prof. Yasser Mostafa Kadah DEFIBRILLATORS Prof. Yasser Mostafa Kadah Basics Defibrillation is definitive treatment for life-threatening cardiac arrhythmias such as ventricular fibrillation Defibrillation consists of delivering therapeutic

More information

Cardiology. Objectives. Chapter

Cardiology. Objectives. Chapter 1:44 M age 1121 Chapter Cardiology Objectives art 1: Cardiovascular natomy and hysiology, ECG Monitoring, and Dysrhythmia nalysis (begins on p. 1127) fter reading art 1 of this chapter, you should be able

More information

The Influence of Electromagnetic

The Influence of Electromagnetic The nfluence of Electromagnetic Environment on the Performance of Artificial Cardiac Pacemakers Seymour Furman, M.D., Bryan Parker, Martin Krauthamer, M.D., and Doris J. W. Escher, M.D. T he danger of

More information

Different indications for pacemaker implantation are the following:

Different indications for pacemaker implantation are the following: Patient Resources: ICD/Pacemaker Overview ICD/Pacemaker Overview What is a pacemaker? A pacemaker is a device that uses low energy electrical pulses to prompt the heart to beat whenever a pause in the

More information

PART I. Disorders of the Heart Rhythm: Basic Principles

PART I. Disorders of the Heart Rhythm: Basic Principles PART I Disorders of the Heart Rhythm: Basic Principles FET01.indd 1 1/11/06 9:53:05 AM FET01.indd 2 1/11/06 9:53:06 AM CHAPTER 1 The Cardiac Electrical System The heart spontaneously generates electrical

More information

Human Anatomy and Physiology II Laboratory Cardiovascular Physiology

Human Anatomy and Physiology II Laboratory Cardiovascular Physiology Human Anatomy and Physiology II Laboratory Cardiovascular Physiology 1 This lab involves two exercises: 1) Conduction System of the Heart and Electrocardiography and 2) Human Cardiovascular Physiology:

More information

Ventricular Synchronous Demand Pacemaker Aditya. R [1],Sharath Kumar. B. V [2], R.V.College Of Engineering,Bangalore

Ventricular Synchronous Demand Pacemaker Aditya. R [1],Sharath Kumar. B. V [2], R.V.College Of Engineering,Bangalore Header Page 1 of 8. Ventricular Synchronous Demand Pacemaker Aditya. R [1],Sharath Kumar. B. V [2], R.V.College Of Engineering,Bangalore-560059 121 120 Header Page 2 of 8. Abstract The aim is to provide

More information

Late Recovery of Conduction following Surgically Induced Atrioventricular Block

Late Recovery of Conduction following Surgically Induced Atrioventricular Block Late Recovery of Conduction following Surgically Induced Atrioventricular Block Thomas W. Smith, M.D., James C. McFarland, M.D., Mortimer J. Buckley, M.D., and W. Gerald Austen, M.D. U se of long-term

More information

Sample. Analyzing the Heart with EKG. Computer

Sample. Analyzing the Heart with EKG. Computer Analyzing the Heart with EKG Computer An electrocardiogram (ECG or EKG) is a graphical recording of the electrical events occurring within the heart. In a healthy heart there is a natural pacemaker in

More information

Effects of myocardial infarction on catheter defibrillation threshold

Effects of myocardial infarction on catheter defibrillation threshold Purdue University Purdue e-pubs Weldon School of Biomedical Engineering Faculty Publications Weldon School of Biomedical Engineering 1983 Effects of myocardial infarction on catheter defibrillation threshold

More information

Electrocardiography for Healthcare Professionals

Electrocardiography for Healthcare Professionals Electrocardiography for Healthcare Professionals Chapter 9: Ventricular Dysrhythmias 2012 The Companies, Inc. All rights reserved. Learning Outcomes 9.1 Describe the various ventricular dysrhythmias 9.2

More information

NATIONAL INSTITUTE FOR HEALTH AND CLINICAL EXCELLENCE

NATIONAL INSTITUTE FOR HEALTH AND CLINICAL EXCELLENCE NATIONAL INSTITUTE FOR HEALTH AND CLINICAL EXCELLENCE Implantable cardioverter defibrillators for the treatment of arrhythmias and cardiac resynchronisation therapy for the treatment of heart failure (review

More information

Cardiac Cycle. Each heartbeat is called a cardiac cycle. First the two atria contract at the same time.

Cardiac Cycle. Each heartbeat is called a cardiac cycle. First the two atria contract at the same time. The Heartbeat Cardiac Cycle Each heartbeat is called a cardiac cycle. First the two atria contract at the same time. Next the two ventricles contract at the same time. Then all the chambers relax. http://www.youtube.com/watch?v=frd3k6lkhws

More information

Factors Determining Vulnerability to Ventricular Fibrillation Induced by 60-CPS Alternating Current

Factors Determining Vulnerability to Ventricular Fibrillation Induced by 60-CPS Alternating Current Factors Determining Vulnerability to Ventricular Fibrillation Induced by 60-CPS Alternating Current By Tsuneoki Sugimoto, M.D., Stephen F. School, M.D., and Andrew G. Wallace, M.D. ABSTRACT Very weak,

More information

Friedman, Rott, Wokhlu, Asirvatham, Hayes 201. Figure 65.7 Shortening of the AV interval during pacing.

Friedman, Rott, Wokhlu, Asirvatham, Hayes 201. Figure 65.7 Shortening of the AV interval during pacing. Friedman, Rott, Wokhlu, Asirvatham, Hayes 201 Figure.7 Shortening of the AV interval during pacing. 202 A Case-Based Approach to Pacemakers, ICDs, and Cardiac Resynchronization Figure.8 is obtained from

More information

THE CARDIOVASCULAR SYSTEM. Heart 2

THE CARDIOVASCULAR SYSTEM. Heart 2 THE CARDIOVASCULAR SYSTEM Heart 2 PROPERTIES OF CARDIAC MUSCLE Cardiac muscle Striated Short Wide Branched Interconnected Skeletal muscle Striated Long Narrow Cylindrical PROPERTIES OF CARDIAC MUSCLE Intercalated

More information

Diploma in Electrocardiography

Diploma in Electrocardiography The Society for Cardiological Science and Technology Diploma in Electrocardiography The Society makes this award to candidates who can demonstrate the ability to accurately record a resting 12-lead electrocardiogram

More information

ECG interpretation basics

ECG interpretation basics ECG interpretation basics Michał Walczewski, MD Krzysztof Ozierański, MD 21.03.18 Electrical conduction system of the heart Limb leads Precordial leads 21.03.18 Precordial leads Precordial leads 21.03.18

More information

EKG Abnormalities. Adapted from:

EKG Abnormalities. Adapted from: EKG Abnormalities Adapted from: http://www.bem.fi/book/19/19.htm Some key terms: Arrhythmia-an abnormal rhythm or sequence of events in the EKG Flutter-rapid depolarizations (and therefore contractions)

More information

Arrhythmias. Pulmonary Artery

Arrhythmias. Pulmonary Artery Arrhythmias Introduction Cardiac arrhythmia is an irregularity of the heart beat that causes the heart to beat too slowly, too fast, or irregularly. There are different types of arrhythmias. Most arrhythmias

More information

Newer pacemakers also can monitor your blood temperature, breathing, and other factors and adjust your heart rate to changes in your activity.

Newer pacemakers also can monitor your blood temperature, breathing, and other factors and adjust your heart rate to changes in your activity. Pacemakers & Defibrillators A pacemaker system consists of a battery, a computerized generator and wires with sensors called electrodes on one end. The battery powers the generator, and both are surrounded

More information

Model 5392 EPG Temporary Pacer

Model 5392 EPG Temporary Pacer Model 5392 EPG Temporary Pacer Compatible Components Reference Card 5392 Surgical Cables 5487 Disposable, short 5487L Disposable, long 5832S Reusable, small clip 5833S 5833SL Disposable, small clip, short

More information

Supplemental Material

Supplemental Material Supplemental Material 1 Table S1. Codes for Patient Selection Cohort Codes Primary PM CPT: 33206 or 33207 or 33208 (without 33225) ICD-9 proc: 37.81, 37.82, 37.83 Primary ICD Replacement PM Replacement

More information

J. Physiol. (I957) I37, I4I-I53

J. Physiol. (I957) I37, I4I-I53 141 J. Physiol. (I957) I37, I4I-I53 EFFECTS OF NORADRENALINE AND ADRENALINE ON THE ATRIAL RHYTHM IN THE HEART-LUNG PREPARATION BY J. H. BURN, A. J. GUNNING AND J. M. WALKER From the Department of Pharmacology,

More information

Electrical Conduction

Electrical Conduction Sinoatrial (SA) node Electrical Conduction Sets the pace of the heartbeat at 70 bpm AV node (50 bpm) and Purkinje fibers (25 40 bpm) can act as pacemakers under some conditions Internodal pathway from

More information

Collin County Community College

Collin County Community College Collin County Community College BIOL. 2402 Anatomy & Physiology WEEK 5 The Heart 1 The Heart Beat and the EKG 2 1 The Heart Beat and the EKG P-wave = Atrial depolarization QRS-wave = Ventricular depolarization

More information

EHRA Accreditation Exam - Sample MCQs Cardiac Pacing and ICDs

EHRA Accreditation Exam - Sample MCQs Cardiac Pacing and ICDs EHRA Accreditation Exam - Sample MCQs Cardiac Pacing and ICDs Dear EHRA Member, Dear Colleague, As you know, the EHRA Accreditation Process is becoming increasingly recognised as an important step for

More information

Electrocardiography Biomedical Engineering Kaj-Åge Henneberg

Electrocardiography Biomedical Engineering Kaj-Åge Henneberg Electrocardiography 31650 Biomedical Engineering Kaj-Åge Henneberg Electrocardiography Plan Function of cardiovascular system Electrical activation of the heart Recording the ECG Arrhythmia Heart Rate

More information

ECG Interpretation Cat Williams, DVM DACVIM (Cardiology)

ECG Interpretation Cat Williams, DVM DACVIM (Cardiology) ECG Interpretation Cat Williams, DVM DACVIM (Cardiology) Providing the best quality care and service for the patient, the client, and the referring veterinarian. GOAL: Reduce Anxiety about ECGs Back to

More information

Electrocardiogram and Heart Sounds

Electrocardiogram and Heart Sounds Electrocardiogram and Heart Sounds Five physiologic properties of cardiac muscle Automaticity: SA node is the primary pacemaker of the heart, but any cells in the conduction system can initiate their

More information

Arrhythmia Study Guide 3 Junctional and Ventricular Rhythms

Arrhythmia Study Guide 3 Junctional and Ventricular Rhythms Arrhythmia Study Guide 3 Junctional and Ventricular Rhythms JUNCTIONAL RHYTHMS The AV Junction (Bundle of His and surrounding cells) only acts as pacemaker of the heart when the SA Node is not firing normally

More information

Basic EKG Interpretation. Nirja Parikh, PT, DPT

Basic EKG Interpretation. Nirja Parikh, PT, DPT Basic EKG Interpretation Nirja Parikh, PT, DPT Electrocardiogram (EKG) Using surface electrodes record the electrical activity of the heart electrical activity (usually) correlates to mechanical function

More information

4. The two inferior chambers of the heart are known as the atria. the superior and inferior vena cava, which empty into the left atrium.

4. The two inferior chambers of the heart are known as the atria. the superior and inferior vena cava, which empty into the left atrium. Answer each statement true or false. If the statement is false, change the underlined word to make it true. 1. The heart is located approximately between the second and fifth ribs and posterior to the

More information

Introduction. Circulation

Introduction. Circulation Introduction Circulation 1- Systemic (general) circulation 2- Pulmonary circulation carries oxygenated blood to all parts of the body carries deoxygenated blood to the lungs From Lt. ventricle aorta From

More information

PERIOPERATIVE MANAGEMENT: CARDIAC PACEMAKERS AND DEFIBRILLATORS

PERIOPERATIVE MANAGEMENT: CARDIAC PACEMAKERS AND DEFIBRILLATORS PERIOPERATIVE MANAGEMENT: CARDIAC PACEMAKERS AND DEFIBRILLATORS DR SUSAN CORCORAN CARDIOLOGIST ONCE UPON A TIME.. Single chamber pacemakers Programmed at 70/min VVI 70 UNIPOLAR SYSTEMS A Unipolar Pacing

More information

Reviewed Date: Supersedes (Policy #/description & date): Prepared by: Jacque Callis, RN Approved by: D.R. Johnson, MD

Reviewed Date: Supersedes (Policy #/description & date): Prepared by: Jacque Callis, RN Approved by: D.R. Johnson, MD External Pacemaker Set-up and Revised Date: 11/13/2014 Page 1 of 5 POLICY: The transcutaneous external pacemaker will be used as a noninvasive method of delivering electrical stimuli to the myocardium

More information

The Cardiovascular System

The Cardiovascular System The Cardiovascular System The Cardiovascular System A closed system of the heart and blood vessels The heart pumps blood Blood vessels allow blood to circulate to all parts of the body The function of

More information

Pediatric pacemakers & ICDs:

Pediatric pacemakers & ICDs: Pediatric pacemakers & ICDs: perioperative management Manchula Navaratnam Clinical Assistant Professor LPCH, Stanford SPA 2016 Conflict of interest: none Objectives Indications in pediatrics Components

More information

Manual Defibrillators, Automatic External Defibrillators, Cardioversion, and External Pacing. D. J. McMahon cewood rev

Manual Defibrillators, Automatic External Defibrillators, Cardioversion, and External Pacing. D. J. McMahon cewood rev Manual Defibrillators, Automatic External Defibrillators, Cardioversion, and External Pacing D. J. McMahon 141001 cewood rev 2017-10-04 Key Points Defibrillators: - know the definition & electrical value

More information

Temporary pacemaker 삼성서울병원 심장혈관센터심장검사실 박정왜 RN, CCDS

Temporary pacemaker 삼성서울병원 심장혈관센터심장검사실 박정왜 RN, CCDS Temporary pacemaker 삼성서울병원 심장혈관센터심장검사실 박정왜 RN, CCDS NBG Codes 1st Letter 2nd Letter 3rd Letter A V D Chamber(s) Paced = atrium = ventricle = dual (both atrium and ventricle) Chamber(s) Sensed A = atrium

More information

NEIL CISPER TECHNICAL FIELD ENGINEER ICD/CRTD BASICS

NEIL CISPER TECHNICAL FIELD ENGINEER ICD/CRTD BASICS NEIL CISPER TECHNICAL FIELD ENGINEER ICD/CRTD BASICS OBJECTIVES Discuss history of ICDs Review the indications for ICD and CRT therapy Describe basic lead and device technology Discuss different therapies

More information

Rhythmical Excitation of the Heart

Rhythmical Excitation of the Heart Rhythmical Excitation of the Heart KALEB HOOD AND JIMMY JOHNSON Special Excitory and Conductive System of the Heart Sinus Node (or sinoatrial node or S-A): A small node with almost no contractile muscle,

More information

Northwest Community Healthcare Paramedic Education Program AV Conduction Defects/AV Blocks Connie J. Mattera, M.S., R.N., EMT-P

Northwest Community Healthcare Paramedic Education Program AV Conduction Defects/AV Blocks Connie J. Mattera, M.S., R.N., EMT-P Northwest Community Healthcare Paramedic Education Program AV Conduction Defects/ Connie J. Mattera, M.S., R.N., EMT-P Reading assignments: Bledsoe Vol. 3: pp. 88-93; 120-121 (atropine, norepinephrine,

More information

Chapter 16: Arrhythmias and Conduction Disturbances

Chapter 16: Arrhythmias and Conduction Disturbances Complete the following. Chapter 16: Arrhythmias and Conduction Disturbances 1. Cardiac arrhythmias result from abnormal impulse, abnormal impulse, or both mechanisms together. 2. is the ability of certain

More information

SPLITTING OF HEART SOUNDS FROM VENTRICULAR

SPLITTING OF HEART SOUNDS FROM VENTRICULAR Brit. Heart J., 1965, 27, 691. SPLITTING OF HEART SOUNDS FROM VENTRICULAR ASYNCHRONY IN BUNDLE-BRANCH BLOCK, VENTRICULAR ECTOPIC BEATS, AND ARTIFICIAL PACING* BY EDGAR HABER AND AUBREY LEATHAM From the

More information

Rate: The atrial and ventricular rates are equal; heart rate is greater than 100 bpm (usually between bpm).

Rate: The atrial and ventricular rates are equal; heart rate is greater than 100 bpm (usually between bpm). Sinus Bradycardia Regularity: The R-R intervals are constant; the rhythm is regular. Rate: The atrial and ventricular rates are equal; heart rate is less than 60 bpm. P wave: There is a uniform P wave

More information