I intend to discuss an unapproved/investigative use of a commercial product/device in my presentation

Size: px
Start display at page:

Download "I intend to discuss an unapproved/investigative use of a commercial product/device in my presentation"

Transcription

1 Istvan Seri MD PhD Center for Fetal and Neonatal Medicine USC Division of Neonatal Medicine Children Hospital Los Angeles and LAC+USC Medical Center Keck School of Medicine University of Southern California Los Angeles, CA

2 I have no relevant financial relationships with the manufacturers of any commercial products and/or provider of commercial services discussed in this activity I intend to discuss an unapproved/investigative use of a commercial product/device in my presentation I m a scientific consultant for Dey LP and have received compensation, honoraria and unrestricted educational grants I collaborate with Somanetics Corp to perform experiments on systemic hemodynamics and regional tissue oxygenation using the newborn piglet model and have received independent grant support to establish an international research fellowship project

3 A. Principles of Cardiovascular Physiology

4 Determinants of Cardiac Function and Oxygen Delivery to Tissues Strange GR. APLS: The Pediatric Emergency Medicine Course. 3 rd ed. Elk Grove Village, Ill: American Academy of Pediatrics; 1998:34

5 Factors Regulating Cardiac Output, Blood Pressure and Systemic Vascular Resistance Blood Pressure Cardiac Output = Vascular Resistance Blood Pressure = Cardiac Output x Vascular Resistance Although mathematically SVR is the dependent variable in the above equation, physiologically SVR and CO are the independent (regulated) variables and MAP is the dependent variable. Modified from Klabunde RE,

6 Distribution of Pressure & Volume in the Circulation

7 Oxygen Delivery and Consumption 1. Oxygen Delivery to Alveoli [Alveolar Minute Ventilation] x [FiO 2 ] (ml/kg/min) Alveolar Minute Ventilation = (Tidal Volume - Dead Space) x (Respiratory Rate) Oxygen Delivery to Alveoli = [(Tidal Volume - Dead Space) x (Respiratory Rate)] x [FiO 2 ] 2. Oxygen Delivery to Tissues (O 2 Carrying Capacity) x (Cardiac Output) (dl/kg/min) 3. Oxygen Consumption (VO 2 ) VO 2 = CO x (CaO 2 - CvO 2 ) CO = cardiac output (dl/min), CaO 2 = arterial oxygen content, CvO 2 = oxygen content of mixed venous blood

8 OXYGEN DEMAND OXYGEN CONSUMPTION 1. Mechanisms of compensation for decreased O 2 delivery (O 2 demand delivery coupling): a. increased blood flow (vasodilation and capillary recruitment) b. Increased O 2 extraction 2. Beyond critical O 2 delivery cells switch from aerobic metabolism (38mol ATP/mol of glucose) to anaerobic metabolism (2mol ATP and 2mol Lactate/mol of glucose)

9 Sympathetic and Parasympathetic Regulation of Myocardial Function α 1 DA Modified from Klabunde RE,

10 Frank-Starling Mechanism: Preload, Myocardial Contractility and Afterload Increased venous return increases ventricular filling (EDV) and preload, which is the initial stretching of the cardiac myocytes prior to contraction. Myocyte stretching increases the sarcomere length causing an increase in force generation. This mechanism enables the heart to eject the additional venous return, thereby increasing stroke volume. This is the length-tension and force-velocity relationships for cardiac muscle. Increasing preload increases the active tension developed by the muscle fiber and increases the velocity of fiber shortening at a given afterload and inotropic state. Mechanism: increasing the sarcomere length increases troponin C calcium sensitivity, which increases the rate of cross-bridge attachment and detachment, and the amount of tension developed by the muscle fiber. The effect of increased sarcomere length on the contractile proteins is termed length-dependent activation. Modified from Klabunde RE,

11 Cardiovascular Actions of Adrenergic Receptors Adrenergic, Dopaminergic and Vasopressin Receptors α 1 /α 2 β 2 α 1 β 1 /β 2 DA 1 /DA 2 V 1a Vascular Vascular Cardiac Cardiac Vascular/Cardiac Vascular Vasoconstriction Vasodilation * + Inotropy /++ + Chronotropy ++++ Cond. Velocity ++++ * = renal, mesenteric, coronary circulation > pulmonary circulation > extracranial vessels of the neck

12 β-receptor-mediated Effects in the Myocyte and Vascular Smooth Muscle Cell Myocyte Vascular Smooth Muscle Cell Modified from Klabunde RE,

13 α-receptor-mediated Effects in Vascular Smooth Muscle Cells Vascular smooth muscle has two primary types of α-adrenoceptors: α 1 and α 2. The α 1 -adrenoceptors are located on the vascular smooth muscle. In contrast, α 2 - adrenoceptors are located on the sympathetic nerve terminals as well as on vascular smooth muscle. Smooth muscle (postjunctional) α 1 and α 2 -adrenoceptors are linked to a Gq-protein, which activates smooth muscle contraction through the IP 3 signal transduction pathway. Prejunctional α 2 - adrenoceptors located on the sympathetic nerve terminals serve as a negative feedback mechanism for norepinephrine release. Modified from Klabunde RE,

14 Pathways egulating Vascular Smooth Muscle (VSM) Tone 1. Phosphatidylinositol (PIP 2 ) pathway in VSM is similar to that in the heart. NE acting via α 1 -adrenoceptors, angiotensin II (AII) acting via AII receptors, and endothelin-i (ET-1) acting through ETA receptors activate phospholipase C (PL-C) causing inositol triphosphate (IP 3 ) and diacylglycerol (DAG) formation. IP 3 stimulates calcium release from SR and DAG activates PK-C, also contribute to VSMC contraction. 2. G s -protein coupled pathway stimulates AC to form camp. In VSM, unlike the heart, an increase in camp stimulated by a β 2 -adrenoceptor agonist such as EPI causes relaxation. The mechanism for this is camp inhibition of MLCK by decreasing its phosphorylation an thus the interactions between actin and myosin. Medications increasing camp (β 2 - agonists, PDase inhibitors) cause vasodilation. 3. Nitric oxide (NO)-cGMP system. NO activates guanylyl cyclase (GC) causing increased cgmp formation cgmp and vasodilation. cgmp relaxes VSM by activation of cgmpdependent protein kinase and K + channels and inhibition of calcium entry into the VSMC and IP 3 formation. Modified from Klabunde RE,

15 B. Fetal Circulation

16 The Fetal Circulation Kiserud and Acharya, Prenat Diagn 24:149; 24

17 Fetal Circulation and Hemoglobin Oxygen Saturation in the Late Gestation Fetus Modified from Heymann MA; Maternal-Fetal Medicine; 3 rd ed., WB Saunders, 1994; p 277

18 Role of the Pulmonary Circulation in the Distribution of Human Fetal Cardiac Output During the Second Half of Pregnancy Proportions of RVCO, LVCO, QDA, QP, and QFO of the fetal combined CO at three different gestational ages: 2, 3, and 38 weeks Rasanen J et al, Circulation 1996; 94:168-7

19 C. Transitional Circulation

20 CIRCULATORY COMPROMISE IN THE TRANSITIONAL PERIOD 1. Blood pressure, heart rate, SaO 2 2. Systemic blood flow (CO = BP / SVR) 3. Distribution of blood flow to organs 4. Vital organ assignment and O 2 demand-delivery coupling 5. Association with clinically relevant outcomes 6. Design of appropriate interventional trials

21 CIRCULATORY COMPROMISE IN THE TRANSITIONAL PERIOD 1. Blood pressure, heart rate, SaO 2 2. Systemic blood flow (CO = BP / SVR) 3. Distribution of blood flow to organs 4. Vital organ assignment and O 2 demand-delivery coupling 5. Association with clinically relevant outcomes 6. Design of appropriate interventional trials

22 DEFINITION OF HYPOTENSION BY POPULATION-BASED NORMATIVE BLOOD PRESSURE DATA GESTATIONAL- AND POSTNATAL-AGE DEPENDENCE OF BLOOD PRESSURE Lower Limit of the 8% Confidence Interval of BP in Neonates ( First 3 Postnatal Days)* Mean Blood Pressure (mm Hg) weeks weeks weeks weeks Age (h) * = 9% of neonates have a mean BP value at or above the lower limit of the 8% confidence interval of BP Nuntnarumit et al, Clin Perinatol; 1999

23 UNDERSTANDING CIRCULATORY COMPROMISE IN THE TRANSITIONAL PERIOD 1. Blood pressure, heart rate and indirect assessment of tissue perfusion 2. Systemic blood flow (CO = BP / SVR) 3. Distribution of blood flow to organs 4. Vital organ assignment and O 2 demand-delivery coupling 5. Association with clinically relevant outcomes 6. Design of appropriate interventional trials

24 Assessment of Systemic Blood Flow during Transition [1-12 (24) hours] SVC Flow RA LA RV LV Ductus Systemic Blood Flow RV Output PA Ao LV Output Systemic Blood Flow + PDA

25 Transitional Circulation AAo = Ascending aorta; LPA = Left pulmonary artery; RPA = Right pulmonary artery; PDA = Patent ductus arteriosus PDA LPA AAo RPA Large PDA, Left to Right Shunt Tiny PDA, Left to Right Shunt

26 Assessment of Systemic Blood Flow during Transition [12 (24) - 48 hours] SVC Flow RA LA RV LV Ductus Systemic Blood Flow + PFO RV Output PA Ao LV Output Systemic Blood Flow + PDA

27 D. Pathophysiology of Shock

28 ETIOLOGY OF NEONATAL SHOCK

29 PHASES OF NEONATAL SHOCK 1. Compensated phase Heart rate; Urine output; No change in blood pressure; Blood flow distributed to vital organs (brain, heart, adrenal glands) at the expense of non-vital organ perfusion 2. Uncompensated phase Heart rate; Urine output; Blood pressure Blood flow decreases in all organs, tissue hypoperfusion and acidemia develop 3. Irreversible phase Irreversible cellular damage

30 Pathophysiology of Neonatal Shock Imbalance between oxygen delivery and oxygen consumption Oxygen Consumption Normal Range of Oxygen Consumption Oxygen Delivery

31 Comprehensive Bedside Hemodynamic Monitoring and Data Acquisition in the Transitional Period GA = 26 wks PA = <24 hours rso2-1 = Brain Tissue O 2 rso2-2 = Renal Tissue O 2 Sys = Systolic BP Dia = Diastolic BP Mean = Mean BP SpO 2 = O 2 saturation Data Sampling Rate = Data Output Rate =

32 Cardiovascular Physiology and Pathophysiology-Based Management of Neonatal Shock Blood Pressure = Cardiac output x Systemic Vascular Resistance Heart Rate x Stroke Volume Neuroendocrine and paracrin regulatory mechanisms Catecholamines β-receptor Agonists Temperature Pacing Volume Diuretics Preload Contractility Inotropes Calcium Afterload Vasopressors Vasodilators Temperature Lower limit of normal cardiac output (systemic blood flow) in preterm neonates = 15 ml/kg/min

33 QUESTIONS?

Introduction. Invasive Hemodynamic Monitoring. Determinants of Cardiovascular Function. Cardiovascular System. Hemodynamic Monitoring

Introduction. Invasive Hemodynamic Monitoring. Determinants of Cardiovascular Function. Cardiovascular System. Hemodynamic Monitoring Introduction Invasive Hemodynamic Monitoring Audis Bethea, Pharm.D. Assistant Professor Therapeutics IV January 21, 2004 Hemodynamic monitoring is necessary to assess and manage shock Information obtained

More information

The Pharmacology of Hypotension: Vasopressor Choices for HIE patients. Keliana O Mara, PharmD August 4, 2018

The Pharmacology of Hypotension: Vasopressor Choices for HIE patients. Keliana O Mara, PharmD August 4, 2018 The Pharmacology of Hypotension: Vasopressor Choices for HIE patients Keliana O Mara, PharmD August 4, 2018 Objectives Review the pathophysiology of hypotension in neonates Discuss the role of vasopressors

More information

Case year old female nursing home resident with a hx CAD, PUD, recent hip fracture Transferred to ED with decreased mental status BP in ED 80/50

Case year old female nursing home resident with a hx CAD, PUD, recent hip fracture Transferred to ED with decreased mental status BP in ED 80/50 Case 1 65 year old female nursing home resident with a hx CAD, PUD, recent hip fracture Transferred to ED with decreased mental status BP in ED 80/50 Case 1 65 year old female nursing home resident with

More information

I have no relevant financial relationships with the manufacturers of any. commercial products and/or provider of commercial services discussed in

I have no relevant financial relationships with the manufacturers of any. commercial products and/or provider of commercial services discussed in I have no relevant financial relationships with the manufacturers of any commercial products and/or provider of commercial services discussed in this activity I do intend to discuss an unapproved/investigative

More information

HYPERTENSION: Sustained elevation of arterial blood pressure above normal o Systolic 140 mm Hg and/or o Diastolic 90 mm Hg

HYPERTENSION: Sustained elevation of arterial blood pressure above normal o Systolic 140 mm Hg and/or o Diastolic 90 mm Hg Lecture 39 Anti-Hypertensives B-Rod BLOOD PRESSURE: Systolic / Diastolic NORMAL: 120/80 Systolic = measure of pressure as heart is beating Diastolic = measure of pressure while heart is at rest between

More information

BIPN100 F15 Human Physiol I (Kristan) Lecture 14 Cardiovascular control mechanisms p. 1

BIPN100 F15 Human Physiol I (Kristan) Lecture 14 Cardiovascular control mechanisms p. 1 BIPN100 F15 Human Physiol I (Kristan) Lecture 14 Cardiovascular control mechanisms p. 1 Terms you should understand: hemorrhage, intrinsic and extrinsic mechanisms, anoxia, myocardial contractility, residual

More information

MANAGEMENT OF CIRCULATORY FAILURE

MANAGEMENT OF CIRCULATORY FAILURE MANAGEMENT OF CIRCULATORY FAILURE BACKGROUND AND DEFINITION There is no consensus on the definition of circulatory failure or shock in newborns; it can be defined as global tissue hypoxia secondary to

More information

PHYSIOLOGY MeQ'S (Morgan) All the following statements related to blood volume are correct except for: 5 A. Blood volume is about 5 litres. B.

PHYSIOLOGY MeQ'S (Morgan) All the following statements related to blood volume are correct except for: 5 A. Blood volume is about 5 litres. B. PHYSIOLOGY MeQ'S (Morgan) Chapter 5 All the following statements related to capillary Starling's forces are correct except for: 1 A. Hydrostatic pressure at arterial end is greater than at venous end.

More information

Chapter 9, Part 2. Cardiocirculatory Adjustments to Exercise

Chapter 9, Part 2. Cardiocirculatory Adjustments to Exercise Chapter 9, Part 2 Cardiocirculatory Adjustments to Exercise Electrical Activity of the Heart Contraction of the heart depends on electrical stimulation of the myocardium Impulse is initiated in the right

More information

Hypotension in the Neonate

Hypotension in the Neonate Neonatal Nursing Education Brief: Hypotension in the Neonate http://www.seattlechildrens.org/healthcare-professionals/education/continuing-medicalnursing-education/neonatal-nursing-education-briefs/ Neonatal

More information

Weeks 1-3:Cardiovascular

Weeks 1-3:Cardiovascular Weeks 1-3:Cardiovascular Cardiac Output The total volume of blood ejected from the ventricles in one minute is known as the cardiac output. Heart Rate (HR) X Stroke Volume (SV) = Cardiac Output Normal

More information

During exercise the heart rate is 190 bpm and the stroke volume is 115 ml/beat. What is the cardiac output?

During exercise the heart rate is 190 bpm and the stroke volume is 115 ml/beat. What is the cardiac output? The Cardiovascular System Part III: Heart Outline of class lecture After studying part I of this chapter you should be able to: 1. Be able to calculate cardiac output (CO) be able to define heart rate

More information

Drug Treatment of Ischemic Heart Disease

Drug Treatment of Ischemic Heart Disease Drug Treatment of Ischemic Heart Disease Munir Gharaibeh, MD, PhD, MHPE Faculty of Medicine, The University of Jordan November, 2014 Categories of Ischemic Heart Disease Fixed "Stable, Effort Angina Variant

More information

TOPIC : Cardiogenic Shock

TOPIC : Cardiogenic Shock University of Ferrara Department of Morphology, Surgery and Experimental Medicine. Section of Anaesthesia and Intensive Care Medicine TOPIC : Cardiogenic Shock What is shock? Shock is a condition of inadequate

More information

TEACH Lesson Plan Manual for Herlihy s The Human Body in Health and Illness 5 th edition

TEACH Lesson Plan Manual for Herlihy s The Human Body in Health and Illness 5 th edition TEACH Lesson Plan Manual for Herlihy s The Human Body in Health and Illness 5 th edition Chapter 17 Function of the Heart Lesson 17.1 Function of the Heart 1. Define cardiac cycle with respect to systole

More information

Nothing to Disclose. Severe Pulmonary Hypertension

Nothing to Disclose. Severe Pulmonary Hypertension Severe Ronald Pearl, MD, PhD Professor and Chair Department of Anesthesiology Stanford University Rpearl@stanford.edu Nothing to Disclose 65 year old female Elective knee surgery NYHA Class 3 Aortic stenosis

More information

Department of Intensive Care Medicine UNDERSTANDING CIRCULATORY FAILURE IN SEPSIS

Department of Intensive Care Medicine UNDERSTANDING CIRCULATORY FAILURE IN SEPSIS Department of Intensive Care Medicine UNDERSTANDING CIRCULATORY FAILURE IN SEPSIS UNDERSTANDING CIRCULATORY FAILURE IN SEPSIS a mismatch between tissue perfusion and metabolic demands the heart, the vasculature

More information

Energy sources in skeletal muscle

Energy sources in skeletal muscle Energy sources in skeletal muscle Pathway Rate Extent ATP/glucose 1. Direct phosphorylation Extremely fast Very limited - 2. Glycolisis Very fast limited 2-3 3. Oxidative phosphorylation Slow Unlimited

More information

Physiologic Based Management of Circulatory Shock Kuwait 2018

Physiologic Based Management of Circulatory Shock Kuwait 2018 Physiologic Based Management of Circulatory Shock Kuwait 2018 Dr. Yasser Elsayed, MD, PhD Director of the Targeted Neonatal Echocardiography, Point of Care and Hemodynamics Program Staff Neonatologist

More information

Topics to be Covered. Cardiac Measurements. Distribution of Blood Volume. Distribution of Pulmonary Ventilation & Blood Flow

Topics to be Covered. Cardiac Measurements. Distribution of Blood Volume. Distribution of Pulmonary Ventilation & Blood Flow Topics to be Covered MODULE F HEMODYNAMIC MONITORING Cardiac Output Determinants of Stroke Volume Hemodynamic Measurements Pulmonary Artery Catheterization Control of Blood Pressure Heart Failure Cardiac

More information

Exam KEY. NROSCI/BIOSC 1070 and MSNBIO 2070 Exam # 2 October 23, 2015 Total POINTS: % of grade in class

Exam KEY. NROSCI/BIOSC 1070 and MSNBIO 2070 Exam # 2 October 23, 2015 Total POINTS: % of grade in class NROSCI/BIOSC 1070 and MSNBIO 2070 Exam # 2 October 23, 2015 Total POINTS: 100 20% of grade in class 1) Arterial and venous blood samples are taken, and other physiological measures are obtained, from a

More information

Cardiac Output MCQ. Professor of Cardiovascular Physiology. Cairo University 2007

Cardiac Output MCQ. Professor of Cardiovascular Physiology. Cairo University 2007 Cardiac Output MCQ Abdel Moniem Ibrahim Ahmed, MD Professor of Cardiovascular Physiology Cairo University 2007 90- Guided by Ohm's law when : a- Cardiac output = 5.6 L/min. b- Systolic and diastolic BP

More information

Vasoactive Medications. Matthew J. Korobey Pharm.D., BCCCP Critical Care Clinical Specialist Mercy St. Louis

Vasoactive Medications. Matthew J. Korobey Pharm.D., BCCCP Critical Care Clinical Specialist Mercy St. Louis Vasoactive Medications Matthew J. Korobey Pharm.D., BCCCP Critical Care Clinical Specialist Mercy St. Louis Objectives List components of physiology involved in blood pressure Review terminology related

More information

DIAGNOSIS AND MANAGEMENT OF ACUTE HEART FAILURE

DIAGNOSIS AND MANAGEMENT OF ACUTE HEART FAILURE DIAGNOSIS AND MANAGEMENT OF ACUTE HEART FAILURE Mefri Yanni, MD Bagian Kardiologi dan Kedokteran Vaskular RS.DR.M.Djamil Padang The 3rd Symcard Padang, Mei 2013 Outline Diagnosis Diagnosis Treatment options

More information

The Cardiovascular System

The Cardiovascular System Chapter 18 Part A The Cardiovascular System 1/19/16 1 Annie Leibovitz/Contact Press Images Similarities of Cardiac and Skeletal Muscle RMP Ion concentration Deploarization Action Potential Repolarization

More information

Cardiovascular Physiology and Pharmacology

Cardiovascular Physiology and Pharmacology Cardiovascular Physiology and Pharmacology Peter Paal Perioperative Medicine, Barts Heart Centre St. Bartholomew s Hospital, Barts Healt NHS Queen Mary University of London and Department of Anaesthesiology

More information

Circulation. Blood Pressure and Antihypertensive Medications. Venous Return. Arterial flow. Regulation of Cardiac Output.

Circulation. Blood Pressure and Antihypertensive Medications. Venous Return. Arterial flow. Regulation of Cardiac Output. Circulation Blood Pressure and Antihypertensive Medications Two systems Pulmonary (low pressure) Systemic (high pressure) Aorta 120 mmhg Large arteries 110 mmhg Arterioles 40 mmhg Arteriolar capillaries

More information

REGULATION OF CARDIOVASCULAR SYSTEM

REGULATION OF CARDIOVASCULAR SYSTEM REGULATION OF CARDIOVASCULAR SYSTEM Jonas Addae Medical Sciences, UWI REGULATION OF CARDIOVASCULAR SYSTEM Intrinsic Coupling of cardiac and vascular functions - Autoregulation of vessel diameter Extrinsic

More information

SHOCK. Emergency pediatric PICU division Pediatric Department Medical Faculty, University of Sumatera Utara H. Adam Malik Hospital

SHOCK. Emergency pediatric PICU division Pediatric Department Medical Faculty, University of Sumatera Utara H. Adam Malik Hospital SHOCK Emergency pediatric PICU division Pediatric Department Medical Faculty, University of Sumatera Utara H. Adam Malik Hospital 1 Definition Shock is an acute, complex state of circulatory dysfunction

More information

Review of Cardiac Mechanics & Pharmacology 10/23/2016. Brent Dunworth, CRNA, MSN, MBA 1. Learning Objectives

Review of Cardiac Mechanics & Pharmacology 10/23/2016. Brent Dunworth, CRNA, MSN, MBA 1. Learning Objectives Brent Dunworth, CRNA, MSN, MBA Associate Director of Advanced Practice Division Chief, Nurse Anesthesia Vanderbilt University Medical Center Nashville, Tennessee Learning Objectives Review the principles

More information

10/13/2017. Newborn Care. Objectives. Cardiac Anatomy. Managing Transitional Physiology

10/13/2017. Newborn Care. Objectives. Cardiac Anatomy. Managing Transitional Physiology Newborn Care Managing Transitional Physiology Mary Coughlin MS, NNP, RNC-E President and Founder Caring Essentials Collaborative Boston, MA Objectives Upon completion of the learning session participants

More information

11/10/2014. Muscular pump Two atria Two ventricles. In mediastinum of thoracic cavity 2/3 of heart's mass lies left of midline of sternum

11/10/2014. Muscular pump Two atria Two ventricles. In mediastinum of thoracic cavity 2/3 of heart's mass lies left of midline of sternum It beats over 100,000 times a day to pump over 1,800 gallons of blood per day through over 60,000 miles of blood vessels. During the average lifetime, the heart pumps nearly 3 billion times, delivering

More information

Cardiac Output 1 Fox Chapter 14 part 1

Cardiac Output 1 Fox Chapter 14 part 1 Vert Phys PCB3743 Cardiac Output 1 Fox Chapter 14 part 1 T. Houpt, Ph.D. Regulation of Heart & Blood Pressure Keep Blood Pressure constant if too low, not enough blood (oxygen, glucose) reaches tissues

More information

Cardiovascular Physiology. Heart Physiology. Introduction. The heart. Electrophysiology of the heart

Cardiovascular Physiology. Heart Physiology. Introduction. The heart. Electrophysiology of the heart Cardiovascular Physiology Heart Physiology Introduction The cardiovascular system consists of the heart and two vascular systems, the systemic and pulmonary circulations. The heart pumps blood through

More information

FUNDAMENTALS OF HEMODYNAMICS, VASOACTIVE DRUGS AND IABP IN THE FAILING HEART

FUNDAMENTALS OF HEMODYNAMICS, VASOACTIVE DRUGS AND IABP IN THE FAILING HEART FUNDAMENTALS OF HEMODYNAMICS, VASOACTIVE DRUGS AND IABP IN THE FAILING HEART CINDY BITHER, MSN, ANP, ANP, AACC, CHFN CHIEF NP, ADV HF PROGRAM MEDSTAR WASHINGTON HOSPITAL CENTER CONFLICTS OF INTEREST NONE

More information

Principles of Biomedical Systems & Devices. Lecture 8: Cardiovascular Dynamics Dr. Maria Tahamont

Principles of Biomedical Systems & Devices. Lecture 8: Cardiovascular Dynamics Dr. Maria Tahamont Principles of Biomedical Systems & Devices Lecture 8: Cardiovascular Dynamics Dr. Maria Tahamont Review of Cardiac Anatomy Four chambers Two atria-receive blood from the vena cave and pulmonary veins Two

More information

Blood pressure. Formation of the blood pressure: Blood pressure. Formation of the blood pressure 5/1/12

Blood pressure. Formation of the blood pressure: Blood pressure. Formation of the blood pressure 5/1/12 Blood pressure Blood pressure Dr Badri Paudel www.badripaudel.com Ø Blood pressure means the force exerted by the blood against the vessel wall Ø ( or the force exerted by the blood against any unit area

More information

(D) (E) (F) 6. The extrasystolic beat would produce (A) increased pulse pressure because contractility. is increased. increased

(D) (E) (F) 6. The extrasystolic beat would produce (A) increased pulse pressure because contractility. is increased. increased Review Test 1. A 53-year-old woman is found, by arteriography, to have 5% narrowing of her left renal artery. What is the expected change in blood flow through the stenotic artery? Decrease to 1 2 Decrease

More information

9/16/2012. Progression of Shock. Blood pressure: Pathophysiology & Clinical Management

9/16/2012. Progression of Shock. Blood pressure: Pathophysiology & Clinical Management Mean BP (mm Hg) 9/16/212 September 2, 14: 6 min Blood pressure: Pathophysiology & Clinical Management Shahab Noori, MD Associate Professor of Pediatrics Division of Neonatology Progression of Shock BP

More information

BIOL 219 Spring Chapters 14&15 Cardiovascular System

BIOL 219 Spring Chapters 14&15 Cardiovascular System 1 BIOL 219 Spring 2013 Chapters 14&15 Cardiovascular System Outline: Components of the CV system Heart anatomy Layers of the heart wall Pericardium Heart chambers, valves, blood vessels, septum Atrioventricular

More information

Neonatal Blood Pressure Support: The Use of Inotropes, Lusitropes, and Other Vasopressor Agents

Neonatal Blood Pressure Support: The Use of Inotropes, Lusitropes, and Other Vasopressor Agents Neonatal Blood Pressure Support: The Use of Inotropes, Lusitropes, and Other Vasopressor Agents Shahab Noori, MD, Istvan Seri, MD, PhD* KEYWORDS Inotropes Lusitropes Vasopressors Hemodynamic Hypotension

More information

Cardiac Output (C.O.) Regulation of Cardiac Output

Cardiac Output (C.O.) Regulation of Cardiac Output Cardiac Output (C.O.) Is the volume of the blood pumped by each ventricle per minute (5 Litre) Stroke volume: Is the volume of the blood pumped by each ventricle per beat. Stroke volume = End diastolic

More information

The circulatory system

The circulatory system Introduction to Physiology (Course # 72336) 1 הלב עקרונות בסיסיים (הכנה למעבדת לב) Adi Mizrahi mizrahia@cc.huji.ac.il Textbook Chapter 12 2 The circulatory system To the heart Away from the heart 3 L 2.5

More information

Heart Failure (HF) Treatment

Heart Failure (HF) Treatment Heart Failure (HF) Treatment Heart Failure (HF) Complex, progressive disorder. The heart is unable to pump sufficient blood to meet the needs of the body. Its cardinal symptoms are dyspnea, fatigue, and

More information

Myocardial Infarction: Left Ventricular Failure

Myocardial Infarction: Left Ventricular Failure CARDIOVASCULAR PHYSIOLOGY 93 Case 17 Myocardial Infarction: Left Ventricular Failure Marvin Zimmerman is a 52-year-old construction manager who is significantly overweight. Despite his physician's repeated

More information

Control of blood tissue blood flow. Faisal I. Mohammed, MD,PhD

Control of blood tissue blood flow. Faisal I. Mohammed, MD,PhD Control of blood tissue blood flow Faisal I. Mohammed, MD,PhD 1 Objectives List factors that affect tissue blood flow. Describe the vasodilator and oxygen demand theories. Point out the mechanisms of autoregulation.

More information

IP: Regulation of Cardiac Output

IP: Regulation of Cardiac Output ANP 1105D Winter 2013 Assignment 9: The Heart, part 2: Chap... Assignment 9: The Heart, part 2: Chapter 18 Signed in as Alex Sokolowski Help Close Resources Due: 11:59pm on Monday, March 25, 2013 Note:

More information

Introduction to Physiology (Course # 72336) 1. Adi Mizrahi Textbook Chapter 12

Introduction to Physiology (Course # 72336) 1. Adi Mizrahi Textbook Chapter 12 Introduction to Physiology (Course # 72336) 1 עקרונות בסיסיים (הכנה למעבדת לב) הלב Adi Mizrahi mizrahia@cc.huji.ac.il Textbook Chapter 12 2 The circulatory system To the heart Away from the heart 3 L 2.5

More information

Bio 449 Fall Exam points total

Bio 449 Fall Exam points total Name: Exam 2 100 points total Multiple choice. As with any test, choose the best answer in each case. Each question is 3 points. Comments are provided in italic for questions that too many people missed!

More information

การอบรมว ทยาศาสตร พ นฐานทางศ ลยศาสตร เร อง นพ.ส ณฐ ต โมราก ล ภาคว ชาว ส ญญ ว ทยา คณะแพทยศาสตร โรงพยาบาลรามาธ บด มหาวทยาลยมหดล

การอบรมว ทยาศาสตร พ นฐานทางศ ลยศาสตร เร อง นพ.ส ณฐ ต โมราก ล ภาคว ชาว ส ญญ ว ทยา คณะแพทยศาสตร โรงพยาบาลรามาธ บด มหาวทยาลยมหดล การอบรมว ทยาศาสตร พ นฐานทางศ ลยศาสตร เร อง นพ.ส ณฐ ต โมราก ล ภาคว ชาว ส ญญ ว ทยา คณะแพทยศาสตร โรงพยาบาลรามาธ บด มหาวทยาลยมหดล Distributive shock Severe sepsis and Septic shock Anaphylactic shock Neurogenic

More information

Neonatal Shock. Imbalance between tissue oxygen delivery and oxygen consumption

Neonatal Shock. Imbalance between tissue oxygen delivery and oxygen consumption Neonatal Shock Moira Crowley, MD Assistant Professor, Pediatrics Co-director, Neonatal ECMO Program Rainbow Babies and Children s Hospital Case Western Resverve University School of Medicine 1 Objectives

More information

Heart Pump and Cardiac Cycle. Faisal I. Mohammed, MD, PhD

Heart Pump and Cardiac Cycle. Faisal I. Mohammed, MD, PhD Heart Pump and Cardiac Cycle Faisal I. Mohammed, MD, PhD 1 Objectives To understand the volume, mechanical, pressure and electrical changes during the cardiac cycle To understand the inter-relationship

More information

1

1 1 2 3 RIFAI 5 6 Dublin cohort, retrospective review. Milrinone was commenced at an initial dose of 0.50 μg/kg/minute up to 0.75 μg/kg/minute and was continued depending on clinical response. No loading

More information

DESCRIBE THE FACTORS AFFECTING CARDIAC OUTPUT.

DESCRIBE THE FACTORS AFFECTING CARDIAC OUTPUT. DESCRIBE THE FACTORS AFFECTING CARDIAC OUTPUT. BY: DISHA PRAKASH I MBBS, ROLL NO: 16M069 OBJECTIVES OF LEARNING Terminology and conceptual understanding of Cardiac Output. Factors regulating Cardiac Output.

More information

Special circulations, Coronary, Pulmonary. Faisal I. Mohammed, MD,PhD

Special circulations, Coronary, Pulmonary. Faisal I. Mohammed, MD,PhD Special circulations, Coronary, Pulmonary Faisal I. Mohammed, MD,PhD 1 Objectives Describe the control of blood flow to different circulations (Skeletal muscles, pulmonary and coronary) Point out special

More information

RV dysfunction and failure PATHOPHYSIOLOGY. Adam Torbicki MD, Dept Chest Medicine Institute of Tuberculosis and Lung Diseases Warszawa, Poland

RV dysfunction and failure PATHOPHYSIOLOGY. Adam Torbicki MD, Dept Chest Medicine Institute of Tuberculosis and Lung Diseases Warszawa, Poland RV dysfunction and failure PATHOPHYSIOLOGY Adam Torbicki MD, Dept Chest Medicine Institute of Tuberculosis and Lung Diseases Warszawa, Poland Normal Right Ventricle (RV) Thinner wall Weaker myocytes Differences

More information

Cardiovascular System. Heart

Cardiovascular System. Heart Cardiovascular System Heart Electrocardiogram A device that records the electrical activity of the heart. Measuring the relative electrical activity of one heart cycle. A complete contraction and relaxation.

More information

Cardiorespiratory Interactions:

Cardiorespiratory Interactions: Cardiorespiratory Interactions: The Heart - Lung Connection Jon N. Meliones, MD, MS, FCCM Professor of Pediatrics Duke University Medical Director PCVICU Optimizing CRI Cardiorespiratory Economics O2:

More information

Lab Period: Name: Physiology Chapter 14 Blood Flow and Blood Pressure, Plus Fun Review Study Guide

Lab Period: Name: Physiology Chapter 14 Blood Flow and Blood Pressure, Plus Fun Review Study Guide Lab Period: Name: Physiology Chapter 14 Blood Flow and Blood Pressure, Plus Fun Review Study Guide Main Idea: The function of the circulatory system is to maintain adequate blood flow to all tissues. Clinical

More information

Chapter 14 Blood Vessels, Blood Flow and Pressure Exam Study Questions

Chapter 14 Blood Vessels, Blood Flow and Pressure Exam Study Questions Chapter 14 Blood Vessels, Blood Flow and Pressure Exam Study Questions 14.1 Physical Law Governing Blood Flow and Blood Pressure 1. How do you calculate flow rate? 2. What is the driving force of blood

More information

Cardiovascular Responses to Exercise

Cardiovascular Responses to Exercise CARDIOVASCULAR PHYSIOLOGY 69 Case 13 Cardiovascular Responses to Exercise Cassandra Farias is a 34-year-old dietician at an academic medical center. She believes in the importance of a healthy lifestyle

More information

Maternal and Fetal Physiology

Maternal and Fetal Physiology Background Maternal and Fetal Physiology Anderson Lo, DO Fellow, Maternal-Fetal Medicine Wayne State University School of Medicine SEMCME Fetal Assessment Course July 20, 2018 Oxygen pathway Mother Placenta

More information

Critical Care Monitoring. Assessing the Adequacy of Tissue Oxygenation. Tissue Oxygenation - Step 1. Tissue Oxygenation

Critical Care Monitoring. Assessing the Adequacy of Tissue Oxygenation. Tissue Oxygenation - Step 1. Tissue Oxygenation Critical Care Monitoring 1 Assessing the Adequacy of Tissue oxygenation is the end-product of many complex steps 2 - Step 1 Oxygen must be made available to alveoli 3 1 - Step 2 Oxygen must cross the alveolarcapillary

More information

Advanced Monitoring of Cardiovascular and Respiratory Systems in Infants Kuwait 2018 Dr. Yasser Elsayed, MD, PhD Director of the Targeted Neonatal

Advanced Monitoring of Cardiovascular and Respiratory Systems in Infants Kuwait 2018 Dr. Yasser Elsayed, MD, PhD Director of the Targeted Neonatal Advanced Monitoring of Cardiovascular and Respiratory Systems in Infants Kuwait 2018 Dr. Yasser Elsayed, MD, PhD Director of the Targeted Neonatal Echocardiography, Point of Care and Hemodynamics Program

More information

GIGA - In Silico Medicine, University of Liege, Belgium, 2

GIGA - In Silico Medicine, University of Liege, Belgium, 2 S. Kosta 1,*, A. Pironet 1, J.A. Negroni 2, E.C. Lascano 2, P.C. Dauby 1 1 GIGA - In Silico Medicine, University of Liege, Belgium, 2 Department of Comparative Cellular and Molecular Biology, Favaloro

More information

When Fluids are Not Enough: Inopressor Therapy

When Fluids are Not Enough: Inopressor Therapy When Fluids are Not Enough: Inopressor Therapy Problems in Neonatology Neonatal problem: hypoperfusion Severe sepsis Hallmark of septic shock Secondary to neonatal encephalopathy Vasoplegia Syndrome??

More information

1. Antihypertensive agents 2. Vasodilators & treatment of angina 3. Drugs used in heart failure 4. Drugs used in arrhythmias

1. Antihypertensive agents 2. Vasodilators & treatment of angina 3. Drugs used in heart failure 4. Drugs used in arrhythmias 1. Antihypertensive agents 2. Vasodilators & treatment of angina 3. Drugs used in heart failure 4. Drugs used in arrhythmias Only need to know drugs discussed in class At the end of this section you should

More information

Swans and Pressors. Vanderbilt Surgery Summer School Ricky Shinall

Swans and Pressors. Vanderbilt Surgery Summer School Ricky Shinall Swans and Pressors Vanderbilt Surgery Summer School Ricky Shinall Shock, Swans, Pressors in 15 minutes 4 Reasons for Shock 4 Swan numbers to know 7 Pressors =15 things to know 4 Reasons for Shock Not enough

More information

Swans and Pressors. Vanderbilt Surgery Summer School Ricky Shinall

Swans and Pressors. Vanderbilt Surgery Summer School Ricky Shinall Swans and Pressors Vanderbilt Surgery Summer School Ricky Shinall SHOCK Hypotension SHOCK Hypotension SHOCK=Reduction of systemic tissue perfusion, resulting in decreased oxygen delivery to the tissues.

More information

Titrating Critical Care Medications

Titrating Critical Care Medications Titrating Critical Care Medications Chad Johnson, MSN (NED), RN, CNCC(C), CNS-cc Clinical Nurse Specialist: Critical Care and Neurosurgical Services E-mail: johnsoc@tbh.net Copyright 2017 1 Learning Objectives

More information

DO 2 > VO 2. The amount of oxygen delivered is a product of cardiac output (L/min) and the amount of oxygen in the arterial blood (ml/dl).

DO 2 > VO 2. The amount of oxygen delivered is a product of cardiac output (L/min) and the amount of oxygen in the arterial blood (ml/dl). Shock (Part 1): Review and Diagnostic Approach Jeffrey M. Todd, DVM, DACVECC University of Minnesota, St. Paul, MN Overview Shock is the clinical presentation of inadequate oxygen utilization, typically

More information

Drug Treatment of Ischemic Heart Disease

Drug Treatment of Ischemic Heart Disease Drug Treatment of Ischemic Heart Disease 1 Categories of Ischemic Heart Disease Fixed "Stable, Effort Angina Variant Angina Primary Angina Unstable Angina Myocardial Infarction 2 3 Secondary Angina Primary

More information

Muscle Cells & Muscle Fiber Contractions. Packet #8

Muscle Cells & Muscle Fiber Contractions. Packet #8 Muscle Cells & Muscle Fiber Contractions Packet #8 Skeletal muscle is attached to bones and is responsible for movement. Introduction Introduction II Skeletal muscle is composed of bundles of muscle fibers

More information

Pulmonary circulation. Lung Blood supply : lungs have a unique blood supply system :

Pulmonary circulation. Lung Blood supply : lungs have a unique blood supply system : Dr. Ali Naji Pulmonary circulation Lung Blood supply : lungs have a unique blood supply system : 1. Pulmonary circulation 2. Bronchial circulation 1- Pulmonary circulation : receives the whole cardiac

More information

Electrical Conduction

Electrical Conduction Sinoatrial (SA) node Electrical Conduction Sets the pace of the heartbeat at 70 bpm AV node (50 bpm) and Purkinje fibers (25 40 bpm) can act as pacemakers under some conditions Internodal pathway from

More information

Pharmacology of inotropes and vasopressors

Pharmacology of inotropes and vasopressors Pharmacology of inotropes and vasopressors Curriculum 3.3 Recognises and manages the patient with circulatory failure 4.4 Uses fluids and vasoactive / inotropic drugs to support the circulation PR_BK_41

More information

CARDIOVASCULAR SYSTEM

CARDIOVASCULAR SYSTEM CARDIOVASCULAR SYSTEM 1. Resting membrane potential of the ventricular myocardium is: A. -55 to-65mv B. --65 to-75mv C. -75 to-85mv D. -85 to-95 mv E. -95 to-105mv 2. Regarding myocardial contraction:

More information

Physiology Chapter 14 Key Blood Flow and Blood Pressure, Plus Fun Review Study Guide

Physiology Chapter 14 Key Blood Flow and Blood Pressure, Plus Fun Review Study Guide Physiology Chapter 14 Key Blood Flow and Blood Pressure, Plus Fun Review Study Guide 1 Main Idea: The function of the circulatory system is to maintain adequate blood flow to all tissues. Clinical Application

More information

Circulatory shock. Types, Etiology, Pathophysiology. Physiology of Circulation: The Vessels. 600,000 miles of vessels containing 5-6 liters of blood

Circulatory shock. Types, Etiology, Pathophysiology. Physiology of Circulation: The Vessels. 600,000 miles of vessels containing 5-6 liters of blood Circulatory shock Types, Etiology, Pathophysiology Blagoi Marinov, MD, PhD Pathophysiology Dept. Physiology of Circulation: The Vessels 600,000 miles of vessels containing 5-6 liters of blood Vessel tone

More information

Cardiovascular Physiology

Cardiovascular Physiology Cardiovascular Physiology Introduction The cardiovascular system consists of the heart and two vascular systems, the systemic and pulmonary circulations. The heart pumps blood through two vascular systems

More information

Properties of Pressure

Properties of Pressure OBJECTIVES Overview Relationship between pressure and flow Understand the differences between series and parallel circuits Cardiac output and its distribution Cardiac function Control of blood pressure

More information

Chapter 13 The Cardiovascular System: Cardiac Function

Chapter 13 The Cardiovascular System: Cardiac Function Chapter 13 The Cardiovascular System: Cardiac Function Overview of the Cardiovascular System The Path of Blood Flow through the Heart and Vasculature Anatomy of the Heart Electrical Activity of the Heart

More information

Age-related changes in cardiovascular system. Dr. Rehab Gwada

Age-related changes in cardiovascular system. Dr. Rehab Gwada Age-related changes in cardiovascular system Dr. Rehab Gwada Objectives explain the main structural and functional changes in cardiovascular system associated with normal aging Introduction aging results

More information

COPYRIGHTED MATERIAL. The fetal circulation CHAPTER 1. Postnatal circulation

COPYRIGHTED MATERIAL. The fetal circulation CHAPTER 1. Postnatal circulation 1 CHAPTER 1 The fetal circulation The circulation in the fetus differs from that in the adult. Knowledge of the course and distribution of the fetal circulation is important to our understanding of the

More information

Drugs Used in Heart Failure. Assistant Prof. Dr. Najlaa Saadi PhD pharmacology Faculty of Pharmacy University of Philadelphia

Drugs Used in Heart Failure. Assistant Prof. Dr. Najlaa Saadi PhD pharmacology Faculty of Pharmacy University of Philadelphia Drugs Used in Heart Failure Assistant Prof. Dr. Najlaa Saadi PhD pharmacology Faculty of Pharmacy University of Philadelphia Heart Failure Heart failure (HF), occurs when cardiac output is inadequate to

More information

Chapter 21 Training for Anaerobic and Aerobic Power

Chapter 21 Training for Anaerobic and Aerobic Power Section 06: Exercise Training to Improve Performance Chapter 21 Training for Anaerobic and Aerobic Power Chapter 22 Muscular Strength: Training Muscles to Become Stronger Chapter 23 Special Aids to Exercise

More information

I. Cardiac Output Chapter 14

I. Cardiac Output Chapter 14 10/24/11 I. Cardiac Output Chapter 14 Cardiac Output, Blood Flow, and Blood Pressure Lecture PowerPoint Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Cardiac

More information

Cardiovascular System B L O O D V E S S E L S 2

Cardiovascular System B L O O D V E S S E L S 2 Cardiovascular System B L O O D V E S S E L S 2 Blood Pressure Main factors influencing blood pressure: Cardiac output (CO) Peripheral resistance (PR) Blood volume Peripheral resistance is a major factor

More information

How to maintain optimal perfusion during Cardiopulmonary By-pass. Herdono Poernomo, MD

How to maintain optimal perfusion during Cardiopulmonary By-pass. Herdono Poernomo, MD How to maintain optimal perfusion during Cardiopulmonary By-pass Herdono Poernomo, MD Cardiopulmonary By-pass Target Physiologic condition as a healthy person Everything is in Normal Limit How to maintain

More information

Cardiovascular Management of Septic Shock

Cardiovascular Management of Septic Shock Cardiovascular Management of Septic Shock R. Phillip Dellinger, MD Professor of Medicine Robert Wood Johnson Medical School/UMDNJ Director, Critical Care Medicine and Med/Surg ICU Cooper University Hospital

More information

Hemodynamic Monitoring and Circulatory Assist Devices

Hemodynamic Monitoring and Circulatory Assist Devices Hemodynamic Monitoring and Circulatory Assist Devices Speaker: Jana Ogden Learning Unit 2: Hemodynamic Monitoring and Circulatory Assist Devices Hemodynamic monitoring refers to the measurement of pressure,

More information

Outline. Pathophysiology: Heart Failure. Heart Failure. Heart Failure: Definitions. Etiologies. Etiologies

Outline. Pathophysiology: Heart Failure. Heart Failure. Heart Failure: Definitions. Etiologies. Etiologies Outline Pathophysiology: Mat Maurer, MD Irving Assistant Professor of Medicine Definitions and Classifications Epidemiology Muscle and Chamber Function Pathophysiology : Definitions An inability of the

More information

Chapter 1: Exercise Physiology. ACE Personal Trainer Manual Third Edition

Chapter 1: Exercise Physiology. ACE Personal Trainer Manual Third Edition Chapter 1: Exercise Physiology ACE Personal Trainer Manual Third Edition Introduction Physiology is the study of the myriad functions in a living organism. Exercise physiology is the study of the ways

More information

Content Display. - Introduction to Unit 4. Unit 4 - Cardiorespiratory Response to Exercise : Lesson 1. KINE xxxx Exercise Physiology

Content Display. - Introduction to Unit 4. Unit 4 - Cardiorespiratory Response to Exercise : Lesson 1. KINE xxxx Exercise Physiology Content Display Unit 4 - Cardiorespiratory Response to Exercise : Lesson KINE xxxx Exercise Physiology 5 Unit 4 - Cardiorespiratory Response to Exercise Lesson U4LP - Introduction to Unit 4 The specific

More information

Pathophysiology: Heart Failure

Pathophysiology: Heart Failure Pathophysiology: Heart Failure Mat Maurer, MD Irving Assistant Professor of Medicine Outline Definitions and Classifications Epidemiology Muscle and Chamber Function Pathophysiology Heart Failure: Definitions

More information

The Anatomy and Physiology of the Circulatory System

The Anatomy and Physiology of the Circulatory System CHAPTER 5 The Anatomy and Physiology of the Circulatory System The Circulatory System Blood Heart Vascular System THE BLOOD Formed Elements of Blood Table 5-1 Cell Type Erythrocytes (Red Blood Cells, RBCs)

More information

10/23/2017. Muscular pump Two atria Two ventricles. In mediastinum of thoracic cavity 2/3 of heart's mass lies left of midline of sternum

10/23/2017. Muscular pump Two atria Two ventricles. In mediastinum of thoracic cavity 2/3 of heart's mass lies left of midline of sternum It beats over 100,000 times a day to pump over 1,800 gallons of blood per day through over 60,000 miles of blood vessels. During the average lifetime, the heart pumps nearly 3 billion times, delivering

More information