Immunocytochemical localization of epidermal growth factor receptors in human testis from infertile subjects*

Size: px
Start display at page:

Download "Immunocytochemical localization of epidermal growth factor receptors in human testis from infertile subjects*"

Transcription

1 FERTILITY AND STERILITY Copyright 1994 The American Fertility Society Vol. 61. No.5, May 1994 Printed on acid-free paper in U. S. A. Immunocytochemical localization of epidermal growth factor receptors in human testis from infertile subjects* Carlo Foresta, M.D.t Alberto Varotto, M.D. Institute of Medical Semeiotics, Third Chair of Medical Pathology, University of Padua, Padua, Italy Objective: To investigate the immunolocalization of the epidermal growth factor receptor (EGFR) in normal and pathological human testis by immunocytochemical technique. Design: Cytologic specimens were obtained by bilateral fine needle aspiration (FNA) of the testis and stained in May Griinwald-Giemsa for the cytologic analysis; immunolocalization of EGFR was analyzed on duplicate slides from each testis using two anti-egfr monoclonal antibodies and peroxidase-antiperoxidase technique. Setting: Infertility center of an academic unit. Patients: A total of 42 infertile patients, affected by various testicular diseases. The control group was made up of 10 normal sperm patients with autoimmune infertility and cytologic picture of normal spermatogenesis. Interventions: Exogenous FSH was administered 75 IV 1M on alternate days for 3 months on 16 of the infertile patients who showed oligospermia and normal FSH plasma levels. Semen analysis and testicular FNA (and after cytologic and immunocytochemical studies) were repeated at 3 months of treatment. Main Outcome Measures: Luteinizing hormone and FSH plasma levels were determined by RIA methods; qualitative and quantitative parameters for the cytologic evaluation are reported in our previous works. Results: The cytologic analysis permitted identification of seven classes of infertile subjects, characterized by different cytologic pictures. Epidermal growth factor receptor immunostaining evidenced weak positivity on Sertoli and germ cells (with the exception of spermatozoa) in the presence of normal germ line and normal FSH plasma levels and strongly intense positivity in the presence of serious hypospermatogenesis, spermatogonial or spermatocytic arrest, and Sertoli cellonly syndrome. These conditions were characterized by higher FSH plasma levels than normal controls. All of the subjects who received exogenous FSH, with moderate hypospermatogenesis or spermatidic arrest, showed on Sertoli and germ cells a weak EGFR immunostaining before the treatment and intense immunostaining after the treatment. Conclusions: These results confirm recent demonstrations of EGFRs in human testis and evidence different EGFR immunostaining in the presence of various degrees of testicular damage, suggesting a role of this growth factor in growth and differentiation of the germ cells throughout spermatogenesis. The observation that intense EGFR immunostaining was found in subjects showing high FSH plasma levels and in all of the patients who received exogenous FSH, supports a possible role of this gonadotropin in the modulation of the EGFR expression. Fertil SterilI994;61:941-8 Key Words: EGF, EGF-Receptors, immunocytochemistry, cytology, human testis Received June 24, 1993; revised and accepted December 10, * Supported in part by grant 326/01/90 from Regione Veneto, Unita Locale Socio Sanitaria 21, Padova, Italy. t Reprint requests: Carlo Foresta, M.D., Istituto di Semeiotica Medica, Cattedra di Patologia Medica III, Via Ospedale Civile, 105,35128 Padova, Italy. Spermatogenesis is regulated by pituitary gonadotropins (1), but recently the involvement ofpolypeptide growth factors (GFs) in modulating spermatogenic process has been addressed (2). In fact, several evidences are consistent with the hypothesis that GFs, such as insulin-like growth factor 1(3), Vol. 61, No.5, May 1994 Foresta and Varotto EGFR in human testis 941

2 epidermal growth factor (EGF) (4), transforming growth factor-a (5), fibroblast growth factor (6), and interleukin-i (7) may playa key role in the proliferation, differentiation, and maintenance of germ cells throughout spermatogenesis, even if the mechanisms of such modulation and the testicular target cells still are not well known. Epidermal growth factor, a 53-amino acid polypeptide initially detected in mouse submaxillary gland extracts (8), is one such factor whose role in spermatogenesis has been highlighted recently. In mature male mice, it has been demonstrated that surgical sialoadenectomy causes a strong reduction of the sperm content in the epididymis and of the round and condensing spermatids in the testis, in the absence of concomitant variations of testosterone or FSH plasma levels (9). The replacement therapy with EGF is able to reverse this deleterious effect (9). Epidermal growth factor receptors (EGFRs) have been reported in cultured murine Leydig tumor cells (10) and, more recently, they were demonstrated by immunofluorescence technique on rat and monkey Leydig and Sertoli cells (11) and by immunocytochemical technique on mouse Leydig cells (12). Furthermore, in vitro studies suggested that EGF can modulate in immature rats characteristic functions of Leydig cells such as androgen biosynthesis (13) and of Sertoli cells such as androgen aromatization (14), lactate production (14), and inhibin secretion (15). Also, in humans it has been demonstrated that EGF may be involved in the regulation of growth and development of the testicular cells. High levels ofegf have been demonstrated in human seminal plasma (16), and EGF-like substance was detected in human male reproductive tissue (17). In a recent biochemical study, EGFRs have been evidenced in human testicular tissue and characterized by immunohistochemical method in the interstitial tissue (18). In our previous work in humans (19), EGFRs were demonstrated in interstitial, peritubular, and Sertoli cells by immunofluorescence technique, exhibiting different patterns between normal and pathological testicular pictures. In particular, an intense EGFR expression was found on Sertoli cells in the presence of serious testicular damage and high FSH plasma levels, suggesting a role of this gonadotropin in the regulation of this expression. However, the technical limits of the histologic examination and immunofluorescence technique did not allow us to discriminate whether also the germ cells possess EGFR and the developmental stages at which EGFR is expressed. Recently, we have proposed fine needle aspiration (FNA) of the testis as a parameter in the assessment of the testicular status in infertile subjects (20, 21). The cytologic analysis permits identification of the tubular cells in the different maturation steps and, as well as histologic preparations, characterization of the tubular damage (that is, Sertoli cell-only, hypospermatogenesis, maturation arrests). Therefore, using immunocytochemical methodology on testicular cells obtained by FNA, we have tried to better elucidate the pattern ofegfr expression on human testis. Furthermore, to clarify the hormonal regulation ofegfr expression, the study was performed before and after a treatment with exogenous FSH. MATERIALS AND METHODS We have studied 42 adult infertile males who were 20 to 34 years of age (mean, 26 ± 4). Seminal parameters of each subject were examined on two different occasions: 10 subjects were azoospermic, 22 were seriously oligospermic (counts < 10 X 10 6 cells/ml), and 10 patients, used as controls, were normospermic (count> 20 X 10 6 cells/ml, with normal percentages of forward motility and normal morphology) and infertility resulted because of the presence of high titres of antisperm autoantibodies (immunoglobulin [Ig] G binding to head, tail, and midpiece). Plasma FSH and LH were determined in each subject by RIAs, using labeled LH and FSH and a double monoclonal antibody (mab) provided by Ares-Serono (Milan, Italy). The interassay and intra-assay variations were 8.2% and 6.4%, respectively, for the LH assay and 4.2% and 2.7% for the FSH assay. The sensitivity of the assay was 0.15 miu /ml for LH and 0.25 miu /ml for FSH. Statistical significance was verified with Student's t-test for unpaired data. Probability values < 0.05 were regarded as statistically significant. Cell Preparation Our study was approved by the Hospital Ethical Committee, and informed consent was obtained from each patient. Human testicular cells were obtained by bilateral FN A of the testis, as described in detail in our previous works (20, 21). Briefly, Foresta and Varotto EGFR in human testis Fertility and Sterility

3 gauge needles connected to 20-mL syringes were used for aspiration, and the cells were placed on two or more glasses for each testis and processed as follows: [1] one specimen of each testis was allowed to air dry for 24 hours at room temperature, stained in May-Griinwald-Giemsa, and examined under a light Orthoplan microscope (Wild Leitz, Wetzlar, Germany) for the cytologic evaluation, including qualitative and quantitative analysis; [2] in parallel, one or more duplicate slides of each testis were frozen within 30 minutes after aspiration and stored at -80 C until used for immunocytochemistry, as described below. Follicle-Stimulating Hormone Treatment of the Patients Human purified FSH (Metrodin; Serono, Rome, Italy), 75 IU 1M on alternate days, was administered for 3 months to those patients (n = 16) who had shown oligospermia and FSH plasma levels similar to our controls. In the same individuals, seminal and hormonal parameters were re-evaluated at 1 and 3 months of treatment, and testicular FNA was repeated at 3 months of treatment. Antibodies and Immunocytochemistry For immunolocalization ofegfrs, the study was performed using two different mabs, both purchased from Sigma Chemical Co. (St. Louis, MO). The first antibody specifically raises against the external carbohydrate portion (fragment ) of both human and mouse EGFR (clone no. 29.1, mouse IgG 1 ); the second antibody specifically recognizes the intracellular domain (fragment ) of this receptor (clone no. F4, mouse IgG 1 ). The immunocytochemical study was performed using peroxidase-antiperoxidase (PAP) staining kits (Histomune; Ortho Diagnostic Systems, Milan, Italy) for mouse antibodies, employing goat antimouse serum as linking reagent and peroxidase-labeled mouse serum as labeling reagent. Each slide was first fixed in acetone for 10 minutes, divided in adjacent areas, and then rehydrated in phosphate-buffered saline (PBS) for 15 minutes at room temperature. To reduce nonspecific background, cells were blocked with normal goat serum (provided with the PAP kits) for 20 minutes at room temperature. Endogenous peroxidase was not blocked by hydrogen peroxide to avoid removing tissues from the slides; this was identified using the negative control as a reference. After two washes in PBS, both EGFR antibodies, in a 1:100 dilution, were separately applied on adjacent areas without diffusion of reagents and left overnight at 4 C in a humidity chamber. The next steps of the immunocytochemical procedure were followed exactly as described by the manufacturer's instructions and reported in other studies (22). Control experiments included deletion of the primary or secondary antibody and replacement of the primary antibody with the nonimmune mouse serum (provided with the PAP kits) at the same dilution. Furthermore, for each experiment a "negative" and a "positive" internal control, employing a set of cells from a normal spermic subject and from a patient with Sertoli cell-only syndrome, respectively, were included. To assure an adequate comparison of the staining, the tissue specimens obtained before and after FSH therapy were stained on the same day. After the immunoreaction, the cells were counterstained in Mayer's hematoxylin (Ortho Diagnostic Systems, Milan, Italy), mounted in glycerine jelly, and examined under a light Orthoplan microscope (Wild Leitz, Wetzlar, Germany) at X125, X400, and X1,250 magnifications. Immunostaining was interpreted as absent, weak, or intense. RESULTS According to our previous works (20, 21), the cytologic analysis in the infertile subjects permitted identification of seven different pictures, corresponding to specific histologic pictures as follows: [1] normal germ line on both testes (autoimmune normospermic and obstructive azoospermic subjects); [2] serious or [3] moderate bilateral hypospermatogenesis; [4] serious unilateral hypospermatogenesis, with normal germ line on the contralateral testis; [5] maturation arrest at spermatogonial or spermatocytic level; [6] maturation arrest at spermatidic level; and [7] Sertoli cell-only syndrome (no germ cell observed). On the basis of these cytologic appearances, the infertile subjects were categorized in seven different groups, as summarized in Table 1. They were divided further into two subgroups (A and B) if normal-oligospermic or azoospermic, respectively. The hormonal findings are reported in Table 1. Mean LH and FSH plasma levels of normospermic controls were 2.0 ± 0.9 mlu jml (2.0 ± 0.9 IU jl) and 2.6 ± 0.9 mlujml (2.6 ± 0.9 IUjL), respectively. Plasma levels oflh were similar to the controls in subjects belonging to groups I, III, IV, V, Vol. 61, No.5, May 1994 Foresta and Varotto EGFR in human testis 943

4 Table 1 Cytological, Seminal, and Hormonal Patterns of the Infertile Subjects Cytological analysis Semen count Group Plasma LH Plasma FSH PlasmaFSH before therapy* before therapy after therapy miu/mlt miu/mlt miu/mlt Normal bilateral germ line 10 Normospermic I-A (complete spermatogenesis) 2 Azoospermic I-B Serious bilateral 3 Oligospermic II-A hypospermatogenesis 2 Azoospermic II-B Moderate bilateral 8 Oligospermic III hypospermatogenesis 1st testis: serious 7 Oligospermic IV hypospermatogenesis 2nd testis: normal germ line Spermatogonial or 3 Oligospermic V-A spermatocytic arrest 1 Azoospermic V-B 2.0 ± ± ± ± ± ± ± ± ± ± ± ± 1.8 Spermatidic arrest 10ligospermic VI-A 1 Azoospermic VI-B Sertoli cell-only 4 Azoospermic VII * Values are means ± SD. t Conversion factor to SI unit, ± ± ± ± P < 0.01 versus controls. P < versus controls. 4.9 ± 2.6 and VI, whereas they were significantly higher in the presence of serious bilateral hypospermatogenesis (group II) and Sertoli cell-only syndrome (group VII); plasma levels of FSH were similar to the controls in subjects in groups I, III, IV, and VI, whereas they were significantly higher in the presence of severe bilateral hypospermatogenesis (group II), spermatogonial or spermatocytic arrest (group V), and Sertoli cell-only syndrome (group VII). After treatment with exogenous FSH, LH plasma levels remained unmodified (data not shown), and FSH plasma levels showed a weak, but not significant, increase (Table 1). No significant improvement of the seminal parameters (sperm count, motility, and morphology) and cytological pictures were observed after treatment in all of the treated patients (groups III, IV, and VI-A, data not shown). Immunocytochemistry for EGFR Figure 1 presents immunocytochemical staining of representative tissue specimens demonstrating cell immunolocalization of EGFR within the seminiferous epithelium. The nuclei were counterstained as blue in hematoxylin, which permits differentiation among the various germ cell subpopulations as well as in May-Griinwald-Giemsa stain. Cytologic tissue specimens, in fact, allow the analysis of single cells and of their own morphological features. In control incubations, no immunostaining was found when either primary or secondary antibody was omitted or was replaced by nonimmune serum (examples in Fig. lc and E). The results of the immunocytochemistry for the EGFR are summarized in Table 2. In subjects showing normal germ line on both testes (group I-A and B), a weak immunostaining was demonstrated in the cytoplasm of the Sertoli cells, easily identified by the presence of a round nucleus with a single nucleolus and a large cytoplasm. It was also demonstrated on the plasma membrane and in the cytoplasm of the germ cells, from spermatogonia to spermatids, whereas it was absent in mature spermatozoa. Similar weak immunostaining for the EGFR was also found in the cytoplasm of Sertoli cells, on the plasma membrane and in the cytoplasm of spermatogenic cells from patients showing moderate bilateral hypospermatogenesis (group III, Fig. la) and spermatidic arrest (group VI-A and B). In the presence of serious hypospermatogenesis (Fig. IB), on both testes (group II-A and B) or on a single testis (group IV) and of spermatogonial or spermatocytic arrest (group V-A and B), intense EGFR immunostaining was uniformly found in the cytoplasm of Sertoli cells, on the plasma membrane, and in the cytoplasm of germ cells that were seen in the immature stages of development. The rare spermatozoa encountered in these cases were always unstained. In group IV patients affected by 944 Foresta and Varotto EGFR in human testis Fertility and Sterility

5 Figure 1 (A), EGFR immunostaining of cells in a case of moderate hypospermatogenesis (slide from group III). (B), EGFR immunostaining of cells in a case of serious bilateral hypospermatogenesis (slide from group II). (C), Negative control in a case of normal spermatogenesis, in which primary antibody was omitted. (D), EGFR immunostaining of Sertoli cells and (E) corresponding negative control in which primary antibody was replaced with nonimmune serum, in a case of Sertoli cell-only (slides from group VII). Cells were identified by Mayer's hematoxilin counterstain (spermatogonia, -+; primary spermatocyte,==>; Sertoli cells, )1--) (Mayer's hematoxilin, magnification was X1,250). unilateral testicular damage, the contralateral normal t~stis exhibited a cell pattern of EG FR staining similar to that observed in normal spermic individuals (group I-A). In the presence of Sertoli cell-only syndrome (group VII, Fig. ld), intense EGFR immunolabeling was uniformly detected in the cytoplasm of all the Sertoli cells. In all of these specimens, identification of EG FR immunostaining of Sertoli cell plasma membrane was not possible because of the large cytoplasm with ill-defined borders; therefore, its positivity cannot be excluded. Moreover, no evaluation was possible on Leydig cells, only occasionally encountered in cytologic tissue specimens. Between the two mabs, no difference was observed in either the Vol. 61, No.5, May 1994 intensity or the distribution of EGFR immunostaining. After treatment with exogenous FSH, intense EGFR immunostaining was detectable in all of the treated subjects (groups III, IV, and VI-A) in the cytoplasm of the Sertoli cells, on the plasma membrane, and in the cytoplasm of the germ cells, with the exception of spermatozoa that appeared unstained. The strength of the immunoreaction was recorded as conspicuously stronger than that observed in the same subjects before therapy (Fig. 2) and similar to that observed in tissue specimens from patients showing serious testicular damage (groups II-A and B, V-A and B, and VII). In patients of group IV, the cells from the pathological Foresta and Varotto EGFR in human testis 945

6 Table 2 Different Patterns of EGFR Immunostaining in Germ and Sertoli Cells From the Patients Categorized in Seven Different Groups by Cytologic Pictures Immunostainil).g for the EGFR Before therapy Group 1-A 1-B II-A II-B III IV Normal testis Damaged testis V-A V-B VI-A VI-B VII After therapy* Germ cells Sertoli cells Germ cells Sertoli cells weak EGFR immunoreactivity in the presence of complete spermatogenesis (autoimmune normal spermic or obstructive azoospermic subjects) and a strongly intense EG FR immunostaining in the presence of severe testicular damage (serious hypospermatogenesis, spermatogonial or spermatocytic arrest, Sertoli cell-only syndrome). Furthermore, it demonstrated that EG FR immunostaining is also present on the plasma membrane and in the cytoplasm of germ cells in the different stages of development, with the exception of mature sperms. Similar to the Sertoli cells, the intensity of the germ immunoreaction was weak in normal testes and *For the patients of groups III, IV, and VI-A, the comparison of EG FR immunostaining between before and after FSH treatment is reported. testis did not show any change in the EG FR immunostaining, whereas the contralateral normal testis appeared intensely stained after therapy. DISCUSSION The staining pattern for the EGFR observed in this study is consistent with previous reports that have demonstrated that immunoreactive EGFR is detectable in mammalian and human testicular tissue. In rat and monkey testes, EG FR has been localized as prominent on Leydig and Sertoli cells (11). In human testes with normal histologic pictures, Stubbs et al. (18) observed that EGFR is present in the interstitial tissue, but other constituents of the testes, mainly germ and Sertoli cells, do not appear to immunostain positively for EG FR. The results of our previous study by immunofluorescence technique (19) confirmed these findings because a similar EG FR localization was detected on a testicular frozen section from individuals with normal sperm. However, in the same study, a bright EGFR immunofluorescence was demonstrated within the seminiferous tubules of patients affected by serious testicular damage. In the present study, the immunocytochemistry of the tissue specimens obtained from infertile subjects evidenced in the cytoplasm of Sertoli cells a 946 Foresta and Varotto EGFR in human testis Figure 2 Epidermal growth factor receptor immunostaining of tubular cells in a case of moderate bilateral hypospermatogenesis (slide from group III), before (cells on the left) and after (cells on the right) FSH treatment: (A and A 1 ), Sertoli cells. (B and B 1 ), Spermatogonium. (C and C 1 ), Primary spermatocyte. (D and D 1 ), Round spermatids and a few spermatozoa. The tissue specimens obtained before and after treatment were stained in the same experiment (Mayer's hematoxilin counterstain, magnification was X1,250). Fertility and Sterility

7 strong in the presence oftubular damage. It is possible that the absence of germ EGFR immunopositivity observed in other immunohistochemical studies that used normal testes as tissue may be because of a technical reason; in fact, in cytologic specimens, germ cells are seen as completely separated from each other and from Sertoli cells, and well-defined cytoplasm may favor greater deposition ofthe immunoreaction product, giving rise to a detectable positivity. Epidermal growth factor is a potent mitogenic agent in epidermal and nonepidermal tissues (23, 24); therefore, the presence of EGFRs in germ and Sertoli cells suggests a role of this factor in the regulation of growth and differentiation of these cells. Our evidence showing intense EGFR immunoreactivity in tubular cells obtained from subjects with serious tubular damage and high FSH plasma levels (groups II, V, and VII) furthermore suggests a possible role of this gonadotropin in the regulation of the EGFR expression. This hypothesis is consistent with other studies performed in rat granulosa cells (25) and is further supported by the FSH treatment that caused a strong change ofthe testicular EGFR staining pattern in patients in groups III, IV, and VI-A, showing moderate tubular alterations and normal FSH plasma levels. However, the analysis of EGFR immunoreactivity in subjects of groups IV affected by unilateral testicular damage, showing normal plasma FSH but different EGFR immunostaining between pathological and normal testes, demonstrated that in addition to FSH, local signals also may influence the EGFR expression, probably through paracrine mechanisms. The significance of the characteristic staining pattern for the EGFR in the presence of tubular damage and high FSH plasma levels remains to be clarified. The production of EGF-like peptides by Sertoli cells (17) suggests that EGF (or EGF-like peptides) might interact with its receptor to induce the proliferation of germ cells. Stimulating the expression of EGFR, FSH might exert its physiological influence on the spermatogenic process also through this mechanism. Therefore, the strong EGFR immunoreactivity observed in these testicular diseases (coupled with high FSH plasma levels) or after administration of exogenous FSH might reflect an attempt of this gonadotropin to activate the spermatogenic process via the EGFR. Alternatively, it might be a signal of an adverse change that occurred in the paracrine regulatory systems of the testes. This latter hypothesis is fur- ther supported by the lack of any improvements in terms of seminal parameters and the cytologic picture observed after therapy in all of the treated subjects. REFERENCES 1. Fritz 1. Sites of actions of androgens and follicle stimulating hormone on cells of the seminiferous tubule. In: Litwack G, editor. Biochemical actions of hormones. New York: Academic Press, 1978; Bellve AR, Zheng W. Growth factors as autocrine and paracrine modulators of male gonadal functions. J Reprod Fertil 1989;85: Naville D, Chatelain PG, Avallet 0, Saez JM. Control of production of insulin-like growth factor I by pig Leydig and Sertoli cells cultured alone or together. Cell-cell interactions. Mol Cell Endocrinol 1990;70: Haneji T, Koide SS, Tajima Y, Nishimune Y. Differential effects of epidermal growth factor on the differentiation of type A spermatogonia in adult mouse cryptorchid testes in vitro. J Endocrinol 1991;128: Skinner MK, Takacs K, Coffey RJ. Transforming growth factor-alpha gene expression and action in the seminiferous tubule: peritubular cell-sertoli cell interactions. Endocrinology 1990;124: Jaillard C, Chatelain PG, Saez JM. In vitro regulation of pig Sertoli cell growth and function effects of fibroblast growth factor and somatomedin C. Bioi Reprod 1987;37: Pollanen P, Soder 0, Parvinen M. Interleukin-l alpha stimulation of spermatogonial proliferation in vivo. Reprod Fertil Dev 1989;1: Cohen S. Isolation of mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the newborn animal. J Bioi Chern 1962;237: Tsutsumi 0, Kurachi H, Oka T. A physiological role of epidermal growth factor in male reproductive function. Science 1986;233: Ascoli M. Regulation of gonadotropin receptors and gonadotropin responses in a clonal strain of Leydig tumor cells by epidermal growth factor. J Bioi Chern 1981;256: SUllrez-Quian CA, Dai M, Onoda M, Kriss RM, Dym M. Epidermal growth factor receptor localization in the rat and monkey testes. Bioi Reprod 1989;41: Suarez-Quian CA, Niklinski W. Immunocytochemical localization of the epidermal growth factor in mouse testis. Bioi Reprod 1990;43: Verhoeven G, Cailleau J. Stimulatory effects of epidermal growth factor on steroidogenesis in Leydig cells. Mol Cell EndocrinoI1986;47: Mallea LE, Machado AJ, Navaroli F, Rommerts FFG. Epidermal growth factor stimulates lactate production and inhibits aromatization in cultured Sertoli cells from immature rats. Int J AndroI1986;9: Morris PL, Vale WW, Cappel S, Bardin CWo Inhibin production by primary Sertoli cell-enriched cultures: regulation by follicle-stimulating hormone, androgens, and epidermal growth factor. Endocrinology 1988;122: Hirata Y, Uchinasi M, Hazama M, Fujita T. Epidermal Vol. 61, No.5, May 1994 Foresta and Varotto EGFR in human testis 947

8 growth factor in human seminal plasma. Horm Metab Res 1987;19: Holmes SD, Spotts G, Smith RG. Rat Sertoli cells secrete a growth factor that blocks epidermal growti). factor (EGF) binding to its receptor. J Bioi Chern 1986;261: Stubbs SC, Hargreave TB, Habib FK. Localization and characterization of epidermal growth factor receptors on human testicular tissue by biochemical and immunohistochemical techniques. J Endocrinol 1990;125: Foresta C, Caretto A, Varotto A, Rossato M, Scandellari C. Epidermal growth factor receptors (EGFR) localization in human testis. Arch Androl 1991;27: Foresta C, Varotto A, Scandellari C. Assessment oftesticular cytology by fine needle aspiration as a diagnostic parameter in the evaluation of the azoospermic subject. Fertil Steril 1992;57: Foresta C, Varotto A. Assessment of testicular cytology by fine needle aspiration as a diagnostic parameter in the evaluation of the oligospermic subject. Fertil Steril1992;58: Sternberger LA, Hardy PH, Cuculis JJ, Meyer HG. The unlabeled antibody enzyme method of immunohistochemistry. J Histochem Cytochem 1970;18: Carpenter G, Cohen S. Epidermal growth factor. Annu Rev Biochem 1979;48: Gospodarowicz D, Bialecki H. Fibroblast and epidermal growth factors are mitogenic agents for cultured granulosa cells of rodent, porcine and human origine. Endocrinology 1979;104: Feng P, Knecht M, Catt K. Hormonal control of epidermal growth factor receptors by gonadotropins during granulosa cell differentiation. Endocrinology 1987;120: Foresta and Varotto EGFR in human testis Fertility and Sterility

Inhibin B plasma concentrations in oligozoospermic subjects before and after therapy with follicle stimulating hormone

Inhibin B plasma concentrations in oligozoospermic subjects before and after therapy with follicle stimulating hormone Human Reproduction vol.14 no.4 pp.906 912, 1999 Inhibin B plasma concentrations in oligozoospermic subjects before and after therapy with follicle stimulating hormone Carlo Foresta 1,4, Andrea Bettella

More information

Functional and cytologic features of the contralateral testis in cryptorchidism

Functional and cytologic features of the contralateral testis in cryptorchidism FERTILITY AND STERILITY@ Copyright Ci') 1996 American Society for Reproductive Medicine Printed on acid-free paper in U. S. A. Functional and cytologic features of the contralateral testis in cryptorchidism

More information

5 15/3/2012. Malik Al-Momani

5 15/3/2012. Malik Al-Momani 5 15/3/2012 Malik Al-Momani بسم هللا الرحمن الرحيم Spermatogenesis Note : Please refer to slides so see photos. Quick Revision : - Testis is divided by septum into testicular lobules, inside the lobules

More information

SISTEMA REPRODUCTOR (LA IDEA FIJA) Copyright 2004 Pearson Education, Inc., publishing as Benjamin Cummings

SISTEMA REPRODUCTOR (LA IDEA FIJA) Copyright 2004 Pearson Education, Inc., publishing as Benjamin Cummings SISTEMA REPRODUCTOR (LA IDEA FIJA) How male and female reproductive systems differentiate The reproductive organs and how they work How gametes are produced and fertilized Pregnancy, stages of development,

More information

Histology of Male Reproductive system (1)

Histology of Male Reproductive system (1) Histology of Male Reproductive system (1) Prof. Dr. Malak A. Al-yawer Learning Objectives At the end of this lecture, the medical student will be able to: State the organization of the testis Define seminiferous

More information

Cytological findings of testicular fine needle aspiration in a sample of azoospermic Iraqi patients

Cytological findings of testicular fine needle aspiration in a sample of azoospermic Iraqi patients Cytological findings of testicular fine needle aspiration in a sample of azoospermic Iraqi patients Basim Sh. Ahmed F.I.C.M.S Department of Pathology, College of Medicine, Al-Mustansiriya University, Baghdad,

More information

Inhibin B plasma concentrations in infertile patients with DAZ gene deletions treated with FSH

Inhibin B plasma concentrations in infertile patients with DAZ gene deletions treated with FSH European Journal of Endocrinology (2002) 146 801 806 ISSN 0804-4643 CLINICAL STUDY Inhibin B plasma concentrations in infertile patients with DAZ gene deletions treated with FSH Carlo Foresta, Andrea Bettella,

More information

Testicular fine needle aspiration as a diagnostic tool in nonobstructive

Testicular fine needle aspiration as a diagnostic tool in nonobstructive Asian J Androl 2005; 7 (3): 289 294 DOI: 10.1111/j.1745-7262.2005.00043.x. Original Article. Testicular fine needle aspiration as a diagnostic tool in nonobstructive azoospermia A. Bettella 1, A. Ferlin

More information

IMMUNODETECTION OF A HUMAN CHORIONIC GONADOTROPIN-LIKE SUBSTANCE IN HUMAN SPERM

IMMUNODETECTION OF A HUMAN CHORIONIC GONADOTROPIN-LIKE SUBSTANCE IN HUMAN SPERM FERTILITY AND STERILITY Copyright' 1977 The American Fertility Society Vol. 28, No. 11, November 1977 Printed in U.S.A. IMMUNODETECTION OF A HUMAN CHORIONIC GONADOTROPIN-LIKE SUBSTANCE IN HUMAN SPERM RICARDO

More information

Adapted from Preg. & Part., Senger

Adapted from Preg. & Part., Senger MALE ENDOCRINOLOGY AND SPERMATOGENESIS (Chapter 10) AVS 222 (Instructor: Dr. Amin Ahmadzadeh) I. MALE ENDOCRINOLOGY (Figure10-1 to 10-3) A. Glands and their respective hormones 1) Hypothalamic hormone:

More information

REAPPRAISAL OF THE VALUE OF TESTICULAR BIOPSY IN THE INVESTIGATION OF INFERTILITY

REAPPRAISAL OF THE VALUE OF TESTICULAR BIOPSY IN THE INVESTIGATION OF INFERTILITY FERTWTY AND STEIuLlTY Copyright 1980 The American Fertility Society Vol., No.1 January 1980 Prinwl in U.S.A. REAPPRAISAL OF THE VALUE OF TESTICULAR BIOPSY IN THE INVESTIGATION OF INFERTILITY TERENCE

More information

Testis Epidermal Growth Factor and Spermatogenesis

Testis Epidermal Growth Factor and Spermatogenesis Archives of Andrology Journal of Reproductive Systems ISSN: 0148-5016 (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/iaan19 Testis Epidermal Growth Factor and Spermatogenesis Y.-C.

More information

Hormones of brain-testicular axis

Hormones of brain-testicular axis (Hormone Function) Hormones of brain-testicular axis anterior pituitary drives changes during puberty controlled by GnRH from hypothalamus begins to secrete FSH, LH LH targets interstitial endocrinocytes

More information

Male reproduction. Cross section of Human Testis ผศ.ดร.พญ.ส ว ฒณ ค ปต ว ฒ ภาคว ชาสร รว ทยา คณะแพทยศาสตร ศ ร ราชพยาบาล 1. Aims

Male reproduction. Cross section of Human Testis ผศ.ดร.พญ.ส ว ฒณ ค ปต ว ฒ ภาคว ชาสร รว ทยา คณะแพทยศาสตร ศ ร ราชพยาบาล 1. Aims Aims Male reproduction Male reproductive structure Spermatogenesis ส ว ฒณ ค ปต ว ฒ ห อง 216 โทร: 7578 Hypothalamo-pituitary-testicular axis Male sex hormone action Male reproductive structure Male reproductive

More information

To General Embryology Dr: Azza Zaki

To General Embryology Dr: Azza Zaki Introduction To General Embryology The Human Development is a continuous process that begins when an ovum from a female is fertilized by a sperm from a male. Cell division, growth and differentiation transform

More information

Spermatogonial Cell Proliferation in Organ Culture of Immature Rat Testis'

Spermatogonial Cell Proliferation in Organ Culture of Immature Rat Testis' BIOLOGY OF REPRODUCTION 48, 761-767 (1993) Spermatogonial Cell Proliferation in Organ Culture of Immature Rat Testis' CARLA BOITANI, 2 MARIA GIUDITTA POLITI, and TIZIANA MENNA Institute of Histology and

More information

REPRODUCCIÓN. La idea fija. Copyright 2004 Pearson Education, Inc., publishing as Benjamin Cummings

REPRODUCCIÓN. La idea fija. Copyright 2004 Pearson Education, Inc., publishing as Benjamin Cummings REPRODUCCIÓN La idea fija How male and female reproductive systems differentiate The reproductive organs and how they work How gametes are produced and fertilized Pregnancy, stages of development, birth

More information

The Use of Rabbits in Male Reproductive Toxicology

The Use of Rabbits in Male Reproductive Toxicology Environmental Health Perspectives Vol. 77, pp. 5-9, 1988 The Use of Rabbits in Male Reproductive Toxicology by Daniel Morton* The rabbit is the smallest and least expensive laboratory animal in which serial

More information

Immunohistochemical Study on the C-cells in the Internal Parathyroid Gland of the Goat

Immunohistochemical Study on the C-cells in the Internal Parathyroid Gland of the Goat Immunohistochemical Study on the C-cells in the Internal Parathyroid Gland of the Goat Takeshi TSUCHIYA Department of Animal Morphology, Faculty of Agriculture, Tohoku University, Sendai-Shi 980 (Received

More information

Supplemental Figure 1. (A) The localization of Cre DNA recombinase in the testis of Cyp19a1-Cre mice was detected by immunohistchemical analyses

Supplemental Figure 1. (A) The localization of Cre DNA recombinase in the testis of Cyp19a1-Cre mice was detected by immunohistchemical analyses Supplemental Figure 1. (A) The localization of Cre DNA recombinase in the testis of Cyp19a1-Cre mice was detected by immunohistchemical analyses using an anti-cre antibody; testes at 1 week (left panel),

More information

Treatment of male idiopathic infertility with recombinant human follicle-stimulating hormone: a prospective, controlled, randomized clinical study

Treatment of male idiopathic infertility with recombinant human follicle-stimulating hormone: a prospective, controlled, randomized clinical study Treatment of male idiopathic infertility with recombinant human follicle-stimulating hormone: a prospective, controlled, randomized clinical study Carlo Foresta, M.D., Ph.D., a Andrea Bettella, M.D., Ph.D.,

More information

Spermatogonial proliferation and apoptosis in hypospermatogenesis associated with nonobstructive azoospermia

Spermatogonial proliferation and apoptosis in hypospermatogenesis associated with nonobstructive azoospermia FERTILITY AND STERILITY VOL. 76, NO. 5, NOVEMBER 2001 Copyright 2001 American Society for Reproductive Medicine Published by Elsevier Science Inc. Printed on acid-free paper in U.S.A. Spermatogonial proliferation

More information

DAX1, testes development role 7, 8 DFFRY, spermatogenesis role 49 DMRT genes, male sex differentiation role 15

DAX1, testes development role 7, 8 DFFRY, spermatogenesis role 49 DMRT genes, male sex differentiation role 15 Subject Index N-Acetylcysteine, sperm quality effects 71 Ambiguous genitalia, origins 1, 2 Anti-Müllerian hormone function 13 receptors 13 Sertoli cell secretion 10, 38 Apoptosis assays in testes 73, 74

More information

Hormonal Control of Male Sexual Function

Hormonal Control of Male Sexual Function Hormonal Control of Male Sexual Function A majority of the control of sexual functions in the male (and the female) begins with secretions of gonadotropin-releasing hormone (GnRH) by the hypothalamus.

More information

Cell Divisions. The autosomes represent the whole body. * Male Sex Chromosomes: XY * Female Sex Chromosomes: XX

Cell Divisions. The autosomes represent the whole body. * Male Sex Chromosomes: XY * Female Sex Chromosomes: XX Cell Divisions Each Cell (including gonads) has 46 chromosomes (23 pairs of chromosomes: 22 pairs of autosomes, 1 pair of sex chromosomes) which are located in the nucleus). The autosomes represent the

More information

Physiologic Anatomy of the Male Sexual Organs

Physiologic Anatomy of the Male Sexual Organs Reproductive and Hormonal Functions of the Male The reproductive functions of the male can be divided into three major subdivisions: (1) spermatogenesis, which means simply the formation of sperm; (2)

More information

Spermatogenesis. What is it and what does it look like? How do hormones regulate spermatogenesis?

Spermatogenesis. What is it and what does it look like? How do hormones regulate spermatogenesis? Spermatogenesis What is it and what does it look like? How do hormones regulate spermatogenesis? FSH, androgens, growth factors Animal Physiology (Hill, Wise, Anderson): Ch. 15 435-438 1 Spermatogenesis:

More information

Male Reproduction Organs. 1. Testes 2. Epididymis 3. Vas deferens 4. Urethra 5. Penis 6. Prostate 7. Seminal vesicles 8. Bulbourethral glands

Male Reproduction Organs. 1. Testes 2. Epididymis 3. Vas deferens 4. Urethra 5. Penis 6. Prostate 7. Seminal vesicles 8. Bulbourethral glands Outline Terminology Human Reproduction Biol 105 Lecture Packet 21 Chapter 17 I. Male Reproduction A. Reproductive organs B. Sperm development II. Female Reproduction A. Reproductive organs B. Egg development

More information

The effect of testicular nongerm cell tumors on local spermatogenesis

The effect of testicular nongerm cell tumors on local spermatogenesis FERTILITY AND STERILITY Vol. 62, No.1, July 1994 Copyright" 1994 The American Fertility Society Printed on acid-free paper in U. S. A. The effect of testicular nongerm cell tumors on local spermatogenesis

More information

Role Of Serum Hormone Indices Including Inhibin B And Scrotal Ultrasound In Evaluation Of Non Obstructive Male Factor Infertility

Role Of Serum Hormone Indices Including Inhibin B And Scrotal Ultrasound In Evaluation Of Non Obstructive Male Factor Infertility Article ID: WMC001510 ISSN 2046-1690 Role Of Serum Hormone Indices Including Inhibin B And Scrotal Ultrasound In Evaluation Of Non Obstructive Male Factor Infertility Author(s):Dr. Geetika, Dr. Sunita

More information

describe the parts and function of semen and the glands that contribute to it

describe the parts and function of semen and the glands that contribute to it You need to be able to: describe spermatogenesis (How is sperm made?) describe the anatomy of a sperm describe the parts and function of semen and the glands that contribute to it How is sperm made? Spermatogenesis

More information

SUPPLEMENTAL INFORMATION FOR. PAX7 expression defines germline stem cells in the adult testis

SUPPLEMENTAL INFORMATION FOR. PAX7 expression defines germline stem cells in the adult testis SUPPLEMENTAL INFORMATION FOR PAX7 expression defines germline stem cells in the adult testis Gina M. Aloisio, Yuji Nakada, Hatice D. Saatcioglu, Christopher G. Peña, Michael D. Baker, Edward D. Tarnawa,

More information

A COMPARATIVE STUDY OF GERM CELL KINETICS IN THE TESTES OF CHILDREN WITH UNILATERAL CRYPTORCHIDISM: A PRELIMINARY REPORT*

A COMPARATIVE STUDY OF GERM CELL KINETICS IN THE TESTES OF CHILDREN WITH UNILATERAL CRYPTORCHIDISM: A PRELIMINARY REPORT* FERTILITY AND STERILITY Copyright 1970 by the Williams & Wilkins Co. Vol. 21, No. 11, November 1970 Printed in U.S.A. A COMPARATIVE STUDY OF GERM CELL KINETICS IN THE TESTES OF CHILDREN WITH UNILATERAL

More information

Changes of androgen receptor expression in stages VII-VIII seminiferous tubules of rat testis after exposure to methamphetamine

Changes of androgen receptor expression in stages VII-VIII seminiferous tubules of rat testis after exposure to methamphetamine Songklanakarin J. Sci. Technol. 38 (3), 275-279, May - Jun. 2016 http://www.sjst.psu.ac.th Original Article Changes of androgen receptor expression in stages VII-VIII seminiferous tubules of rat testis

More information

Male Reproductive Physiology

Male Reproductive Physiology Male Reproductive Physiology Overview Anatomy Function Endocrine and spermatogenesis Testis epididymus,vas deferens,seminal vesicles and prostate Hypothalamic pituitary testicular axis Hormones of the

More information

Spermatogenesis in Man

Spermatogenesis in Man Spermatogenesis in Man I. Nuclear Morphology During Spermatogenesis in Man BRUNETTO CHIARELLI, PH.D., ARTHUR FALEK, PH.D., KAREN J. BACK, B.S., and C. THOMAS COWART, M.D. THE SEQUENCE of transformations

More information

MALE INFERTILITY & SEMEN ANALYSIS

MALE INFERTILITY & SEMEN ANALYSIS MALE INFERTILITY & SEMEN ANALYSIS DISCLOSURE Relevant relationships with commercial entities none Potential for conflicts of interest within this presentation none Steps taken to review and mitigate potential

More information

Aspiration flow cytometry of the testes in the evaluation of spermatogenesis in the infertile male*t

Aspiration flow cytometry of the testes in the evaluation of spermatogenesis in the infertile male*t FERTILITY AND STERILITY Copyright e 1987 The American Fertility Society Printed in U.S.A. Aspiration flow cytometry of the testes in the evaluation of spermatogenesis in the infertile male*t David G. Kaufman,

More information

Outline. Male Reproductive System Testes and Sperm Hormonal Regulation

Outline. Male Reproductive System Testes and Sperm Hormonal Regulation Outline Male Reproductive System Testes and Sperm Hormonal Regulation Female Reproductive System Genital Tract Hormonal Levels Uterine Cycle Fertilization and Pregnancy Control of Reproduction Infertility

More information

Male Reproductive System

Male Reproductive System Male Reproductive System Constitution of male reproductive system Genital gland ----testis Genital ducts epididymis / ductus deferens / urinary duct Accessory sex glands Penis prostate gland Seminal vesicle

More information

Treatment of Oligospermia with Large Doses of Human Chorionic Gonadotropin

Treatment of Oligospermia with Large Doses of Human Chorionic Gonadotropin Treatment of Oligospermia with Large Doses of Human Chorionic Gonadotropin A Preliminary Report S. J. GLASS, M.D., and H. M. HOLLAND, M.D. BEFORE discussing gonadotropic therapy of oligospermia, it is

More information

Efferent Ducts and Epididymis

Efferent Ducts and Epididymis increase) the secretion of each of the androgen regulated proteins. Regulation of spermatogenesis is therefore an extremely complex cascade of cell-cell interactions with the Leydig cells supporting germ

More information

Testicular stem cells

Testicular stem cells Testicular stem cells Dirk G. de Rooij Department of Endocrinology Faculty of Biology, Utrecht University 1. Knowledge on the development of the spermatogenic stem cell lineage 2. Principals of the nature

More information

Chapter 14 Reproduction Review Assignment

Chapter 14 Reproduction Review Assignment Date: Mark: _/45 Chapter 14 Reproduction Review Assignment Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Use the diagram above to answer the next question.

More information

LABORATORY EXERCISES FOR MALE REPRODUCTIVE SYSTEM

LABORATORY EXERCISES FOR MALE REPRODUCTIVE SYSTEM LABORATORY EXERCISES FOR MALE REPRODUCTIVE SYSTEM Slide #101 (1096). Testis, rat. sustentacular ( Sertoli ) cells Nuclei of Sustentacular cells Leydig cells Spermatogonia Spermatocytes Spermatids pale

More information

Fertility Diagnostics

Fertility Diagnostics Fertility Diagnostics Fertility hormones measured on PATHFAST For internal use only Diagnostics PATHFAST Chemiluminescence-immuno-analyzer 1 Content: page 1. Fertility hormones - general aspects 1.1 Reproductive

More information

Reproductive System Purpose General Structures Male Structures Functions Female Anatomy Structures Functions Clinical Applications

Reproductive System Purpose General Structures Male Structures Functions Female Anatomy Structures Functions Clinical Applications The Reproductive System: Male, Ch 23 Outline of class lecture After studying the male reproductive system you should be able to: 1. Define the purpose of reproduction and identify the general organs of

More information

ESUR SCROTAL AND PENILE IMAGING WORKING GROUP MULTIMODALITY IMAGING APPROACH TO SCROTAL AND PENILE PATHOLOGIES 2ND ESUR TEACHING COURSE

ESUR SCROTAL AND PENILE IMAGING WORKING GROUP MULTIMODALITY IMAGING APPROACH TO SCROTAL AND PENILE PATHOLOGIES 2ND ESUR TEACHING COURSE ESUR SCROTAL AND PENILE IMAGING WORKING GROUP MULTIMODALITY IMAGING APPROACH TO SCROTAL AND PENILE PATHOLOGIES 2ND ESUR TEACHING COURSE NORMAL ANATOMY OF THE SCROTUM MICHAEL NOMIKOS M.D. F.E.B.U. UROLOGICAL

More information

Male Reproductive System

Male Reproductive System Male Reproductive System organs that function in: gamete and hormone production not all in abdominal cavity paired testicles = controlled by LH & FSH duct systems accessory glands Testis: Gross Histology

More information

Testicular histology and gonadotropin levels in infertile men with non-obstructive oligo-/azoospermia

Testicular histology and gonadotropin levels in infertile men with non-obstructive oligo-/azoospermia 1 THE NATIONAL MEDICAL JOURNAL OF INDIA VOL., NO.5 Testicular histology and gonadotropin levels in infertile men with non-obstructive oligo-/azoospermia ARUN KUMAR, B. JAYAKUMAR, M. L. KHURANA, VED PRAKASH,

More information

The spermatogenesis CHARACTERISTICS OF THE SPERMATOZOON 26/04/2017. Reproductive Biotechnologies Andrology I. Prof. Alberto Contri

The spermatogenesis CHARACTERISTICS OF THE SPERMATOZOON 26/04/2017. Reproductive Biotechnologies Andrology I. Prof. Alberto Contri Reproductive Biotechnologies Andrology I The spermatogenesis Prof. Alberto Contri CHARACTERISTICS OF THE SPERMATOZOON 1) Aploid cell with high condensed DNA 2) Forward motility - flagellum 3) Enzymes for

More information

Chapter 28: REPRODUCTIVE SYSTEM: MALE

Chapter 28: REPRODUCTIVE SYSTEM: MALE Chapter 28: REPRODUCTIVE SYSTEM: MALE I. FUNCTIONAL ANATOMY (Fig. 28.1) A. Testes: glands which produce male gametes, as well as glands producing testosterone 2. Seminiferous tubules (Fig.28.3; 28.5) a.

More information

Transferrin and somatomedin C receptors in the human ovarian follicles

Transferrin and somatomedin C receptors in the human ovarian follicles FERTILITY AND STERILITY Copyright c 1987 The American Fertility Society Printed in U.S.A. Transferrin and somatomedin C receptors in the human ovarian follicles Giuseppe C. Balboni, M.D. t Gabriella B.

More information

Reproductive Endocrinology. Isabel Hwang Department of Physiology Faculty of Medicine University of Hong Kong Hong Kong May2007

Reproductive Endocrinology. Isabel Hwang Department of Physiology Faculty of Medicine University of Hong Kong Hong Kong May2007 Reproductive Endocrinology Isabel Hwang Department of Physiology Faculty of Medicine University of Hong Kong Hong Kong May2007 isabelss@hkucc.hku.hk A 3-hormone chain of command controls reproduction with

More information

Long term follow-up study of 60 cases

Long term follow-up study of 60 cases INTERNATIONAL JOURNALOFANDROLOGY 8 (1985) 177-185 Department of Endocrinology', Clinical Research Unit for the Male2, NataonalResearch Institute for Family Planning, Beijing and Depaltment of Urology3,

More information

Model Answer. M.Sc. Zoology (First Semester) Examination Paper LZT 103 (Endocrinology)

Model Answer. M.Sc. Zoology (First Semester) Examination Paper LZT 103 (Endocrinology) Model Answer M.Sc. Zoology (First Semester) Examination-2013 Paper LZT 103 (Endocrinology) Section A 1. (i) d (ii) b (iii) b (iv) c (v) c (vi) a (vii) c (viii) a (ix) d (x) b Section B Q.2 Answer Hormonal

More information

AZOOSPERMIA CYTOLOGICAL MANIFESTATIONS

AZOOSPERMIA CYTOLOGICAL MANIFESTATIONS ý Comptes rendus de l Académie bulgare des Sciences ÌÓÑ ÆÓ ¾¼½½ BIOLOGIE Morphologie AZOOSPERMIA CYTOLOGICAL MANIFESTATIONS Stefka Ivanova, Petia Tzvetkova (Submitted by Corresponding Member J. Jordanov

More information

MULTIPLE CHOICE: match the term(s) or description with the appropriate letter of the structure.

MULTIPLE CHOICE: match the term(s) or description with the appropriate letter of the structure. Chapter 27 Exam Due NLT Thursday, July 31, 2015 Name MULTIPLE CHOICE: match the term(s) or description with the appropriate letter of the structure. Figure 27.1 Using Figure 27.1, match the following:

More information

Knockout TM SR : ; ; ; : R ; R : A : X(2013) , ,, B. , (Knockout TM

Knockout TM SR : ; ; ; : R ; R : A : X(2013) , ,, B. , (Knockout TM 33 1 Vol.33 No.1 013 1 Dec. 013 Reproduction & Contraception doi: 10.7669/j.issn.03-37X.013.1.0804 E-mail: randc_journal@163.com Knockout TM SR ; ; ; 400014 : FBS Knockout TM SRKSR : FBS KSR HE TUNEL RT-PCR

More information

Evaluation of hormonal and physical factors responsible for male infertility in Sagamu South Western Nigeria

Evaluation of hormonal and physical factors responsible for male infertility in Sagamu South Western Nigeria Available online at wwwscholarsresearchlibrarycom Scholars Research Library Der Pharmacia Lettre, 2012, 4 (5):1475-1479 (http://scholarsresearchlibrarycom/archivehtml) ISSN 0975-5071 USA CODEN: DPLEB4

More information

Cell-Cell Interactions and the Regulation of Testis Function

Cell-Cell Interactions and the Regulation of Testis Function Cell-Cell Interactions and the Regulation of Testis Function MICHAEL K. SKINNER,a JOHN N. NORTON, BRIAN P. MULLANEY, MARINELLA ROSSELLI, PATRICIA D. WHALEY, AND CATHERINE T. ANTHONY Department of Pharmacology

More information

Sperm production. Sperm production. Meiosis. Mitosis. The cells of Leydig in testes secrete

Sperm production. Sperm production. Meiosis. Mitosis. The cells of Leydig in testes secrete Sperm production Ductus deferens Epididymis The cells of Leydig in testes secrete Seminiferous testosterone (T) tubules T secreted at puberty produces 2 o sex characteristics, spermatogenesis, & maintain

More information

Sperm production. Sperm production. Controlling sperm production. Meiosis. Mitosis. The cells of Leydig in testes secrete

Sperm production. Sperm production. Controlling sperm production. Meiosis. Mitosis. The cells of Leydig in testes secrete Ductus deferens Sperm production Epididymis The cells of Leydig in testes secrete Seminiferous testosterone (T) tubules T secreted at puberty produces 2 o sex characteristics, spermatogenesis, & maintain

More information

With advances in assisted reproduction techniques,

With advances in assisted reproduction techniques, Journal of Andrology, Vol. 26, No. 6, November/December 2005 Copyright American Society of Andrology Clomiphene Administration for Cases of Nonobstructive Azoospermia: A Multicenter Study ALAYMAN HUSSEIN,*

More information

Infertility is not an uncommon problem in Western

Infertility is not an uncommon problem in Western Review Article A Practical Approach to Testicular Biopsy Interpretation for Male Infertility Lisa A. Cerilli, MD; Wayne Kuang, MD; David Rogers, MD Infertility is not an uncommon problem in Western societies

More information

REPRODUCTIVE ENDOCRINOLOGY OF THE MALE

REPRODUCTIVE ENDOCRINOLOGY OF THE MALE Reproductive Biotechnologies Andrology I REPRODUCTIVE ENDOCRINOLOGY OF THE MALE Prof. Alberto Contri REPRODUCTIVE ENDOCRINOLOGY OF THE MALE SPERMATOGENESIS AND REPRODUCTIVE BEHAVIOR RELATED TO THE ACTIVITY

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which of the following hormones controls the release of anterior pituitary gonadotropins? A) LH

More information

Prediction of Successful Sperm Retrieval in Patients with Nonobstructive Azoospermia

Prediction of Successful Sperm Retrieval in Patients with Nonobstructive Azoospermia Urology Journal UNRC/IUA Vol. 3, No. 2, 92-96 Spring 2006 Printed in IRAN Prediction of Successful Sperm Retrieval in Patients with Nonobstructive Azoospermia Seyed Amirmohsen Ziaee, 1 * Mohammadreza Ezzatnegad,

More information

Biology of gender Sex chromosomes determine gonadal sex (testis-determining factor)

Biology of gender Sex chromosomes determine gonadal sex (testis-determining factor) Indifferent ducts of embryo Biology of gender Sex chromosomes determine gonadal sex (testis-determining factor) Y chromosome present Y chromosome absent Phenotypic sex is depends on development of external

More information

Biology of gender Sex chromosomes determine gonadal sex (testis-determining factor)

Biology of gender Sex chromosomes determine gonadal sex (testis-determining factor) Indifferent ducts of embryo Y chromosome present Y chromosome absent Male Female penis ovary uterus vagina testis Biology of gender Sex chromosomes determine gonadal sex (testis-determining factor) Phenotypic

More information

Testicular Toxicity: Evaluation During Drug Development Guidance for Industry

Testicular Toxicity: Evaluation During Drug Development Guidance for Industry Testicular Toxicity: Evaluation During Drug Development Guidance for Industry DRAFT GUIDANCE This guidance document is being distributed for comment purposes only. Comments and suggestions regarding this

More information

IN THE STUDY of male fertility and infertility there are several criteria which

IN THE STUDY of male fertility and infertility there are several criteria which Cytologic Examination of Semen Irwin N. Frank, A.B., John A. Benjamin, M.D., and James E. Segerson, M.D. IN THE STUDY of male fertility and infertility there are several criteria which have been established

More information

Abnormalities of Spermatogenesis

Abnormalities of Spermatogenesis Abnormalities of Spermatogenesis Male Factor 40% of the cause for infertility Sperm is constantly produced by the germinal epithelium of the testicle Sperm generation time 73 days Sperm production is thermoregulated

More information

Embryology 3. Spermatogenesis:

Embryology 3. Spermatogenesis: Embryology 3 Spermatogenesis: The 2 testis in males are each divided into lobes and lobules by connective tissue septa forming 250 lobule and in each lobule there are 1 to 4 seminefrous tubule ( so almost

More information

DISORDERS OF MALE GENITALS

DISORDERS OF MALE GENITALS Wit JM, Ranke MB, Kelnar CJH (eds): ESPE classification of paediatric endocrine diagnosis. 9. Testicular disorders/disorders of male genitals. Horm Res 2007;68(suppl 2):63 66 ESPE Code Diagnosis OMIM ICD10

More information

Male Hypogonadism Associated with Elevated LH, Normal FSH and Low Testosterone Possibly Due to an Abnormal LH Molecule

Male Hypogonadism Associated with Elevated LH, Normal FSH and Low Testosterone Possibly Due to an Abnormal LH Molecule INTERNATIONAL JOURNAL OF ANDROLOGY 2 (1979) 482-488 Andrology Center, Department of Modical Fathology, Catania Medical School, University of Catania, Catania, Italy. Male Hypogonadism Associated with Elevated

More information

Hypothalamus & Pituitary Gland

Hypothalamus & Pituitary Gland Hypothalamus & Pituitary Gland Hypothalamus and Pituitary Gland The hypothalamus and pituitary gland form a unit that exerts control over the function of several endocrine glands (thyroid, adrenals, and

More information

Human Follicle-Stimulation Hormone ELISA Kit

Human Follicle-Stimulation Hormone ELISA Kit Catalog No: IRAPKT2001 Human Follicle-Stimulation Hormone ELISA Kit Lot No: SAMPLE INTENDED USE For the quantitative determination of follicle-stimulation hormone (FSH) concentration in human serum. FOR

More information

BIOL 2402 Reproductive Systems

BIOL 2402 Reproductive Systems Collin College Dr. Chris Doumen BIOL 2402 Reproductive Systems 1 Reproductive System Most systems between males and females in the human body are similar in structure. The exception of course are the organs

More information

Morphogenesis of the residual body of the mouse testis

Morphogenesis of the residual body of the mouse testis 93 Morphogenesis of the residual body of the mouse testis By CASIMIR F. FIRLIT and JOSEPH R. DAVIS (From the Department of Pharmacology and Therapeutics, Stritch School of Medicine, and Graduate School,

More information

A Therapeutic Scheme For Oligospermia Based On Serum Levels Of FSH And Estradiol

A Therapeutic Scheme For Oligospermia Based On Serum Levels Of FSH And Estradiol ISPUB.COM The Internet Journal of Gynecology and Obstetrics Volume 8 Number 1 A Therapeutic Scheme For Oligospermia Based On Serum Levels Of FSH And Estradiol P Sah Citation P Sah. A Therapeutic Scheme

More information

The effect of thyroid activity on adult rat spermatogenesis

The effect of thyroid activity on adult rat spermatogenesis The effect of thyroid activity on adult rat spermatogenesis Ai, J. 1* ; Zarifkar, A. 2 ; Takhshid, M. A. 3 ; Alavi, J. 1 and Moradzadeh, M. 2 1 Department of Anatomical Sciences, School of Medicine, University

More information

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1. Generation and validation of mtef4-knockout mice.

Nature Structural & Molecular Biology: doi: /nsmb Supplementary Figure 1. Generation and validation of mtef4-knockout mice. Supplementary Figure 1 Generation and validation of mtef4-knockout mice. (a) Alignment of EF4 (E. coli) with mouse, yeast and human EF4. (b) Domain structures of mouse mtef4 compared to those of EF4 (E.

More information

Effect of cadmium chloride on the serum levels of follicle stimulating hormone (FSH), luteinizing hormone (LH) and androgens in the adult male rat

Effect of cadmium chloride on the serum levels of follicle stimulating hormone (FSH), luteinizing hormone (LH) and androgens in the adult male rat Proc. Indian Acad. Sci., Vol. 87 B, (Experimental Biology-3), No.7, July 1978, pp. 161-167, @ printed in India Effect of cadmium chloride on the serum levels of follicle stimulating hormone (FSH), luteinizing

More information

Growth Factors in Gonadal Development

Growth Factors in Gonadal Development Published December 11, 2014 Growth Factors in Gonadal Development Michael K. Skinner Reproductive Endocrinology Center, University of California, San Francisco 94143-0556 ABSTRACT: Growth factor-mediated

More information

SUPPLEMENTARY MATERIAL. Sample preparation for light microscopy

SUPPLEMENTARY MATERIAL. Sample preparation for light microscopy SUPPLEMENTARY MATERIAL Sample preparation for light microscopy To characterize the granulocytes and melanomacrophage centers, cross sections were prepared for light microscopy, as described in Material

More information

MALE REPRODUCTIVE SYSTEM

MALE REPRODUCTIVE SYSTEM MALE REPRODUCTIVE SYSTEM The male reproductive system consists of primary sex organs (testes) and secondary or accessory sex organs. The secondary organs consist of a series of genital ducts (ductules

More information

THE EFFECTS OF LIGATION OF CAUDA EPIDIDYMIDIS ON THE DOG TESTIS

THE EFFECTS OF LIGATION OF CAUDA EPIDIDYMIDIS ON THE DOG TESTIS Copyright 1974 The American Fertility Society FERTILITY AND STERILITY Vol. 25, No.3, March, 1974 Printed in U.S.A. THE EFFECTS OF LIGATION OF CAUDA EPIDIDYMIDIS ON THE DOG TESTIS A. M. VARE, M.B.B.S.,

More information

TSH Receptor Monoclonal Antibody (49) Catalog Number MA3-218 Product data sheet

TSH Receptor Monoclonal Antibody (49) Catalog Number MA3-218 Product data sheet Website: thermofisher.com Customer Service (US): 1 800 955 6288 ext. 1 Technical Support (US): 1 800 955 6288 ext. 441 TSH Receptor Monoclonal Antibody (49) Catalog Number MA3-218 Product data sheet Details

More information

Sample Provincial exam Q s: Reproduction

Sample Provincial exam Q s: Reproduction Sample Provincial exam Q s: Reproduction 11. Functions Testosterone Makes the male sex organs function normally, and also inhibits hypothalamus s release of GnRH and thus LH & FSH and thus testosterone

More information

10.7 The Reproductive Hormones

10.7 The Reproductive Hormones 10.7 The Reproductive Hormones December 10, 2013. Website survey?? QUESTION: Who is more complicated: men or women? The Female Reproductive System ovaries: produce gametes (eggs) produce estrogen (steroid

More information

Testes (male gonads) -Produce sperm -Produce sex hormones -Found in a sac called the scrotum -Suspended outside of the body cavity for temperature

Testes (male gonads) -Produce sperm -Produce sex hormones -Found in a sac called the scrotum -Suspended outside of the body cavity for temperature REPRODUCTION Testes (male gonads) -Produce sperm -Produce sex hormones -Found in a sac called the scrotum -Suspended outside of the body cavity for temperature reduction -Testes wall made of fibrous connective

More information

Identification of the spermatogenic stages in living seminiferous tubules of man

Identification of the spermatogenic stages in living seminiferous tubules of man Identification of the spermatogenic stages in living seminiferous tubules of man V. Nikkanen, K.-O. S\l=o"\derstr\l=o"\m and M. Parvinen Department of Obstetrics and Gynecology, Turku University Central

More information

Physiology of Male Reproductive System

Physiology of Male Reproductive System Physiology of Male Reproductive System the anterior pituitary gland serves as the primary control of reproductive function at puberty Ant Pituitary secretes FSH & large amounts of LH (ICSH) FSH & LH cause

More information

FSH (Human) ELISA Kit

FSH (Human) ELISA Kit FSH (Human) ELISA Kit Catalog Number KA0213 96 assays Version: 03 Intended for research use only www.abnova.com Table of Contents Introduction... 3 Intended Use... 3 Background... 3 Principle of the Assay...

More information

Microscope Requirements

Microscope Requirements SEMEN EVALUATION EQUIPMENT Microscope Requirements Good quality lenses Phase-contrast preferred for % progressive motility evaluations Objectives 10X, 20X*, 40X*, 100X, minimum Heated stage preferred *Preferably

More information

HISTOLOGIC CHANGES IN THE SEMINIFEROUS TUBULES AFTER VASECTOMY

HISTOLOGIC CHANGES IN THE SEMINIFEROUS TUBULES AFTER VASECTOMY FERTILItY AND STI!RILITY Copyright 1974 The American Fertility Society Vol. 25, No.8, August 1974 PTillted in U.S.AI HISTOLOGIC CHANGES IN THE SEMINIFEROUS TUBULES AFTER VASECTOMY FLETCHER C. DERRICK,

More information

CLOMIPHENE THERAPY IN MALE INFERTILITY: A NEGATIVE REPORT"

CLOMIPHENE THERAPY IN MALE INFERTILITY: A NEGATIVE REPORT FERTILITY AND STERILITY Copyright 1979 The American Fertility Society VoL 32, No.5, November 1979 Printed in U.8A. CLOMIPHENE THERAPY IN MALE INFERTILITY: A NEGATIVE REPORT" CHARLES W. CHARNY, M.D.t Department

More information

ANDROGEN BIOSYNTHESIS IN EXPERIMENTAL CRYPTORCHIDISM*

ANDROGEN BIOSYNTHESIS IN EXPERIMENTAL CRYPTORCHIDISM* FERTILITY AND STERILITY Copyright ~ 1975 The American Fertility Society Vol. 26, No.7, July 1975 Printed in U.S A. ANDROGEN BIOSYNTHESIS IN EXPERIMENTAL CRYPTORCHIDISM* JUAN CARLOS HOSCHOIAN, PH.D., AND

More information

Reproductive FSH. Analyte Information

Reproductive FSH. Analyte Information Reproductive FSH Analyte Information 1 Follicle-stimulating hormone Introduction Follicle-stimulating hormone (FSH, also known as follitropin) is a glycoprotein hormone secreted by the anterior pituitary

More information