respiration-the salt respiration. Both salt accumulation and salt respiration are

Size: px
Start display at page:

Download "respiration-the salt respiration. Both salt accumulation and salt respiration are"

Transcription

1 SALT ACCUMULATION AND ADENOSINE TRIPHOSPHATE IN CARROT XYLEM TISSUE BY M. R. ATKINSON,* GAIL ECKERMANN,* MARY GRANT, AND R. N. ROBERTSON DEPARTMENTS OF AGRICULTURAL BIOCHEMISTRY AND OF BOTANY, THE UNIVERSITY OF ADELAIDE, SOUTH AUSTRALIA Communicated January 3, 1966 Accumulation of potassium or sodium chloride or other metal halides by washed slices of xylem parenchyma from carrot storage roots is associated with increased respiration-the salt respiration. Both salt accumulation and salt respiration are sensitive to inhibitors that block the energy-linked functions of mitochondria, e.g., carbon monoxide in the dark, cyanide, and 2,4-dinitrophenol (for reviews see Robertson' and Briggs, Hope, and Robertson2). It is not known if accumulation of salts by plant tissues is directly coupled to the electron and hydrogen transport of salt respiration or if it is dependent on the hydrolysis of adenosine triphosphate (ATP) formed by the salt respiration. It has been postulated1 that if salt accumulation is directly coupled, it might be an alternative to oxidative phosphorylation. This paper reports some experiments which might distinguish between these two possibilities. A method for analysis of ATP in small samples of carrot discs has now been developed, and the effects of metabolic inhibitors on salt accumulation, salt respiration, and ATP concentration have been studied. Experimental.-Carrot slices were prepared by cutting and washing with frequent changes of deionized water in the first few hours. Subsequently they were kept in aerated deionized water or chloromycetin' (50,ug/ml; for details see Table 1) changed daily for 7 days before use. Although the conditions of washing do not favor bacterial growth, it was found by direct counting and by dilution in nutrient agar that slices washed in water were contaminated with 107 to 108 bacteria/gm wet weight of tissue. Chloromycetin reduced the contamination to less than 1% of this number without altering the response to salt or changing the ATP content. Salt accumulation and salt respiration were measured, respectively, by conductivity methods and with Warburg respirometers as described previously.4 The ATP content of extracts was measured in a scintillation counter with luciferin-luciferase.5 Five internal standards and a blank were used for each assay, and the light emission was extrapolated to the time of mixing of sample and enzyme. In these conditions adenosine diphosphate equimolar with the ATP caused less than 0.1% interference. The analyses were confirmed in several cases by a method involving isotope dilution with [C'4] ATP and purification of the extracted nucleotide by elution from Dowex-1 with 0.25 N HCl, elution from Nuchar C with ethanol-0.5 N ammonia (2:1, v/v), chromatography in isobutyric acid-0.5 N ammonia (2: 1, v/v), and electrophoresis in N-tris(hydroxymethyl) aminomethane citrate, ph 4.8. For each assay 20 discs (1 mm X 8 mm) were weighed and threaded on nylon before washing; the set of discs ( gm) was frozen in liquid nitrogen and ground in 9 ml of cold 0.4 N perchloric acid-0.1 mm Na2EDTA, and the centrifuged extract was brought to ph 7.3 with solid potassium bicarbonate, or, preferably, with 3 M potassium hydroxide-0.1 M N-tris (hydroxymethyl)methyl-2-aminoethane sulphonic acid. After removal of potassium perchlorate, five 1-ml samples were used for each nucleotide assay. Results.-In the conditions of these experiments, salt respiration and salt accumulation rates reach maximum values within the first 40 min and continue undiminished for at least 5 hr.2 Respiration rates and accumulation rates of replicate sets of tissues are shown in Table 1. Despite the increased oxygen uptake due to salt (salt respiration), the ATP content of carrot slices decreased by per cent within 15 min of exposure to 40 mm KCl and remained below the control 560

2 VOL. 55, 1966 BIOCHEMISTRY: ATKINSON ET AL. 561 value for at least 4 hr (Table 1, expts. 1, 2, and 3). The decreased level of ATP might have resulted either from increased hydrolysis during salt accumulation or from decreased phosphorylation of adenosine diphosphate through interaction of KCl with systems that generate ATP in carrot slices, or from both. While measurement of the turnover of the terminal phosphate in ATP might permit a choice between these alternatives, preliminary experiments with [P32]orthophosphate indicate that the turnover is very rapid. Uncertainty about the specific activity of the cytoplasmic pool of orthophosphate during the first minutes of exposure to [P32]orthophosphate in the presence and absence of salt has prevented this comparison of turnovers. It is relevant that Khan and Barker6 have observed decreases in phosphoenolpyruvate from 7.3 to 4.7 mgmoles/gm wet weight and in 3-phosphoglycerate from 18.4 to 12.5 mjumoles/gm wet weight on exposure to KCl of carrot slices that had been washed for 7 days. When slices in 40 mm KCl were transferred to anaerobic conditions, salt accumulation stopped within 3 min. The concentration of ATP fell, but even after 20 min was still 32 per cent of the aerobic control in water in one experiment (Table 1, expt. 1) and 54 per cent of the control in another (Table 1, expt. 6). Figure 1 shows the changes in rate of salt uptake and in ATP content when carrot slices in 40 mm KCl were transferred from air to nitrogen. Salt uptake had ceased within a few minutes, but after 30 min the ATP content was still about a third of that in the aerobic control. On addition of 4 1A\ mesoxalonitrile 3-chlorophenylhydrazone ("m-chloro carbonylcyanide phenylhydrazone," CCP) to tissue in 40 mm KCl, salt accumulation stopped almost completely within 1 min, but even after 30 min exposure to this effective uncoupler of energy-linked reactions of mitochondria7 the ATP content of the tissue was 55 per cent of that of controls in water and 69 per cent of that of controls in KCl (Table 1, expt. 3). Thus if salt accumulation under anaerobic conditions or in the presence of CCP had stopped through depletion of the supply of ATP to a metabolic "pump," much of the ATP (one third to two thirds) must have been unavailable to the pump. Table 1 also shows the effect of arsenite, and iodoacetamide, on the ATP content of carrot slices; both inhibit salt accumulation and respiration, but again the decrease in ATP content was only about 50 per cent. Thus there is no evidence that uptake had ceased through complete depletion of ATP in the tissue. Alternatively these inhibitors of salt accumulation could have interfered with reactions dependent on transfer of electrons from substrates to oxygen. The results reported so far would be consistent with a requirement for ATP in salt accumulation if only that nucleotide generated by mitochondrial oxidative phosphorylation could be used for this process. Oligomycin inhibits rephosphorylation of the adenosine diphosphate that enters mitochondria. At a concentration of 6 gg/ml (100,ug/gm fresh weight of slices) oligomycin caused a 21 per cent decrease in ATP content of slices within 30 min (Table 1, expt. 7). In these conditions salt accumulation continued undiminished for at least 30 min and sometimes for an hour; longer exposures caused a gradual decrease in rate to about a half after 2 hr. Absence of inhibition by oligomycin of salt accumulation in conditions where this antimetabolite decreases the ATP content of the slices is evidence against an involvement of mitochondrial ATP.

3 562 BIOCHEMISTRY: ATKINSON ET AL. PROC. N. A. S. TABLE 1 EFFECTS OF INHIBITORS AND ANAEROBIC CONDITIONS ON SALT ACCUMULATION, RESPIRATION, AND ADENOSINE TRIPHOSPHATE CONTENT OF CARROT XYLEM SLICES Respiration KCI rate* ATP Content Accumulation Rate* (pmoles mpumoles/ Percent pmoles/ Percent Expt. Treatment 02/gm/hr) gmt of control gm/hr of control 1 Water mm KCl (20 min) (23, 17) N2 atmosphere (20 min) 0 19 ± mm KCl-N2 atmosphere ( min) 2 Water i mm KCl (15 min) i mm Sodium arsenite-40 mm (11, 9) KCl (15 min) 1 mm Sodium arsenite 1.0 3T Water ± mMKCl(4hr) ± ,M CCP (30 min) ± mMKCl(4hr)-4uMMCCP ± (30 min) 4 Water mm KCl % Ethanol (1.5 hr) 24 ± ;&g Oligomycin/ml of 0.1% 17 ± 1 71 ethanol (1.5 hr) 5 mm Iodoacetamide-0.1% ± 1 50 ethanol (1.5 hr) 6,.g Oligomycin/ml of 0.1% (9, 9) 37 ethanol-5 mm iodoacetamide (1.5 hr) 40 mm KCl-6,ug oligomycin/ ml of 0.1% ethanol-5 mm iodoacetamide 40 mm KCl-5 mm iodoaceta mide-0.1% ethanol 5 Water (24, 25.5) mm KCl % Ethanol (1 hr) gg Oligomycin/ml of 0.1% ± 1 72 ethanol (1 hr) 40 mm KCl-0.1% ethanol mm KCl-6,ug oligomycin/ ml of 0.1% ethanol 6t Water ± mm KCl (1 hr) %Ethanol (1 hr) ± ,ug Oligomycin/ml of 0.1% ± 1 93 ethanol (1 hr) 40 mm KCl-N2 atmosphere 22 ± (20 min) 40 mm KCl-6 jg oligomycin/ 5.4 ml of 0.1% ethanol 40 mm KCl-0.1% ethanol 4.9 7t 0.1% Ethanol (30 min) mm KCl (1 hr)-0.1% etha- 16 ± 1 84 nol (30 min) 6,ug Oligomycin/ml of 0.1% 15 ± 1 79 ethanol (30 min) 40 mm KCl (1 hr)-6 ug oligo- 12 ± 1 63 mycin/ml of 0.1% ethanol (30 min) * The steady rates maintained after the initial uptake period,2 except where iodoacetamide was added and the values were taken 90 min after the addition. e Mean 4i S.E.M. Slices washed in chloromycetin (50 pg/ml).

4 VOL. 55, 1966 BIOCHEMISTRY: ATKINSON ET AL. 563 Discussion.-The results reported in this * l paper suggest some deductions about the relations between electron transport, oxidative N2 phosphorylation, and ion transport or accumu- 12 lation in this tissue. In these experiments uncouplers or respira tory-chain inhibitors which prevented salt accumulation also decreased the ATP content the tissue, but at least a third remained. This observation indicates that the salt accumula- E * 0 tion had not stopped due to lack of ATP unless. 6 E we postulate that this residual nucleotide was : unavailable to, or unconnected with, the ion X4o transport mechanism. The alternative is a E act specially close connection between the ion trans- 0 port mechanism and either the electron trans-_ port chain itself or its coupled oxidative ATP formation. This alternative was suggested by earlier work on inhibitors (particularly the light- Time in KCI (min.) reversible inhibition by carbon monoxide) and FIG. 1.-ATP content (I--- or uncouplers (particularly 2,4-dinitrophenol), 1 -o-) and salt uptake (-A- or -A-) at various times after exposure but it had not been possible to distinguish be- of carrot slices to 40 mm KC1. At the tween dependence on the electron transport time indicated, one set of slices(-, *-) was stirred with oxygen-free system and dependence on the coupled for- nitrogen. mation of ATP. The decrease in ATP in the presence of KCl could be due either to an increased rate of utilization if the salt accumulation were dependent on ATP, or to an uncoupling effect of salt so that ATP formation decreased despite the increase in oxygen uptake. The second of these two possibilities would be consistent with the earlier postulate that ion transport and phosphorylation both depend on the electron transport chain, are both inhibited by uncouplers, but are alternative consequences of electron transport. Oligomycin is known to inhibit production of ATP in isolated plant mitochondria without inhibiting the alternative ion transport mechanisms and provides a means of distinguishing between dependence on the electron transport chain and dependence on ATP formed by oxidative phosphorylation. In these experiments, oligomycin decreased the ATP content of the tissue within 30 min, while salt accumulation continued undiminished for nearly an hour. Since the amount of salt accumulated was 3-4 ttmoles/gm of tissue/hr and the decrease of ATP content was only 10 mgmoles/gm of tissue, it is unlikely that the continued accumulation was due to transport coupled with hydrolysis of preformed ATP. The simplest explanation is that, as in isolated mitochondria, ion transport is dependent on electron transport but not on oxidative phosphorylation. The original hypothesis that the salt transport mechanism depended on separation of hydrogen ions and electrons in the electron transport system was based on the stoichiometry of the two processes9; the number of hydrogen ions and electrons, calculated from the salt respiration, was approximately equal to the number of ions accumulated. In the present experiments the ratio (jsmoles of KCl accumu-

5 564 BIOCHEMISTRY: KANEKO AND DOI PROC. N. A. S. lated)/(,mmoles oxygen uptake in salt respiration) ranges from 1.7 to 3.1 and is within the requirements of the hypothesis that the maximum possible would be 4. In addition, the two observations (1) that salt reduces the ATP level, probably by preventing its oxidative formation, and (2) that oligomycin prevents ATP formation without inhibiting ion accumulation are also consistent with the hypothesis that salt accumulation and oxidative phosphorylation are alternative consequences of the charge separation of electron transport. Summary.-The effects of anaerobic conditions and of inhibitors (sodium arsenite, iodoacetamide, mesoxalonitrile 3-chlorophenylhydrazone, and oligomycin) on ATP content, respiration rate, and salt accumulation rate of carrot tissue weie investigated. The best hypothesis to explain the observations is that the ion transport mechanism in this tissue is directly coupled to the electron transport system, does not require the intervention of ATP, and may be an alternative to ATP formation. Help with microbiological tests by Dr. A. Rovira and information from 1)r. N. Good on the advantages of N-tris(hydroxymethyl)methyl-2-aminoethane sulfonic acid as a buffer are gratefully acknowledged. * Present address: School of Biological Sciences, Flinders University of South Australia, Bedford Park, South Australia. I Robertson, R. N., Biol. Rev., 35, 231 (1960). 2 Briggs, G. E., A. B. Hope, and R. N. Robertson, in Electrolytes and Plant Cells (Oxford: Blackwell Scientific Publications, 1961), p Leaver, C. J., and J. Edelman, Nature, 207, 1000 (1965). 4Robertson, R. N., and J. S. Turner, Australian J. Exptl. Biol. Med. Sci., 23, 63 (1945). 5 Strehler, B. L., and J. R. Totter, in Methods of Biochemical Analysis, ed. D. Glick (New York: Interscience Publishers, 1954), vol. 1, p Khan, M. A. A., and J. Barker, unpublished results. 7Heytler, P. G., Biochemistry, 2, 357 (1963). 8 Millard, D. L., J. T. Wiskich, and R. N. Robertson, these PROCEEDINGS, 52, 996 (1964). 9 Robertson, R. N., and M. J. Wilkins, Australian J. Sci. Res. B., 1, 17 (1948). ALTERATION OF VALYL-SRNA DURING SPORULATION OF BACILLUS SUBTILIS* BY ICHIRO KANEKO AND RoY H. Doi DEPARTMENT OF BIOCHEMISTRY AND BIOPHYSICS, UNIVERSITY OF CALIFORNIA (DAVIS) Communicated by G. Ledyard Stebbins, January 5, 1966 During sporulation of Bacillus subtilis an active, vegetative cell is converted to a dormant spore by a complex series of biochemical events.1 This is a case of unicellular morphogenesis in which differential expression of the genome is evident.2 3 The control factors involved in these events are still unknown. In an analysis of the RNA of vegetative cells and spores, it was observed that the srna from these two forms had different elution patterns from a M\fAK columnl.4 The role of srna in protein synthesis is well established;5 more recently srna has been proposed as having a regulatory function in the translation of messenger RNA.6 7 Differential synthesis of proteins, as during morphogenesis, may depend on the functional con-

1 Respiration is a vital process in living organisms. All organisms carry out glycolysis. The Krebs cycle also occurs in some organisms.

1 Respiration is a vital process in living organisms. All organisms carry out glycolysis. The Krebs cycle also occurs in some organisms. 1 Respiration is a vital process in living organisms. All organisms carry out glycolysis. The Krebs cycle also occurs in some organisms. (a) The diagram below shows some of the stages in glycolysis, using

More information

Metabolism of Carbohydrates Inhibitors of Electron Transport Chain

Metabolism of Carbohydrates Inhibitors of Electron Transport Chain Paper : 04 Module : 19 Principal Investigator Paper Coordinator Content Reviewer Content Writer Dr.S.K.Khare,Professor IIT Delhi. Dr. Ramesh Kothari,Professor UGC-CAS Department of Biosciences Saurashtra

More information

Fig In the space below, indicate how these sub-units are joined in a molecule of ATP.

Fig In the space below, indicate how these sub-units are joined in a molecule of ATP. 1 (a) Adenosine tri-phosphate (ATP) is an important product of respiration. The ATP molecule is made up of five sub-units, as shown in Fig. 5.1. adenine phosphates O ribose Fig. 5.1 (i) In the space below,

More information

PMT. Q1. (a) A student measured the rate of aerobic respiration of a woodlouse using the apparatus shown in the diagram.

PMT. Q1. (a) A student measured the rate of aerobic respiration of a woodlouse using the apparatus shown in the diagram. Q1. (a) A student measured the rate of aerobic respiration of a woodlouse using the apparatus shown in the diagram. (i) The student closed the tap. After thirty minutes the drop of coloured liquid had

More information

1. The diagram shows the flow of energy through a marine ecosystem. The units are kj m 2 year 1. Light energy measured at sea surface 12.

1. The diagram shows the flow of energy through a marine ecosystem. The units are kj m 2 year 1. Light energy measured at sea surface 12. 1. The diagram shows the flow of energy through a marine ecosystem. The units are kj m 2 year 1. Light energy measured at sea surface 12.5 10 5 6250 1000 Producers Respiration 1250 500 4000 Primary consumers

More information

How Cells Harvest Chemical Energy

How Cells Harvest Chemical Energy How Cells Harvest Chemical Energy Global Athlete Outreach Program US CytoThesis Systems Medicine Center www.cytothesis.us US OncoTherapy Systems BioMedicine Group CytoThesis Bioengineering Research Group

More information

Cellular Respira,on. Topic 3.7 and 3.8

Cellular Respira,on. Topic 3.7 and 3.8 Cellular Respira,on Topic 3.7 and 3.8 Defini,on of cellular respira,on Controlled release of energy from organic compounds to produce ATP Cells break down organic compounds by SLOW oxida,on Chemical energy

More information

Biology 2201 Unit 1 Matter & Energy for Life

Biology 2201 Unit 1 Matter & Energy for Life Biology 2201 Unit 1 Matter & Energy for Life 3.3 Cellular Respiration 3.4 The Carbon Cycle What is cellular respiration? Cellular respiration all of the chemical reactions needed to break down (metabolize)

More information

Biology 12 - Biochemistry Practice Exam

Biology 12 - Biochemistry Practice Exam Biology 12 - Biochemistry Practice Exam Name: Water: 1. The bond between water molecules is a (n) a. ionic bond b. covalent bond c. polar covalent bond d. hydrogen bond 2. The water properties: good solvent,

More information

Enzymatic Assay of PHOSPHODIESTERASE, 3':5'-CYCLIC NUCLEOTIDE Crude Complex

Enzymatic Assay of PHOSPHODIESTERASE, 3':5'-CYCLIC NUCLEOTIDE Crude Complex PRINCIPLE: 3':5'-cAMP + H 2 O PDE-3':5'-CN > AMP AMP + ATP Myokinase > 2 ADP 2 ADP + 2 PEP Pyruvate Kinase > 2 ATP + 2 Pyruvate 2 Pyruvate + 2 ß-NADH Lactic Dehydrogenase > 2 Lactate + 2 ß-NAD Abbreviations

More information

Chapter 4.2. pages 74-80

Chapter 4.2. pages 74-80 Chapter 4.2 pages 74-80 Cellular Respiration Cellular respiration changes energy in bonds of food into energy that cells can use. Structure of ATP Adenosine triphosphate or ATP stores energy in its bonds.

More information

Water: 1. The bond between water molecules is a(n) a. ionic bond b. covalent bond c. polar covalent bond d. hydrogen bond

Water: 1. The bond between water molecules is a(n) a. ionic bond b. covalent bond c. polar covalent bond d. hydrogen bond Biology 12 - Biochemistry Practice Exam KEY Water: 1. The bond between water molecules is a(n) a. ionic bond b. covalent bond c. polar covalent bond d. hydrogen bond 2. The water properties: good solvent,

More information

Cellular Respiration. Unit 5: Plants, Photosynthesis, and Cellular Respiration

Cellular Respiration. Unit 5: Plants, Photosynthesis, and Cellular Respiration Cellular Respiration Unit 5: Plants, Photosynthesis, and Cellular Respiration Overview! Organisms obtain energy (ATP) by breaking down (catabolic pathway, exergonic reaction) organic molecules (glucose)

More information

Chapter 5 MITOCHONDRIA AND RESPIRATION 5-1

Chapter 5 MITOCHONDRIA AND RESPIRATION 5-1 Chapter 5 MITOCHONDRIA AND RESPIRATION All organisms must transform energy. This energy is required to maintain a dynamic steady state, homeostasis, and to insure continued survival. As will be discussed

More information

MIDDLETOWN HIGH SCHOOL SOUTH BIOLOGY

MIDDLETOWN HIGH SCHOOL SOUTH BIOLOGY MIDDLETOWN HIGH SCHOOL SOUTH BIOLOGY BOOKLET 10 NAME: CLASS: 1 S.Tagore Middletown South High School March 2013 LEARNING OUTCOMES The role and production of ATP (a) Importance, role and structure of ATP

More information

Background knowledge

Background knowledge Background knowledge This is the required background knowledge: State three uses of energy in living things Give an example of an energy conversion in a living organism State that fats and oils contain

More information

RUBISCO > 2 moles of 3-phosphoglycerate Mg +2

RUBISCO > 2 moles of 3-phosphoglycerate Mg +2 PRINCIPLE: RuDP + CO 2 RUBISCO > 2 moles of 3-phosphoglycerate Mg +2 3-Phosphoglycerate + ATP PGK > Glycerate 1,3-Diphosphate + ADP Glycerate 1,3-Diphosphate + ß-NADH GAPDH > Glyceraldehyde 3-Phosphate

More information

A. Incorrect! No, this statement is accurate so is not the correct selection to the question.

A. Incorrect! No, this statement is accurate so is not the correct selection to the question. Biochemistry - Problem Drill 14: Glycolysis No. 1 of 10 1. Which of the following statements is incorrect with respect to glycolysis? (A) It is the conversion of glucose to pyruvate. (B) In glycolysis

More information

What is respiration:

What is respiration: Respiration What is respiration: Aerobic respiration is the controlled release of energy from food using oxygen. The food involved in respiration is glucose. The energy is trapped in molecules of ATP.

More information

Visit for Videos, Questions and Revision Notes. Describe how acetylcoenzyme A is formed in the link reaction

Visit  for Videos, Questions and Revision Notes. Describe how acetylcoenzyme A is formed in the link reaction Q1.(a) Describe how acetylcoenzyme A is formed in the link reaction. (b) In the Krebs cycle, acetylcoenzyme A combines with four-carbon oxaloacetate to form six-carbon citrate. This reaction is catalysed

More information

Chapter 9 Notes. Cellular Respiration and Fermentation

Chapter 9 Notes. Cellular Respiration and Fermentation Chapter 9 Notes Cellular Respiration and Fermentation Objectives Distinguish between fermentation and anaerobic respiration. Name the three stages of cellular respiration and state the region of the cell

More information

Chapter 5. Microbial Metabolism

Chapter 5. Microbial Metabolism Chapter 5 Microbial Metabolism Metabolism Collection of controlled biochemical reactions that take place within a microbe Ultimate function of metabolism is to reproduce the organism Metabolic Processes

More information

Chemical Energy. Valencia College

Chemical Energy. Valencia College 9 Pathways that Harvest Chemical Energy Valencia College 9 Pathways that Harvest Chemical Energy Chapter objectives: How Does Glucose Oxidation Release Chemical Energy? What Are the Aerobic Pathways of

More information

colorimetrically by the methylene blue method according to Fogo and manometrically. In the presence of excess sulfur the amount of oxygen taken up

colorimetrically by the methylene blue method according to Fogo and manometrically. In the presence of excess sulfur the amount of oxygen taken up GLUTA THIONE AND SULFUR OXIDATION BY THIOBACILLUS THIOOXIDANS* BY ISAMU SUZUKI AND C. H. WERKMAN DEPARTMENT OF BACTERIOLOGY, IOWA STATE COLLEGE Communicated December 15, 1958 The ability of Thiobacillus

More information

BIOLOGICAL MOLECULES REVIEW-UNIT 1 1. The factor being tested in an experiment is the A. data. B. variable. C. conclusion. D. observation. 2.

BIOLOGICAL MOLECULES REVIEW-UNIT 1 1. The factor being tested in an experiment is the A. data. B. variable. C. conclusion. D. observation. 2. BIOLOGICAL MOLECULES REVIEW-UNIT 1 1. The factor being tested in an experiment is the A. data. B. variable. C. conclusion. D. observation. 2. A possible explanation for an event that occurs in nature is

More information

RELATION OF ENERGY PROCESSES TO THE INCORPORATION OF AMINO ACIDS INTO PROTEINS OF THE EHRLICH ASCITES CARCINOMA*

RELATION OF ENERGY PROCESSES TO THE INCORPORATION OF AMINO ACIDS INTO PROTEINS OF THE EHRLICH ASCITES CARCINOMA* RELATION OF ENERGY PROCESSES TO THE INCORPORATION OF AMINO ACIDS INTO PROTEINS OF THE EHRLICH ASCITES CARCINOMA* BY M. RABINOVITZ, MARGARET E. OLSON, AND DAVID M. GREENBERG (From the Department of Physiological

More information

1. Cyanide is introduced into a culture of cells and is observed binding to a mitochondrion, as shown in the diagram below.

1. Cyanide is introduced into a culture of cells and is observed binding to a mitochondrion, as shown in the diagram below. 1. Cyanide is introduced into a culture of cells and is observed binding to a mitochondrion, as shown in the diagram below. The following observations are made: Cyanide binds to and inhibits an enzyme

More information

Cellular Respiration

Cellular Respiration Cellular Respiration 1. To perform cell work, cells require energy. a. A cell does three main kinds of work: i. Mechanical work, such as the beating of cilia, contraction of muscle cells, and movement

More information

Cell Respiration. Anaerobic & Aerobic Respiration

Cell Respiration. Anaerobic & Aerobic Respiration Cell Respiration Anaerobic & Aerobic Respiration Understandings/Objectives 2.8.U1: Cell respiration is the controlled release of energy from organic compounds to produce ATP. Define cell respiration State

More information

An Introduction to Carbohydrates

An Introduction to Carbohydrates An Introduction to Carbohydrates Carbohydrates are a large class of naturally occurring polyhydroxy aldehydes and ketones. Monosaccharides also known as simple sugars, are the simplest carbohydrates containing

More information

Bioenergetics. Chapter 3. Objectives. Objectives. Introduction. Photosynthesis. Energy Forms

Bioenergetics. Chapter 3. Objectives. Objectives. Introduction. Photosynthesis. Energy Forms Objectives Chapter 3 Bioenergetics Discuss the function of cell membrane, nucleus, & mitochondria Define: endergonic, exergonic, coupled reactions & bioenergetics Describe how enzymes work Discuss nutrients

More information

How Cells Harvest Chemical Energy

How Cells Harvest Chemical Energy How Cells Harvest Chemical Energy Chapter 6 Introduction: How Is a Marathoner Different from a Sprinter? Individuals inherit various percentages of the two main types of muscle fibers, slow and fast The

More information

An Introduction to Carbohydrates

An Introduction to Carbohydrates An Introduction to Carbohydrates Carbohydrates are a large class of naturally occurring polyhydroxy aldehydes and ketones. Monosaccharides also known as simple sugars, are the simplest carbohydrates containing

More information

Higher Biology. Unit 2: Metabolism and Survival Topic 2: Respiration. Page 1 of 25

Higher Biology. Unit 2: Metabolism and Survival Topic 2: Respiration. Page 1 of 25 Higher Biology Unit 2: Metabolism and Survival Topic 2: Respiration Page 1 of 25 Sub Topic: Respiration I can state that: All living cells carry out respiration. ATP is the energy currency of the cell

More information

Chapter 6. Respiration

Chapter 6. Respiration Chapter 6 Respiration All living cells, and therefore all living organisms, need energy in order to survive. Energy is required for many different purposes. Every living cell, for example, must be able

More information

Cellular Respiration

Cellular Respiration Cellular I can describe cellular respiration Cellular respiration is a series of metabolic pathways releasing energy from a foodstuff e.g. glucose. This yields energy in the form of ATP adenosine P i P

More information

Cellular Respiration. Biochemistry Part II 4/28/2014 1

Cellular Respiration. Biochemistry Part II 4/28/2014 1 Cellular Respiration Biochemistry Part II 4/28/2014 1 4/28/2014 2 The Mitochondria The mitochondria is a double membrane organelle Two membranes Outer membrane Inter membrane space Inner membrane Location

More information

Cell Biology Sub-Topic (1.6) Respiration

Cell Biology Sub-Topic (1.6) Respiration Cell Biology Sub-Topic (1.6) Respiration On completion of this subtopic I will be able to state that: Glucose is a source of energy in the cell. The chemical energy stored in glucose is released by a series

More information

3. Distinguish between aerobic and anaerobic in terms of cell respiration. Outline the general process of both.

3. Distinguish between aerobic and anaerobic in terms of cell respiration. Outline the general process of both. 3.7 Cell Respiration 1. Define cell respiration. Cell respiration is the controlled release of energy from organic molecules in cells to form ATP. 2. State the equation for the process of cell respiration.

More information

demonstrated that, when protein synthesis was blocked by puromycin, the increases

demonstrated that, when protein synthesis was blocked by puromycin, the increases 250 BIOCHEMISTRY: NOTEBOOM AND GORS&I PROC. N. A. S. I Buhler, D. R., Anal. Biochem., 4, 413 (1962). 8 Slnger, H. L., personal communication. 9 Britten, R. J., and R. D. Roberts, Science, 131, 32 (1960).

More information

9.1 Chemical Pathways ATP

9.1 Chemical Pathways ATP 9.1 Chemical Pathways ATP 2009-2010 Objectives Explain cellular respiration. Describe what happens during glycolysis. Describe what happens during fermentation. Where do we get energy? Energy is stored

More information

10/31/2016 CHAPTER 9 RESPIRATION I. RESPIRATION II. ENERGY FOR LIFE A. DEFINITION-THE TOTAL CHEMICAL BREAK DOWN OF GLUCOSE WITH OXYGEN

10/31/2016 CHAPTER 9 RESPIRATION I. RESPIRATION II. ENERGY FOR LIFE A. DEFINITION-THE TOTAL CHEMICAL BREAK DOWN OF GLUCOSE WITH OXYGEN CHAPTER 9 RESPIRATION KENNEDY BIOL. 1AB I. RESPIRATION A. DEFINITION-THE TOTAL CHEMICAL BREAK DOWN OF GLUCOSE WITH OXYGEN II. ENERGY FOR LIFE ALL THE ENERGY FOR LIFE COMES FROM THE METABOLISM OF GLUCOSE

More information

3/28/17. Cellular Respiration. Chapter 9: Cellular Respiration & Fermentation. Chapter 9: Cellular Respiration & Fermentation

3/28/17. Cellular Respiration. Chapter 9: Cellular Respiration & Fermentation. Chapter 9: Cellular Respiration & Fermentation Chapter 9: Cellular Respiration & Fermentation SE C TION 1: C E LLULAR RE SP IRATION: AN OVERVIEW As we learned last chapter, energy from the sun is transformed into different forms. In this chapter you

More information

1. Cyanide is introduced into a culture of cells and is observed binding to a mitochondrion, as shown in the diagram below.

1. Cyanide is introduced into a culture of cells and is observed binding to a mitochondrion, as shown in the diagram below. 1. Cyanide is introduced into a culture of cells and is observed binding to a mitochondrion, as shown in the diagram below. The following observations are made: Cyanide binds to and inhibits an enzyme

More information

Adenosine triphosphate (ATP)

Adenosine triphosphate (ATP) Adenosine triphosphate (ATP) 1 High energy bonds ATP adenosine triphosphate N NH 2 N -O O P O O P O- O- O O P O- O CH 2 H O H N N adenine phosphoanhydride bonds (~) H OH ribose H OH Phosphoanhydride bonds

More information

Plant Nutrients in Mineral Soils

Plant Nutrients in Mineral Soils The Supply and Availability of Plant Nutrients in Mineral Soils Plant Nutrients in Mineral Soils Factors Controlling the Growth of Higher Plants 1. Light 2. Mechanical Support. Heat. Air 5. Water 6. Nutrients

More information

Chapter 6 : How Cells Harvest Energy (B) Dr. Chris Doumen 10/28/14 CITRIC ACID CYCLE. Acetyl CoA CoA CoA CO 2 NAD + FADH 2 NADH FAD + 3 H + ADP + ATP

Chapter 6 : How Cells Harvest Energy (B) Dr. Chris Doumen 10/28/14 CITRIC ACID CYCLE. Acetyl CoA CoA CoA CO 2 NAD + FADH 2 NADH FAD + 3 H + ADP + ATP Chapter 6 : How Cells Harvest Energy (B) Dr. Chris Doumen Acetyl CoA CoA CoA Oxaloacetate Citrate CITRIC ACID CYCLE CO FADH 3 NAD + FAD 3 NADH ADP + P + 3 1 Pyruvate oxida.on and Citric Acid Cycle Thus

More information

4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5

4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5 1. Which of the following statements about NAD + is false? a. NAD + is reduced to NADH during both glycolysis and the citric acid cycle. b. NAD + has more chemical energy than NADH. c. NAD + is reduced

More information

Biochemistry 7/11/ Bio-Energetics & ATP. 5.1) ADP, ATP and Cellular Respiration OVERVIEW OF ENERGY AND METABOLISM

Biochemistry 7/11/ Bio-Energetics & ATP. 5.1) ADP, ATP and Cellular Respiration OVERVIEW OF ENERGY AND METABOLISM Biochemistry 5. Bio-Energetics & ATP 5.1) ADP, ATP and Cellular Respiration Prof. Dr. Klaus Heese OVERVIEW OF ENERGY AND METABOLISM 1. The food we eat, (carbohydrates/ glucose /sugar, lipids/fat, proteins),

More information

Chapter 7: How Cells Harvest Energy AP

Chapter 7: How Cells Harvest Energy AP Chapter 7: How Cells Harvest Energy AP Essential Knowledge 1.B.1 distributed among organisms today. (7.1) 1.D.2 Organisms share many conserved core processes and features that evolved and are widely Scientific

More information

Bromeliads are CAM plants. Pineapple is a bromeliad. CAM was discovered in the Crassulaceae, a family of plants that includes jade plant.

Bromeliads are CAM plants. Pineapple is a bromeliad. CAM was discovered in the Crassulaceae, a family of plants that includes jade plant. Bromeliads are CAM plants Pineapple is a bromeliad CAM was discovered in the Crassulaceae, a family of plants that includes jade plant. Developing and non-photosynthetic sink tissues depend on a supply

More information

Respiration. Respiration. Respiration. How Cells Harvest Energy. Chapter 7

Respiration. Respiration. Respiration. How Cells Harvest Energy. Chapter 7 How Cells Harvest Energy Chapter 7 Organisms can be classified based on how they obtain energy: autotrophs: are able to produce their own organic molecules through photosynthesis heterotrophs: live on

More information

Bioenergetics. Finding adequate sources of energy is a constant challenge for all living organisms, including this bear.

Bioenergetics. Finding adequate sources of energy is a constant challenge for all living organisms, including this bear. 33 Bioenergetics Finding adequate sources of energy is a constant challenge for all living organisms, including this bear. Introduction to General, Organic, and Biochemistry, 10e John Wiley & Sons, Inc

More information

OAT Biology - Problem Drill 03: Cell Processes - Metabolism and Cellular Respiration

OAT Biology - Problem Drill 03: Cell Processes - Metabolism and Cellular Respiration OAT Biology - Problem Drill 03: Cell Processes - Metabolism and Cellular Respiration Question No. 1 of 10 1. What is the final electron acceptor in aerobic respiration? Question #01 (A) NADH (B) Mitochondria

More information

OVERVIEW OF ENERGY AND METABOLISM

OVERVIEW OF ENERGY AND METABOLISM Biochemistry 5. Bio-Energetics & ATP 5.1) ADP, ATP and Cellular Respiration OVERVIEW OF ENERGY AND METABOLISM 1. The food we eat, (carbohydrates/ glucose /sugar, lipids/fat, proteins), are our only source

More information

Phases of the bacterial growth:

Phases of the bacterial growth: L3: Physiology of Bacteria: Bacterial growth Growth is the orderly increase in the sum of all the components of an organism. Cell multiplication is a consequence of growth, in unicellular organism, growth

More information

THE EFFECT OF ARSENATE ON AEROBIC PHOSPHORYLATION

THE EFFECT OF ARSENATE ON AEROBIC PHOSPHORYLATION THE EFFECT OF ARSENATE ON AEROBIC PHOSPHORYLATION BY ROBERT K. CRANE* AND FRITZ LIPMANN (From the Biochemical Research Laboratory, Massachusetts General Hospital, and the Department of Biological Chemistry,

More information

3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP]

3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP] 3.7 Cell respiration ( Chapter 9 in Campbell's book) 3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP] Organic compounds store

More information

BIO16 Mapua Institute of Technology

BIO16 Mapua Institute of Technology BIO16 Mapua Institute of Technology The Marathon If somebody challenged you to a run a race, how should you prepare to win? 1. Practice 2. Eat the right foods 3. Drink the right liquids Energy All living

More information

volume and surface area. Walker and Winslow (1932) reported metabolic rates per cell being observed towards the end of the

volume and surface area. Walker and Winslow (1932) reported metabolic rates per cell being observed towards the end of the A COMPARISON OF THE METABOLIC ACTIVITIES OF AEROBACTER AEROGENES, EBERTHELLA TYPHI AND ESCHERICHIA COLI C. E. CLIFTON Department of Bacteriology and Experimental Pathology, Stanford University, California

More information

Chemistry 1120 Exam 4 Study Guide

Chemistry 1120 Exam 4 Study Guide Chemistry 1120 Exam 4 Study Guide Chapter 12 12.1 Identify and differentiate between macronutrients (lipids, amino acids and saccharides) and micronutrients (vitamins and minerals). Master Tutor Section

More information

Cellular Respiration. Overview of Cellular Respiration. Lecture 8 Fall Overview of Cellular Respiration. Overview of Cellular Respiration

Cellular Respiration. Overview of Cellular Respiration. Lecture 8 Fall Overview of Cellular Respiration. Overview of Cellular Respiration Overview of Cellular Respiration 1 Cellular Respiration Lecture 8 Fall 2008 All organisms need ATP to do cellular work Cellular Respiration: The conversion of chemical energy of carbon compounds into another

More information

Harvesting Energy: Glycolysis and Cellular Respiration

Harvesting Energy: Glycolysis and Cellular Respiration Lesson 5 Harvesting Energy: Glycolysis and Cellular Respiration Introduction to Life Processes - SCI 102 1 How Cells Obtain Energy Cells require a constant flow of energy Most cellular energy is stored

More information

) one consumes in breathing is converted to:, which of the following would be found in the oxidized state?

) one consumes in breathing is converted to:, which of the following would be found in the oxidized state? MCB 102: Pantea s Sxn Chapter 19 Problem Set Answer Key 1) Page: 690 Ans: E Almost all of the oxygen (O 2 ) one consumes in breathing is converted to: A) acetyl-coa. B) carbon dioxide (CO 2 ). C) carbon

More information

Medical Biochemistry and Molecular Biology department

Medical Biochemistry and Molecular Biology department Medical Biochemistry and Molecular Biology department Cardiac Fuels [Sources of energy for the Cardiac muscle] Intended learning outcomes of the lecture: By the end of this lecture you would be able to:-

More information

Remember: Photosynthesis occurs in plants and creates glucose and oxygen from CO 2 and H 2 O

Remember: Photosynthesis occurs in plants and creates glucose and oxygen from CO 2 and H 2 O Cellular Respiration Chapter 7 Lesson 1 Importance of Cellular Respiration Remember: Photosynthesis occurs in plants and creates glucose and oxygen from CO 2 and H 2 O We consume glucose in the form of

More information

Lab 5: Cell Respiration Multiple Choice Questions

Lab 5: Cell Respiration Multiple Choice Questions Lab 5: Cell Respiration Multiple Choice Questions 1. Within the cell, many chemical reactions that, by themselves, require energy input (have a positive free-energy change) can occur because the reactions

More information

Chemical and Biochemical Mechanism Of Cell Injury.

Chemical and Biochemical Mechanism Of Cell Injury. Chemical and Biochemical Mechanism Of Cell Injury. Professor Dr. M. Tariq Javed Dept. of Pathology Faculty of Vet. Science The University Of Agriculture Faisalabad Cell Injury When the cell is exposed

More information

A) Choose the correct answer: 1) Reduction of a substance can mostly occur in the living cells by:

A) Choose the correct answer: 1) Reduction of a substance can mostly occur in the living cells by: Code: 1 1) Reduction of a substance can mostly occur in the living cells by: (a) Addition of oxygen (b) Removal of electrons (c) Addition of electrons (d) Addition of hydrogen 2) Starting with succinate

More information

7 Pathways That Harvest Chemical Energy

7 Pathways That Harvest Chemical Energy 7 Pathways That Harvest Chemical Energy Pathways That Harvest Chemical Energy How Does Glucose Oxidation Release Chemical Energy? What Are the Aerobic Pathways of Glucose Metabolism? How Is Energy Harvested

More information

OCR. Respiration Questions

OCR. Respiration Questions OCR Respiration Questions 12 4 (a) The first stage in respiration involves the conversion of one molecule of glucose into two molecules of a 3C compound that can enter mitochondria when oxygen is

More information

ADP, ATP and Cellular Respiration

ADP, ATP and Cellular Respiration ADP, ATP and Cellular Respiration What Is ATP? Energy used by all Cells Adenosine Triphosphate Organic molecule containing highenergy Phosphate bonds Chemical Structure of ATP Adenine Base 3 Phosphates

More information

OVERVIEW OF RESPIRATION AND LOOSE ENDS. What agents? What war?

OVERVIEW OF RESPIRATION AND LOOSE ENDS. What agents? What war? 5.19.06 OVERVIEW OF RESPIRATION AND LOOSE ENDS What agents? What war? 1 Ubiquinone or Coenzyme Q: small hydrophobic molecule that can pick up or donate electrons The respiratory chain contains 3 large

More information

CELLULAR RESPIRATION. Chapter 7

CELLULAR RESPIRATION. Chapter 7 CELLULAR RESPIRATION Chapter 7 7.1 GLYCOLYSIS AND FERMENTATION If I have a $10.00 bill and a $10.00 check, which is better? ATP is like cash in the cell Glucose, NADH, FADH2 are like checks in a cell.

More information

LAB 6 Fermentation & Cellular Respiration

LAB 6 Fermentation & Cellular Respiration LAB 6 Fermentation & Cellular Respiration INTRODUCTION The cells of all living organisms require energy to keep themselves alive and fulfilling their roles. Where does this energy come from? The answer

More information

Cellular respiration and fermentation 04/18/2016 BI102

Cellular respiration and fermentation 04/18/2016 BI102 Cellular respiration and fermentation 04/18/2016 BI102 Announcements Exam 1 after lecture Don t forget to do the online assignments every week! Quiz 2 and lab 2 review Cellular Respiration Cells require

More information

Physiological Chemistry II Exam IV Dr. Melissa Kelley April 13, 2004

Physiological Chemistry II Exam IV Dr. Melissa Kelley April 13, 2004 Name Write your name on the back of the exam Physiological Chemistry II Exam IV Dr. Melissa Kelley April 13, 2004 This examination consists of forty-four questions, each having 2 points. The remaining

More information

Respiration. Respiration. How Cells Harvest Energy. Chapter 7

Respiration. Respiration. How Cells Harvest Energy. Chapter 7 How Cells Harvest Energy Chapter 7 Respiration Organisms can be classified based on how they obtain energy: autotrophs: are able to produce their own organic molecules through photosynthesis heterotrophs:

More information

Biology 12. Biochemistry. Water - a polar molecule Water (H 2 O) is held together by covalent bonds.

Biology 12. Biochemistry. Water - a polar molecule Water (H 2 O) is held together by covalent bonds. Biology 12 Biochemistry Water - a polar molecule Water (H 2 O) is held together by covalent bonds. Electrons in these bonds spend more time circulating around the larger Oxygen atom than the smaller Hydrogen

More information

Coupled, interconnecting reactions

Coupled, interconnecting reactions Metabolism: Basic concepts Hand-out for the CBT version November 2011 This module is based on 'Biochemistry' by Berg, Tymoczko and Stryer, seventh edition (2011), Chapter 15: Metabolism: Basic Concepts

More information

Enzymatic Assay of PYRUVATE KINASE (EC ) From Rabbit Liver

Enzymatic Assay of PYRUVATE KINASE (EC ) From Rabbit Liver Enzymatic Assay of PYRUVATE KINASE PRINCIPLE: Phospho(enol)pyruvate + ADP Pyruvate Kinase > Pyruvate + ATP Mg2 + Pyruvate + ß-NADH Lactic Dehydrogenase > Lactate + ß-NAD Abbreviations used: ADP = Adenosine

More information

KEY CONCEPT The overall process of cellular respiration converts sugar into ATP using oxygen.

KEY CONCEPT The overall process of cellular respiration converts sugar into ATP using oxygen. KEY CONCEPT The overall process of cellular respiration converts sugar into ATP using oxygen. ! Cellular respiration makes ATP by breaking down sugars. Cellular respiration is aerobic, or requires oxygen.

More information

Understanding your results Acidity... 3 Aluminium... 3 Base saturation... 3 Boron... 4 Bulk density... 4 Calcium... 4 Cations...

Understanding your results Acidity... 3 Aluminium... 3 Base saturation... 3 Boron... 4 Bulk density... 4 Calcium... 4 Cations... Understanding your results Acidity... 3 Aluminium.... 3 Base saturation... 3 Boron... 4 Bulk density... 4 Calcium... 4 Cations... 4 CEC - Cation Exchange Capacity... 4 Copper... 5 Conductivity... 6 Deficiencies...

More information

Releasing Chemical Energy

Releasing Chemical Energy Releasing Chemical Energy Ø Energy From Carbohydrates Ø Aerobic Respiration/ Stages Ø Fermentation Ø Food as a Source of Energy How Do Cells Access the Chemical Energy in Carbohydrayes? Aerobic Respiration

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Respiration Practice Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which of the following statements describes NAD+? A) NAD+ can donate

More information

2. Cellular respiration uses oxygen to convert the chemical energy stored in organic molecules into -?-

2. Cellular respiration uses oxygen to convert the chemical energy stored in organic molecules into -?- HB Cell Respiration Questions (1/2 point each question or blank to fill in 37 points) 1. Organisms, such as plants that make their own food are called -?- 2. Cellular respiration uses oxygen to convert

More information

THE PHYSIOLOGY OF GROWTH IN APPLE FRUITS. By JUDITH A. PEARSON<), and R. N. ROBERTSON<),

THE PHYSIOLOGY OF GROWTH IN APPLE FRUITS. By JUDITH A. PEARSON<), and R. N. ROBERTSON<), 1. INTRODUCTION In earlier papers in this series (Robertson and Turner 1951; Pearson and Robertson 1952, 1953), Maskell's hypothesis was used to explain the rise in respiration rate, the climacteric rise,

More information

Cellular Respiration Checkup Quiz. 1. Of the following products, which is produced by both anaerobic respiration and aerobic respiration in humans?

Cellular Respiration Checkup Quiz. 1. Of the following products, which is produced by both anaerobic respiration and aerobic respiration in humans? 1. Of the following products, which is produced by both anaerobic respiration and aerobic respiration in humans? I. Pyruvate II. III. ATP Lactate A. I only B. I and II only C. I, II and III D. II and III

More information

Cellular Respiration Let s get energized!

Cellular Respiration Let s get energized! Copyrighted by Amy Brown Science Stuff Cellular Respiration Let s get energized! Amy Brown Science Food provides living things with the: chemical building blocks they need to grow and reproduce. Food serves

More information

Respiration. Energy is everything!

Respiration. Energy is everything! Respiration Energy is everything! Tesla was incredible Everyone was intrigued by Tesla Tesla showed that energy does not need to be feared So what does this have to do with twinkies? Everything! Cellular

More information

Energy for Muscular Activity

Energy for Muscular Activity Energy for Muscular Activity Chapter 7 Sport Books Publisher 1 Learning Objectives: To develop an awareness of the basic chemical processes the body uses to produce energy in the muscles To develop an

More information

NBCE Mock Board Questions Biochemistry

NBCE Mock Board Questions Biochemistry 1. Fluid mosaic describes. A. Tertiary structure of proteins B. Ribosomal subunits C. DNA structure D. Plasma membrane structure NBCE Mock Board Questions Biochemistry 2. Where in the cell does beta oxidation

More information

potassium is included in the dialysis fluid. Unless the phosphate buffer

potassium is included in the dialysis fluid. Unless the phosphate buffer EFFECT OF POTASSIUM ON RAM SPERMATOZOA STUDIED BY A FLOW DIALYSIS TECHNIQUE H. M. DOTT and I. G. WHITE A.R.C. Unit of Reproductive Physiology and Biochemistry, University of Cambridge {Received 23rd July

More information

Enzymatic Assay of GUANYLATE KINASE (EC )

Enzymatic Assay of GUANYLATE KINASE (EC ) PRINCIPLE: GMP + ATP Guanylate Kinase > GDP + ADP ADP + PEP Pyruvate Kinase > ATP + Pyruvate GDP + PEP Pyruvate Kinase > GTP + Pyruvate 2 Pyruvate + 2 ß-NADH Lactic Dehydrogenase > 2 Lactate + 2 ß-NAD

More information

CELLULAR RESPIRATION: AEROBIC HARVESTING OF CELLULAR ENERGY Pearson Education, Inc.

CELLULAR RESPIRATION: AEROBIC HARVESTING OF CELLULAR ENERGY Pearson Education, Inc. CELLULAR RESPIRATION: AEROBIC HARVESTING OF CELLULAR ENERGY 2012 Pearson Education, Inc. Introduction In chemo heterotrophs, eukaryotes perform cellular respiration That harvests energy from food which

More information

MULTIPLE CHOICE QUESTIONS

MULTIPLE CHOICE QUESTIONS MULTIPLE CHOICE QUESTIONS 1. Which of the following statements concerning anabolic reactions is FALSE? A. They are generally endergonic. B. They usually require ATP. C. They are part of metabolism. D.

More information

Active Learning Exercise 5. Cellular Respiration

Active Learning Exercise 5. Cellular Respiration Name Biol 211 - Group Number Active Learning Exercise 5. Cellular Respiration Reference: Chapter 9 (Biology by Campbell/Reece, 8 th ed.) 1. Give the overall balanced chemical equation for aerobic cellular

More information

How Cells Harvest Energy. Chapter 7. Respiration

How Cells Harvest Energy. Chapter 7. Respiration How Cells Harvest Energy Chapter 7 Respiration Organisms classified on how they obtain energy: autotrophs: produce their own organic molecules through photosynthesis heterotrophs: live on organic compounds

More information

Chapter 8. An Introduction to Microbial Metabolism

Chapter 8. An Introduction to Microbial Metabolism Chapter 8 An Introduction to Microbial Metabolism The metabolism of microbes Metabolism sum of all chemical reactions that help cells function Two types of chemical reactions: Catabolism -degradative;

More information