A CADAVER STUDY OF THE FUNCTION OF THE OBLIQUE PART OF VASTUS MEDIALIS

Size: px
Start display at page:

Download "A CADAVER STUDY OF THE FUNCTION OF THE OBLIQUE PART OF VASTUS MEDIALIS"

Transcription

1 A CADAVER STUDY OF THE FUNCTION OF THE OBLIQUE PART OF VASTUS MEDIALIS JAMES C. H. GOH. PETER Y. C. LEE. KAMAL BOSE From the National University Hospital. Singapore Six normal cadaver lower limbs were mounted on a specially designed loading apparatus. Wires were used to simulate the five muscle bellies of the quadriceps, the ratio of their tensions having been determined from that of the anatomical cross-sectional areas of the muscles. A three-camera system was used to track the patella during knee movements from flexion to extension. The patellofemoral contact area was determined by pressure-sensitive film. The limb was loaded with and without tension on the wire which simulated the oblique part of the vastus medialis (VMO). Absence of VMO tension caused the patella to displace laterally (4.2 mm) and increased the load on the lateral patellar facet throughout the range of knee motion. When the tension on the wire simulating vastus lateralis was reduced by 40% to simulate the effect of a lateral release procedure, the abnormal kinematics caused by the absent VMO returned to normal. J BOlIl'.loilll Slll: {8r/ 1995;77-B: Receil'ed -I May II)C}-I; AcCt!l'led 22.lilly 1994 Many patellar disorders are related to abnormalities of patellar tracking (Hughston 1968) but some patients have patellofemoral pain with no obvious mechanical abnormality Onsall 1982). Such symptoms usually arise insidiously and without previous trauma. Ficat and Hungerford (1977) ascribed them to the 'excessive lateral pressure syndrome'. Larson et al (1978) described patients with 'patellar compression syndrome'. In such cases some form of abnormal patellar tracking pattern is thought to exist although it may be rather subtle. The tracking of the patella is influenced by the shape of the femoral condyles and the patellar articular surface, the J. C. H. Goh, PhD, CEng. MIMechE, MASME, Senior Research Fellow P. Y. C. Lee. FRCS, MCh Onh. Senior Lecturer and Consultant K. Bose. MCh Onh. MS. FRCS Ed. AM, Professor and Head of Depanment Depanment of Onhopaedic Surgery. National University Hospital. 5 Lower Kent Ridge Road. Singapore Correspondence should be sent to Dr J. C. H. Goh. ([) 1995 British Editorial Society of Bone and Joint Surgery X/95/2935 $2.00 Q-angle and the dynamic balance of the medial and lateral components of the quadriceps muscle during contraction (van Kampen 1987), The resultant vector of the forces acting on the patella is normally directed laterally because of the tibiofemoral angle (Huberti and Hayes 1984) and the medialising forces should therefore be important in maintaining the normal alignment of the patella. Anatomical studies have shown that the inferior portion of the vastus medialis has muscle fibres orientated obliquely, the vastus medialis oblique (VMO) of Lieb and Perry (1968), Bose, Kanagasuntheram and Osman (]980) found at operation that patients with recurrent dislocations of the patella had a deficient VMO and Ahmed, Burke and Yu (1983) showed in cadaver knees that removal of VMO tension shifted the pressure zone from the centre to the lateral facet of the patella. Our aim was to evaluate the role of the VMO and the effect of lateral release on patellar tracking and the patellofemoral contact pattern. MATERIALS AND METHODS Six fresh left cadaver limbs were used. Each was dissected to expose the five components of the quadriceps and each muscle belly was individually frozen and sectioned at its midpoint perpendicular to the longitudinal axis. The crosssection was traced out on a piece of paper and its area was measured using a digitising tablet (Mypad-A3, Logitec Model K-5 \0 mk2 Digitizer, Kanto Denshi Corporation, Japan). The limb was amputated through the distal third of the femur and all the soft tissues were removed from the distal femur leaving only the collateral and cruciate ligaments intact. The retinacular attachments were dissected off the patella, leaving the patellar tendon intact. All the limbs used for the experiment had normal knees without articular damage. A steel rod was fixed in the shaft of the femur with bone cement to allow the leg to be mounted on a bench and to hang vertically as shown in Figure I. No restraining force was applied so that the normal 'screw-home' motion of the tibia on the femur could take place during knee extension. Five steel wires (1.2 mm in diameter) were attached to the patella to simulate each component of the quadriceps. These were passed through pulleys mounted on the bench to reproduce the physiological axis of each muscle (Ahmed et al 1983), Weights were used to provide the required VOL. 77 B. No.2. MARCH 19'J5

2 226 J. C. H. GOH. P. Y. C. LEE. K. BOSE Right camera Front camera Fig. I Diagram of the experimental procedure. Table I. Mid-muscle cross-sectional areas of the individual bellies of the quadriceps (mean ± I so) and the ratio of each to the rectus femoris. The data are compared with those of Ahmed et al (1983) Muscle belly Area (cml) Rectus femoris 13.5 ± 2.3 Vastus intermedialis 15.0 ± 3.5 Vastus medialis longus 12.8 ± 2.8 Vastus medialis oblique 22.6 ± 3.7 Vastus lateralis 38.3 ± 4.8 Ratio Goh et al (1995) Ahmed et al (1983) tensions. the ratio of the tension in each muscle belly having been calculated from its cross-sectional area and compared with that of the rectus femoris (Table I). Luminous markers (1.5 mrn in diameter) were placed on the medial and lateral femoral condyles. the tibial tubercle. the fibular head. the lateral malleolus. the superior and inferior poles and the medial and lateral borders of the patella. Two reference markers were attached to the front edge of the bench and one on top of the steel rod (Fig. I). Three motorised cameras (Nikon F50l) were used. one situated anteriorly and the other two on either side of the specimen in an orthogonal arrangement (Fig. I). A frame of reference was established with its origin at the midpoint of the front edge of the bench. The cameras' shutters were linked to a single trigger to capture the position of the knee instantaneously in the three views. The system was calibrated using a wire-frame cube (20 cmx20 cmx20 cm) of 16 markers. The 35 mm photographic slides were projected on to a Mypad-A3 digitising tablet. The markers' positions were digitised sequentially and the data were stored in an IBM-compatible 386 personal computer. A program was written to correct for lens distortion and parallax errors in the data. The three markers on the leg were used to define the motion of the rigid body segment and the axis vector of the leg was determined using matrix methods (Pipes 1963). The femoral axis vector was defined by the markers on the femoral condyles and on the steel rod. The knee angles were calculated from the cross-product of these two axis vectors. The patellar axes and motion were determined from the four patellar markers and the markers on the femoral condyles (Fig. 2). We studied patellar flexion (patellar angulation in the sagittal plane). patellar tilt (patellar angulation about its caudocranial axis). patellar rotation (rotation in the coronal plane) and patellar shift (mediolateral translation of the patella in the coronal plane). THE JOURNAL OF BONE AND JOINT SURGERY

3 A CADAVER STUDY OF THE FUNCTION OF THE OBLIQUE PART OF VASTUS MEDIALIS 227 XF Y F : femoral ".,is Xp. Y P : pelell", a.,is OF : origin llf femoral axe!oo Patellar markers condyle marker condyle marker Fig. 2 The femoral and patellar axes as defined by the four patellar markers and the markers on the femoral condyles. Patellar tracking. The joint surfaces were sprayed constantly with Ringer's solution. The leg was first photographed in the neutral position (i.e.. hanging at 90 flexion). Weights were then added to each wire in the ratio given in Table I and the leg was allowed to oscillate until it came to rest. The new position of the leg was then photographed. The procedure was repeated with each increment of weights until nearly full extension of the knee was achieved. Data were recorded between knee flexion angles of 900 and 20. Measurement at less than 20 of knee flexion was not possible because the markers were obscured and could not be photographed by the cameras. Patellofemoral contact. Pressure-sensitive films (Fuji Prescale Film. Pressure Grade Low. Fuji Photo Film Co Ltd. Japan) were used to study the contact areas at 30 and 60 of flexion. The film was cut to the size of the patella and sealed in a plastic envelope. The wire tensions needed to achieve the desired knee flexion angles were determined from the previous experiments. As in the patellar tracking study. the leg was allowed to come to rest after the application of the weights. It was then held in that position. the tension in the wires was released and the pressure-sensitive film was inserted between the patella and the femoral condyles. The patella was then repositioned and the wires again put under tension. Care was taken to ensure that no sliding movements of the patella occurred at this stage. and if they did the sequence was repeated with a new film. The outline of the patella and the positions of the four patellar markers were traced on the film. the contact areas were digitised and a simple program was used to calculate the areas. Experimental groupings. Three types of experiment were carried out in sequence on each specimen. as follows: Group I (normal). The first sequence was to simulate normal knee function. The wire tensions were applied according to the ratio given in Table I. Group 2 (without VMO). The second sequence was to simulate knees with a deficient VMO. The wire simulating the VMO was not loaded but the tensions in the other wires were maintained in the ratio described. Group 3 (without VMO and with reduced VL tension). The third sequence was to simulate knees with a deficient VMO after a lateral release procedure had been performed. The wire simulating the VMO was not loaded and the tension on the wire simulating the VL was reduced by 400/(:. RESULTS The measuring system was found to be accurate to ± 1.5 mm in the calibration volume and the calculation of the angles was accurate to ± 2. The mean peak quadriceps tension (the sum of the tensions in the five wires) was ± 12.6 N at full extension ± 9.6 N at 30 flexion and ± 10.4 N at 60 flexion. Figures 3 to 6 summarise the results of the three experiments performed in sequence on one specimen. Patellar tracking Group I (normal). At 90 of knee flexion. the patellar flexion angle was between 65 and 75. As the knee extended the patellar flexion angle decreased. On average. patellar flexion was found to lag behind knee flexion by about 20 to 30 throughout the range of motion analysed (Fig. 3). At 90 of knee flexion. the patella was in a position of lateral rotation (Fig. 4). As the knee extended. the patella VOL No.2. MARCH 11JIJ5

4 228 J. C. H. GOH. P. Y. C. LEE. K. BOSE iii 0) ::g 0 'x c;::: Group 1 - normal. {]o... Group 2 - without VMO Group 3 - without VMO & reduced VL '.',,',;.s" I.' /.' /.' /.' I....' JII P,!, i " r;tf-- /.; Superior Inferior ) Patellar flexion 20T--r-r------r o Patellar flexion (degrees) Fig. 3 Relationship of the patellar flexion angle to knee flexion angle Group 1 - normal {}.. Group 2 - without VMO Group 3 - without VMO & reduced VL 80 iii 0) ::g g 60 'x c;::: 40 M o. Lateral rotation,,'/,,., I 6 I, : I I I 0,...d I [:{,. \,', '.... 'Q,:..... " :-.. 0 q-. -:... o...,':t.',.,. I.',(.' b,,,i::j T--r-----r Patellar rotation (degrees) Fig. 4 Relationship of the patellar rotation angle to knee flexion angle. rotated medially. decreasing the lateral patellar rotation angle by about 6. Patellar tilt was found to be inconsistent between specie mens. The general pattern. however. was that as the knee 70 extended from 90 of flexion. the patella tilted laterally from a neutral or medially-rotated position (Fig. 5). With further knee extension. it tilted medially again. and towards the end of knee extension it was either in a neutral or a medially-rotated position. The mean overall tilt angle was 5.4 ± 3 laterally. At 90 of knee flexion. the patella was lateral to the midline of the femoral condyles (Fig. 6). As the knee extended it shifted medially but with further knee extension it changed course and shifted slightly laterally. The mean overall shift was 5.5 ± 2.1 mm medially. Group 2 (without VMO). No difference was found in patellar flexion when VMO tension was removed (Fig. 3). Patellar rotation was similar to that of group I. except that in nearly full extension. there was less medial rotation (Fig. 4). Mediolateral tilt was also similar to that of group I. except that the degree of lateral tilt had increased, although not significantly (Fig. 5). At 90 flexion. the patella was displaced more laterally than in group I (4.2 ± 1.8 mm) (Fig. 6). The shift pattern was similar to that of group I but medial shift during extension was less. At nearly full extension the mean overall shift was 4.1 :!: 1.5 mm medially. Group 3 (without VMO and with reduced VL tension). The patterns of patellar flexion. rotation. tilt and shift were similar to those of group 1 (Figs 3 to 6). Patelloremoral contact areas. Figure 7 shows the typical patellofemoral contact patterns of one specimen in all three experiments. Group 1 (normal). The contact occupied 20% and 27% of the patellar articular surface area at 30 and 60 of flexion. respectively (Table II). The region of the superior pole of the patella was in contact at 60 flexion and as extension progressed the contact area migrated inferiorly so that at 30 it was at the mid-region of the patella. At 30 flexion. 65% of the area of contact was on the lateral facet and at % was on the lateral facet. Group 2 (without VMO). The contact area on the medial facet was significantly reduced to about 8% while that on the lateral facet was greatly increased. up to about 92%. The total contact area was less than that of the normal. Group 3 (without VMO and with reduced VL tension). The contact area pattern was similar to that of group I. except that the distribution of contact between the medial and lateral facets was more even. The total area of contact was near to normal. DISCUSSION The terms used in the past to describe patellar kinematics have been confusing and inconsistent making comparison of data from different studies difficult. The use of Cartesian co-ordinates was proposed by van Kampen (1987) and has been adapted in this study. Another difficulty is that different studies have employed different experimental designs. In some. the forces applied were isometric. in some iso- THE JOURNAL OF BONE AND JOINT SURGERY

5 A CADAVER STUDY OF THE FUNCTION OF THE OBLIQUE PART 01-' VASTlJS MEDIALIS Group 1 - normal Group 2 - without VMO Group 3 - without VMO & reduced VL Group 1 - normal Group 2 - without VMO Group 3 - without VMO & reduced VL 80 Lateral tilt M ,. g60"'" L -x ;;:: \ I 40., r-r-r o Patellar tift (degrees) Fig. 5 Relationship of the patellar tilt angle to knee flexion angle. Patellar shift (mm) Fig. 6 Relationship of the patcllar shift to kncc flexion angle. 60' Knee flexion 30' Knee flexion tonic and in some the limb was restrained and in others not. Furthermore, there were differences in the quadriceps tension used and in the methods of simulating the tension (single or multiple components). Some studies tested the knee in flexion, others in extension. The use of the cross-sectional area of an individual muscle belly to estimate its tension has not been fully validated, although Ikai and Fukunaga (1968) reported that maximum tension and cross-sectional area are directly proportional. According to Winter (1979), if muscle!> of the same group share a common load they probably do so proportionally to their relative cross-sectional areas. Ahmed et al (1983), however, cautioned that the tensions in the individual components of the quadriceps may not accord with their cross-sectional areas throughout the range of movements. Furthermore, the 'anatomical' cross-sections taken from the cadaver do not take account of the differences in angulation within the muscle. i.e.. the 'physiological' cross-section. With insufficient information to validate the method and lack of a more suitable method available. we used cross-sectional areas as a rough approximation. All cadaver studies have the limitation that it is difficult to reproduce the exact physiological conditions. In our study. for instance. the soft tissues surrounding the knee were removed. including the patellar retinaculum. on the assumption that they had a uniform effect on the patella. and that removing them would not alter the tension dis- L II L II a) Group 1 - normal L II L II b) Group 2 - without VMO L M L II c) Group 3 - without VMO and reduced VL Fig. 7 Panem of patcllofemoral contact arca at J()' and 6()' kncl" t1c,illn VOL. 77-B. No.2. MARCH 1995

6 230 J. C. H. GOH. P. Y. C. LEE. K. BOSE Table II. Patellar contact area (mean ± I SD) at 30 and 60 knee flexion 60 flexion 30 flexion Contact Total Lateral Contact ToUd Laurm area (cml) contact (%) contact (%) area (cml) contact (%) contact (%) Group 1* 3.1 ± ± Group 2* 2.6 ± Group 3* 2.8 ± * see text 1.9 ± 0.4 / ± 0.5 /9.5 5/.8 tribution. The use of wires to simulate muscle force vectors is a reasonable model but care must be taken to ensure that their attachment to the patella is accurate and that their direction of pull is appropriate. The simulation of VMO weakness by not pulling on the VMO wire represented extreme pathology, and the 40% reduction of the VL tension to simulate the effects of a lateral release may be criticised since lateral release surgery is designed primarily to realign the lateral force vector rather than to weaken the VL. It is therefore necessary to view results from such studies with care, taking into account the assumptions made and the inherent limitations of the experimental method. In our study. the normal patellar kinematics during knee extension were characterised by a decreasing patellar flexion angle, decreasing lateral rotation. lateral tilt, and medial shift of an initially laterally placed patella. The patellar flexion angles lagged behind the knee flexion angles. These findings are similar to those of van Ejiden (1985) and van Kampen (1987), although they studied flexion rather than extension. Removal of the VMO caused no appreciable change, probably because the VMO contributes very little to the extension force that causes patellar flexion (Lieb and Perry 1968). From its laterally rotated position at 90 flexion the patella moved during extension into medial rotation as was observed by Reider. Marshall and Ring (1981). This patellar rotation occurs as the patella rides up the condylar groove, which itself slopes laterally from below to above. Removal of the VMO did not therefore alter the patellar rotation pattern until nearly full extension when medial rotation was slightly decreased. Patellar tilt during knee flexion was described by van Kampen (1987) as wavering, i.e.. varying from medial tilt to lateral tilt and then back again. Reider et al (1981) reported an average medial tilt of 12, from 90 of flexion to full extension, more than was observed in our study. With the VMO removed, the medial tilt was reduced. Reider et al (1981) also reported a medial shift of the patella averaging 14 mm (7 to 21) during knee extension and van Kampen (1987) reported a medial shift which ranged from 4.9 mm to 16.2 mm. The shift observed by us was much less, ranging from 3.3 mm to 8.1 mm. With the VMO removed. the average medial shift was reduced by 4.2 mm compared with the normal. Removal of the medial force applied by the VMO results in a more laterally directed tension in the quadriceps and a greater load on the lateral facet. This effect was noted at both 30 and 60 of flexion. Ahmed et al (1983) found that with the VMO removed, the pressure zone shifted entirely to the lateral facet of the patella. Lieb and Perry (1968) and Bose et al (1980) thought that the VMO was of significance mainly in the last phases of extension and our experiments support this belief. In the absence of the VMO significant deviation from the normal kinematics occurred only at nearly full extension. The patellofemoral contact studies, however, indicate that the VMO plays an important role in controlling the contact area and pressure distribution throughout the range of knee motion. There was evidence of excessive contact pressure when the VMO was absent, even when the patellar kinematics at nearly full extension appeared relatively normal. Lateral release is meant to alter the pressure distribution in the patellofemoral joint. by medialising the resultant quadriceps force but previous studies have not shown that the procedure has a significant effect on contact patterns and pressures. Van Kampen (1987) observed that the patellar tracking pattern did not change significantly after lateral retinaculum release; it only influenced the patellar position at nearly full extension. In our study a large reduction ( 40%) of the lateral vector was required to counteract the lateral displacement of the patella caused by an absent VMO. In clinical practice lateral retinaculum release may not achieve a similar reduction in the lateral vector and were such a 40% reduction to be achieved it would greatly weaken the quadriceps as a whole and possibly result itself in a functional deficit. A more logical approach therefore may be to determine the minimum reduction of the lateral vector required and/or to improve the medial force vector by muscle-strengthening programmes. Conclusion. During flexion/extension of the knee the patella rotates about three orthogonal axes and translates mediolaterally and inferosuperiorly. The kinematic pattern is influenced by the contours of the femoral condyles and the patellar articular surface, the tibiofemoral angle and the resultant vector of the quadriceps muscle. The VMO is a distinct muscle within the quadriceps group, deficiency of whose function results in abnormal kinematics of the patella with alteration of the patellofemoral contact area and increase in load on the lateral patellar facet throughout the range of knee motion. THE JOURNAL OF BONE AND JOINT SURGERY

7 A CADAVER STUDY OF THE FUNCTION OF THE OBLIQUE PART OF VASTUS MEDIALIS 231 A simulated lateral release procedure in which the lateral force was reduced by 40%, restored the normal kinematics. The authors wish to thank Mr Ang Eng Joo, Ms Grace Lee and Mr Hazlan Sanusi for their dedicated assistance in carrying out this project. Funding was provided by the National University of Singapore Research Grant (RP ). No benefits in any fonn have been received or will be received from a commercial party related directly or indirectly to the subject of this article. REFERENCES Ahmed AM, Burke DL, Yu A. In-vitro measurement of static pressure distribution in synovial joints-part II: retropatellar surfaces. J Biomech Eng 1983: 105: Bose K, Kanagasuntheram R, Osman MBH. Vastus medialis oblique: an anatomic and physiologic study. Orthopedics 1980:3: van Ejiden TGML. The mechanical behaviour of the patellofemoral joint. Dissertation. University of Amsterdam Ficat RP, Hungerford DS. Disorders of the patella-femoral joint. Paris: Masson Huberti HH, Hayes WC. Patellofemoral contact pressures: the influence of Q-angle and tendofemoral contact. J Bone Joint Surg [Ami I 984:66-A:7 I Hughston JC. Subluxation of the patella. J Bone Joint Surg [Ami 1968:50-A: lkai M, Fukunaga T. Calculation of muscle strength per unit crosssectional area of human muscle by means of ultrasonic measurement. Int Z agnew Physiol sinschi Arbeitphysiol 1968:26: Insall J. Patellar pain. J Bone Joint Surg [Ami I 982:64-A: van Kampen A. The three-dimensional tracking pattern of the patella. Dissertation. University of Nijmegen Larson RL, Cabaud HE, Slocum DB, et ai. The patellar compression syndrome: surgical treatment by lateral retinacular release. Clin Orthop 1978:134: Lieb FJ, Perry J. Quadriceps function: an anatomical and mechanical study using amputated limbs. J Bone Joint Surg [Ami 1968: 50-A: Pipes LA. Matrix methods for engineering. Englewood Cliffs, UK: Prentice-Hail, Reider B, Manhall JL, Ring B. Patellar tracking. Clin Ort/lOp 1981:157: Winter DA. Biomechanics of human mo ement. Canada: A Wiley-Interscience Publication, VOL. 77 B. No, 2. MARCH 1995

A CADAVER STUDY OF THE FUNCTION OF THE OBLIQUE PART OF VASTUS MEDIALIS

A CADAVER STUDY OF THE FUNCTION OF THE OBLIQUE PART OF VASTUS MEDIALIS A ADAVER STUDY OF THE FUNTION OF THE OBLIQUE PART OF VASTUS MEDIALIS JAMES. H. GOH. PETER Y.. LEE. KAMAL BOSE F,-o,,i the National Utiit e,sir Hospital, Singapore Six normal cadaver lower limbs were mounted

More information

Myology of the Knee. PTA 105 Kinesiology

Myology of the Knee. PTA 105 Kinesiology Myology of the Knee PTA 105 Kinesiology Objectives Describe the planes of motion and axes of rotation of the knee joint Visualize the origins and insertions of the muscles about the knee List the innervations

More information

Computational Evaluation of Predisposing Factors to Patellar Dislocation

Computational Evaluation of Predisposing Factors to Patellar Dislocation Computational Evaluation of Predisposing Factors to Patellar Dislocation Clare K. Fitzpatrick 1, Robert Steensen, MD 2, Jared Bentley, MD 2, Thai Trinh 2, Paul Rullkoetter 1. 1 University of Denver, Denver,

More information

Iliotibial Band Tension Reduces Patellar Lateral Stability

Iliotibial Band Tension Reduces Patellar Lateral Stability Iliotibial Band Tension Reduces Patellar Lateral Stability Azhar M. Merican, 1,2 Farhad Iranpour, 2 Andrew A. Amis 2,3 1 Department of Orthopaedic Surgery, University Malaya Medical Centre, 50603 Kuala

More information

Do Persons with PFP. PFJ Loading? Biomechanical Factors Contributing to Patellomoral Pain: The Dynamic Q Angle. Patellofemoral Pain: A Critical Review

Do Persons with PFP. PFJ Loading? Biomechanical Factors Contributing to Patellomoral Pain: The Dynamic Q Angle. Patellofemoral Pain: A Critical Review Biomechanical Factors Contributing to Patellomoral Pain: The Dynamic Q Angle Division Biokinesiology & Physical Therapy Co Director, oratory University of Southern California Movement Performance Institute

More information

RN(EC) ENC(C) GNC(C) MN ACNP *** MECHANISM OF INJURY.. MOST IMPORTANT *** - Useful in determining mechanism of injury / overuse

RN(EC) ENC(C) GNC(C) MN ACNP *** MECHANISM OF INJURY.. MOST IMPORTANT *** - Useful in determining mechanism of injury / overuse HISTORY *** MECHANISM OF INJURY.. MOST IMPORTANT *** Age of patient Sport / Occupation - Certain conditions are more prevalent in particular age groups (Osgood Schlaters in youth / Degenerative Joint Disease

More information

The Knee. Clarification of Terms. Osteology of the Knee 7/28/2013. The knee consists of: The tibiofemoral joint Patellofemoral joint

The Knee. Clarification of Terms. Osteology of the Knee 7/28/2013. The knee consists of: The tibiofemoral joint Patellofemoral joint The Knee Clarification of Terms The knee consists of: The tibiofemoral joint Patellofemoral joint Mansfield, p273 Osteology of the Knee Distal Femur Proximal tibia and fibula Patella 1 Osteology of the

More information

Orthopaedic Surgeon, University Hospital of Heraklion, and Creta Interclinic Hospital, 47 Filipoupoleos str., Heraklion, 71305, Crete, Greece.

Orthopaedic Surgeon, University Hospital of Heraklion, and Creta Interclinic Hospital, 47 Filipoupoleos str., Heraklion, 71305, Crete, Greece. Authors Postprint of: Christoforakis J, Bull AMJ, Strachan R, Shymkiw R, Senavongse W, Amis AA. Effects of lateral retinacular release on the lateral stability of the patella. Knee Surg. Sports Traumatol.

More information

and K n e e J o i n t Is the most complicated joint in the body!!!!

and K n e e J o i n t Is the most complicated joint in the body!!!! K n e e J o i n t K n e e J o i n t Is the most complicated joint in the body!!!! 1-Consists of two condylar joints between: A-The medial and lateral condyles of the femur and The condyles of the tibia

More information

Why does it matter? Patellar Instability 7/23/2018. What is the current operation de jour? Common. Poorly taught. Poorly treated

Why does it matter? Patellar Instability 7/23/2018. What is the current operation de jour? Common. Poorly taught. Poorly treated Patellar Instability It s Really Not That Difficult! David Shneider MD East Lansing, MI www.patellamdcom Detroit Sports Medicine Foundation July 2018 Why does it matter? Common Poorly taught Poorly treated

More information

Knee Joint Anatomy 101

Knee Joint Anatomy 101 Knee Joint Anatomy 101 Bone Basics There are three bones at the knee joint femur, tibia and patella commonly referred to as the thighbone, shinbone and kneecap. The fibula is not typically associated with

More information

Revolution. Unicompartmental Knee System

Revolution. Unicompartmental Knee System Revolution Unicompartmental Knee System While Total Knee Arthroplasty (TKA) is one of the most predictable procedures in orthopedic surgery, many patients undergoing TKA are in fact excellent candidates

More information

BIOMECHANICS OF PATELLA FUNCTION. PETER G. KRAMER, EdD, PT*

BIOMECHANICS OF PATELLA FUNCTION. PETER G. KRAMER, EdD, PT* 01 96-601 l/86/0806-0301$02.00/0 THE JOURNAL OF ORTHOPAED~C AND SPORTS PHYSICAL THERAPY Copyright 0 1986 by The Orthopaedic and Sports Physical Therapy Sections of the American Physical Therapy Association

More information

Int J Physiother. Vol 1(3), , August (2014) ISSN:

Int J Physiother. Vol 1(3), , August (2014) ISSN: Int J Physiother. Vol 1(3), 120-126, August (2014) ISSN: 2348-8336 ABSTRACT Sreekar Kumar Reddy.R 1 B. Siva kumar 2 N. Vamsidhar 2 G. Haribabu 3 Background: Patellofemoral pain syndrome is a very common

More information

The Knee Joint By Prof. Dr. Muhammad Imran Qureshi

The Knee Joint By Prof. Dr. Muhammad Imran Qureshi The Knee Joint By Prof. Dr. Muhammad Imran Qureshi Structurally, it is the Largest and the most complex joint in the body because of the functions that it performs: Allows mobility (flexion/extension)

More information

Assessment of Patellar Laxity in the in vitro Native Knee

Assessment of Patellar Laxity in the in vitro Native Knee Assessment of Patellar Laxity in the in vitro Native Knee By Mark C. Komosa Submitted to the graduate degree program in Bioengineering and the Graduate Faculty of the University of Kansas in partial fulfillment

More information

Biomechanics of the Knee. Valerie Nuñez SpR Frimley Park Hospital

Biomechanics of the Knee. Valerie Nuñez SpR Frimley Park Hospital Biomechanics of the Knee Valerie Nuñez SpR Frimley Park Hospital Knee Biomechanics Kinematics Range of Motion Joint Motion Kinetics Knee Stabilisers Joint Forces Axes The Mechanical Stresses to which

More information

FACTORS AFFECTING PATELLAR TRACKING IN TOTAL KNEE ARTHROPLASTY

FACTORS AFFECTING PATELLAR TRACKING IN TOTAL KNEE ARTHROPLASTY FACTORS AFFECTING PATELLAR TRACKING IN TOTAL KNEE ARTHROPLASTY Essay submitted in partial fulfillment of M.Sc. Degree in Orthopaedic surgery Cairo University By Ahmed Ali Ahmed Ali Elsayed M.B.B.Ch Supervised

More information

SEVERE VARUS AND VALGUS DEFORMITIES TREATED BY TOTAL KNEE ARTHROPLASTY

SEVERE VARUS AND VALGUS DEFORMITIES TREATED BY TOTAL KNEE ARTHROPLASTY SEVERE VARUS AND VALGUS DEFORMITIES TREATED BY TOTAL KNEE ARTHROPLASTY Th. KARACHALIOS, P. P. SARANGI, J. H. NEWMAN From Winford Orthopaedic Hospital, Bristol, England We report a prospective case-controlled

More information

Noninvasive Assessment of Sagittal Knee Kinematics After Total Knee Arthroplasty

Noninvasive Assessment of Sagittal Knee Kinematics After Total Knee Arthroplasty ISPUB.COM The Internet Journal of Orthopedic Surgery Volume 16 Number 2 Noninvasive Assessment of Sagittal Knee Kinematics After Total Knee Arthroplasty V Chester, E Biden, T Barnhill Citation V Chester,

More information

JOINT RULER. Surgical Technique For Knee Joint JRReplacement

JOINT RULER. Surgical Technique For Knee Joint JRReplacement JR JOINT RULER Surgical Technique For Knee Joint JRReplacement INTRODUCTION The Joint Ruler * is designed to help reduce the incidence of flexion, extension, and patellofemoral joint problems by allowing

More information

Patellofemoral Joint Kinematics: The Circular Path of the Patella around the Trochlear Axis

Patellofemoral Joint Kinematics: The Circular Path of the Patella around the Trochlear Axis Patellofemoral Joint Kinematics: The Circular Path of the Patella around the Trochlear Axis Farhad Iranpour, 1 Azhar M. Merican, 1,2 Ferdinando Rodriguez Y. Baena, 3,4 Justin P. Cobb, 1 Andrew A. Amis

More information

Which treatment? How I do a Maquet Osteotomy? Maquet: Maquet: Biomechanics. Maquet: /21/10. Philippe Landreau, MD

Which treatment? How I do a Maquet Osteotomy? Maquet: Maquet: Biomechanics. Maquet: /21/10. Philippe Landreau, MD Which treatment? How I do a Maquet Osteotomy? Philippe Landreau, MD Paris, France And if the patient is young?! Anterior displacement of the tibial tuberosity design to reduce the joint reactive force

More information

Where Is the Natural Internal-External Rotation Axis of the Tibia?

Where Is the Natural Internal-External Rotation Axis of the Tibia? Where Is the Natural Internal-External Rotation Axis of the Tibia? Daniel Boguszewski 1, Paul Yang 2, Nirav Joshi 2, Keith Markolf 1, Frank Petrigliano 1, David McAllister 1. 1 University of California

More information

Masterclass. Tips and tricks for a successful outcome. E. Verhaven, M. Thaeter. September 15th, 2012, Brussels

Masterclass. Tips and tricks for a successful outcome. E. Verhaven, M. Thaeter. September 15th, 2012, Brussels Masterclass Tips and tricks for a successful outcome September 15th, 2012, Brussels E. Verhaven, M. Thaeter Belgium St. Nikolaus-Hospital Orthopaedics & Traumatology Ultimate Goal of TKR Normal alignment

More information

ANATOMIC. Navigated Surgical Technique 4 in 1 TO.G.GB.016/1.0

ANATOMIC. Navigated Surgical Technique 4 in 1 TO.G.GB.016/1.0 ANATOMIC Navigated Surgical Technique 4 in 1 TO.G.GB.016/1.0 SCREEN LAYOUT Take screenshot Surgical step Dynamic navigation zone Information area and buttons 2 SCREEN LAYOUT Indicates action when yellow

More information

Muscle Testing of Knee Extensors. Yasser Moh. Aneis, PhD, MSc., PT. Lecturer of Physical Therapy Basic Sciences Department

Muscle Testing of Knee Extensors. Yasser Moh. Aneis, PhD, MSc., PT. Lecturer of Physical Therapy Basic Sciences Department Muscle Testing of Knee Extensors Yasser Moh. Aneis, PhD, MSc., PT. Lecturer of Physical Therapy Basic Sciences Department Muscle Testing of Knee Extensors othe Primary muscle Quadriceps Femoris -Rectus

More information

Patellofemoral Instability Jacqueline Munch, MD April 23, 2016

Patellofemoral Instability Jacqueline Munch, MD April 23, 2016 Patellofemoral Instability Jacqueline Munch, MD April 23, 2016 With many thanks to Beth Shubin Stein, MD What is the Problem??? THIS IS THE PROBLEM Patella Stability Factors contributing to stability Articular

More information

ANATYOMY OF The thigh

ANATYOMY OF The thigh ANATYOMY OF The thigh 1- Lateral cutaneous nerve of the thigh Ι) Skin of the thigh Anterior view 2- Femoral branch of the genitofemoral nerve 1, 2 and 3 are From the lumber plexus 5- Intermediate cutaneous

More information

The Knee. Tibio-Femoral

The Knee. Tibio-Femoral The Knee Tibio-Femoral Osteology Distal Femur with Proximal Tibia Largest Joint Cavity in the Body A modified hinge joint with significant passive rotation Technically, one degree of freedom (Flexion/Extension)

More information

The Knee. Two Joints: Tibiofemoral. Patellofemoral

The Knee. Two Joints: Tibiofemoral. Patellofemoral Evaluating the Knee The Knee Two Joints: Tibiofemoral Patellofemoral HISTORY Remember the questions from lecture #2? Girth OBSERVATION TibioFemoral Alignment What are the consequences of faulty alignment?

More information

Clinical Evaluation and Imaging of the Patellofemoral Joint Common clinical syndromes

Clinical Evaluation and Imaging of the Patellofemoral Joint Common clinical syndromes Clinical Evaluation and Imaging of the Patellofemoral Joint Common clinical syndromes A. Panagopoulos Lecturer in Orthopaedics Medical School, Patras University Objectives Anatomy of patellofemoral joint

More information

The Transpatellar Approach for the Knee in the Laboratory

The Transpatellar Approach for the Knee in the Laboratory The Transpatellar Approach for the Knee in the Laboratory Azhar M. Merican, 1,2 Kanishka M. Ghosh, 3 David J. Deehan, 4 Andrew A. Amis 1,3 1 Musculoskeletal Surgery Department, Imperial College London,

More information

The Knee. Prof. Oluwadiya Kehinde

The Knee. Prof. Oluwadiya Kehinde The Knee Prof. Oluwadiya Kehinde www.oluwadiya.sitesled.com The Knee: Introduction 3 bones: femur, tibia and patella 2 separate joints: tibiofemoral and patellofemoral. Function: i. Primarily a hinge joint,

More information

3. Examination of Knee Kinematics In Vitro

3. Examination of Knee Kinematics In Vitro 3. Examination of Knee Kinematics In Vitro 3.1 Introduction This chapter details two in vitro studies that were conducted to better understand the kinematic behavior of the knee. First, the role of graft

More information

Where to Draw the Line:

Where to Draw the Line: Where to Draw the Line: Anatomical Measurements Used to Evaluate Patellofemoral Instability Murray Grissom, MD 1 Bao Do, MD 2 Kathryn Stevens, MD 2 1 Santa Clara Valley Medical Center, San Jose, CA 2 Stanford

More information

Mr. S. Tanweer Ashraf MS, MRCS (Ed), FRCS (Eng). FRCS (Tr&Orth) MSc Ortho Engineering (Cardiff),

Mr. S. Tanweer Ashraf MS, MRCS (Ed), FRCS (Eng). FRCS (Tr&Orth) MSc Ortho Engineering (Cardiff), Mr. S. Tanweer Ashraf MS, MRCS (Ed), FRCS (Eng). FRCS (Tr&Orth) MSc Ortho Engineering (Cardiff), Consultant Knee Surgeon NHS: The Royal Orthopaedic Hospital & Queen Elizabeth Hospital, Birmingham MRI Knee:

More information

CHAPTER 8: THE BIOMECHANICS OF THE HUMAN LOWER EXTREMITY

CHAPTER 8: THE BIOMECHANICS OF THE HUMAN LOWER EXTREMITY CHAPTER 8: THE BIOMECHANICS OF THE HUMAN LOWER EXTREMITY _ 1. The hip joint is the articulation between the and the. A. femur, acetabulum B. femur, spine C. femur, tibia _ 2. Which of the following is

More information

Kinematic vs. mechanical alignment: What is the difference?

Kinematic vs. mechanical alignment: What is the difference? Kinematic vs. mechanical alignment: What is the difference? In this 4 Questions interview, Stephen M. Howell, MD, explains the potential benefits of 3D alignment during total knee replacement. Introduction

More information

A Patient s Guide to Patellofemoral Problems

A Patient s Guide to Patellofemoral Problems A Patient s Guide to Patellofemoral Problems 2350 Royal Boulevard Suite 200 Elgin, IL 60123 Phone: 847.931.5300 Fax: 847.931.9072 DISCLAIMER: The information in this booklet is compiled from a variety

More information

CONTRIBUTING SURGEON. Barry Waldman, MD Director, Center for Joint Preservation and Replacement Sinai Hospital of Baltimore Baltimore, MD

CONTRIBUTING SURGEON. Barry Waldman, MD Director, Center for Joint Preservation and Replacement Sinai Hospital of Baltimore Baltimore, MD CONTRIBUTING SURGEON Barry Waldman, MD Director, Center for Joint Preservation and Replacement Sinai Hospital of Baltimore Baltimore, MD System Overview The EPIK Uni is designed to ease the use of the

More information

Biomechanics of Two Reconstruction Techniques for Elbow Ulnar Collateral Ligament Insufficiency

Biomechanics of Two Reconstruction Techniques for Elbow Ulnar Collateral Ligament Insufficiency Biomechanics of Two Reconstruction Techniques for Elbow Ulnar Collateral Ligament Insufficiency Justin E. Chronister, MD 1, Randal P. Morris, BS 2, Clark R. Andersen, MS 2, J. Michael Bennett, MD 3, Thomas

More information

Muscles of the Thigh. 6.1 Identify, describe the attachments of and deduce the actions of the muscles of the thigh: Anterior group

Muscles of the Thigh. 6.1 Identify, describe the attachments of and deduce the actions of the muscles of the thigh: Anterior group Muscles of the Thigh 6.1 Identify, describe the attachments of and deduce the actions of the muscles of the thigh: Anterior group Sartorius: This is a long strap like muscle with flattened tendons at each

More information

BIOMECHANICAL MECHANISMS FOR DAMAGE: RETRIEVAL ANALYSIS AND COMPUTATIONAL WEAR PREDICTIONS IN TOTAL KNEE REPLACEMENTS

BIOMECHANICAL MECHANISMS FOR DAMAGE: RETRIEVAL ANALYSIS AND COMPUTATIONAL WEAR PREDICTIONS IN TOTAL KNEE REPLACEMENTS Journal of Mechanics in Medicine and Biology Vol. 5, No. 3 (2005) 469 475 c World Scientific Publishing Company BIOMECHANICAL MECHANISMS FOR DAMAGE: RETRIEVAL ANALYSIS AND COMPUTATIONAL WEAR PREDICTIONS

More information

ANATOMIC SURGICAL TECHNIQUE. 5 in 1. Conventional instrumentation 07/11/2013

ANATOMIC SURGICAL TECHNIQUE. 5 in 1. Conventional instrumentation 07/11/2013 ANATOMIC SURGICAL TECHNIQUE 5 in 1 Conventional instrumentation PRO.GB.933/1.0 Octobre 2013 2 Tibial step 3 Intramedullary technique - Based on the preoperative plan, drill the medullary canal with the

More information

Patellofemoral Instability

Patellofemoral Instability Disclaimer This movie is an educational resource only and should not be used to manage Patellofemoral Instability. All decisions about the management of Patellofemoral Instability must be made in conjunction

More information

Ligamentous and Meniscal Injuries: Diagnosis and Management

Ligamentous and Meniscal Injuries: Diagnosis and Management Ligamentous and Meniscal Injuries: Diagnosis and Management Daniel K Williams, MD Franciscan Physician Network Orthopedic Specialists September 29, 2017 No Financial Disclosures INTRODUCTION Overview of

More information

7/20/14. Patella Instability. Alignment. PF contact areas. Tissue Restraints. Pain. Acute Blunt force trauma Disorders of the Patellafemoral Joint

7/20/14. Patella Instability. Alignment. PF contact areas. Tissue Restraints. Pain. Acute Blunt force trauma Disorders of the Patellafemoral Joint Patella Instability Acute Blunt force trauma Disorders of the Patellafemoral Joint Evan G. Meeks, M.D. Orthopaedic Surgery Sports Medicine The University of Texas - Houston Pivoting action Large effusion

More information

UNIT 7 JOINTS. Knee and Ankle Joints DR. ABDEL-MONEM A. HEGAZY

UNIT 7 JOINTS. Knee and Ankle Joints DR. ABDEL-MONEM A. HEGAZY UNIT 7 JOINTS Knee and Ankle Joints BY DR. ABDEL-MONEM A. HEGAZY (Degree in Bachelor of Medicine and Surgery with honor 1983, Dipl."Gynaecology and Obstetrics "1989, Master "Anatomy and Embryology "1994,

More information

Please differentiate an internal derangement from an external knee injury.

Please differentiate an internal derangement from an external knee injury. Knee Orthopaedic Tests Sports and Knee Injuries James J. Lehman, DC, MBA, DABCO University of Bridgeport College of Chiropractic Knee Injury Strain, Sprain, Internal Derangement Anatomy of the Knee Please

More information

CT Evaluation of Patellar Instability

CT Evaluation of Patellar Instability CT Evaluation of Patellar Instability Poster No.: C-2157 Congress: ECR 2014 Type: Educational Exhibit Authors: R. Ruef, C. Edgar, C. Lebedis, A. Guermazi, A. Kompel, A. Murakami; Boston, MA/US Keywords:

More information

The Lower Limb II. Anatomy RHS 241 Lecture 3 Dr. Einas Al-Eisa

The Lower Limb II. Anatomy RHS 241 Lecture 3 Dr. Einas Al-Eisa The Lower Limb II Anatomy RHS 241 Lecture 3 Dr. Einas Al-Eisa Tibia The larger & medial bone of the leg Functions: Attachment of muscles Transfer of weight from femur to skeleton of the foot Articulations

More information

PediLoc Extension Osteotomy Plate (PLEO)

PediLoc Extension Osteotomy Plate (PLEO) PediLoc Extension Osteotomy Plate (PLEO) Left PLEO Plates Sizes: 6, 8 and 10 hole plates Right PLEO Plates Sizes: 6, 8 and 10 hole plates PediLoc Extension Osteotomy Plate The technique description herein

More information

Effects of Variation in Surgical Technique on Range of Motion in Total Knee Replacement

Effects of Variation in Surgical Technique on Range of Motion in Total Knee Replacement 1 Effects of Variation in Surgical Technique on Range of Motion in Total Knee Replacement Dipnil Chowdhury, Ronald E. McNair Scholar, Penn State University Dr. Stephen J. Piazza Department of Kinesiology,

More information

Patellofemoral Joint. Question? ANATOMY

Patellofemoral Joint. Question? ANATOMY Doug Elenz is a paid Consultant/Advisor for the Biomet Manufacturing Corporation. Doug Elenz, MD Team Orthopaedic Surgeon The University of Texas Men s Athletic Department Question? Patellofemoral Joint

More information

Recognizing common injuries to the lower extremity

Recognizing common injuries to the lower extremity Recognizing common injuries to the lower extremity Bones Femur Patella Tibia Tibial Tuberosity Medial Malleolus Fibula Lateral Malleolus Bones Tarsals Talus Calcaneus Metatarsals Phalanges Joints - Knee

More information

Anterior knee pain.

Anterior knee pain. Anterior knee pain What are the symptoms? Anterior knee pain is very common amongst active adolescents and athletes participating in contact sports. It is one of the most common problems/injuries seen

More information

Biomechanical Effects of Femoral Component Axial Rotation in Total Knee Arthroplasty (TKA)

Biomechanical Effects of Femoral Component Axial Rotation in Total Knee Arthroplasty (TKA) Biomechanical Effects of Femoral Component Axial Rotation in Total Knee Arthroplasty (TKA) Mohammad Kia, PhD, Timothy Wright, PhD, Michael Cross, MD, David Mayman, MD, Andrew Pearle, MD, Peter Sculco,

More information

Baraa Ayed حسام أبو عوض. Ahmad Salman. 1 P a g e

Baraa Ayed حسام أبو عوض. Ahmad Salman. 1 P a g e 4 Baraa Ayed حسام أبو عوض Ahmad Salman 1 P a g e Today we are going to cover these concepts: Iliotibial tract Anterior compartment of the thigh and the hip Medial compartment of the thigh Femoral triangle

More information

TOTAL KNEE ARTHROPLASTY (TKA)

TOTAL KNEE ARTHROPLASTY (TKA) TOTAL KNEE ARTHROPLASTY (TKA) 1 Anatomy, Biomechanics, and Design 2 Femur Medial and lateral condyles Convex, asymmetric Medial larger than lateral 3 Tibia Tibial plateau Medial tibial condyle: concave

More information

Mako Partial Knee Medial bicompartmental

Mako Partial Knee Medial bicompartmental Mako Partial Knee Medial bicompartmental Surgical reference guide Mako Robotic-Arm Assisted Surgery Table of contents Implant compatibility.... 3 Pre-operative planning.... 4 Intra-operative planning....

More information

A lateral approach defect closure technique with deep fascia flap for valgus knee TKA

A lateral approach defect closure technique with deep fascia flap for valgus knee TKA Jiang and Fernandes Journal of Orthopaedic Surgery and Research (2015) 10:173 DOI 10.1186/s13018-015-0316-3 RESEARCH ARTICLE Open Access A lateral approach defect closure technique with deep fascia flap

More information

ACL Forces and Knee Kinematics Produced by Axial Tibial Compression During a Passive Flexion Extension Cycle

ACL Forces and Knee Kinematics Produced by Axial Tibial Compression During a Passive Flexion Extension Cycle ACL Forces and Knee Kinematics Produced by Axial Tibial Compression During a Passive Flexion Extension Cycle Keith L. Markolf, Steven R. Jackson, Brock Foster, David R. McAllister Biomechanics Research

More information

RIGIDFIX CURVE CROSS PIN SYSTEM

RIGIDFIX CURVE CROSS PIN SYSTEM RIGIDFIX CURVE CROSS PIN SYSTEM This publication is not intended for distribution in the USA. FAQ SUMMARY RIGIDFIX CURVE CROSS PIN SYSTEM FREQUENTLY ASKED QUESTIONS (FAQ) SUMMARY 1 Why do the pins enter

More information

Patellofemoral Pathology

Patellofemoral Pathology Patellofemoral Pathology Matthew Murray, MD UT Health Science Center/UT Medicine Sports Medicine and Arthroscopic Surgery I have disclosed that I am a consultant for Biomet Orthopaedics. Anterior Knee

More information

Knee Android Model Reproducing Internal-External Rotation with Screw-Home Movement of the Human Knee

Knee Android Model Reproducing Internal-External Rotation with Screw-Home Movement of the Human Knee Journal of Robotics, Networking and Artificial Life, Vol. 3, No. 2 (September 2016), 69-73 Knee Android Model Reproducing Internal-External Rotation with Screw-Home Movement of the Human Knee Daichi Yamauchi,

More information

In the name of god. Knee. By: Tofigh Bahraminia Graduate Student of the Pathology Sports and corrective actions. Heat: Dr. Babakhani. Nov.

In the name of god. Knee. By: Tofigh Bahraminia Graduate Student of the Pathology Sports and corrective actions. Heat: Dr. Babakhani. Nov. In the name of god Knee By: Tofigh Bahraminia Graduate Student of the Pathology Sports and corrective actions Heat: Dr. Babakhani Nov. 2014 1 Anatomy-Bones Bones Femur Medial/lateral femoral condyles articulate

More information

SOME IDEAS OF THE LIGAMENT CONFIGURATIONS' EFFECT ON STRAIN CONCENTRATIONS

SOME IDEAS OF THE LIGAMENT CONFIGURATIONS' EFFECT ON STRAIN CONCENTRATIONS SOME IDEAS OF THE LIGAMENT CONFIGURATIONS' EFFECT ON STRAIN CONCENTRATIONS K. Yamamoto*, S. Hirokawa**, and T. Kawada*** *Deptment of Mechanical Engineering, Faculty of Engineering, Kurume Institute of

More information

SIMITRI STABLE IN STRIDE SURGICAL PROCEDURE

SIMITRI STABLE IN STRIDE SURGICAL PROCEDURE Copyright 2016 NGD. All rights reserved Neil Embleton, B.Sc., DVM and Veronica Barkowski, DVM Helivet Mobile Surgical Services, Sundre, AB, Canada July 2016 SIMITRI STABLE IN STRIDE SURGICAL PROCEDURE

More information

Lever system. Rigid bar. Fulcrum. Force (effort) Resistance (load)

Lever system. Rigid bar. Fulcrum. Force (effort) Resistance (load) Lever system lever is any elongated, rigid (bar) object that move or rotates around a fixed point called the fulcrum when force is applied to overcome resistance. Force (effort) Resistance (load) R Rigid

More information

Definition of Anatomy. Anatomy is the science of the structure of the body and the relation of its parts.

Definition of Anatomy. Anatomy is the science of the structure of the body and the relation of its parts. Definition of Anatomy Anatomy is the science of the structure of the body and the relation of its parts. Basic Anatomical Terms Anatomical terms for describing positions: Anatomical position: Supine position:

More information

Evolution. Medial-Pivot Knee System The Bi-Cruciate-Substituting Knee. Key Aspects

Evolution. Medial-Pivot Knee System The Bi-Cruciate-Substituting Knee. Key Aspects Evolution Medial-Pivot Knee System The Bi-Cruciate-Substituting Knee Key Aspects MicroPort s EVOLUTION Medial-Pivot Knee System was designed to recreate the natural anatomy that is lost during a total

More information

5.1 Identify, describe the attachments of and deduce the actions of the muscles of the thigh:

5.1 Identify, describe the attachments of and deduce the actions of the muscles of the thigh: 5.1 Identify, describe the attachments of and deduce the actions of the muscles of the thigh: Anterior group Proximal attachment Distal attachment Sartorius ASIS» Upper part of shaft tibia (middle surface)»

More information

Chapter 10. The Knee Joint. The Knee Joint. Bones. Bones. Bones. Bones. Knee joint. Manual of Structural Kinesiology R.T. Floyd, EdD, ATC, CSCS

Chapter 10. The Knee Joint. The Knee Joint. Bones. Bones. Bones. Bones. Knee joint. Manual of Structural Kinesiology R.T. Floyd, EdD, ATC, CSCS The Knee Joint Chapter 10 The Knee Joint Manual of Structural Kinesiology R.T. Floyd, EdD, ATC, CSCS 2007 McGraw-Hill Higher Education. All rights reserved. 10-1 Knee joint largest joint in body very complex

More information

Medial Patellofemoral Ligament (MPFL) Surgical Technique

Medial Patellofemoral Ligament (MPFL) Surgical Technique Medial Patellofemoral Ligament (MPFL) Surgical Technique Medial Patellofemoral Ligament The medial patellofemoral complex, consisting of the medial patellofemoral ligament (MPFL) and the medial patellotibial

More information

A FINITE ELEMENT STUDY ON THE MEDIAL PATELLOFEMORAL LIGAMENT RECONSTRUCTION. A Thesis. Presented to. The Graduate Faculty of The University of Akron

A FINITE ELEMENT STUDY ON THE MEDIAL PATELLOFEMORAL LIGAMENT RECONSTRUCTION. A Thesis. Presented to. The Graduate Faculty of The University of Akron A FINITE ELEMENT STUDY ON THE MEDIAL PATELLOFEMORAL LIGAMENT RECONSTRUCTION A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree

More information

Role of Peripatellar Retinaculum in Transmission of Forces Within the Extensor Mechanism

Role of Peripatellar Retinaculum in Transmission of Forces Within the Extensor Mechanism 2042 COPYRIGHT 2006 BY THE JOURNAL OF BONE AND JOINT SURGERY, INCORPORATED Role of Peripatellar Retinaculum in Transmission of Forces Within the Extensor Mechanism BY CHRISTOPHER M. POWERS, PHD, PT, YU-JEN

More information

Balanced Body Movement Principles

Balanced Body Movement Principles Balanced Body Movement Principles How the Body Works and How to Train it. Module 3: Lower Body Strength and Power Developing Strength, Endurance and Power The lower body is our primary source of strength,

More information

World Medical & Health Games

World Medical & Health Games Management of Patellofemoral Pain Syndrome João Barroso Orthopaedic department ULS Matosinhos Portugal Introduction Anterior Knee Pain affects 1 in 4 athletes very common! (Knowles et al) Patellofemoral

More information

Joints of the Lower Limb II

Joints of the Lower Limb II Joints of the Lower Limb II Lecture Objectives Describe the components of the knee and ankle joint. List the ligaments associated with these joints and their attachments. List the muscles acting on these

More information

Chronic patellar dislocation in adults

Chronic patellar dislocation in adults CASE STUDY 11 Chronic patellar dislocation in adults What are the reasons for chronic dislocation? Which is the best imaging modality for documentation? How can we treat it? Table CS11 Patellofemoral joint

More information

Double Bundle ACL Reconstruction using the Smith & Nephew Outside-In Anatomic ACL Guide System

Double Bundle ACL Reconstruction using the Smith & Nephew Outside-In Anatomic ACL Guide System Knee Series Technique Guide Double Bundle ACL Reconstruction using the Smith & Nephew Outside-In Anatomic ACL Guide System Luigi Adriano Pederzini, MD Massimo Tosi, MD Mauro Prandini, MD Luigi Milandri,

More information

Biomechanical Characterization of a New, Noninvasive Model of Anterior Cruciate Ligament Rupture in the Rat

Biomechanical Characterization of a New, Noninvasive Model of Anterior Cruciate Ligament Rupture in the Rat Biomechanical Characterization of a New, Noninvasive Model of Anterior Cruciate Ligament Rupture in the Rat Tristan Maerz, MS Eng 1, Michael Kurdziel, MS Eng 1, Abigail Davidson, BS Eng 1, Kevin Baker,

More information

ChiroCredit.com Presents Biomechanics: Focus on

ChiroCredit.com Presents Biomechanics: Focus on ChiroCredit.com Presents Biomechanics: Focus on the Knee Presented by: Ivo Waerlop, DC Shawn Allen, DC 1 Focus on The Knee 2 Pertinent Anatomy Femur Tibia Fibula Patella Prepatellar bursa Infrapatellar

More information

Distal Cut First Femoral Preparation

Distal Cut First Femoral Preparation Surgical Technique Distal Cut First Femoral Preparation Primary Total Knee Arthroplasty LEGION Total Knee System Femoral preparation Contents Introduction...3 DCF femoral highlights...4 Preoperative planning...6

More information

Objectives. The BIG Joint. Case 1. Boney Architecture. Presenter Disclosure Information. Common Knee Problems

Objectives. The BIG Joint. Case 1. Boney Architecture. Presenter Disclosure Information. Common Knee Problems 3:30 4:15 pm Common Knee Problems SPEAKER Christopher J. Visco, MD Presenter Disclosure Information The following relationships exist related to this presentation: Christopher J. Visco, MD: Speaker s Bureau

More information

Knee Surgical Technique

Knee Surgical Technique Knee Surgical Technique COMPASS Universal Hinge by Jimmy Tucker, M.D. Orthopaedic Surgeon Director, Arkansas Sports Medicine, P.A. Little Rock, Arkansas Table of contents Design features 3 Indications

More information

To describe he knee joint, ligaments, structure & To list the main features of other lower limb joints

To describe he knee joint, ligaments, structure & To list the main features of other lower limb joints To describe he knee joint, ligaments, structure & neurovascular supply To demonstrate the ankle joint anatomy To list the main features of other lower limb joints To list main groups of lymph nodes in

More information

Practical 1 Worksheet

Practical 1 Worksheet Practical 1 Worksheet ANATOMICAL TERMS 1. Use the word bank to fill in the missing words. reference side stand body arms palms anatomical forward All anatomical terms have a(n) point which is called the

More information

EMERGENCY PITFALLS IN ORTHOPAEDIC TRAUMA. Thierry E. Benaroch, MD, FRCS MCH Trauma Rounds February 9, 2009

EMERGENCY PITFALLS IN ORTHOPAEDIC TRAUMA. Thierry E. Benaroch, MD, FRCS MCH Trauma Rounds February 9, 2009 EMERGENCY PITFALLS IN ORTHOPAEDIC TRAUMA Thierry E. Benaroch, MD, FRCS MCH Trauma Rounds February 9, 2009 MORAL OF THE STORY Fracture distal radius and intact ulna W/O radius fracture will most likely

More information

Distal Femoral Resection

Distal Femoral Resection Distal Femoral Resection Annie Arteau, Bruno Fuchs Introduction This text is a general description of a distal femoral resection. Focus is on anatomical structures and muscle resection. Each femoral resection

More information

Anterior Cruciate Ligament Surgery

Anterior Cruciate Ligament Surgery Anatomy Anterior Cruciate Ligament Surgery Roger Ostrander, MD Andrews Institute Anatomy Anatomy Function Primary restraint to anterior tibial translation Secondary restraint to internal tibial rotation

More information

OPERATIVE TREATMENT OF THE INTERCONDYLAR FRACTURE OF THE FEMUR

OPERATIVE TREATMENT OF THE INTERCONDYLAR FRACTURE OF THE FEMUR OPERATIVE TREATMENT OF THE INTERCONDYLAR FRACTURE OF THE FEMUR S G Chee, K S Lam, B K Tay, N Balachandran SYNOPSIS Operative treatment of 28 intercondylar fractures of femur were done from 98 to 985. The

More information

OrthoMap Express Knee Product Guide. OrthoMap Express Knee Navigation Software 2.0

OrthoMap Express Knee Product Guide. OrthoMap Express Knee Navigation Software 2.0 OrthoMap Express Knee Product Guide OrthoMap Express Knee Navigation Software 2.0 Product Guide 1 Introduction Introduction The Stryker OrthoMap Express Knee Navigation System is providing surgeons with

More information

Our objectives were to establish the envelope of

Our objectives were to establish the envelope of Intraoperative measurement of knee kinematics in reconstruction of the anterior cruciate ligament A. M. J. Bull, P. H. Earnshaw, A. Smith, M. V. Katchburian, A. N. A. Hassan, A. A. Amis From Imperial College,

More information

The Effect of Patellar Taping on Knee Kinematics during Stair Ambulation in Individuals with Patellofemoral Pain. Abdelhamid Akram F

The Effect of Patellar Taping on Knee Kinematics during Stair Ambulation in Individuals with Patellofemoral Pain. Abdelhamid Akram F The Effect of Patellar Taping on Knee Kinematics during Stair Ambulation in Individuals with Patellofemoral Pain Abdelhamid Akram F Department of Orthopedic Physical Therapy, Faculty of Physical Therapy,

More information

Sports Medicine 15. Unit I: Anatomy. The knee, Thigh, Hip and Groin. Part 4 Anatomies of the Lower Limbs

Sports Medicine 15. Unit I: Anatomy. The knee, Thigh, Hip and Groin. Part 4 Anatomies of the Lower Limbs Sports Medicine 15 Unit I: Anatomy Part 4 Anatomies of the Lower Limbs The knee, Thigh, Hip and Groin Anatomy of the lower limbs In Part 3 of this section we focused upon 11 of the 12 extrinsic muscles

More information

Triathlon Knee System

Triathlon Knee System Triathlon Knee System Express Instruments Surgical Protocol Posterior Stabilized & Cruciate Retaining TriathlonKneeSystem Express Instruments Surgical Protocol Acknowledgments..........................................................2

More information

Case Report Total Knee Arthroplasty in a Patient with Bilateral Congenital Dislocation of the Patella Treated with a Different Method in Each Knee

Case Report Total Knee Arthroplasty in a Patient with Bilateral Congenital Dislocation of the Patella Treated with a Different Method in Each Knee Case Reports in Orthopedics Volume 2015, Article ID 890315, 5 pages http://dx.doi.org/10.1155/2015/890315 Case Report Total Knee Arthroplasty in a Patient with Bilateral Congenital Dislocation of the Patella

More information

Where Is The Natural Flexion-Extension Axis Of The Knee?

Where Is The Natural Flexion-Extension Axis Of The Knee? Where Is The Natural Flexion-Extension Axis Of The Knee? Daniel Boguszewski 1, Paul Yang 2, Keith Markolf 1, Frank Petrigliano 1, David McAllister 1. 1 University of California Los Angeles, Los Angeles,

More information