September 30, Lecture 10

Size: px
Start display at page:

Download "September 30, Lecture 10"

Transcription

1 Disruptive Natural Selection in Sticklebacks field study carried out by Robinson lakes of coastal BC wherever two stickleback species occur in the same lake, they occupy different habitats and make use of different sources limnetic form feeds on zooplankton benthic form feeds on larger invertebrate prey from sediments and submersed aquatic vegetation differ morphologically - ex. gill rakers (bony structure that diverts solids from the gills) smaller in limnetic form than benthic most lakes have one species and most will be of intermediate morphology and habitat use - sometimes feeds in limnetic zone and sometimes in the benthic zone some individuals will mirror the difference in species pair: limnetic form and benthic form: different phenotypes Hypothesis: Prediction: Experiment 1 Experiment 2 disruptive selection is driving evolution because optimization for one form entails costs to adopting the other form difference between two forms are heritable - descendants of either form will remain true to it, even in neutral habitat divergence in morphology will be reflected in foraging efficiency for limnetic or benthic prey - variation in trait must lead to differences in fitness reared offspring of both forms one species under identical lab conditions and diet - do differences persist? Results: yes, traits are heritable feeding trails of foraging efficiency in artificial limnetic and benthic habitats using two food types released fish of one phenotype into either a limnetic or benthic and counted how many prey it caught intake rate: # of prey captures/min capture effort: # bites per prey caught Results: limnetic form: better at eating limnetic prey in limnetic aquarium benthic form: better at eating benthic prey in benthic aquarium Therefore, foraging efficiency is related to phenotype September 30, Lecture 10 Speciation and Hybridization Speciation: evolution of a new species when gene flow is reduced between populations, they may then diverge genetically as a result of mutations, natural selection and genetic drift genetic divergence may eventually lead to speciation - creation of a new species usually creates two or more distinct species from a single ancestral group finches some common ancestor populated all islands, eventually populations diverged (evolved in different environments) Adaptive radiation: process in which one species gives rise to multiple species that exploit different features of the environment 14

2 BIOL 150 Fall 2013 To make distinct species, we need: reproductive isolation: new species created when the diverging population can no longer reproduce sympatric speciation: occurs without geographic isolation - usually due to disruptive selection polymorphism forms, likely due to patchy habitat polymorphism: existence of more than one distinct form of individuals (phenotypes) in a population may cause speciation is differences in form affect reproductive morphology, reproductive timing or reproductive behavior to cause reproductive isolation of the two polymorphs ecological speciation: special case of sympatric morphology, behavior, timing (traits changes due to natural selection pressure - targets of selection) divergent natural selection ex. soapberry bugs use beaks to reach seeds inside fruits native plant fruits (large fruits), nonnative plant fruits (small fruit) evidence for disruptive selection on beak length found that short beaked populations growing on non-native plants and long beaked populations growing on native plants speciation is allopatric: occurs as a result of geographic separation of a population into two or more subpopulations with no movement between them ex. Diane Dodd and fruit flies - divided population into 2, fed one starch and the other maltose brought the two together, only starch flies wanted to mate with other starch, and maltose with maltose ex. lizards - one continuous population, island population begins to diverge due to drift and selection river changes course, runs through population of lizards, population begins to diverge due to drift Sympatric vs. Allopatric Speciation ex. mosquito fish inhabiting blue holes in the bahamas has evolved larger caudal region and smaller heads in the presence of predators than in their absence Sympatric Allopatric Similarities both involve the formation of a new species via reproductive isolation of the gene pool from existing species both occur when natural selection creates genetic divergence between new and ancestral populations Differences involves a reproductive or behavioral separation populations occupy same geographical areas ex. polyploidy in wheat strains involves the physical separation of populations populations occupy different geographical areas ex. adaptive radiation of Galapagos finches Hybridization: if they are so genetically and phenotypically distinct, they may not be able to interbreed - reproductively isolated - offspring have lower fitness hybrid offspring do not develop or reproduce normally called reinforcement, because the traits that isolate populations reproductively are selected for, so the speciation is reinforced sometimes the two species can mate successfully (fertile offspring that survive) may reverse speciation - parents no longer reproductively isolated 15

3 may create new species - if hybrid cannot back-cross with either parent; if it can meet with other hybrids, you have created a whole new species may animal hybrids are sterile because of an uneven number of chromosomes ex. horse: 64 chromosomes; donkey: 62; mule: 63 - odd number, cannot reproduce lots of plant hybrids (~70% of flowering plants) because it can reproduce asexually (apomixis and vegetative reproduction) even if hybrid is sterile, it can persist polyploidy: multiplication of chromosome number offspring cannot back-cross with parents - speciation through reproductive isolation how does it happen? spontaneous doubling after fertilization; union of unreduced gametes if they can: i. mate with other polyploids of the same chromosome number ii. reproduce vegetatively iii. reproduce by apomixis (asexual reproduction in which seeds are formed without meiosis or sexual recombination) then they may be a new species! no species is even perfectly adapted to its environment trade-offs - traits of benefit for one environment will have a cost - energy allocation environment is in flux - not constant natural selection acts only on available variation in the gene pool: just a filter; not creative rand chance - some degree of extinction is not related to fitness: eg. volcano, ice storm, etc. correlation among genes on chromosomes - a beneficial gene may be on the same chromosome as a deleterious one or neutral one Phenotypic plasticity: ability of the genotype to give rise to different phenotypes under different environmental conditions individuals can respond to temporal and spatial changes of environment by moving to a more suitable location and by a direct influence of the environment on gene expression - often see phenotypic plasticity in plants because they can t move norm of reaction: the set of phenotypes expressed by a single genotype across a range of environmental conditions same phenotype in different environments different phenotypes in the same environment if lines intersect - at the place where they intersect, you have the expression of the same phenotype (but still two different genotypes acting) developmental plasticity: occurs during growth - irreversible common in plants (ex. Polygonum persicaria) acclimation: reversible changes in physiology (bullhead catfish in summer vs. winter temperature ranges), morphology or behaviour ex. fish - as long as temperature changes slowly, it can move its optimal temperature range even though these changes are not heritable, natural selection can act on the capacity for plasticity essential plasticity is a way of being adapted to variability in the environment by altering phenotypic expression October 2, Lecture 11 Simbio Lab Review Frequency histogram - graphical representation of how common a particular value is distribution of variable is the arrangement of its values that indicates their frequency of occurrence bar graphs - not always bell shaped 16

4 BIOL 150 Fall 2013 Evolution by natural selection change in allele frequencies within the populations between generations requires: variation in phenotypes - selective forces can only select among the variation that already exists in the population heritability - crabs eat mostly thin shelled snails, but the surviving thick shells reproduce, so the next generation starts over differential survival of different phenotypes if shell thickness is variable and heritable, but variation in thickness does not affect thickness Key: for evolution by natural selection 1. variability within a trait (phenotypic variation) 2. trait must be heritable 3. differences in phenotype must result in differences in survival and reproduction (fitness) there is no selective force acting in any direction because there is no variation in fitness related to phenotype one could evolve, but only because of random change, not by natural selection Mutations change in the structure of genes/chromosomes allows creation of new alleles new shell thicknesses mutation does not occur in any particular direction or in response to any environmental condition mutation is random and generates on average as many thinner as thicker shells (non-directional) variation in the population phenotypes arises by a random chance through mutations despite fact that thicker and thinner shells are equally likely to result from mutation, the snails evolve towards thicker shells only surviving snails breed only thick shelled snails survive thickness of shells is passed down from the parents mutations supplies the raw variability in heritable traits on which natural selection acts to cause evolution towards increased average fitness of the population Good Experimental Design Design Component Independent variable Dependent variable Control Replication Duration Description choose one variable that will be manipulated or changes choose on or more variables that measure the experimental outcome extraneous variables must be held constant so that they don t lead you to the wrong conclusion experiments should be repeated or involve multiple groups to avoid drawing conclusions from a single unusual result run the experiment long enough to measure an effect but no so long that other factors come into play 17

5 October 4, Lecture 12 Behavioral Ecology Part 1 Behaviour: response to a stimulus - alters the relationship between an organism and its environment stimulus may be external ex. vervet monkeys - visible cur of predator - causes monkey to give a response (verbal call) - hearing the verbal call from other monkeys, modify their behavior based on the call stimulus may be internal ex. hunger pains Types of behaviour: innate: inherited or inborn inflexible, i.e. not affected by learning or environmental conditions stimulus triggers a response automatically ex. Kangaroo rat and rattle snake rattle ex. baby s cry when uncomfortable reflexive - simple ex. the withdrawal reflex - i.e. when you touch a hot object helps you avoid injury needs to be fast it bypasses the brain (you don t have to think about it - automatic response) 1) pain receptors to spinal chord 2) spinal chord to nerves controlling muscle instinctual - more complex ex. Wildebeest calves stand and walk immediately after birth - avoids predators, keeps up with the herd flexible condition dependent flexible in response to environmental conditions ex. spiny lobsters hide more when there are more predators cost benefit analysis to determine how much time they should spend hiding and how much they should spend foraging learned: changes in response to learning ex. food choices - grizzly bears teach cubs - passing techniques and fishing spot to their cubs condition dependent and learned learning is a change in behaviour that results from a specific experience in the life of an individual Learnability not inherited - must be taught/learned and is not coded in DNA but the capacity to learn could be a heritable trait (i.e. intelligence) What should I eat? ex. fruit fly larvae have a genetic predisposition to foraging (for gene) patterns rover alleles vs. sitter alleles (different phenotypes) when food is abundant, rovers trails longer, when food is less, both are similar in their food trails higher population density -roving is adaptive - higher probability of encountering unexploited food low population density - sitting is adaptive - waste energy moving around condition dependent - move to new sources - but innate ex. white-fronted bee-eaters A Highly stereotyped fixed: little variation Flexibility C Innate: no modification through learning B Highly flexible Condition dependent D Originates and modified through learning 18

6 BIOL 150 Fall 2013 nest in cliff caves - very sandy habitat - where they tend to live, not very much habitat, so they live together but where they feed, they are very territorial, so some have to travel far away for food sources - each trip by parent is for one baby (only enough food for one to carry in their beaks) optimize foraging based on distance between foraging territory and their nesting colony those that that feed far away from roost site carry more food back minimum cost of finding/ingesting food and risk of predation max usable energy taken in - may influence which food items to take, where you re going to find food When should I mate? cues for it s time to mate males and females synchronize - changes in sexual organs through the year can be really important to the success of a population widest selection of possible mates risky time - bright displays, bird songs timed to coincide with abundance of resources and favorable climate ex. barn swallows feed on insects and nest in human made structures - before humans, they nested in caves question: does tail length in barn swallows affect female choice of mates? hypothesis: females prefer to mate with the longest tailed males null: tail length in males has no influence on female choice of mates procedure: alter tails (snip and reattach) to find which males are the first to mate and which have a second nest that season results: short tails took the longest to find mates, longest tails mated sooner (therefore more could have second nests, so more offspring) conclusion: females prefer long-tailed mates why? hypothesis: long-tailed mates are more efficient in flight, therefore more successful at finding food - higher fitness reproduction synchronizes with food availability and predation risk (babies have more food, and less likely to be eaten) seasonal cues - day length triggers hormonal change in spring social cues ex. Anolis lizards - experiment hypothesis: exposure to breeding males synchronizes reproductive activity in females prediction: females in aquaria with breeding males will produce eggs earlier than females alone or with castrated males females need to exposed to spring like light likelier to produce eggs produce more quickly when exposed to breeding males results: two types of stimulation are necessary to trigger breeding in Anolis lizards Summary: Behavioral ecology - broad - helps to know about neurons, genetics, phylogeny behaviour - response to a stimulus: internal or external can be: innate vs learned flexible and condition dependent vs. reflexive or instinctual what to eat? genetics - innate cost-benefit analysis - condition dependent when to mate? synchronize to max mate options, offspring survival min predation risk who to mate with? traits that confer a fitness advantage choose attractive mates to have attractive sons 19

Evolutionary Processes

Evolutionary Processes Evolutionary Processes MICROEVOLUTION Population -- all the members of a single species Population genetics studies variations in gene pools *Basically, microevolution studies small changes in alleles

More information

Ch. 24 The Origin of Species

Ch. 24 The Origin of Species Ch. 24 The Origin of Species 1 Essential Question: How does a species evolve? 2 Two Types of Speciation: 1. microevolution adaptations to a single gene pool 2. macroevolution evolutionary change above

More information

MECHANISMS AND PATTERNS OF EVOLUTION

MECHANISMS AND PATTERNS OF EVOLUTION MECHANISMS AND PATTERNS OF EVOLUTION Evolution What is it again? Evolution is the change in allele frequencies of a population over generations Mechanisms of Evolution what can make evolution happen? 1.

More information

So what is a species?

So what is a species? So what is a species? Evolutionary Forces New Groups Biological species concept defined by Ernst Mayr population whose members can interbreed & produce viable, fertile offspring reproductively compatible

More information

Mechanisms of Evolution. Macroevolution. Speciation. MICROEVOLUTION - A change in the frequency of alleles. Review population genetics Ch. 23.

Mechanisms of Evolution. Macroevolution. Speciation. MICROEVOLUTION - A change in the frequency of alleles. Review population genetics Ch. 23. Mechanisms of Evolution Macroevolution Speciation MICROEVOLUTION - A change in the frequency of alleles. Review population genetics Ch. 23. MACROEVOLUTION - Speciation (or emergence of higher taxonomic

More information

11.1 Genetic Variation Within Population. KEY CONCEPT A population shares a common gene pool.

11.1 Genetic Variation Within Population. KEY CONCEPT A population shares a common gene pool. KEY CONCEPT A population shares a common gene pool. Genetic variation in a population increases the chance that some individuals will survive. Genetic variation leads to phenotypic variation. Phenotypic

More information

The Origin of Species

The Origin of Species The Origin of Species Macroevolution: the origin of new taxonomic groups Speciation: the origin of new species 1- Anagenesis (phyletic evolution): accumulation of heritable changes 2- Cladogenesis (branching

More information

Ch. 23 The Evolution of Populations

Ch. 23 The Evolution of Populations Ch. 23 The Evolution of Populations 1 Essential question: Do populations evolve? 2 Mutation and Sexual reproduction produce genetic variation that makes evolution possible What is the smallest unit of

More information

The Evolution of Darwin s Theory Pt 2. Chapter 16-17

The Evolution of Darwin s Theory Pt 2. Chapter 16-17 The Evolution of Darwin s Theory Pt 2 { Chapter 16-17 Natural Selection If an individual has an allele that allows them to survive better in an environment than another allele, they will have a better

More information

Ch. 24 Speciation BIOL 221

Ch. 24 Speciation BIOL 221 Ch. 24 Speciation BIOL 221 Speciation Speciation Origin of new, is at the focal point of evolutionary theory Microevolution consists of adaptations that evolve within a population confined to one gene

More information

The Origin of Species

The Origin of Species LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 24 The Origin of Species Lectures

More information

Chapter 16. What is a species? How do new species form? Origin of species

Chapter 16. What is a species? How do new species form? Origin of species Chapter 16 Origin of species What is a species? Biological species concept (Mayr) A species is a group of populations whose individuals interbreed with each other (or at least are capable of interbreeding),

More information

Bi412/512 Animal Behavior, Exam 1 Practice Page 1

Bi412/512 Animal Behavior, Exam 1 Practice Page 1 Bi412/512 Animal Behavior, Exam 1 Practice Page 1 1. Suppose you observe that song sparrows sing more at dawn than at other times of the day. Hmm, maybe singing early in the morning communicates to female

More information

The Origin of Species. Mom, Dad There s something you need to know I m a MAMMAL!

The Origin of Species. Mom, Dad There s something you need to know I m a MAMMAL! The Origin of Species Mom, Dad There s something you need to know I m a MAMMAL! 2007-2008 So what is a species?!! Biological species concept "! defined by Ernst Mayr "! population whose members can interbreed

More information

Evolutionary Forces. What changes populations?

Evolutionary Forces. What changes populations? Evolutionary Forces What changes populations? Forces of evolutionary change Natural selection traits that improve survival or reproduction accumulate in the population ADAPTIVE change Genetic drift frequency

More information

EVOLUTION MICROEVOLUTION CAUSES OF MICROEVOLUTION. Evolution Activity 2.3 page 1

EVOLUTION MICROEVOLUTION CAUSES OF MICROEVOLUTION. Evolution Activity 2.3 page 1 AP BIOLOGY EVOLUTION ACTIVITY 2.3 NAME DATE HOUR MICROEVOLUTION MICROEVOLUTION CAUSES OF MICROEVOLUTION Evolution Activity 2.3 page 1 QUESTIONS: 1. Use the key provided to identify the microevolution cause

More information

The Origin of Species (Ch. 14) Mom, Dad There s something you need to know I m a MAMMAL!

The Origin of Species (Ch. 14) Mom, Dad There s something you need to know I m a MAMMAL! The Origin of Species (Ch. 14) Mom, Dad There s something you need to know I m a MAMMAL! 2007-2008 That mystery of mysteries Darwin never actually tackled how new species arose Both in space and time,

More information

The Origin of Species. Mom, Dad There s something you need to know I m a MAMMAL!

The Origin of Species. Mom, Dad There s something you need to know I m a MAMMAL! The Origin of Species Mom, Dad There s something you need to know I m a MAMMAL! 2010-2011 That mystery of mysteries Darwin never actually tackled how new species arose Both in space and time, we seem to

More information

Lecture Outline. Darwin s Theory of Natural Selection. Modern Theory of Natural Selection. Changes in frequencies of alleles

Lecture Outline. Darwin s Theory of Natural Selection. Modern Theory of Natural Selection. Changes in frequencies of alleles 1. Basics of Natural Selection Lecture Outline 2. How to test for the key components of natural selection a. Variation b. Heritability c. Can the trait respond to selection? d. What are the selective forces?

More information

Natural Selection. species: a group of organisms that can interbreed and produce viable, fertile offspring

Natural Selection. species: a group of organisms that can interbreed and produce viable, fertile offspring Imagine that you and your classmates are taking a nature hike through a nearby desert ecosystem. The hot sun is beating down on you, and you begin to wonder how anything could live in this harsh climate.

More information

QUARTERLY ASSESSMENT

QUARTERLY ASSESSMENT Eighth Grade Science 1 2 3 4 QUARTERLY ASSESSMENT Zanesville City Schools 1 1. [LS 1] [R3] Scientists found fish fossils in the desert. What do the fossils tell about this environment when the fish were

More information

Chapter 21.2 Mechanisms of Evolutionary Change

Chapter 21.2 Mechanisms of Evolutionary Change Beak depth of Beak depth Colonie High AP Biology Chapter 21.2 Mechanisms of Evolutionary Change Populations Evolve! Natural selection acts on individuals differential survival survival of the fittest differential

More information

Goals: Be able to. Sexual Dimorphism

Goals: Be able to. Sexual Dimorphism Goals: Be able to Connect sexual dimorphism and sexual selection. Use parental investment arguments to describe why sexual selection occurs. Explain why long male peacock tails are an indicator of good

More information

BLY 122 Lecture Notes (O Brien) Chapter 47 Behavior

BLY 122 Lecture Notes (O Brien) Chapter 47 Behavior BLY 122 Lecture Notes (O Brien) 2005 Chapter 47 Behavior I. Causes of Behavior A. PROXIMAL CAUSATION 1. Describes how actions occur in terms of the neurological, hormonal, and skeletomuscular mechanisms

More information

Name: Date: Period: Unit 1 Test: Microevolution (Original Test) Ms. OK, AP Biology,

Name: Date: Period: Unit 1 Test: Microevolution (Original Test) Ms. OK, AP Biology, Name: Date: Period: Unit 1 Test: Microevolution (Original Test) Ms. OK, AP Biology, 2014-2015 General Directions: Use your time effectively, working as quickly as you can without losing accuracy. Do not

More information

Mechanisms of Evolution

Mechanisms of Evolution Mechanisms of Evolution TEKS 7(F) analyze and evaluate the effects of other evolutionary mechanisms, including genetic drift, gene flow, mutation, and recombination Evolution is. For Darwin (1859): Evolution

More information

Evidence for evolution in Darwin s time came from several sources: 1. Fossils 2. Geography 3. Embryology 4. Anatomy

Evidence for evolution in Darwin s time came from several sources: 1. Fossils 2. Geography 3. Embryology 4. Anatomy Evidence for evolution in Darwin s time came from several sources: 1. Fossils 2. Geography 3. Embryology 4. Anatomy 1 Fossils in different layers of rock (sedimentary rock strata) have shown: Evidence

More information

Evolution of Populations

Evolution of Populations Chapter 16 Evolution of Populations Section 16 1 Genes and Variation (pages 393 396) This section describes the main sources of inheritable variation in a population. It also explains how phenotypes are

More information

The Origin of Species

The Origin of Species Chapter 24 The Origin of Species PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp

More information

Any variation that makes an organism better suited to its environment so it can survive is called a what?

Any variation that makes an organism better suited to its environment so it can survive is called a what? A change of an organism over time is also called. Chapters 10 & 11 Evolution Any variation that makes an organism better suited to its environment so it can survive is called a what? 1 Adaptation James

More information

How Organisms Evolve Chapters The Theory of Evolution. The Theory of Evolution. Evolution can be traced through the fossil record.

How Organisms Evolve Chapters The Theory of Evolution. The Theory of Evolution. Evolution can be traced through the fossil record. How Organisms Evolve Chapters 14-15 The Theory of Evolution Evolution is the process of change in the inherited traits of a population of organisms from one generation to the next. The inherited traits

More information

Chapter 24 The Origin of Species

Chapter 24 The Origin of Species Chapter 24 The Origin of Species Concept 24.1: The biological species concept emphasizes reproductive isolation Species is a Latin word meaning kind or appearance Biologists compare morphology, physiology,

More information

NAME: PID: Group Name: BioSci 110, Fall 08 Exam 3

NAME: PID: Group Name: BioSci 110, Fall 08 Exam 3 For questions 1 and 2 use the phylogeny to the right. 1. With what group of species do rodents share the most traits? a. amphibians b. dinosaurs and birds c. *primates d. ray-finned fish e. sharks 2. Which

More information

Speciation: Part 2! So, how do genetic barriers to gene flow evolve?!

Speciation: Part 2! So, how do genetic barriers to gene flow evolve?! Speciation: Part 2 1. Review of the biological barriers that limit gene flow between populations and species. 2. Back to Darwin's problem: Q: How do these biological barriers (reproductive isolating mechanisms)

More information

CHAPTER 16 POPULATION GENETICS AND SPECIATION

CHAPTER 16 POPULATION GENETICS AND SPECIATION CHAPTER 16 POPULATION GENETICS AND SPECIATION MULTIPLE CHOICE 1. Which of the following describes a population? a. dogs and cats living in Austin, Texas b. four species of fish living in a pond c. dogwood

More information

11/14/2014. What is a species? Species and speciation. The biological species concept (BSC) emphasizes reproductive isolation

11/14/2014. What is a species? Species and speciation. The biological species concept (BSC) emphasizes reproductive isolation Species and speciation What is a species? Chapters 17 & 18 The biological species concept (BSC) emphasizes reproductive isolation Gene pools of biological species are isolated by pre- and post-zygotic

More information

Biology 352, Spring 2018 Exam Number KEY Second midterm exam Part 1 (short answer worth 21 % of grade)

Biology 352, Spring 2018 Exam Number KEY Second midterm exam Part 1 (short answer worth 21 % of grade) Part 1 (short answer worth 21 % of grade) 1-1) Match the following terms used in behavioral ecology with the appropriate topics of behavioral study listed to the right (you may apply more than one topic

More information

Beebops Genetics and Evolution Teacher Information

Beebops Genetics and Evolution Teacher Information STO-105 Beebops Genetics and Evolution Teacher Information Summary In Part 1 students model meiosis and fertilization using chromosomes/genes from fictitious Beebop parents. They decode the genes in the

More information

THE EVOLUTION OF POPULATIONS

THE EVOLUTION OF POPULATIONS THE EVOLUTION OF POPULATIONS HOW DOES A POPULATION OF PENGUINS EVOLVE? Every year, king penguins return to breed in the same colony in which they are born. These colonies help penguins to guard, protect

More information

Introduction to Neuroscience: Behavioral Neuroscience Lecture 1: Introduction to Animal Behavior

Introduction to Neuroscience: Behavioral Neuroscience Lecture 1: Introduction to Animal Behavior Introduction to Neuroscience: Behavioral Neuroscience Lecture 1: Introduction to Animal Behavior Tali Kimchi Department of Neurobiology Tali.kimchi@weizmann.ac.il Jakob von Uexküll (1864-1944) Umwelt

More information

SEX. Genetic Variation: The genetic substrate for natural selection. Sex: Sources of Genotypic Variation. Genetic Variation

SEX. Genetic Variation: The genetic substrate for natural selection. Sex: Sources of Genotypic Variation. Genetic Variation Genetic Variation: The genetic substrate for natural selection Sex: Sources of Genotypic Variation Dr. Carol E. Lee, University of Wisconsin Genetic Variation If there is no genetic variation, neither

More information

The Origin of Species

The Origin of Species The Origin of Species Bowerbirds, native to New Guinea and Australia, are named for the structure, called a bower, that the male weaves from twigs and grasses to attract females. After building his bower,

More information

Trait characteristic (hair color) Gene segment of DNA Allele a variety of a trait (brown hair or blonde hair)

Trait characteristic (hair color) Gene segment of DNA Allele a variety of a trait (brown hair or blonde hair) Evolution Change in DNA to favor certain traits over multiple generations Adaptations happen within a single generations Evolution is the result of adding adaptations together Evolution doesn t have a

More information

Assessment Schedule 2013 Biology: Demonstrate understanding of evolutionary processes leading to speciation (91605)

Assessment Schedule 2013 Biology: Demonstrate understanding of evolutionary processes leading to speciation (91605) NCEA Level 3 Biology (91605) 2013 page 1 of 6 Assessment Schedule 2013 Biology: Demonstrate understanding of evolutionary processes leading to speciation (91605) Assessment Criteria Evidence Achievement

More information

Evolution of Populations. AP Biology

Evolution of Populations. AP Biology Evolution of Populations 2007-2008 Doonesbury - Sunday February 8, 2004 Review of Darwin s Influence Geology Thomas Hutton Charles Lyll - Biology Jean Baptist Lamark - Tendency toward Perfection - Use

More information

Bio 1M: Evolutionary processes

Bio 1M: Evolutionary processes Bio 1M: Evolutionary processes Evolution by natural selection Is something missing from the story I told last chapter? Heritable variation in traits Selection (i.e., differential reproductive success)

More information

Mechanisms of Evolution

Mechanisms of Evolution Mechanisms of Evolution Mutation Gene Flow (migration) Non-random mating Genetic Drift Natural Selection...individuals don t evolve, populations do 1. Mutation The ultimate source of genetic variation.

More information

Behavioral Animal Adaptations. Survival of organisms

Behavioral Animal Adaptations. Survival of organisms Behavioral Animal Adaptations Survival of organisms ANIMAL BEHAVIOR BEHAVIOR = anything an animal does in response to a stimulus in its environment What is a stimulus for bears beginning to hibernate?

More information

GENETIC EQUILIBRIUM. Chapter 16

GENETIC EQUILIBRIUM. Chapter 16 GENETIC EQUILIBRIUM Chapter 16 16-1 Population Genetics Population= number of organisms of the same species in a particular place at a point in time Gene pool= total genetic information of a population

More information

Unit 1 Biological Diversity Topic 1.1 Examining Diversity. Text p. 3-15

Unit 1 Biological Diversity Topic 1.1 Examining Diversity. Text p. 3-15 Topic 1.1 Examining Diversity. Text p. 3-15 Variation to the MAX! Biologists have identified over species of animals and over species of plants. The most successful life form is What is Biodiversity? The

More information

Biology 441/541 - Animal Behavior page 1 Chapter 3: The development of behavior -- the role of genes

Biology 441/541 - Animal Behavior page 1 Chapter 3: The development of behavior -- the role of genes Biology 441/541 - Animal Behavior page 1 In this chapter, we ll look at some of the techniques by which the role of genes in the development of behavior can be investigated. By doing so, we ll also see

More information

EnSt/Bio 295 Exam II This test is worth 100 points; you have approximately 50 minutes. Allocate your time accordingly.

EnSt/Bio 295 Exam II This test is worth 100 points; you have approximately 50 minutes. Allocate your time accordingly. Name: 1 NAME: EnSt/Bio 295 Exam II This test is worth 100 points; you have approximately 50 minutes. Allocate your time accordingly. 1) Describe the following concepts in a few sentences (2 points each)

More information

ANSWERS & MARK SCHEMES. an obstacle to interbreeding; thus limiting gene flow between parts of the gene pool; thus enabling divergence; max 2

ANSWERS & MARK SCHEMES. an obstacle to interbreeding; thus limiting gene flow between parts of the gene pool; thus enabling divergence; max 2 QUESTIONSHEET 1 (b) (i) a population of similar organisms that are capable of interbreeding to form fertile offspring; they are reproductively isolated from other such populations/cannot interbreed with

More information

Understanding Evolution (http://evolution.berkeley.edu/evolibrary/article/evo_25)

Understanding Evolution (http://evolution.berkeley.edu/evolibrary/article/evo_25) 1 Understanding Evolution (http://evolution.berkeley.edu/evolibrary/article/evo_25) Natural selection Natural selection is one of the basic mechanisms of evolution, along with mutation, migration, and

More information

Ecology and speciation

Ecology and speciation Ecology and speciation 1) What are species 2) Reproductive isolation evolves with time 3) Speciation rate increases with area 4) Speciation is driven by selection 5) Rapid speciation in postglacial fishes

More information

Some observations. Some traits are difficult to view as adaptations, because they appear to provide a disadvantage to the organism

Some observations. Some traits are difficult to view as adaptations, because they appear to provide a disadvantage to the organism Some traits are difficult to view as adaptations, because they appear to provide a disadvantage to the organism Darwin asked: Can natural selection explain these differences? Structural traits: cumbersome

More information

SPECIATION THE CLASSIC VIEW OF SPECIATION THE CLASSIC VIEW OF SPECIATION

SPECIATION THE CLASSIC VIEW OF SPECIATION THE CLASSIC VIEW OF SPECIATION SPECIATION Provides the link between evolutionary change within lineages (anagenesis/microevolution) and the macroevolutionary patterns that result from cladogenesis. Is a process (degree of reproductive

More information

Lectures 7 & 8 Wednesday, October 12, 2011 & Friday, October 14, 2011

Lectures 7 & 8 Wednesday, October 12, 2011 & Friday, October 14, 2011 Lectures 7 & 8 Wednesday, October 12, 2011 & Friday, October 14, 2011 Recombination Diploid organisms: The first step in sexual reproduction is the production of gametes, each of which has half the chromosomes

More information

3.1 Meiosis

3.1 Meiosis 3.1 Meiosis Chromosome Number Individuals of the same species have the same number of chromosomes. Meiosis is used to half the number of chromosomes passed to the offspring. What is meiosis Meiosis happens

More information

From so simple a beginning, endless forms so beautiful and wonderful have been and are being evolved

From so simple a beginning, endless forms so beautiful and wonderful have been and are being evolved VariaTiOn: The KEY to Evolu4on SWBAT describe how natural selec4on acts on genes. From so simple a beginning, endless forms so beautiful and wonderful have been and are being evolved 1 Charles Darwin (the

More information

NATURAL SELECTION. Essential Question: How can a change in the environment initiate a change in a population?

NATURAL SELECTION. Essential Question: How can a change in the environment initiate a change in a population? Bell ringer 1. A species of mockingbird lives in the Apalachicola National Forest. One year, a few of the mockingbirds were born with very long beaks. Over the next several years, the area experienced

More information

Evolutionary Forces. What changes populations?

Evolutionary Forces. What changes populations? Evolutionary Forces What changes populations? 2007-2008 Forces of evolutionary change Natural selection traits that improve survival or reproduction will accumulate in the population adaptive change Genetic

More information

Study guide Lectures 19 (April 4th), 20 (April 11th), and 21 (April 13th).

Study guide Lectures 19 (April 4th), 20 (April 11th), and 21 (April 13th). Study guide Lectures 19 (April 4th), 20 (April 11th), and 21 (April 13th). Lecture 19 1. Define silent substitution? Synonymous substitution? Non-synonymous substitution? Replacement substitution? 2. How

More information

Unit 3.4 Mechanisms of Evolution Notes Outline

Unit 3.4 Mechanisms of Evolution Notes Outline Name Period Date Unit 3.4 Mechanisms of Evolution Notes Outline Learning Objectives: discuss patterns observed in evolution. Describe factors that influence speciation. Compare gradualism with punctuated

More information

The Origin of Species

The Origin of Species Chapter 24. The Origin of Species Both in space and time, we seem to be brought somewhat near to that great fact that mystery of mysteries the first appearance of new beings on this Earth. Darwin 1 Essential

More information

Types of behaviors that are elicited in response to simple stimuli

Types of behaviors that are elicited in response to simple stimuli Lecture 19: Animal Behavior I. Background A. Animal behavior reflects and arises from biological properties 1. Exhibited behavior defends on the physiological systems and processes unique to a given organism

More information

How do species evolve?

How do species evolve? BIOL2007 THE ORIGINS OF SEIES Kanchon Dasmahapatra Biodiversity 1.5 million described species Maybe as many as 30 million species overall How does speciation happen? Speciation genetic divergence within

More information

CHAPTER 20 LECTURE SLIDES

CHAPTER 20 LECTURE SLIDES CHAPTER 20 LECTURE SLIDES To run the animations you must be in Slideshow View. Use the buttons on the animation to play, pause, and turn audio/text on or off. Please note: once you have used any of the

More information

2/10/2015. Adaptation and Natural Selection. Natural Selection

2/10/2015. Adaptation and Natural Selection. Natural Selection We ve been talking a lot about adaptations and strategies : Water storage Drought tolerance Pollinator/plant matches Does this mean plants plan and have strategies? Does this mean plants strive to live

More information

Adaptation and Optimality Theory

Adaptation and Optimality Theory Adaptation and Optimality Theory Prisoner s Dilemma game: An optimality model What is the optimal strategy when you are playing with different people of unknown reputation? Defect: We call this the evolutionarily

More information

Count how many butterflies you can spot on the wall. Count how many butterflies you can spot on the floor

Count how many butterflies you can spot on the wall. Count how many butterflies you can spot on the floor Count how many butterflies you can spot on the wall Count how many butterflies you can spot on the floor What is an acquired trait? A trait that an organism acquires or gains over its lifetime. It cannot

More information

Sexual selection and the evolution of sex differences

Sexual selection and the evolution of sex differences Sexual selection and the evolution of sex differences Males and females have the same genes. Why do the sexes often look and act so differently? Why is the male often insanely ornamented? (Or simply insane?)

More information

Introduction to Biological Anthropology: Notes 12 Mating: Primate females and males Copyright Bruce Owen 2009 We want to understand the reasons

Introduction to Biological Anthropology: Notes 12 Mating: Primate females and males Copyright Bruce Owen 2009 We want to understand the reasons Introduction to Biological Anthropology: Notes 12 Mating: Primate females and males Copyright Bruce Owen 2009 We want to understand the reasons behind the lifestyles of our non-human primate relatives

More information

EVOLUTIONARY BIOLOGY BIOS EXAM #2 FALL 2017

EVOLUTIONARY BIOLOGY BIOS EXAM #2 FALL 2017 EVOLUTIONARY BIOLOGY BIOS 30305 EXAM #2 FALL 2017 There are 3 parts to this exam. Use your time efficiently and be sure to put your name on the top of each page. Part I. True (T) or False (F) (2 points

More information

Reproduction in Plants and Animals

Reproduction in Plants and Animals Imagine a gardener checking on his growing plants at the beginning of spring. He notices a few tiny insects eating some of his plants. The gardener isn t worried a few insects are not a concern. But when

More information

Chapter 24 The Origin of Species

Chapter 24 The Origin of Species Chapter 24 The Origin of Species Lecture Outline Overview: That Mystery of Mysteries Charles Darwin visited the Galápagos Islands and found plants and animals that lived nowhere else in the world. Darwin

More information

Introduction to Biological Anthropology: Notes 13 Mating: Primate females and males Copyright Bruce Owen 2010 We want to understand the reasons

Introduction to Biological Anthropology: Notes 13 Mating: Primate females and males Copyright Bruce Owen 2010 We want to understand the reasons Introduction to Biological Anthropology: Notes 13 Mating: Primate females and males Copyright Bruce Owen 2010 We want to understand the reasons behind the lifestyles of our non-human primate relatives

More information

Natural Selection Simulation: Predation and Coloration

Natural Selection Simulation: Predation and Coloration Name Period Date Natural Selection Simulation: Predation and Coloration This simulation was invented by G. Ledyard Stebbins, a pioneer in the evolution of plants. The purpose of the game is to illustrate

More information

Experimental transplant of guppies. Predator: Pike-cichlid; preys mainly on large guppies

Experimental transplant of guppies. Predator: Pike-cichlid; preys mainly on large guppies Hypothesis: That killfish predation will lead to changes in size among the prey population. EXPERIMENT Reznick and Endler transplanted guppies from pike-cichlid pools to killifish pools and measured the

More information

Earth's Shape, Structure, Spheres, Interior, Atmosphere, % Composition Review

Earth's Shape, Structure, Spheres, Interior, Atmosphere, % Composition Review Base your answers to questions 1 through 4 on the information and diagram below and on your knowledge of biology. A human gene contains the following DNA base sequence: ACGCCCACCTTA The gene mutated. It

More information

Evolutionary Forces. What changes populations?

Evolutionary Forces. What changes populations? Evolutionary Forces What changes populations? 2007-2008 Forces of evolutionary change Natural selection traits that improve survival or reproduction will accumulate in the population adaptive change Genetic

More information

Biology Teach Yourself Series Topic 14: Population genetics

Biology Teach Yourself Series Topic 14: Population genetics Biology Teach Yourself Series Topic 14: Population genetics A: Level 14, 474 Flinders Street Melbourne VIC 3000 T: 1300 134 518 W: tssm.com.au E: info@tssm.com.au TSSM 2011 Page 1 of 24 Contents Population

More information

(a) Similarity between different species (b) Diversity within a species

(a) Similarity between different species (b) Diversity within a species Fig. 24-1 Fig. 24-2 (a) Similarity between different species (b) Diversity within a species Fig. 24-2a (a) Similarity between different species Fig. 24-2b (b) Diversity within a species Fig. 24-3 EXPERIMENT

More information

Schedule Change! Today: Thinking About Darwinian Evolution. Perplexing Observations. We owe much of our understanding of EVOLUTION to CHARLES DARWIN.

Schedule Change! Today: Thinking About Darwinian Evolution. Perplexing Observations. We owe much of our understanding of EVOLUTION to CHARLES DARWIN. Schedule Change! Film and activity next Friday instead of Lab 8. (No need to print/read the lab before class.) Today: Thinking About Darwinian Evolution Part 1: Darwin s Theory What is evolution?? And

More information

Study Guide A. Answer Key. Animal Behavior

Study Guide A. Answer Key. Animal Behavior Animal Behavior Answer Key SECTION 1. ADAPTIVE VALUE OF BEHAVIOR 1. stimulus; behavior 2. Internal; body 3. External; surroundings 4. b, c, a 5. constant; stimuli 6. increase; particular 7. internal; external

More information

Animal Behavior 2/21/2017. What is Behavior? Understanding Behavior. Types of Behavior. Types of Behavior

Animal Behavior 2/21/2017. What is Behavior? Understanding Behavior. Types of Behavior. Types of Behavior What is Behavior? Behavior everything an animal does & how it does it response to stimuli in its environment Animal Behavior Why Study Behavior? Evolutionary perspective part of phenotype acted upon by

More information

Finding Mr. Right Featured scientist: Carrie Branch from University of Nevada Reno

Finding Mr. Right Featured scientist: Carrie Branch from University of Nevada Reno Finding Mr. Right Featured scientist: Carrie Branch from University of Nevada Reno Research Background: Depending on where they live, animals can face a variety of challenges from the environment. For

More information

1 1. WHAT IS INTERACTION?

1 1. WHAT IS INTERACTION? UNIT 3. INTERACTION 1 1. WHAT IS INTERACTION? 1. All WHAT living IS beings INTERACTION? interact with their environment and with living beings to survive. Interaction enables living beings to receive and

More information

SY 2017/ nd Final Term Revision. Student s Name: Grade: 11A. Subject: Biology. Teacher Signature

SY 2017/ nd Final Term Revision. Student s Name: Grade: 11A. Subject: Biology. Teacher Signature SY 2017/2018 2 nd Final Term Revision Student s Name: Grade: 11A Subject: Biology Teacher Signature Grade 11 Biology A/B Revision Work Sheet Modified True/False Indicate whether the statement is true or

More information

The selfish gene. mitochondrium

The selfish gene. mitochondrium The selfish gene selection acts mostly for the benefit of the individual sometimes selection may act for the benefit of relatives rarely, selection acts for the benefit of the group mitochondrium in asexual

More information

Assessment Schedule 2017 Biology: Demonstrate understanding of evolutionary processes leading to speciation (91605)

Assessment Schedule 2017 Biology: Demonstrate understanding of evolutionary processes leading to speciation (91605) NCEA Level 3 Biology (91605) 2017 page 1 of 5 Assessment Schedule 2017 Biology: Demonstrate understanding of evolutionary processes leading to speciation (91605) Evidence Statement Q1 Evidence Achievement

More information

Paper Reference. Paper Reference(s) 7040/01 London Examinations GCE Biology Ordinary Level Paper 1

Paper Reference. Paper Reference(s) 7040/01 London Examinations GCE Biology Ordinary Level Paper 1 Centre No. Candidate No. Paper Reference(s) 7040/01 London Examinations GCE Biology Ordinary Level Paper 1 Friday 15 January 2010 Afternoon Time: 1 hour 30 minutes Materials required for examination Nil

More information

The Origin of Species. Chapter 22

The Origin of Species. Chapter 22 The Origin of Species Chapter 22 1 The Nature of Species The concept of species must account for two phenomena: The distinctiveness of species that occur together at a single locality The connection that

More information

Animal Behavior. Types of Communication 4/22/2013

Animal Behavior. Types of Communication 4/22/2013 Animal Behavior A behavior is the nervous system s response to a stimulus and is carried out by the muscular or the hormonal system Behavior is subject to natural selection Behaviors have an impact on

More information

Unit 4 Structure, Function and Information Processing

Unit 4 Structure, Function and Information Processing Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful

More information

Microevolution: The Forces of Evolutionary Change Part 2. Lecture 23

Microevolution: The Forces of Evolutionary Change Part 2. Lecture 23 Microevolution: The Forces of Evolutionary Change Part 2 Lecture 23 Outline Conditions that cause evolutionary change Natural vs artificial selection Nonrandom mating and sexual selection The role of chance

More information

TEST NAME:review TEST ID: GRADE:07 Seventh Grade SUBJECT:Life and Physical Sciences TEST CATEGORY: My Classroom

TEST NAME:review TEST ID: GRADE:07 Seventh Grade SUBJECT:Life and Physical Sciences TEST CATEGORY: My Classroom TEST NAME:review TEST ID:1070005 GRADE:07 Seventh Grade SUBJECT:Life and Physical Sciences TEST CATEGORY: My Classroom review Page 1 of 18 Student: Class: Date: 1. There are four blood types: A, B, AB,

More information

We are an example of a biological species that has evolved

We are an example of a biological species that has evolved Bio 1M: Primate evolution (complete) 1 Patterns of evolution Humans as an example We are an example of a biological species that has evolved Many of your friends are probably humans Humans seem unique:

More information

Review. 1) A huge molecule made up of amino acids (adenine, cytosine, guanine, thymine)

Review. 1) A huge molecule made up of amino acids (adenine, cytosine, guanine, thymine) Mutations Review 1) A huge molecule made up of amino acids (adenine, cytosine, guanine, thymine) DNA 2) A process that produces the sex cells with half the chromosomes of a body cell Meiosis 3) Strands

More information