Final Report for Tufts Institute of the Environment Graduate Fellowship

Size: px
Start display at page:

Download "Final Report for Tufts Institute of the Environment Graduate Fellowship"

Transcription

1 Final Report for Tufts Institute of the Environment Graduate Fellowship TITLE: Using Jasmonates to Enhance Long-Term Sequestration of Atmospheric Carbon. Benjamin A. Babst, Ph. D. Department of Biology, Tufts University, Medford, Massachusetts Present Address: School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan Faculty Advisor: Colin M. Orians Multiple approaches will be necessary to mitigate increasing global atmospheric carbon dioxide, including greater conservation and efficiency, alternative energy sources, and increasing carbon sequestration. The research conducted during this TIE graduate fellowship was designed to test the feasibility of manipulating plants using a class of plant signal molecules, jasmonates, to increase carbon dioxide sequestration. Plants remove carbon dioxide from the atmosphere during photosynthesis, and much of the acquired carbon becomes plant biomass. Due to climate change effects, soil will be an important site for improvement of the total carbon sequestering capacity of a forest [Makipaa, 1999 #612], for example roots, organic compounds exuded from roots, dead wood, and fallen leaves. However, the rapid breakdown of organic compounds in the soil may pose a barrier to using plants for carbon sequestration [Taneva, 2006 #1163], because most chemical components of plant tissue are short-lived in the soil. Polyphenolics, such as tannins, which are defensive compounds, and lignin, which strengthens cell walls in woody stems and roots, have potential to be good carbon sinks, because they are long-lived in the soil [Camiré, 1991 #603;Schweitzer, 2004 #578] and make up a large percentage of plant carbon mass (3-45% dry mass for lignin, and 1-5% dry mass for tannins) [Amthor, 2003 #605;Poorter, 1992 #606;Driebe, 2000 #576]. My recent studies using carbon-11 tracer, demonstrate the potential for increased carbon partitioning to roots following exposure of plants to jasmonates or damage by insect herbivores. I proposed that changing the supply of carbon to roots of fast growing plants, such as poplar trees, may modulate output from the phenylpropanoid biosynthetic pathway, increasing the production of soil-stable polyphenolics (i.e., tannin and lignin) in the roots. I used weak, chronic treatments of methyl jasmonate or herbivory by gypsy moth caterpillars to test whether increased carbon partitioning to roots can be sustained by plants over time. Overall, neither herbivory nor jasmonate treatment affected stem height or diameter growth during the course of the three week experiment (fig. 1). Jasmonate had no effect on final biomass, and for plants damaged by herbivores there was a small decrease in biomass only in rapidly expanding leaves (fig. 2). Previous research has demonstrated that poplar trees can compensate for leaf tissue loss much greater than that imposed in my experiment [Reichenbacker, 1996 #951]. Since total biomass accumulation by poplars is not affected by moderate herbivory or jasmonate treatment, any increased allocation of carbon to polyphenolics should result in a net increase in sequestered carbon. Condensed tannins were undetectable in poplar tree tissue early in the season, when this experiment was conducted. Preliminary analysis of leaf samples from mid-summer suggests that tannin biosynthesis is under the control of a developmentally or seasonally activated switch.

2 B. A. Babst 2 This seasonality will be an important consideration for future research, but also for timing manipulations in the field to maximize tannin production, while minimizing cultural inputs. The simpler salicylate phenolic glycosides, such as salicortin were present in all leaves and in stems. There was a trend for increased salicortin in leaves following herbivore damage, which was statistically significant in developing (i.e., transition) leaves (fig. 3a). On the contrary, salicortin decreased in stems of herbivore-damaged plants. Generally, salicortin was unaffected by methyl jasmonate treatment. Several other phenolic glycosides were present in smaller amounts, including tremuloidin, and a compound that may be nigracin. Tremuloidin appeared to follow the same pattern as salicortin in mature leaves (fig. 3b), but was present at much lower concentrations in younger leaves, in some cases too low to measure. The simple phenolic glycosides are not long-lived in the soil, but they are of interest because they provide some insight into the phenylpropanoid pathway. Based on the phenolic glycoside measurements, it appears that herbivory strongly upregulates phenylpropanoid biosynthesis, but jasmonate treatment does not. I was able to test this hypothesis using cdna microarrays in collaboration with Stefan Jansson and Andreas Sjödin at the Umeå Plant Science Center in Sweden. The microarrays developed at UPSC measurement of gene expression for most transcribed genes in poplars, allowing a broad view across all metabolic pathways for plant responses. For this experiment, plants were treated in mid-summer, when tannin biosynthesis should be occuring in these poplars. I was able to spend two weeks at UPSC during my fellowship, beginning to analyze this extensive data set. The analysis supports the general pattern observed for phenolic glycosides. Herbivory strongly upregulated many genes in the phenylpropanoid pathway, while jasmonic acid upregulated only a subset of those genes (fig. 4). Interestingly, the alterations in gene expression appeared to be geared toward the biosynthesis of tannins, rather than lignin or flavonoids. The microarray cannot address the salicylate phenolic glycosides, because the biosynthetic pathway for salicylates in Populus has not yet been determined. A surprising outcome from the microarray was that, in addition to genes within the phenylpropanoid pathway, genes involved in carbohydrate and amino acid metabolism appeared to be upregulated in a manner that might provide more substrate for phenylpropanoid biosynthesis (fig. 5). That is, the entire metabolism of the plant may be reorganized in response to herbivory to favor accumulation of phenylpropanoids, which can also serve as deterrents to herbivores. Again, jasmonic acid treatment elicited a narrower and weaker response. Although, jasmonate signaling has long been associated with plant responses to herbivory, this microarray data suggests that herbivory elicits responses through one or more additional signaling pathways. Further, the increase in phenylpropanoid biosynthesis following herbivory appears to be regulated by a non-jasmonate signal. In sum, a low level of herbivory in mid-summer, when tannin biosynthesis occurs may increase the carbon sequestration capacity of poplar trees. In addition to these findings, during this fellowship I was able to develop a micro-scale technique for measuring lignin, which reduces hazardous waste byproducts by about 5-10 fold. Dr. Romualdo Fukushima, a lignin expert, is helping to extract a pure lignin standard for future work. Because lignin is difficult to measure, lignin concentrations have often been calculated without a standard, or more recently, using ground homogenized pine needles, obtained from NIST, which NIST is no longer distributing. When ready, the new lignin standard will provide more robust measurements of lignin content. Recently, I was able to obtain a small aliquot of the pine needle standard from another researcher, which will allow a comparison between the new and old standards. Lignin analysis is ongoing. Approximately 200 samples are half-way through the preparatory extractions that are necessary to remove from the plant tissue other biochemicals, 2

3 B. A. Babst 3 which may interfere with measurement of the lignin. Additionally, about 48 Root samples are ready for the final analysis. Although analyses are in progress, the phenolic glycoside and microarray data suggest that jasmonates alone will not be the key to enhancing carbon sequestration. Microarray analysis, particularly, highlighted the striking differences between plant responses to jasmonates and plant responses to actual herbivory. Further study of the non-jasmonate signaling mechanisms by which plants perceive and respond to herbivory may lead to new means of manipulating phenylpropanoid biosynthesis. Further study should also be directed at understanding which of the multitude of genes that were upregulated following herbivory are critical to increasing phenylpropanoid biosynthesis. At Michigan Technological University, where I just began working as a postdoctoral scientist, our research group is working to understand the phenylpropanoid biosynthetic pathways. By understanding the pathways, and understanding how plants regulate the pathways, we will eventually be able to optimize growth and phenylpropanoid biosynthesis to produce renewable biofuels from wood, while enhancing carbon sequestration in leaves and roots, which are not harvested. Part of my fellowship I proposed to spend preparing a model to scale measurements up to the stand level. Because carbon sequestration by plants is a function of both growth and production of soil-stable carbon compounds, and is affected by multiple environmental factors, scaling up to the stand level is not a simple matter. I was able to assemble a list of factors that may influence carbon sequestration, including, at the individual plant level, growth rate and the rate of biosynthesis of soil stable carbon compounds in leaves and roots (assumes trunks will be harvested), which may have two-way negative interactions, and at the stand level, factors such as tree species, plant density, soil type, climate, including rainfall, air temperature, soil temperature, and average light levels. Ultimately, any carbon sequestration strategy developed in small scale experiments will need to be tested in the field in order to accurately scale to the stand level, or to the global level. Student Mentoring: During my fellowship, I also encountered several mentoring opportunities. I taught lignin analysis to a visiting graduate student (Vincent von Vordzogbe), so he could take the technique back with him to Ghana to study how forestry practices in Africa could enhance or reduce carbon sequestration by favoring certain species over others. I also assisted a new master s student (Minda Berbeco) to learn analysis of condensed tannins and lignin, and introduced her to carbon sequestration research. 3

4 B. A. Babst 4 B Figure 1. Stem size before and after the initiation of treatments. Points are means±se for N=8 to 13 per treatment. Treatments were begun at day 19, and repeated every 3 days for 21 days. Relative growth rates were calculated based on the most recent previous measurement. Repeated measures ANOVA indicated no differences among treatments for stem height or diameter. 4

5 B. A. Babst 5 Figure 2. Dry weights of plant organs after 3 weeks of chronic low level (A) gypsy moth leaf consumption or treatment with empty clip-cages and (B) 50µM MeJA or control solution. Bars are means±se for N=8 to 13 per treatment. P-values are for t-tests for differences in means between treatments and their respective controls (NS=not significant). 5

6 B. A. Babst 6 A salicortin (mg/g) P=0.11 P=0.03 cage control gypsy moth P= mature transition apical B 15 salicortin (mg/g) 10 5 P=0.52 P=0.47 control solution MeJA P= mature transition apical leaf type Figure 3. Concentrations of salicortin in leaves after three weeks of gypsy moth herbivory (A), or treatment with 50µmol methyl jasmonate. P-values are for t-tests for differences in mean between treated plants and their respective controls (N=4). 6

7 Phenylalanine PAL Cinnamic acid C4H p-coumaric acid Upregulated genes Downregulated genes OMT CAH CCR (0.43) p-coumaroyl-coa (1.83) CHS CAD chalcone CHI monolignols flavanone FHT flavanol F3H DFR ANS lignan lignin FNS flavones IFS isoflavonoids Proanthocyanidins (condensed tannins) Figure 4 A

8 B. A. Babst 2 O Phenylalanine CO 2 Me PAL Cinnamic acid C4H p-coumaric acid Upregulated genes Downregulated genes OMT CAH CCR p-coumaroyl-coa CHS CAD chalcone CHI monolignols X flavanone FHT flavanol F3H DFR ANS lignan lignin FNS flavones IFS isoflavonoids Proanthocyanidins (condensed tannins) Figure 4 B. Phenylpropanoid genes upregulated in Populus in response to gypsy moth herbivory (A), and jasmonic acid (B). Upregulated genes are boxed in red. Downregulated genes are boxed in blue. 2

9 A upregulate downregulate Sucrose Export Sucrose Starch fats Glyoxylate cycle Hexose Hexose Phosphate Cell wall Triose Phosphate Triglycerides Nucleic Acids Aromatic Amino Acids Lignin Polyphenols Pyruvate Acetyl-CoA Terpenes Fatty Acids Fatty acid biosynthesis Malate Citric acid cycle Amino Acids (glutamate) α-ketoglutarate B O COOH Sucrose Export Sucrose Starch fats Glyoxylate cycle Hexose Hexose Phosphate Cell wall Triose Phosphate Triglycerides Nucleic Acids Aromatic Amino Acids Lignin Polyphenols Pyruvate Acetyl-CoA Terpenes Fatty Acids Fatty acid biosynthesis Malate Citric acid cycle Amino Acids (glutamate) α-ketoglutarate Figure 5. Gene expression changes in carbohydrate metabolism in Populus leaves in response to (A) gypsy moth herbivory, and (B) jasmonic acid. A red circle indicates upregulation of a gene at a particular point in the pathway. A blue X indicates downregulation of a gene. Where there is both a circle and X, the enzyme is encoded by a multi-gene family, and one locus was upregulated, while another was downregulated. Carbohydrate metabolic pathways diagram modified from Buchanan et al. (2001).

Lignin and the General Phenylpropanoid Pathway. Introduction and Importance:

Lignin and the General Phenylpropanoid Pathway. Introduction and Importance: Lignin and the General Phenylpropanoid Pathway 13. Phenolics and Lignin p. 1 Introduction and Importance: Phenolic: a compound consisting of an aromatic ring plus at least one hydroxyl [= phenyl group],

More information

Plant Cell Biology; Identification and manipulation of plant quality traits

Plant Cell Biology; Identification and manipulation of plant quality traits Plant Cell Biology; Identification and manipulation of plant quality traits Phil Morris, Mark Robbins, Joe Gallagher and Ana Winters Mechanisms of protein protection in forages 30 Determining the constraints

More information

DIAGNOTICS QUESTION CLUSTERS: Defining and assessing understanding

DIAGNOTICS QUESTION CLUSTERS: Defining and assessing understanding DIAGNOTICS QUESTION CLUSTERS: Defining and assessing understanding Introduction to the Project NSF funded Personnel scientists, science educators Biology and geology cycles o Photosynthesis o Respiration

More information

Biosynthesis of Secondary Metabolites

Biosynthesis of Secondary Metabolites Biosynthesis of Secondary Metabolites Secondary Metabolism Secondary metabolism, metabolic pathways that are not essential for growth, development or reproduction. Secondary metabolites are those chemical

More information

IRRIGATION AND NUTRITION MANAGEMENT FOR GOOD POSTHARVEST PERFORMANCE JOHN P BOWER

IRRIGATION AND NUTRITION MANAGEMENT FOR GOOD POSTHARVEST PERFORMANCE JOHN P BOWER IRRIGATION AND NUTRITION MANAGEMENT FOR GOOD POSTHARVEST PERFORMANCE JOHN P BOWER Agassiz, Canada Consultant: Horticultural Product Quality Objectives Fruit arrives in the market No external chilling damage

More information

Cellular Respiration

Cellular Respiration Cellular Respiration Chemical Equation 6 O 2 + C 6 H 12 O 6 6 H 2 O + 6 CO 2 + Page 107 Adenosine Triphosphate Adenosine Diphosphate Background Aerobic= requires oxygen Anaerobic= does not require oxygen

More information

Re-Designing Alfalfa f for

Re-Designing Alfalfa f for Re-Designing Alfalfa f for Increased Yield and Quality Trait Targets Agronomic Traits (input traits) Herbicide tolerance Pest resistance Abiotic stress tolerance Increased yield per se Quality Traits (output

More information

AP BIOLOGY Chapter 7 Cellular Respiration =

AP BIOLOGY Chapter 7 Cellular Respiration = 1 AP BIOLOGY Chapter 7 Cellular Respiration = Day 1 p. I. Overview A. Cellular Respiration 1. Respiration breathing, exchange of O 2 for CO 2 2. Cellular respiration aerobic harvesting of energy from food

More information

Connections of Carbohydrate, Protein, and Lipid Metabolic Pathways

Connections of Carbohydrate, Protein, and Lipid Metabolic Pathways OpenStax-CNX module: m44441 1 Connections of Carbohydrate, Protein, and Lipid Metabolic Pathways OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution

More information

Biochemistry: A Short Course

Biochemistry: A Short Course Tymoczko Berg Stryer Biochemistry: A Short Course First Edition CHAPTER 19 Harvesting Electrons from the Cycle 2013 W. H. Freeman and Company Chapter 19 Outline The citric acid cycle oxidizes the acetyl

More information

Soil organic matter composition, decomposition, mineralization and immobilization

Soil organic matter composition, decomposition, mineralization and immobilization Soil organic matter composition, decomposition, mineralization and immobilization SOIL ORGANIC MATTER Substances containing carbon are organic matter. Soil organic matter consists of decomposing plant

More information

Local and systemic transcriptome responses to herbivory and jasmonic acid in Populus

Local and systemic transcriptome responses to herbivory and jasmonic acid in Populus Tree Genetics & Genomes (2009) 5:459 474 DOI 10.1007/s11295-009-0200-6 ORIGINAL PAPER Local and systemic transcriptome responses to herbivory and jasmonic acid in Populus Benjamin A. Babst & Andreas Sjödin

More information

Org/Biochem Final Lec Form, Spring 2012 Page 1 of 6

Org/Biochem Final Lec Form, Spring 2012 Page 1 of 6 Page 1 of 6 Missing Complete Protein and Question #45 Key Terms: Fill in the blank in the following 25 statements with one of the key terms in the table. Each key term may only be used once. Print legibly.

More information

Carbohydrate Metabolism

Carbohydrate Metabolism Chapter 34 Carbohydrate Metabolism Carbohydrate metabolism is important for both plants and animals. Introduction to General, Organic, and Biochemistry, 10e John Wiley & Sons, Inc Morris Hein, Scott Pattison,

More information

Flavonoid Metabolism

Flavonoid Metabolism 270S-SO-/2 Flavonoid Metabolism Author Helen A. Stafford, Ph.D. Professor Biology Department Reed College Portland, Oregon CRC Press, Inc. Boca Raton, Florida TABLE OF CONTENTS Chapter 1 General Aspects

More information

9/10/2012. The electron transfer system in the inner membrane of mitochondria in plants

9/10/2012. The electron transfer system in the inner membrane of mitochondria in plants LECT 6. RESPIRATION COMPETENCIES Students, after mastering the materials of Plant Physiology course, should be able to: 1. To explain the process of respiration (the oxidation of substrates particularly

More information

Chapter 6 Cellular Respiration: Obtaining Energy from Food

Chapter 6 Cellular Respiration: Obtaining Energy from Food Chapter 6 Cellular Respiration: Obtaining Energy from Food PowerPoint Lectures for Campbell Essential Biology, Fifth Edition, and Campbell Essential Biology with Physiology, Fourth Edition Eric J. Simon,

More information

Quotations are from

Quotations are from Teacher Notes for Photosynthesis and Cellular Respiration Understanding the Basics of Bioenergetics and Biosynthesis 1 In this minds-on activity, students analyze the relationships between photosynthesis,

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1. AtMYB12 antibody detects both Arabidopsis and tomato MYB12 protein. (a) AtMYB12 antibody detects both SlMYB12 and AtMYB12 in tomato fruit. Both WT and AtMYB12

More information

2/4/17. Cellular Metabolism. Metabolism. Cellular Metabolism. Consists of all of the chemical reactions that take place in a cell.

2/4/17. Cellular Metabolism. Metabolism. Cellular Metabolism. Consists of all of the chemical reactions that take place in a cell. Metabolism Cellular Metabolism Consists of all of the chemical reactions that take place in a cell. Can be reactions that break things down. (Catabolism) Or reactions that build things up. (Anabolism)

More information

Chapter 7 How Cells Release Chemical Energy

Chapter 7 How Cells Release Chemical Energy Chapter 7 How Cells Release Chemical Energy 7.1 Mighty Mitochondria More than forty disorders related to defective mitochondria are known (such as Friedreich s ataxia); many of those afflicted die young

More information

Energy and Metabolism *

Energy and Metabolism * OpenStax-CNX module: m44422 1 Energy and Metabolism * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section, you will

More information

Bio 111 Study Guide Chapter 7 Cellular Respiration & Fermentation

Bio 111 Study Guide Chapter 7 Cellular Respiration & Fermentation Bio 111 Study Guide Chapter 7 Cellular Respiration & Fermentation BEFORE CLASS: Reading: Read the whole chapter from pp. 141-158. In Concept 7.1, pay special attention to oxidation & reduction and the

More information

Cellular Metabolism. Biology 105 Lecture 6 Chapter 3 (pages 56-61)

Cellular Metabolism. Biology 105 Lecture 6 Chapter 3 (pages 56-61) Cellular Metabolism Biology 105 Lecture 6 Chapter 3 (pages 56-61) Metabolism Consists of all the chemical reactions that take place in a cell! Cellular Metabolism Aerobic cellular respiration requires

More information

Cellular Metabolism. Biol 105 Lecture 6 Read Chapter 3 (pages 63 69)

Cellular Metabolism. Biol 105 Lecture 6 Read Chapter 3 (pages 63 69) Cellular Metabolism Biol 105 Lecture 6 Read Chapter 3 (pages 63 69) Metabolism Consists of all of the chemical reactions that take place in a cell Metabolism Animation Breaking Down Glucose For Energy

More information

Cellular Respiration Notes. Biology - Mrs. Kaye

Cellular Respiration Notes. Biology - Mrs. Kaye Cellular Respiration Notes Biology - Mrs. Kaye Energy Transfer In cellular respiration, chemical energy is converted into usable energy which is converted into heat energy. ATP and ADP ATP acts as an energy

More information

Chapter 9 Cellular Respiration

Chapter 9 Cellular Respiration Chapter 9 Cellular Respiration Biology and Society: Marathoners versus Sprinters Sprinters do not usually compete at short and long distances. Natural differences in the muscles of these athletes favor

More information

Environmental Literacy Project Michigan State University. Lesson 2.3: Materials Plants Are Made Of

Environmental Literacy Project Michigan State University. Lesson 2.3: Materials Plants Are Made Of Environmental Literacy Project Michigan State University Lesson 2.3: Materials Plants Are Made Of Benchmark Scale Power of Ten Large Scale: Farm field Decimal Style Large scale Larger 10 5 10 4 10 3 Larger

More information

BRIEF CONTENTS COPYRIGHTED MATERIAL III METABOLIC AND DEVELOPMENTAL INTEGRATION COMPARTMENTS CELL REPRODUCTION PLANT ENVIRONMENT AND AGRICULTURE

BRIEF CONTENTS COPYRIGHTED MATERIAL III METABOLIC AND DEVELOPMENTAL INTEGRATION COMPARTMENTS CELL REPRODUCTION PLANT ENVIRONMENT AND AGRICULTURE BRIEF CONTENTS I COMPARTMENTS 1 Membrane Structure and Membranous Organelles 2 2 The Cell Wall 45 3 Membrane Transport 111 4 Protein Sorting and Vesicle Traffic 151 5 The Cytoskeleton 191 II CELL REPRODUCTION

More information

CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education BIOLOGY 0610/01

CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education BIOLOGY 0610/01 MRIGE INTERNTIONL EXMINTIONS International General ertificate of Secondary Education IOLOGY 0610/01 Paper 1 Multiple hoice October/November 2003 dditional Materials: Multiple hoice nswer Sheet Soft clean

More information

DRK-12 Carbon Assessment, Form A

DRK-12 Carbon Assessment, Form A DRK-12 Carbon Assessment, Form A Fall, 2013 Please don t include this first sheet in student copies. This assessment is designed to elicit middle school or high school students accounts of carbon-transforming

More information

Cellular Respiration: Obtaining Energy from Food

Cellular Respiration: Obtaining Energy from Food Chapter 6 Cellular Respiration: Obtaining Energy from Food Lectures by Chris C. Romero, updated by Edward J. Zalisko PowerPoint Lectures for Campbell Essential Biology, Fourth Edition Eric Simon, Jane

More information

Carbohydrates. Organic compounds which comprise of only C, H and O. C x (H 2 O) y

Carbohydrates. Organic compounds which comprise of only C, H and O. C x (H 2 O) y Carbohydrates Organic compounds which comprise of only C, H and O C x (H 2 O) y Carbohydrates Monosaccharides Simple sugar Soluble in water Precursors in synthesis triose sugars of other (C3) molecules

More information

Chemical Formulas. Chemical Formula CH 3 COCHCHOCHClCHNH Lewis Dot Structure

Chemical Formulas. Chemical Formula CH 3 COCHCHOCHClCHNH Lewis Dot Structure Biochemistry . Chemical Formulas A chemical formula represents the chemical makeup of a compound. It shows the numbers and kinds of atoms present in a compound. It is a kind of shorthand that scientists

More information

Soil Organic Matter. Unit 2. Forms of Soil Organic Matter: OM OC x (assumes 30% C) (1.72 typically used as a conversion factor)

Soil Organic Matter. Unit 2. Forms of Soil Organic Matter: OM OC x (assumes 30% C) (1.72 typically used as a conversion factor) Unit 2 Soil Organic Matter OM OC x 1.7-2.0 (assumes 30% C) (1.72 typically used as a conversion factor) Histosol Alfisol Spodosol Forms of Soil Organic Matter: - dissolved (soil solution): DOM Nonliving

More information

Lecture 19: Soil Organic Matter

Lecture 19: Soil Organic Matter Lecture 19: Soil Organic Matter Effects of OM Properties on Soil Property Dark color Excellent water retention Binds to clay minerals Metal chelation Low water solubility ph buffering High CEC Nutrient

More information

LECT 6. RESPIRATION COMPETENCIES. Students, after mastering materials of the present lecture, should be able:

LECT 6. RESPIRATION COMPETENCIES. Students, after mastering materials of the present lecture, should be able: LECT 6. RESPIRATION COMPETENCIES Students, after mastering materials of the present lecture, should be able: 1. 2. To explain the process of respiration (the oxidation of substrates particularly carbohydrates

More information

Biochemistry Worksheet

Biochemistry Worksheet Biology 138 Name Section 3.1 Properties of Water Biochemistry Worksheet 1. Why is water such an important molecule to living things? 2. Describe the chemical make up and type of bonding found in water

More information

Name: Multiple Choice. Mark your answers on this test. Then carefully transfer your answers to the scan sheet provided

Name: Multiple Choice. Mark your answers on this test. Then carefully transfer your answers to the scan sheet provided Science 7 Name: Section: Mid-Term Review WS Date: Multiple Choice. Mark your answers on this test. Then carefully transfer your answers to the scan sheet provided 1. The diagram below represents four organisms.

More information

Chapter 6 Cellular Respiration: Obtaining Energy from Food

Chapter 6 Cellular Respiration: Obtaining Energy from Food Chapter 6 Cellular Respiration: Obtaining Energy from Food PowerPoint Lectures for Campbell Essential Biology, Fifth Edition, and Campbell Essential Biology with Physiology, Fourth Edition Eric J. Simon,

More information

CH 7: Cell Respiration and Fermentation Overview. Concept 7.1: Catabolic pathways yield energy by oxidizing organic fuels

CH 7: Cell Respiration and Fermentation Overview. Concept 7.1: Catabolic pathways yield energy by oxidizing organic fuels CH 7: Cell Respiration and Fermentation Overview Living cells require energy from outside sources Some animals obtain energy by eating plants, and some animals feed on other organisms Energy flows into

More information

How Did Energy-Releasing Pathways Evolve? (cont d.)

How Did Energy-Releasing Pathways Evolve? (cont d.) How Did Energy-Releasing Pathways Evolve? (cont d.) 7.1 How Do Cells Access the Chemical Energy in Sugars? In order to use the energy stored in sugars, cells must first transfer it to ATP The energy transfer

More information

Biochemistry - Problem Drill 16: Carbohydrate Metabolism

Biochemistry - Problem Drill 16: Carbohydrate Metabolism Biochemistry - Problem Drill 16: Carbohydrate Metabolism No. 1 of 10 Instructions: (1) Read the problem statement and answer choices carefully (2) Work the problems on paper as 1. Fill in the diagram below

More information

Multiple choice: Circle the best answer on this exam. There are 12 multiple choice questions, each question is worth 3 points.

Multiple choice: Circle the best answer on this exam. There are 12 multiple choice questions, each question is worth 3 points. CHEM 4420 Exam 4 Spring 2015 Dr. Stone Page 1 of 6 Name Use complete sentences when requested. There are 120 possible points on this exam. Therefore there are 20 bonus points. Multiple choice: Circle the

More information

Chapter 7: How Cells Harvest Energy AP

Chapter 7: How Cells Harvest Energy AP Chapter 7: How Cells Harvest Energy AP Essential Knowledge 1.B.1 distributed among organisms today. (7.1) 1.D.2 Organisms share many conserved core processes and features that evolved and are widely Scientific

More information

An Investigation of Biofuels

An Investigation of Biofuels Please print Full name clearly: Introduction: BIOL 305L Laboratory Six An Investigation of Biofuels To me, this is the ultimate use of the plant cell wall the potential to obtain an alternative fuel from

More information

BY: RASAQ NURUDEEN OLAJIDE

BY: RASAQ NURUDEEN OLAJIDE BY: RASAQ NURUDEEN OLAJIDE LECTURE CONTENT INTRODUCTION CITRIC ACID CYCLE (T.C.A) PRODUCTION OF ACETYL CoA REACTIONS OF THE CITIRC ACID CYCLE THE AMPHIBOLIC NATURE OF THE T.C.A CYCLE THE GLYOXYLATE CYCLE

More information

Chapter 6 Cellular Respiration: Obtaining Energy from Food

Chapter 6 Cellular Respiration: Obtaining Energy from Food Chapter 6 Cellular Respiration: Obtaining Energy from Food PowerPoint Lectures for Campbell Essential Biology, Fifth Edition, and Campbell Essential Biology with Physiology, Fourth Edition Eric J. Simon,

More information

Cellular Respiration: Obtaining Energy from Food

Cellular Respiration: Obtaining Energy from Food Chapter 6 Cellular Respiration: Obtaining Energy from Food PowerPoint Lectures for Campbell Essential Biology, Fourth Edition Eric Simon, Jane Reece, and Jean Dickey Campbell Essential Biology with Physiology,

More information

CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM /19 BY: MOHAMAD FAHRURRAZI TOMPANG

CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM /19 BY: MOHAMAD FAHRURRAZI TOMPANG CITRIC ACID CYCLE ERT106 BIOCHEMISTRY SEM 1 2018/19 BY: MOHAMAD FAHRURRAZI TOMPANG Chapter Outline (19-1) The central role of the citric acid cycle in metabolism (19-2) The overall pathway of the citric

More information

A CRISPR/Cas9-mediated gene editing to enhance the expression of the Solanum lycopersicum MYB12 gene and the nutritional value of tomato

A CRISPR/Cas9-mediated gene editing to enhance the expression of the Solanum lycopersicum MYB12 gene and the nutritional value of tomato A CRISPR/Cas9-mediated gene editing to enhance the expression of the Solanum lycopersicum MYB12 gene and the nutritional value of tomato Dr. Aurelia Scarano Napoli, 22 Dicembre 2017 Phenylalanine Phenolic

More information

Cellular Respiration. Release of Energy From Food (glucose)!

Cellular Respiration. Release of Energy From Food (glucose)! Cellular Respiration Release of Energy From Food (glucose)! Energy needs of life Animals are energy consumers What do we need energy for? synthesis (building for growth) reproduction active transport movement

More information

Cellular Metabolism 6/20/2015. Metabolism. Summary of Cellular Respiration. Consists of all the chemical reactions that take place in a cell!

Cellular Metabolism 6/20/2015. Metabolism. Summary of Cellular Respiration. Consists of all the chemical reactions that take place in a cell! Cellular Metabolism Biology 105 Lecture 6 Chapter 3 (pages 56-61) Metabolism Consists of all the chemical reactions that take place in a cell! Cellular metabolism: Aerobic cellular respiration requires

More information

How Cells Release Chemical Energy Cellular Respiration

How Cells Release Chemical Energy Cellular Respiration How Cells Release Chemical Energy Cellular Respiration Overview of Cellular Respiration HO double membrane outer membrane inner membrane CO matrix Produces molecules Requires oxygen Releases carbon dioxide

More information

Cellular Respiration: Obtaining Energy from Food

Cellular Respiration: Obtaining Energy from Food Chapter 6 Cellular Respiration: Obtaining Energy from Food Lectures by Chris C. Romero, updated by Edward J. Zalisko PowerPoint Lectures for Campbell Essential Biology, Fourth Edition Eric Simon, Jane

More information

Cellular Metabolism 9/24/2013. Metabolism. Cellular Metabolism. Consists of all the chemical reactions that take place in a cell!

Cellular Metabolism 9/24/2013. Metabolism. Cellular Metabolism. Consists of all the chemical reactions that take place in a cell! Cellular Metabolism Biology 105 Lecture 6 Chapter 3 (pages 56-61) Metabolism Consists of all the chemical reactions that take place in a cell! Cellular Metabolism Aerobic cellular respiration requires

More information

Biochemistry. 2. Besides carbon, name 3 other elements that make up most organic compounds.

Biochemistry. 2. Besides carbon, name 3 other elements that make up most organic compounds. Biochemistry Carbon compounds Section 3-1 1. What is an organic compound? 2. Besides carbon, name 3 other elements that make up most organic compounds. 3. Carbon dioxide, CO 2, is NOT an organic compound.

More information

In glycolysis, glucose is converted to pyruvate. If the pyruvate is reduced to lactate, the pathway does not require O 2 and is called anaerobic

In glycolysis, glucose is converted to pyruvate. If the pyruvate is reduced to lactate, the pathway does not require O 2 and is called anaerobic Glycolysis 1 In glycolysis, glucose is converted to pyruvate. If the pyruvate is reduced to lactate, the pathway does not require O 2 and is called anaerobic glycolysis. If this pyruvate is converted instead

More information

DRK-12 Carbon Assessment, Form A. Fall, 2012

DRK-12 Carbon Assessment, Form A. Fall, 2012 DRK-12 Carbon Assessment, Form A Fall, 2012 Please don t include this first sheet in student copies. This assessment is designed to elicit middle school or high school students accounts of carbon- transforming

More information

Algal Biofuels Research: Using basic science to maximize fuel output. Jacob Dums, PhD candidate, Heike Sederoff Lab March 9, 2015

Algal Biofuels Research: Using basic science to maximize fuel output. Jacob Dums, PhD candidate, Heike Sederoff Lab March 9, 2015 Algal Biofuels Research: Using basic science to maximize fuel output Jacob Dums, PhD candidate, jtdums@ncsu.edu Heike Sederoff Lab March 9, 2015 Outline Research Approach Dunaliella Increase Oil Content

More information

Chapter 3 Guided Reading Notes Carbon and the Molecular Diversity of Life

Chapter 3 Guided Reading Notes Carbon and the Molecular Diversity of Life AP Biology Name: Block Chapter 3 Guided Reading Notes Carbon and the Molecular Diversity of Life Most of this chapter is new material. We will discuss it all in detail. Section 1 1. Make an electron distribution

More information

Photosynthesis in chloroplasts. Cellular respiration in mitochondria ATP. ATP powers most cellular work

Photosynthesis in chloroplasts. Cellular respiration in mitochondria ATP. ATP powers most cellular work Light energy ECOSYSTEM CO + H O Photosynthesis in chloroplasts Cellular respiration in mitochondria Organic molecules + O powers most cellular work Heat energy 1 becomes oxidized (loses electron) becomes

More information

Background knowledge

Background knowledge Background knowledge This is the required background knowledge: State three uses of energy in living things Give an example of an energy conversion in a living organism State that fats and oils contain

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy You should be able to: 1. Explain how redox reactions are involved in energy exchanges. Name and describe the three stages of cellular respiration;

More information

Chapter 9: Cellular Respiration Overview: Life Is Work. Living cells. Require transfusions of energy from outside sources to perform their many tasks

Chapter 9: Cellular Respiration Overview: Life Is Work. Living cells. Require transfusions of energy from outside sources to perform their many tasks Chapter 9: Cellular Respiration Overview: Life Is Work Living cells Require transfusions of energy from outside sources to perform their many tasks Biology, 7 th Edition Neil Campbell and Jane Reece The

More information

CHY2026: General Biochemistry UNIT 7& 8: CARBOHYDRATE METABOLISM

CHY2026: General Biochemistry UNIT 7& 8: CARBOHYDRATE METABOLISM CHY2026: General Biochemistry UNIT 7& 8: CARBOHYDRATE METABOLISM Metabolism Bioenergetics is the transfer and utilization of energy in biological systems The direction and extent to which a chemical reaction

More information

General Biology 1004 Chapter 6 Lecture Handout, Summer 2005 Dr. Frisby

General Biology 1004 Chapter 6 Lecture Handout, Summer 2005 Dr. Frisby Slide 1 CHAPTER 6 Cellular Respiration: Harvesting Chemical Energy PowerPoint Lecture Slides for Essential Biology, Second Edition & Essential Biology with Physiology Presentation prepared by Chris C.

More information

III. 6. Test. Respiració cel lular

III. 6. Test. Respiració cel lular III. 6. Test. Respiració cel lular Chapter Questions 1) What is the term for metabolic pathways that release stored energy by breaking down complex molecules? A) anabolic pathways B) catabolic pathways

More information

(A) Urea cycle (B) TCA cycle (C) Glycolysis (D) Pyruvate oxidation (E) Respiratory chain

(A) Urea cycle (B) TCA cycle (C) Glycolysis (D) Pyruvate oxidation (E) Respiratory chain Biochemistry - Problem Drill 15: Citric Acid Cycle No. 1 of 10 1. Which of the following statements is not a metabolic pathway involved in carbohydrate catabolism and ATP production. (A) Urea cycle (B)

More information

Biological Chemistry. Is biochemistry fun? - Find it out!

Biological Chemistry. Is biochemistry fun? - Find it out! Biological Chemistry Is biochemistry fun? - Find it out! 1. Key concepts Outline 2. Condensation and Hydrolysis Reactions 3. Carbohydrates 4. Lipids 5. Proteins 6. Nucleic Acids Key Concepts: 1. Organic

More information

1. The table shows the effects that two different concentrations of sulphur dioxide in the air had on the growth of rye grass plants.

1. The table shows the effects that two different concentrations of sulphur dioxide in the air had on the growth of rye grass plants. Humans and their environment 1. The table shows the effects that two different concentrations of sulphur dioxide in the air had on the growth of rye grass plants. Sulphur dioxide concentration in the 9.0

More information

Chapter 9: Cellular Respiration: Harvesting Chemical Energy

Chapter 9: Cellular Respiration: Harvesting Chemical Energy AP Biology Reading Guide Name: Date: Period Chapter 9: Cellular Respiration: Harvesting Chemical Energy Overview: Before getting involved with the details of cellular respiration and photosynthesis, take

More information

Respiration 30/04/2013. Dr.M.R.Vaezi K., Hakim Sabzevari University

Respiration 30/04/2013. Dr.M.R.Vaezi K., Hakim Sabzevari University Respiration Metabolism - the sum of all the chemical reactions that occur in the body. It is comprised of: anabolism synthesis of molecules, requires input of energy catabolism break down of molecules,

More information

Chapter 1. Chemistry of Life - Advanced TABLE 1.2: title

Chapter 1. Chemistry of Life - Advanced TABLE 1.2: title Condensation and Hydrolysis Condensation reactions are the chemical processes by which large organic compounds are synthesized from their monomeric units. Hydrolysis reactions are the reverse process.

More information

6 CHAPTER-6 TOTAL PHENOLIC AND FLAVONOID CONTENT DETERMINATION

6 CHAPTER-6 TOTAL PHENOLIC AND FLAVONOID CONTENT DETERMINATION 6 CHAPTER-6 TOTAL PHENOLIC AND FLAVONOID CONTENT DETERMINATION 6.1 PHENOLIC COMPOUNDS Phenolic compounds are a group of chemical compounds that are widely distributed in nature. They are simple compounds

More information

4.1 Cycling of Matter Date: Cycling of Organic and Inorganic Matter. Build your Own Notes:

4.1 Cycling of Matter Date: Cycling of Organic and Inorganic Matter. Build your Own Notes: 4.1 Cycling of Matter Date: Build your Own Notes: Use these topics as guidelines to create your own notes for 4.1 from pages 83 84 Study Notes/Questions Cycling of Organic and Inorganic Matter Matter is

More information

Cycling of Organic and Inorganic Matter

Cycling of Organic and Inorganic Matter Cycling of Matter Build your Own Notes: Use these topics as guidelines to create your own notes from the page given udy Notes/Questions Cycling of Organic and Inorganic Matter Organic matter always contains

More information

Cellular Respiration

Cellular Respiration Cellular Respiration 1. To perform cell work, cells require energy. a. A cell does three main kinds of work: i. Mechanical work, such as the beating of cilia, contraction of muscle cells, and movement

More information

Chapter 6. How Cells Harvest Chemical Energy. Lecture by Richard L. Myers

Chapter 6. How Cells Harvest Chemical Energy. Lecture by Richard L. Myers Chapter 6 How Cells Harvest Chemical Energy oweroint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Copyright 2009 earson Education, Inc. Lecture

More information

7 Cellular Respiration and Fermentation

7 Cellular Respiration and Fermentation CAMPBELL BIOLOGY IN FOCUS Urry Cain Wasserman Minorsky Jackson Reece 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Overview: Life Is Work Living

More information

High Resolution LC-MS Data Output and Analysis

High Resolution LC-MS Data Output and Analysis High Resolution LC-MS Data Output and Analysis Software for comparing full-scan datasets MetAlign method Software for comparing full-scan datasets MetAlign method Base line correction and peak pickingnew

More information

Copyright 2014 Edmentum - All rights reserved. 2. In plants, which characteristic or behavior is typically independent of the plant's environment?

Copyright 2014 Edmentum - All rights reserved. 2. In plants, which characteristic or behavior is typically independent of the plant's environment? Copyright 2014 Edmentum - All rights reserved. AP Biology Living System and Free Energy Blizzard Bag 2014 2015 1. How is cellular respiration useful to the cell? A. producing ATP, which provides the nucleotides

More information

7 Cellular Respiration and Fermentation

7 Cellular Respiration and Fermentation CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION

More information

0.5. Normalized 95% gray value interval h

0.5. Normalized 95% gray value interval h Normalized 95% gray value interval.5.4.3.2.1 h Supplemental Figure 1: Symptom score of root samples used in the proteomics study. For each time point, the normalized 95% gray value interval is an averaged

More information

9/21/2016. Composition and Compositional Changes During Development: Part II. V. Major Components of Fruits and Vegetables.

9/21/2016. Composition and Compositional Changes During Development: Part II. V. Major Components of Fruits and Vegetables. Composition and Compositional Changes During Development: Part II Dr. Jeffrey K. Brecht Horticultural Sciences Department, Gainesville Dr. Mark A. Ritenour Indian River Research and Education Center, Fort

More information

Energy Transformation: Cellular Respiration Outline 1. Sources of cellular ATP 2. Turning chemical energy of covalent bonds between C-C into energy

Energy Transformation: Cellular Respiration Outline 1. Sources of cellular ATP 2. Turning chemical energy of covalent bonds between C-C into energy Energy Transformation: Cellular Respiration Outline 1. Sources of cellular ATP 2. Turning chemical energy of covalent bonds between C-C into energy for cellular work (ATP) 3. Importance of electrons and

More information

The citric acid cycle Sitruunahappokierto Citronsyracykeln

The citric acid cycle Sitruunahappokierto Citronsyracykeln The citric acid cycle Sitruunahappokierto Citronsyracykeln Ove Eriksson BLL/Biokemia ove.eriksson@helsinki.fi Metabolome: The complete set of small-molecule metabolites to be found in a cell or an organism.

More information

Chapter 17 - Citric Acid Cycle

Chapter 17 - Citric Acid Cycle hapter 17 - itric Acid ycle I. Introduction - The citric acid cycle (A) was elucidated in the 1930's by ans Krebs, who first noticed that oxygen consumption in suspensions of pigeon breast muscle was greatly

More information

How Cells Harvest Chemical Energy

How Cells Harvest Chemical Energy How Cells Harvest Chemical Energy Chapter 6 Introduction: How Is a Marathoner Different from a Sprinter? Individuals inherit various percentages of the two main types of muscle fibers, slow and fast The

More information

1 CH:14 RESPIRATION IN PLANTS https://biologyaipmt.com/

1 CH:14 RESPIRATION IN PLANTS https://biologyaipmt.com/ 1 CH:14 RESPIRATION IN PLANTS https://biologyaipmt.com/ CHAPTER 14 RESPIRATION IN PLANTS All the energy required for 'life' processes is obtained by oxidation of some macromolecules that we call 'food'.

More information

Ch 2 Molecules of life

Ch 2 Molecules of life Ch 2 Molecules of life Think about (Ch 2, p.2) 1. Water is essential to life. If there is water on a planet, it is possible that life may exist on the planet. 2. Water makes up the largest percentage by

More information

How to Develop a Balanced Program for Pecan and Chili. Robert R Smith

How to Develop a Balanced Program for Pecan and Chili. Robert R Smith Essential Plant Nutrients How to Develop a Balanced Program for Pecan and Chili Robert R Smith Nutrition Management Involves Knowledge of: Site/Soil characteristics and chemistry Plant requirements Cropping

More information

Biochemistry: A Short Course

Biochemistry: A Short Course Tymoczko Berg Stryer Biochemistry: A Short Course Second Edition CHAPTER 30 Amino Acid Degradation and the Urea Cycle 2013 W. H. Freeman and Company Chapter 30 Outline Amino acids are obtained from the

More information

Topic 3.1 Nutrients. - Lipids are an essential part of the and are a part of cell in the body.

Topic 3.1 Nutrients. - Lipids are an essential part of the and are a part of cell in the body. Name: Topic 3.1 Nutrients Date: IB SEHS 3.1.1. List the macronutrients and micronutrients Macronutrients: - lipid (fat) - carbohydrate - protein - water (says the book) Micronutrients: - vitamins - minerals

More information

A cell has enough ATP to last for about three seconds.

A cell has enough ATP to last for about three seconds. Energy Transformation: Cellular Respiration Outline 1. Energy and carbon sources in living cells 2. Sources of cellular ATP 3. Turning chemical energy of covalent bonds between C-C into energy for cellular

More information

Cellular Respiration: Harvesting Chemical Energy CHAPTER 9

Cellular Respiration: Harvesting Chemical Energy CHAPTER 9 Cellular Respiration: Harvesting Chemical Energy CHAPTER 9 9.1 Metabolic pathways that release energy are exergonic and considered catabolic pathways. Fermentation: partial degradation of sugars that occurs

More information

PHOTOSYNTHESIS (7.5A)

PHOTOSYNTHESIS (7.5A) PHOTOSYNTHESISS (7.5A) 1) What kind of energy is necessary to initiate the process of photosynthesis? A. radiant B. heat C. electrical D. wind 2) What happens to the radiant energy absorbed by plants during

More information

Regulation of Citric Acid Cycle

Regulation of Citric Acid Cycle Paper : 04 Metabolism of carbohydrates Module : 30 Principal Investigator, Paper Coordinator and Content Writer Dr. Ramesh Kothari, Professor UGC-CAS Department of Biosciences Saurashtra University, Rajkot-5

More information

Elements & Macromolecules in Organisms

Elements & Macromolecules in Organisms Name: Period: Date: Elements & Macromolecules in Organisms Most common elements in living things are carbon, hydrogen, nitrogen, and oxygen. These four elements constitute about 95% of your body weight.

More information

4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5

4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5 1. Which of the following statements about NAD + is false? a. NAD + is reduced to NADH during both glycolysis and the citric acid cycle. b. NAD + has more chemical energy than NADH. c. NAD + is reduced

More information