Cellular Respiration: Harvesting Chemical Energy CHAPTER 9
|
|
- Godfrey Nash
- 1 years ago
- Views:
Transcription
1 Cellular Respiration: Harvesting Chemical Energy CHAPTER 9
2 9.1 Metabolic pathways that release energy are exergonic and considered catabolic pathways. Fermentation: partial degradation of sugars that occurs w/out the help of O 2 Cellular respiration: O 2 is consumed as a reactant along w/ the sugar more efficient
3 9.1 Cellular respiration occurs in the mitochondria Organic + O 2 Carbon + H 2 O + Energy compounds dioxide C 6 H 12 O 6 + 6O 2 6CO 2 + 6H 2 O + Energy
4 Two types of phosphorylation occur in cellular respiration Substrate-level phosphorylation: direct transfer of a phosphate to ADP by an enzyme Glycolysis Krebs Cycle Oxidative phosphorylation: the energy released at each step of ETC is used to make ATP through redox rxns. and ATP synthase accounts for 90% of generated ATP during respiration
5 9.2 Glycolysis Glycolysis means splitting of sugar glucose (6C) 2 pyruvate (3C) 10 steps of glycolysis each with their own enzyme are broken down into two phases: energy investment spend 2 ATP to phosphorylate energy payoff - 4 ATP and 2 NAD + are reduced to NADH Net energy yield: 2 ATP and 2 NADH which goes to ETC ALL organisms use regardless of performing aerobic or anaerobic respiration
6 9.3 Krebs Cycle / Citric Acid Cycle (CAC) Fate of products from glycolysis depends on whether O 2 is present or not O 2 not present cell will undergo fermentation O 2 present, E stored in pyruvate can be converted to ATP, NADH, and FADH 2 through the CAC Pyruvate MUST BE converted before it enters the CAC
7 9.3 CAC / Krebs cycle Each pyruvate (3C) enters the mitochondria through active transport (requires E) and is converted to acetyl CoA (2C) How does this work? 1.) carboxyl group on pyruvate is removed & released as CO 2 - leaving acetate (2C) ***1 st time CO 2 released 2.) e - passed from acetate (thanks to an enzyme) reducing NAD + NADH 3.) Coenzyme A attaches to acetate forming acetyl CoA which will enter the CAC to be fully oxidized
8 9.3 CAC / Krebs cycle occurs in the matrix 8 steps, each catalyzed by a specific enzyme, here are some highlights Acetyl CoA (2C) enters CAC to be oxidized (lose e-) Remaining 2 CO 2 released completes the oxidation of glucose e - transferred to 3 NAD + (reduced) 3 NADH e - transferred to 1 FAD (reduced) 1 FADH 2 1 ADP is phosphorylated 1 ATP 2x these products there are two molecules of pyruvate converted to Acetyl CoA
9 9.4 Electron Transport Chain e - removed from food during glycolysis and Krebs are transferred by NADH and FADH 2 to the ETC Cristae: inner membrane folding of the mitochondria in euks increases surface area for more ETC reactions structure/function Plasma/cell membrane of proks
10 How many high energy molecules are entering the ETC? Glycolysis 2 NADH Pyruvate conversion 2 NADH CAC 6 NADH and 2 FADH 2 Grand total to the ETC 10 NADH and 2 FADH 2
11 9.4 Most of the e - carriers in the ETC are proteins called cytochromes e- from NADH and FADH 2 fall down the ETC with oxygen being the final e - acceptor and H 2 O being generated Switch between reduced and oxidize at each step NADH and FADH 2 enter the ETC at different steps Results in different ATP production for each molecule
12 9.4 Each NADH = 3 ATP Each FADH 2 = 2 ATP ETC makes no ATP directly. It moves e- from food to oxygen breaking the E drop to manageable amounts. Builds H+ gradient which is used to make ATP Where else have we seen this happen?
13 9.4 ATP synthase is found in the inner membrane surface Recall that it makes ATP from ADP and Pi Only place for H+ to escape uses proton-motive force (H+ gradient) to do work which is to synthesize ATP AKA chemiosmosis
14 9.4 Chemiosmosis is also found in the chloroplasts ATP is generated during photosynthesis light drives both e- flow down the ETC and H + gradient formation
15 9.4 After all is said and done we should have 38 ATP More accurately 36 ATP are formed when we consider Phosphorylation and redox rnxs are not coupled we round the number of ATP produced for each NADH to 3 and FADH 2 2 (more like and respectively) NADH is hard to get in to the mitochondria from cytosol shuttle to get it in varies by cell (NAD+ or FAD) more ATP if shuttled in by NAD+ The ATP made by H+ gradient created by ETC can be used for other processes (remember active transport of pyruvate in to the mitochondria)
16 9.5 Anaerobic Respiration and Fermentation During glycolysis, glucose is oxidized into 2 molecules of pyruvate Happens w/ OR w/o oxygen for all organisms Fate of pyruvate depends on presence of oxygen w/o anaerobic respiration OR fermentation w/ - Krebs Cycle (more on this later) w/o oxygen, the energy still stored in pyruvate is unavailable to cells Need to regenerate e- NAD+
17 Anaerobic Respiration & Fermentation w/o oxygen, the energy still stored in pyruvate is unavailable to cells Need O 2 to breakdown further Need to regenerate e- acceptor NAD+ Two types of fermentation Lactic Acid Fermentation (LAF) Alcoholic Fermentation
18 9.5 Alcoholic Fermentation Alcohol fermentation: pyruvate ethanol process used to make beer, wine, and bread 2 step process to regenerate NAD + CO 2 is released from pyruvate creating acetaldehyde carbonation in beer, wine, rising of bread acetaldehyde reduced by NADH creating ethyl alcohol regenerate NAD + for glycolysis
19 9.5 Organisms that rely on Fermentation Facultative anaerobes: yeasts and bacteria that can make enough ATP to survive using either fermentation or respiration Obligate anaerobes: cannot survive in presence of oxygen use fermentation or glycolysis as the sole source of ATP
20 9.5 Primitive metabolic pathway Ancient prokaryotes probably used anaerobic respiration and fermentation before oxygen was present in the atmosphere Also, glycolysis does not require mitochondria to occur
21 9.6 Other sources of ATP Fats, proteins, and complex carbs can all be used to make ATP They enter cellular respiration at different steps Fats can be broken into monomers glycerol can be converted and can enter glycolysis fatty acids can be converted into acetyl CoA to enter Krebs Lots of E associated with the e- available in H
22 9.6 Proteins must be broken down to individual amino acids which enter glycolysis or the Krebs cycle after some conversions or they are then used to build proteins for the organism Complex carbohydrates can be hydrolyzed to form glucose monomers to enter into glycolysis Lots of E associated with the e- available in H
23 9.6 Metabolism works on supply and demand!!!! If there are too many carbs and fats are converted to fats through different stages of glycolysis and the Krebs cycle We will store fat even if we have a fat free diet by converting intermediated made in glycolysis to the precursor for fat.
24 9.6 Cellular respiration is controlled by feedback mechanisms Feedback inhibition: end products inhibit the enzymes that catalyze the early steps of the process Phosphofructokinase (PFK) pacemaker enzyme for glycolysis High [ATP] and [citrate] slows glycolysis inhibits PFK Low [ATP] and high [AMP] speeds up glycolysis promotes PFK
Cellular Respiration and Fermentation
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 9 Cellular Respiration and Fermentation
Respiration. Respiration. How Cells Harvest Energy. Chapter 7
How Cells Harvest Energy Chapter 7 Respiration Organisms can be classified based on how they obtain energy: autotrophs: are able to produce their own organic molecules through photosynthesis heterotrophs:
Concept 9.1: Catabolic pathways yield energy by oxidizing organic fuels Several processes are central to cellular respiration and related pathways
Overview: Life Is Work Living cells require energy from outside sources Some animals, such as the chimpanzee, obtain energy by eating plants, and some animals feed on other organisms that eat plants Energy
Cellular Pathways That Harvest Chemical Energy. Cellular Pathways That Harvest Chemical Energy. Cellular Pathways In General
Cellular Pathways That Harvest Chemical Energy A. Obtaining Energy and Electrons from Glucose Lecture Series 12 Cellular Pathways That Harvest Chemical Energy B. An Overview: Releasing Energy from Glucose
Cellular Respiration: Harvesting Chemical Energy
Chapter 9 Cellular Respiration: Harvesting Chemical Energy PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with
Cellular Respiration: Harvesting Chemical Energy
Chapter 9 Cellular Respiration: Harvesting Chemical Energy You should be able to: 1. Explain how redox reactions are involved in energy exchanges. Name and describe the three stages of cellular respiration;
Chapter 9. Cellular Respiration and Fermentation
Chapter 9 Cellular Respiration and Fermentation Energy flows into an ecosystem as sunlight and leaves as heat Photosynthesis generates O 2 and organic molecules, which are used in cellular respiration
Chapter 9 Notes. Cellular Respiration and Fermentation
Chapter 9 Notes Cellular Respiration and Fermentation Objectives Distinguish between fermentation and anaerobic respiration. Name the three stages of cellular respiration and state the region of the cell
Cellular Respiration. Unit 5: Plants, Photosynthesis, and Cellular Respiration
Cellular Respiration Unit 5: Plants, Photosynthesis, and Cellular Respiration Overview! Organisms obtain energy (ATP) by breaking down (catabolic pathway, exergonic reaction) organic molecules (glucose)
Cellular Respiration: Harvesting Chemical Energy
Chapter 9 Cellular Respiration: Harvesting Chemical Energy PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with
Chapter 7 Cellular Respiration and Fermentation*
Chapter 7 Cellular Respiration and Fermentation* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. Life Is Work
Biology Kevin Dees. Chapter 9 Harvesting Chemical Energy: Cellular Respiration
Chapter 9 Harvesting Chemical Energy: Cellular Respiration Life is Work!!! Biology Kevin Dees Catabolic pathways and ATP production Catabolic pathways release energy by breaking down large molecules into
Section B: The Process of Cellular Respiration
CHAPTER 9 CELLULAR RESPIRATION: HARVESTING CHEMICAL ENERGY Section B: The Process of Cellular Respiration 1. Respiration involves glycolysis, the Krebs cycle, and electron transport: an overview 2. Glycolysis
3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP]
3.7 Cell respiration ( Chapter 9 in Campbell's book) 3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP] Organic compounds store
How Cells Harvest Energy. Chapter 7. Respiration
How Cells Harvest Energy Chapter 7 Respiration Organisms classified on how they obtain energy: autotrophs: produce their own organic molecules through photosynthesis heterotrophs: live on organic compounds
What s the point? The point is to make ATP! ATP
ATP Chapter 8 What s the point? The point is to make ATP! ATP Flows into an ecosystem as sunlight and leaves as heat Energy is stored in organic compounds Carbohydrates, lipids, proteins Heterotrophs eat
Releasing Chemical Energy
Releasing Chemical Energy Ø Energy From Carbohydrates Ø Aerobic Respiration/ Stages Ø Fermentation Ø Food as a Source of Energy How Do Cells Access the Chemical Energy in Carbohydrayes? Aerobic Respiration
Cellular Respiration Part V: Oxidative Phosphorylation
Cellular Respiration Part V: Oxidative Phosphorylation Figure 9.16 Electron shuttles span membrane 2 NADH or 2 FADH 2 MITOCHONDRION 2 NADH 2 NADH 6 NADH 2 FADH 2 Glucose Glycolysis 2 Pyruvate Pyruvate
Cellular Respiration
Cellular Respiration 1. To perform cell work, cells require energy. a. A cell does three main kinds of work: i. Mechanical work, such as the beating of cilia, contraction of muscle cells, and movement
ATP. Principles of Energy Harvest. Chapter 9~ The point is to make ATP! Cellular Respiration: Harvesting Chemical Energy. What s the point?
Chapter 9~ Cellular Respiration: Harvesting Chemical Energy What s the point? The point is to make! 2006-2007 Principles of Energy Harvest Catabolic pathway Fermentation Cellular Respiration C6H126 + 62
CH 7: Cell Respiration and Fermentation Overview. Concept 7.1: Catabolic pathways yield energy by oxidizing organic fuels
CH 7: Cell Respiration and Fermentation Overview Living cells require energy from outside sources Some animals obtain energy by eating plants, and some animals feed on other organisms Energy flows into
Cellular Respiration Harvesting Chemical Energy ATP
Cellular Respiration Harvesting Chemical Energy ATP 2006-2007 What s the point? The point is to make ATP! ATP 2006-2007 Harvesting stored energy Energy is stored in organic molecules carbohydrates, fats,
Cellular Respiration. Overview of Cellular Respiration. Lecture 8 Fall Overview of Cellular Respiration. Overview of Cellular Respiration
Overview of Cellular Respiration 1 Cellular Respiration Lecture 8 Fall 2008 All organisms need ATP to do cellular work Cellular Respiration: The conversion of chemical energy of carbon compounds into another
Cellular Respiration Harvesting Chemical Energy ATP
Cellular Respiration Harvesting Chemical Energy ATP 2006-2007 What s the point? The point is to make ATP! ATP 2006-2007 Harvesting stored energy Energy is stored in organic molecules carbohydrates, fats,
AP BIOLOGY Chapter 7 Cellular Respiration =
1 AP BIOLOGY Chapter 7 Cellular Respiration = Day 1 p. I. Overview A. Cellular Respiration 1. Respiration breathing, exchange of O 2 for CO 2 2. Cellular respiration aerobic harvesting of energy from food
Cellular Respiration and Fermentation
Chapter 9 LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Cellular Respiration and Fermentation
MULTIPLE CHOICE QUESTIONS
MULTIPLE CHOICE QUESTIONS 1. Which of the following statements concerning anabolic reactions is FALSE? A. They are generally endergonic. B. They usually require ATP. C. They are part of metabolism. D.
Cellular Respiration: Harvesting Chemical Energy
Chapter 9 Cellular Respiration: Harvesting Chemical Energy Edited by Shawn Lester PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated
Cellular Respiration: Harvesting Chemical Energy
Chapter 9 Cellular Respiration: Harvesting Chemical Energy PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with
1st half of glycolysis (5 reactions) Glucose priming get glucose ready to split phosphorylate glucose rearrangement split destabilized glucose
Warm- Up Objective: Describe the role of in coupling the cell's anabolic and catabolic processes. Warm-up: What cellular processes produces the carbon dioxide that you exhale? 1st half of glycolysis (5
How Cells Release Chemical Energy Cellular Respiration
How Cells Release Chemical Energy Cellular Respiration Overview of Cellular Respiration HO double membrane outer membrane inner membrane CO matrix Produces molecules Requires oxygen Releases carbon dioxide
Cellular Respiration and Fermentation
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 9 Cellular Respiration and Fermentation
Unit 2: Metabolic Processes
How is energy obtained biologically? Recall: Red Ox Reactions Unit 2: Metabolic Processes Oxidation Is the chief mechanism by which chemical potential energy is released This energy comes from reduced
Chapter 9: Cellular Respiration: Harvesting Chemical Energy
AP Biology Reading Guide Name: Date: Period Chapter 9: Cellular Respiration: Harvesting Chemical Energy Overview: Before getting involved with the details of cellular respiration and photosynthesis, take
CELLULAR RESPIRATION: HARVESTING CHEMICAL ENERGY. The Principles of Energy Harvest
CELLULAR RESPIRATION: HARVESTING CHEMICAL ENERGY The Principles of Energy Harvest 1. Cellular respiration and fermentation are catabolic, energy-yielding pathways 2. Cells recycle the ATP they use for
Cellular Respiration
Cellular Respiration The breakdown of glucose for cellular energy. happens in all living cells. is exothermic H atoms and e are removed from glucose (oxidization) and added to oxygen (reduction) excess
4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5
1. Which of the following statements about NAD + is false? a. NAD + is reduced to NADH during both glycolysis and the citric acid cycle. b. NAD + has more chemical energy than NADH. c. NAD + is reduced
Cellular Metabolism. Biol 105 Lecture 6 Read Chapter 3 (pages 63 69)
Cellular Metabolism Biol 105 Lecture 6 Read Chapter 3 (pages 63 69) Metabolism Consists of all of the chemical reactions that take place in a cell Metabolism Animation Breaking Down Glucose For Energy
Cellular Respiration- -conversion of stored energy in glucose to usable energy for the cell -energy in cells is stored in the form of ATP
Cellular Respiration Notes Chapter 7 How Cells Make ATP Energy Releasing Pathways Cellular Respiration- -conversion of stored energy in glucose to usable energy for the cell -energy in cells is stored
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Respiration Practice Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which of the following statements describes NAD+? A) NAD+ can donate
Cellular Respiration. Chapter 9
Cellular Respiration Chapter 9 1.A)Explain where organisms get the energy needed for life processes. Organisms get the energy they need from food. Energy stored in food is expressed as calories. Calorie
Cellular Metabolism 9/24/2013. Metabolism. Cellular Metabolism. Consists of all the chemical reactions that take place in a cell!
Cellular Metabolism Biology 105 Lecture 6 Chapter 3 (pages 56-61) Metabolism Consists of all the chemical reactions that take place in a cell! Cellular Metabolism Aerobic cellular respiration requires
Chapter 9: Cellular Respiration
Chapter 9: Cellular Respiration Breaking down glucose a little at a time.. It s like turning a five pound bag of sugar into several tiny sugar packets worth of energy in the form of ATP. Remember the carbon
How Cells Harvest Chemical Energy. Chapter 9
How Cells Harvest Chemical Energy Chapter 9 Cellular Respiration Releasing energy (ATP) from glucose (chemical energy) in the presence of O 2 Energy flows Matter cycles True or False Plants only perform
Cellular Respiration: Harvesting Chemical Energy Chapter 9
Cellular Respiration: Harvesting Chemical Energy Chapter 9 Assemble polymers, pump substances across membranes, move and reproduce The giant panda Obtains energy for its cells by eating plants which get
Cell Respiration - 1
Cell Respiration - 1 All cells must do work to stay alive and maintain their cellular environment. The energy needed for cell work comes from the bonds of ATP. Cells obtain their ATP by oxidizing organic
Cellular Respiration
Cellular Respiration Cellular respiration is the process that releases energy by breaking down glucose and other food molecules in the presence of oxygen In biology and chemistry, energy is referred to
ATP ATP. Cellular Respiration Harvesting Chemical Energy. The point is to make ATP!
ellular Respiration Harvesting hemical Energy 1 The point is to make! 2 Harvesting stored energy Energy is stored in organic molecules carbohydrates, fats, proteins Heterotrophs eat these organic molecules
How Cells Harvest Chemical Energy
How Cells Harvest Chemical Energy Chapter 6 Introduction: How Is a Marathoner Different from a Sprinter? Individuals inherit various percentages of the two main types of muscle fibers, slow and fast The
Cellular Respiration. How is energy in organic matter released for used for in living systems?
Cellular Respiration How is energy in organic matter released for used for in living systems? Cellular Respiration Organisms that perform cellular respiration are called chemoheterotrophs Includes both
Cellular Respiration
ellular Respiration 1 ellular Respiration A catabolic, exergonic, oxygen (O 2 ) requiring process that uses energy extracted from macromolecules (glucose) to produce energy (ATP) and water (H 2 O). 6 H
Chapter 9 Cellular Respiration: Harvesting Chemical Energy Lecture Outline
Chapter 9 Cellular Respiration: Harvesting Chemical Energy Lecture Outline Overview: Life Is Work To perform their many tasks, living cells require energy from outside sources. Energy enters most ecosystems
Cellular Respiration Harvesting Chemical Energy ATP
Cellular Respiration Harvesting Chemical Energy ATP 2009-2010 Ch.8.3 Section Objectives: Compare and contrast cellular respiration and fermentation. Explain how cells obtain energy from cellular respiration.
Metabolism. Chapter 5. Catabolism Drives Anabolism 8/29/11. Complete Catabolism of Glucose
8/29/11 Metabolism Chapter 5 All of the reactions in the body that require energy transfer. Can be divided into: Cell Respiration and Metabolism Anabolism: requires the input of energy to synthesize large
Energy Production In A Cell (Chapter 25 Metabolism)
Energy Production In A Cell (Chapter 25 Metabolism) Large food molecules contain a lot of potential energy in the form of chemical bonds but it requires a lot of work to liberate the energy. Cells need
Chapter 9 Cellular Respiration
Chapter 9 Cellular Respiration Biology and Society: Marathoners versus Sprinters Sprinters do not usually compete at short and long distances. Natural differences in the muscles of these athletes favor
9.2 The Process of Cellular Respiration
9.2 The Process of Cellular Respiration Oxygen Carbon 2 2 Dioxide 34 Water Glycolysis Glycolysis is the first stage of cellular respiration. During glycolysis, glucose is broken down into 2 molecules of
2) The molecule that functions as the reducing agent (electron donor) in a redox or oxidationreduction
Campbell Biology in Focus (Urry) Chapter 7 Cellular Respiration and Fermentation 7.1 Multiple-Choice Questions 1) What is the term for metabolic pathways that release stored energy by breaking down complex
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) What is the term for metabolic pathways that release stored energy by breaking down complex
g) Cellular Respiration Higher Human Biology
g) Cellular Respiration Higher Human Biology What can you remember about respiration? 1. What is respiration? 2. What are the raw materials? 3. What are the products? 4. Where does it occur? 5. Why does
Lecture Outline Correlates with our Chapter 7
Chapter 9 Cellular Respiration: Harvesting Chemical Energy Lecture Outline Correlates with our Chapter 7 Overview: Life Is Work To perform their many tasks, living cells require energy from outside sources.
Bio 111 Study Guide Chapter 7 Cellular Respiration & Fermentation
Bio 111 Study Guide Chapter 7 Cellular Respiration & Fermentation BEFORE CLASS: Reading: Read the whole chapter from pp. 141-158. In Concept 7.1, pay special attention to oxidation & reduction and the
Essential Question. How do organisms obtain energy?
Dr. Bertolotti Essential Question How do organisms obtain energy? What is cellular respiration? Burn fuels to make energy combustion making heat energy by burning fuels in one step O 2 Fuel (carbohydrates)
Class XI Chapter 14 Respiration in Plants Biology. 1. It is a biochemical process. 1. It is a physiochemical process.
Question 1: Differentiate between (a) Respiration and Combustion (b) Glycolysis and Krebs cycle (c) Aerobic respiration and Fermentation (a) Respiration and combustion Respiration Combustion 1. It is a
How Cells Release Chemical Energy. Chapter 8
How Cells Release Chemical Energy Chapter 8 Impacts, Issues: When Mitochondria Spin Their Wheels More than forty disorders related to defective mitochondria are known (such as Friedreich s ataxia); many
3/28/17. Cellular Respiration. Chapter 9: Cellular Respiration & Fermentation. Chapter 9: Cellular Respiration & Fermentation
Chapter 9: Cellular Respiration & Fermentation SE C TION 1: C E LLULAR RE SP IRATION: AN OVERVIEW As we learned last chapter, energy from the sun is transformed into different forms. In this chapter you
Cellular Respiration: Harvesting Chemical Energy
Chapter 9 Cellular Respiration: Harvesting Chemical Energy PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with
Ch. 9 Cellular Respiration Stage 2 & 3: Oxidation of Pyruvate Krebs Cycle
Ch. 9 Cellular Respiration Stage 2 & 3: Oxidation of Pyruvate Krebs Cycle 2006-2007 Glycolysis is only the start Glycolysis glucose pyruvate 6C Pyruvate has more energy to yield 3 more C to strip off (to
KEY CONCEPT The overall process of cellular respiration converts sugar into ATP using oxygen.
KEY CONCEPT The overall process of cellular respiration converts sugar into ATP using oxygen. ! Cellular respiration makes ATP by breaking down sugars. Cellular respiration is aerobic, or requires oxygen.
Cellular Respiration: Harvesting Chemical Energy
Chapter 9 Cellular Respiration: Harvesting Chemical Energy Overview: Life Is Work Living cells require energy from outside sources Some animals, such as the giant panda, obtain energy by eating plants,
Cellular Respiration Stage 1: Glycolysis (Ch. 6)
Cellular Respiration Stage 1: Glycolysis (Ch. 6) What s the point? The point is to make! 2007-2008 Harvesting stored energy Energy is stored in organic molecules carbohydrates, fats, proteins Heterotrophs
Review. Respiration. Glycolysis. Glycolysis is the decomposition (lysis) of glucose (glyco) to pyruvate (or pyruvic acid).
Review Photosynthesis is the process of incorporating energy from light into energy-rich molecules like glucose. Respiration is the opposite process extracting that stored energy from glucose to form ATP
Respiration 30/04/2013. Dr.M.R.Vaezi K., Hakim Sabzevari University
Respiration Metabolism - the sum of all the chemical reactions that occur in the body. It is comprised of: anabolism synthesis of molecules, requires input of energy catabolism break down of molecules,
3.2 Aerobic Respiration
3.2 Aerobic Respiration Aerobic Cellular Respiration Catabolic pathways Breaks down energy-rich compounds to make ATP Requires oxygen Occurs in different parts of the cell C 6 H 12 O 6 (s) + 6O 2 (g) 6CO
Chapter 6 Cellular Respiration: Obtaining Energy from Food
Chapter 6 Cellular Respiration: Obtaining Energy from Food PowerPoint Lectures for Campbell Essential Biology, Fifth Edition, and Campbell Essential Biology with Physiology, Fourth Edition Eric J. Simon,
Complete breakdown of Glucose: + Light + 6 H 2 O = C 6 H 12 O 6 6 CO O 2. + Energy = 6 CO 2 C 6 H 12 O 6. What is Glucose Metabolism?
Chapter 8: Harvesting Energy: Glycolysis and Cellular Respiration What is Metabolism? Answer: The breakdown of glucose to release energy from its chemical bonds Photosynthesis: 6 CO 2 Carbon Dioxide +
Cellular Respiration: Obtaining Energy from Food
Chapter 6 Cellular Respiration: Obtaining Energy from Food PowerPoint Lectures for Campbell Essential Biology, Fourth Edition Eric Simon, Jane Reece, and Jean Dickey Campbell Essential Biology with Physiology,
Photosynthesis in chloroplasts. Cellular respiration in mitochondria ATP. ATP powers most cellular work
Light energy ECOSYSTEM CO + H O Photosynthesis in chloroplasts Cellular respiration in mitochondria Organic molecules + O powers most cellular work Heat energy 1 becomes oxidized (loses electron) becomes
Cellular Respiration. The process by which cells harvest the energy stored in food
Cellular Respiration The process by which cells harvest the energy stored in food 1 SAVING FOR A Rainy Day Suppose you earned extra money by having a part-time job. At first, you might be tempted to spend
CELLULAR RESPIRATION GETTING ENERGY TO MAKE ATP
ELLULAR RESPIRATION GETTING ENERGY TO MAKE ATP ELLULAR RESPIRATION ellular process by which mitochondria releases energy by breaking down food molecules (glucose or other organic molecules) to produce
Consists of all of the chemical reactions that take place in a cell. Summary of Cellular Respiration. Electrons transferred. Cytoplasm Blood vessel
7/19/2014 Metabolism Cellular Metabolism Metabolism Consists of all of the chemical reactions that take place in a cell PLAY Animation Breaking Down Glucose For Energy Biol 105 Lecture Packet 6 Read Chapter
Name: Block: Date: PACKET #8 Unit 3: Energy Transfer, Part II: Cellular Respiration
Name: Block: Date: PACKET #8 Unit 3: Energy Transfer, Part II: Cellular Respiration Reading: BSCS Text chapters 4, 5, and 2.8. Objectives: By the conclusion of this unit the student will be able to: Topic
Campbell's Biology: Concepts and Connections, 7e (Reece et al.) Chapter 6 How Cells Harvest Chemical Energy. 6.1 Multiple-Choice Questions
Campbell's Biology: Concepts and Connections, 7e (Reece et al.) Chapter 6 How Cells Harvest Chemical Energy 6.1 Multiple-Choice Questions 1) Which of the following statements regarding photosynthesis and
Chapter 9 Cellular Respiration and Fermentation
Chapter 9 Cellular Respiration and Fermentation Lecture Outline Overview: Life Is Work To perform their many tasks, living cells require energy from outside sources. Energy enters most ecosystems as sunlight
Cell Respiration Ch 7. Both autotrophs and heterotrophs use cellular respiration to make CO2 and water from
Cell Respiration Ch 7 Objectives: Identify the 2 major steps of cellular respiration Describe the major events in glycolysis Compare lactic acid fermentation with alcoholic fermentation Calculate the efficiency
Photosynthesis in chloroplasts CO2 + H2O. Cellular respiration in mitochondria ATP. powers most cellular work. Heat energy
Figure 9-01 LE 9-2 Light energy ECOSYSTEM Photosynthesis in chloroplasts CO2 + H2O Cellular respiration in mitochondria Organic + O molecules 2 powers most cellular work Heat energy LE 9-UN161a becomes
Cell Respiration. Anaerobic & Aerobic Respiration
Cell Respiration Anaerobic & Aerobic Respiration Understandings/Objectives 2.8.U1: Cell respiration is the controlled release of energy from organic compounds to produce ATP. Define cell respiration State
Chapter 8. Metabolism. Topics in lectures 15 and 16. Chemical foundations Catabolism Biosynthesis
Chapter 8 Topics in lectures 15 and 16 Metabolism Chemical foundations Catabolism Biosynthesis 1 Metabolism Chemical Foundations Enzymes REDOX Catabolism Pathways Anabolism Principles and pathways 2 Enzymes
Enzymes what are they?
Topic 11 (ch8) Microbial Metabolism Topics Metabolism Energy Pathways Biosynthesis 1 Catabolism Anabolism Enzymes Metabolism 2 Metabolic balancing act Catabolism Enzymes involved in breakdown of complex
Section 9 2 The Krebs Cycle and Electron Transport (pages )
Section 9 2 The Krebs Cycle and Electron Transport (pages 226 232) This section describes what happens during the second stage of cellular respiration, called the Krebs cycle. It also explains how high-energy
CHAPTER 6 CELLULAR RESPIRATION
CHAPTER 6 CELLULAR RESPIRATION Chemical Energy In Food Purpose of food: Source of raw materials used to make new molecules Source of energy calorie the amount of energy needed to raise the temperature
Cellular Respiration: Harvesting Chemical Energy
Chapter 9 Cellular Respiration: Harvesting Chemical Energy Lecture Outline Overview: Life Is Work To perform their many tasks, living cells require energy from outside sources. Energy enters most ecosystems
MIDDLETOWN HIGH SCHOOL SOUTH BIOLOGY
MIDDLETOWN HIGH SCHOOL SOUTH BIOLOGY BOOKLET 10 NAME: CLASS: 1 S.Tagore Middletown South High School March 2013 LEARNING OUTCOMES The role and production of ATP (a) Importance, role and structure of ATP
Biology 30 Structure & Function of Cells (Part 2) Bioenergetics: Energy: Potential energy: Examples: Kinetic energy. Examples:
Biology 30 Structure & Function of Cells (Part 2) Bioenergetics: Energy: Potential energy: Examples: Kinetic energy Examples: Energy can be transformed: Thermodynamics: First law of Thermodynamics: Second
Metabolism. Metabolism. Energy. Metabolism. Energy. Energy 5/22/2016
5//016 Metabolism Metabolism All the biochemical reactions occurring in the body Generating, storing and expending energy ATP Supports body activities Assists in constructing new tissue Metabolism Two
CELLULAR RESPIRATION. Xe - + Y X + Ye - CH 4 + 2O 2 CO 2 + H 2 O + energy. C 6 H 12 O 6 + 6O 2 6CO 2 + 6H 2 O + energy SUMMARY EQUATION
AP BIOLOGY CELLULAR ENERGETICS ACTIVITY #2 NAME DATE HOUR CELLULAR RESPIRATION SUMMARY EQUATION STEPWISE REDOX REACTION Oxidation: Reduction: Xe - + Y X + Ye - CH 4 + 2O 2 CO 2 + H 2 O + energy C 6 H 12
Cellular Respira,on. Topic 3.7 and 3.8
Cellular Respira,on Topic 3.7 and 3.8 Defini,on of cellular respira,on Controlled release of energy from organic compounds to produce ATP Cells break down organic compounds by SLOW oxida,on Chemical energy
Enzymes and Metabolism
PowerPoint Lecture Slides prepared by Vince Austin, University of Kentucky Enzymes and Metabolism Human Anatomy & Physiology, Sixth Edition Elaine N. Marieb 1 Protein Macromolecules composed of combinations
Releasing Food Energy
Releasing Food Energy All food is broken down by the body into small molecules through digestion. By the time food reaches your, bloodstream it has been broken down into nutrient rich molecules that can
CH 9 CELLULAR RESPIRATION. 9-1 Chemical Pathways 9-2 The Krebs Cycle and Electron Transport
CH 9 CELLULAR RESPIRATION 9-1 Chemical Pathways 9-2 The Krebs Cycle and Electron Transport Chemical Energy and Food Energy source = food = ATP A calorie is the unit for the amount of energy needed to raise