STUDY. Identification of Clinically Featureless Incipient Melanoma Using Sequential Dermoscopy Imaging

Size: px
Start display at page:

Download "STUDY. Identification of Clinically Featureless Incipient Melanoma Using Sequential Dermoscopy Imaging"

Transcription

1 STUDY Identification of Clinically Featureless Incipient Melanoma Using Sequential Dermoscopy Imaging Harald Kittler, MD; Pascale Guitera, MD; Elisabeth Riedl, MD; Michelle Avramidis, MD; Ligia Teban, MD; Manfred Fiebiger, MD; Rickard A. Weger, MD; Markus Dawid, MD; Scott Menzies, MBBS, PhD Objectives: To examine the role of sequential dermoscopy imaging in detecting incipient melanoma and to elucidate the impact of length of follow-up on the relevance of observed changes. Design: Baseline and follow-up images of melanomas and melanocytic nevi excised only because of changes across time were inspected on a computer screen and assessed according to prospectively defined criteria. Lesions were stratified into 3 groups according to the length of follow-up. Setting: Three hospital-based referral centers in Europe and Australia. Patients: Four hundred sixty-one patients selected for digital dermoscopy monitoring. Main Outcome Measures: Description and comparison of dermoscopy features and changes in melanomas and melanocytic nevi at baseline and after follow-up. Results: We inspected baseline and follow-up images of 499 melanocytic skin lesions from 461 patients. The histopathologic diagnosis was melanoma in 91 cases and melanocytic nevus in 408. Most melanomas (58.2%; n=53) were in situ, and the median thickness of invasive melanomas was 0.38 mm. Dermoscopy features of melanomas and nevi did not differ significantly at baseline. After follow-up of 1.5 to 4.5 months, 61.8% of the melanomas showed no specific dermoscopy features for melanoma. This value declined to 45.0% after follow-up of 4.5 to 8.0 months and to 35.1% after more than 8.0 months. We could not differentiate melanomas and changing nevi by means of observed changes or dermoscopy features when follow-up was shorter than 4.5 months. With longer follow-up, melanomas tended to enlarge asymmetrically with architectural and color changes, and nevi tended to enlarge symmetrically without architectural and color changes. Conclusions: Sequential dermoscopy imaging detects incipient melanomas when they are still featureless. Interpretation of changes observed during follow-up depends on the length of follow-up. Arch Dermatol. 2006;142: Author Affiliations: Division of General Dermatology, Department of Dermatology, University of Vienna Medical School, Vienna, Austria (Drs Kittler, Riedl, Teban, and Dawid); Sydney Melanoma Diagnostic Centre, Sydney Cancer Centre and Faculty of Medicine, University of Sydney, Sydney, Australia (Drs Guitera, Avramidis, and Menzies); Emco Privatklinik, Bad Dürrnberg, Salzburg, Austria (Dr Fiebiger); and Division of Oncology/Pathology, Karolinska Institute, Stockholm, Sweden (Dr Weger). EARLY RECOGNITION OF CUtaneous melanoma is of utmost importance to improve the prognosis of this potentially fatal disease. 1 Primary melanoma of the skin usually begins in the epidermis with the proliferation of single cells as melanoma in situ. 2 If melanoma is diagnosed at this noninvasive stage, the patient will be cured by excision of the primary tumor, but if melanoma becomes invasive, the chance of cure decreases as invasion thickness increases. 3 For editorial comment see page 1211 Recognition of early melanoma is a challenge to every dermatologist. Inspection of the skin using the unaided eye may be accurate for the diagnosis of advanced cases, but it is inaccurate for the diagnosis of incipient melanoma. Dermatologists are using noninvasive diagnostic tools such as dermoscopy to improve the detection rate of early melanoma, but even dermoscopy has limitations. 4,5 Melanomas and, in particular, incipient melanomas may lack dermoscopy features specific to this disease. 6,7 It has recently been shown that these featureless melanomas can be recognized by sequential dermoscopy imaging Stolz et al 11 and Braun et al 12 were the first to report on the use of sequential digital dermoscopy for the surveillance of melanocytic skin lesions. This technique is used for short-term monitoring of single melanocytic lesions that are not suggestive enough to warrant excision at the patient s first visit but not completely inconspicuous. In this setting, the criteria for selecting a lesion for monitoring have been clearly defined by 1113

2 Menzies et al, 9 and the follow-up time is restricted to 3 months. Another reason to use sequential imaging may be to monitor patients with multiple melanocytic nevi. 8,10,13-17 In this setting, the physician usually monitors multiple lesions. The criteria for selecting lesions in patients with multiple nevi have not yet been clearly defined. Follow-up is usually longer than 3 months and varies from 6 to 12 months (long-term monitoring). Different criteria have been proposed by Kittler et al 8 (long-term monitoring) and Menzies et al 9 (short-term monitoring) to discriminate between relevant and irrelevant changes. In contrast to short-term monitoring, in which any change leads to a decision to excise, longterm monitoring has a series of significant changes requiring excision compared with nonsignificant changes found in benign nevi. A limitation is that the criteria for both approaches have been established on series of cases that included fewer than 10 melanomas. The aim of this study was to evaluate differences between changes observed in melanomas and melanocytic nevi in a large series of cases and to elucidate the impact of length of follow-up on the relevance of observed changes. METHODS Sequential dermoscopy images of melanocytic lesions included in this study were collected from 3 different institutions: (1) the Department of Dermatology, University of Vienna Medical School; (2) the Sydney Melanoma Diagnostic Centre, Royal Prince Alfred Hospital; and (3) the EMCO Clinic in Bad Dürnberg. All 3 centers offer a specialized unit equipped with digital imaging systems for the examination of pigmented skin lesions. The institutions in Austria are equipped with the MoleMax II system (Derma Instruments, Vienna), and the Sydney Melanoma Diagnostic Centre is equipped with SolarScan (Polartechnics Ltd, Sydney). The former system offers a maximum field of view of 1 cm with magnification 30, the latter a field of view of cm with magnification Both systems store images in an uncompressed digital image format: Windows bitmap with a resolution of (Molemax II) or tagged image format with a resolution of (SolarScan). Criteria for the selection of lesions for short-term monitoring by the Sydney Melanoma Diagnostic Centre have been described previously. 9 In general, except for some lesions suggestive of lentigo maligna of the face, lesions selected for shortterm monitoring were either (1) symmetrical or, more frequently, near symmetrical in pigmentation pattern and had a patient history of change or (2) were more asymmetrical, with greater architectural disorder without specific dermoscopy features of melanoma without a history of change. All the lesions were flat or only superficially raised. Patients selected for long-term monitoring by the institutions in Austria had multiple nevi. At the patient s first visit, suggestive lesions were excised to rule out melanoma. The threshold for excision varied depending on the number and the morphologic appearance of lesions, the patient s history regarding melanoma, and the patient s preferences. The remaining melanocytic lesions, including completely inconspicuous lesions, were referred for digital monitoring. The cases included in this study were consecutive cases from the 3 participating institutions. All the lesions were excised because of changes across time identified during follow-up by means of digital dermoscopy. Low-quality digital images and images of lesions exceeding the maximum field of view of the imaging system either at baseline or at follow-up were excluded. All excised lesions were subjected to standard histopathologic analysis. The cases from Austria were independently reviewed by 2 expert dermatopathologists. Only 2 cases were withdrawn because of discordant histopathologic diagnosis. PRESENTATION OF IMAGES AND DEFINITION OF CRITERIA The dermoscopy images of melanoma and melanocytic nevi were presented on a computer screen to 2 experts in dermoscopy (H.K., L.T., S.M., and P.G.) in Austria and Australia blinded to the histopathologic diagnosis. Initially, baseline images and follow-up images were presented separately. Each image was evaluated according to the dermoscopy criteria defined by Menzies et al 6 based on pattern analysis as published elsewhere. This method was chosen because it has consistently been shown to have higher sensitivity for the diagnosis of melanoma compared with other dermoscopy methods and naked eye examination In short, these criteria include 2 negative features of melanoma (symmetry of pattern and a single color) and 8 positive features (regression [scarlike depigmentation or multiple blue-gray dots], blue-white veil, multiple brown dots, radial streaming, pseudopods, peripheral black dots and globules, broadened network, and multiple colors). Although not included in the original study by Menzies et al, 6 the presence of an atypical vasculature was also scored as a positive feature of melanoma. Atypical vasculature is defined as a mixture of polymorphous linear vessels (not comma vessels), dotted vessels, and hairpin or red globular vessels. Baseline and follow-up images were then presented side by side on the computer screen to evaluate changes across time. We defined and scored the following criteria for change. Enlargement was defined as being either symmetrical (center of gravity preserved, no change in shape) or asymmetrical (center of gravity not preserved, change in shape). Asymmetrical enlargement could be focal (enlargement of only 1 segment at the periphery) or multifocal (enlargement of multiple segments at the periphery). Architectural change was defined as change in composition or in the number of basic pigmented elements, including lines of the network, dots, globules, and pseudopods. Architectural changes included (1) clumping (broadening) of lines of a preexisting network, (2) disappearance of lines of a preexisting network, (3) an increase or decrease in the number of black dots, (4) an increase or decrease in the number of brown globules, (5) the appearance of pseudopods, and (6) the appearance of radial streaming (streaks arranged radially at the periphery). Color changes were defined as changes in color or pigmentation and included (1) lighter or darker (brown) pigmentation of the whole lesion, (2) lighter or darker (brown) pigmentation of parts of the lesion, (3) the appearance of a new color (possible colors: brown, red, blue, and black), (4) loss of a preexisting color, (5) an increase or decrease in the erythema reaction, and (6) pure depigmentation (loss of any color and replacement by white). STATISTICAL ANALYSIS Continuous data are given as mean±sd unless otherwise specified. Mann-Whitney and t tests were used to compare continuous data and 2 and exact tests were used to compare proportions. Logistic regression was used for multivariate analysis of the association of type of change and histopathologic diagnosis. The multivariate logistic model was age adjusted and included only variables that reached statistical significance in the 1114

3 Table 1. Dermoscopy Characteristics of Baseline Images* Characteristic Melanoma (n = 91) univariate model. All reported P values are 2-tailed, and P.05 is considered statistically significant. RESULTS GENERAL DATA Melanocytic (n = 408) P Value Negative features of melanoma Symmetry of pattern 17 (18.7) 84 (20.6).68 Single color 9 (9.9) 54 (13.2).38 Positive features of melanoma Regression 8 (8.8) 16 (3.9).06 Blue-white veil 1 (1.1) 10 (2.5).70 Multiple brown dots 12 (13.2) 67 (16.4).44 Radial streaming 2 (2.2) 8 (2.0).98 Pseudopods 1 (1.1) 3 (0.7).54 Peripheral black dots/globules 4 (4.4) 12 (2.9).51 Broadened network 7 (7.7) 5 (1.2).001 Atypical vasculature 1 (1.1) 6 (1.5).99 Multiple colors 6 (6.6) 31 (7.6).83 *Data are given as number (percentage) unless otherwise indicated. The study sample consisted of baseline and follow-up images of 499 melanocytic skin lesions excised because of changes across time. The lesions were from 461 patients (mean±sd age, 44±17years; 55% women). Most lesions were located on the back (n=243; 48.7%). Follow-up was 1.5 to 4.5 months for 236 lesions (47.3%), 4.5 to 8.0 months for 81 lesions (16.2%), and longer than 8.0 months for 182 lesions (36.5%). The histopathologic diagnosis was melanoma in 91 cases and melanocytic nevus in 408 cases. Patients whose changing lesion was a melanoma were significantly older (mean±sd age, 52±15 years) than those whose changing lesion was a melanocytic nevus (mean±sd age, 42±16 years; P.001). Of the 91 melanomas, 53 (58.2%) were in situ. The median Breslow thickness of invasive melanomas (n=38) was 0.38 mm (range, mm). The proportion of in situ melanomas was 77.8% (n=21) among melanomas excised after 1.5 to 4.5 months of follow-up, 45.0% (n=9) among melanomas excised after 4.5 to 8.0 months, and 62.2% (n=23) among melanomas excised after more than 8.0 months of follow-up (P=.20). DERMOSCOPY CHARACTERISTICS OF BASELINE IMAGES The dermoscopy features of baseline images of melanoma and melanocytic nevi are given in Table 1 and Table 2. The distribution of dermoscopy features did not differ significantly between melanoma and nevi except for broadened network, which was more frequently found in melanomas (7.7%) than in nevi (1.2%; P=.002). At baseline, 61.5% of the melanomas did not show any positive features of melanoma compared with Table 2. Positive Features of Melanoma per Lesion Seen in Baseline and Follow-up Images of Melanomas and Melanocytic * No. of Positive Features of Melanoma Melanoma Melanocytic 68.4% of nevi (P =.43). The frequency of negative features of melanoma was higher in lesions selected for long- vs short-term monitoring, indicating greater architectural disorder in short-term monitored lesions. In particular, symmetry of structure was found in 30.9% of lesions with follow-up longer than 4.5 months compared with only 8.5% of lesions with follow-up shorter than 4.5 months (P.001). A single color was found in 21.3% of lesions with follow-up longer than 4.5 months compared with only 3.0% of lesions with follow-up shorter than 4.5 months (P.001). DERMOSCOPY CHARACTERISTICS OF FOLLOW-UP IMAGES P Value Baseline images n = 91 n = (61.5) 279 (68.4) (30.8) 107 (26.2) 1 7 (7.7) 22 (5.4) Follow-up images, mo n = 34 n = (61.8) 152 (75.2) (32.4) 41 (20.3) 1 2 (5.9) 9 (4.5) Follow-up images, mo n = 20 n = (45.0) 31 (50.8) (30.0) 24 (39.3) 1 5 (25.0) 6 (9.8) Follow-up images, 8.0 mo n = 37 n = (35.1) 87 (60.0) (40.5) 46 (31.7) 1 9 (24.3) 12 (8.3) *Data are given as number (percentage) unless otherwise indicated. Baseline and follow-up lesion images were examined for the dermoscopy features given in Table 1. By 2 test. The dermoscopy features of follow-up images are given in Table 2. The proportion of melanomas without any positive dermoscopy features for melanoma decreased from 61.8% after follow-up of 1.5 to 4.5 months to 45.0% after follow-up of 4.5 to 8.0 months to 35.1% after follow-up of longer than 8.0 months (P.001). When follow-up was longer than 8.0 months, the proportion of lesions with positive features of melanoma was significantly higher among melanomas than among nevi, but we did not find significant differences between follow-up images of nevi and melanoma when follow-up was shorter than 8.0 months (Table 2). CHANGES OBSERVED DURING FOLLOW-UP Baseline and follow-up images were scored for enlargement, architectural changes, and color changes. The longer the follow-up interval, the higher the proportion of enlarging lesions. In lesions with 1.5 to 4.5 months of followup, only 36.9% of lesions enlarged compared with 75.6% 1115

4 Table 3. Distribution of Observed Changes by Histopathologic Diagnosis According to Follow-up* Variable Melanomas (n = 34) Follow-up, mo Follow-up, mo Follow-up, 8.0 mo (n = 202) P Value Melanomas (n = 20) (n = 61) P Value Melanomas (n = 37) (n = 145) Enlargement Symmetrical 4 (11.8) 31 (15.3) (55.0) 40 (65.6) (21.6) 89 (61.4).001 Asymmetrical 10 (29.4) 42 (20.8).33 8 (40.0) 3 (4.9) (62.2) 30 (20.7).001 Subtotal 14 (41.2) 73 (36.1) (95.0) 43 (70.5) (83.8) 119 (82.1).81 Architectural change (any) 27 (79.4) 164 (82.0) (60.0) 16 (26.2) (70.3) 42 (29.0).001 Broadening of network 2 (5.9) 2 (1.0).10 5 (25.0) 1 (1.6) (43.2) 8 (5.5).001 Disappearance of network lines 4 (11.8) 16 (7.9) (4.9).57 4 (10.8) 7 (4.8).23 Black dots increase 5 (14.7) 27 (13.4).79 5 (25.0) 1 (1.6) (10.8) 3 (2.1).03 Black dots decrease 3 (8.8) 22 (10.9).99 1 (5.0) 1 (1.6).44 1 (2.7) 3 (2.1).97 Black dots appear at periphery 1 (2.9) 4 (2.0).52 4 (20.0) 2 (3.3).03 3 (8.1) 5 (3.4).21 Brown globules increase 8 (23.5) 40 (19.8).64 3 (15.0) 5 (8.2).40 2 (5.4) 19 (13.1).25 Brown globules decrease 6 (17.6) 39 (19.3).99 1 (5.0) 7 (11.5).67 1 (2.7) 12 (8.3).31 Appearance of pseudopods 1 (2.9) (15.0) Appearance of radial streaming 1 (2.9) 1 (0.5).26 2 (10.0) 1 (1.6).15 2 (5.4) 4 (2.8).60 Color changes (any) 30 (88.2) 191 (94.6) (80.0) 48 (78.7) (97.3) 109 (75.2).002 Darker overall pigmentation 7 (20.6) 17 (8.4).06 5 (25.0) 22 (36.1) (59.5) 60 (41.4).05 Lighter overall pigmentation 9 (26.5) 61 (30.2).84 6 (30.0) 18 (29.5).99 5 (13.5) 39 (26.9).13 Focal increase in pigmentation 17 (50.0) 89 (44.1).59 9 (45.0) 8 (13.1) (56.8) 25 (17.2).001 Focal decrease in pigmentation 18 (52.9) 128 (63.4).26 2 (10.0) 5 (8.2) (32.4) 14 (9.7).001 Appearance of new color 2 (5.9) 9 (4.5).65 2 (10.0) 4 (6.6) (32.4) 4 (2.8).001 Appearance of blue veil 1 (2.9) 2 (1.0) (1.6).99 2 (5.4) 1 (0.7).11 Loss of color 4 (11.8) 9 (4.5).10 1 (5.0) (2.1).99 Depigmentation 5 (14.7) 19 (9.4).36 2 (10.0) 2 (3.3).25 7 (18.9) 8 (5.5).01 *Data are given as number (percentage) unless otherwise indicated. A lesion could show more than 1 change. P Value in the group with follow-up between 4.5 and 8.0 months and 82.4% in the group with follow-up of longer than 8.0 months (P.001). The frequencies of all types of changes by histopathologic diagnosis and length of follow-up are given in Table 3. In lesions with follow-up ranging from 1.5 to 4.5 months, we found no relevant differences between nevi and melanoma regarding single types of changes or combinations of changes. As follow-up became longer, differences between melanoma and nevi became more obvious. In lesions with follow-up of 4.5 to 8.0 months, the proportion of lesions with asymmetrical enlargement was 40.0% among melanomas and only 4.9% among nevi (P=.001). In lesions with follow-up longer than 8.0 months, 62.2% of melanomas enlarged asymmetrically compared with 20.7% of nevi (P.001). After follow-up ranging from 4.5 to 8.0 months, the architectural changes of broadening of the pigment network, increase in black dots, appearance of peripheral black dots, and appearance of pseudopods were observed more frequently in melanomas than in nevi (Table 3). When follow-up became longer, color changes became more important for the differentiation of melanoma and changing nevi. When follow-up was longer than 8.0 months, focal increase or decrease of pigmentation, appearance of new colors, and depigmentation were observed more frequently in melanomas than in nevi (Table 3). In an age-adjusted multivariate model that included lesions with follow-up longer than 4.5 months, broadening of pigment network (odds ratio, 5.4; 95% confidence interval [CI], ; P=.002), focal increase in pigmentation (odds ratio, 2.4; 95% CI, ; P=.03), and increase in black dots (odds ratio, 6.9; 95% CI, ; P=.009) were significant independent predictors of malignancy. The association between asymmetrical enlargement and malignancy was marginally significant (odds ratio, 2.8; 95% CI, ; P=.08). COMMENT In the present study, we collected 499 melanocytic skin lesions from 3 different centers in Europe and Australia. All the lesions were selected to be monitored by means of digital dermoscopy and were finally excised because of changes across time. Histopathologically, 91 lesions were diagnosed as melanomas and 408 as melanocytic nevi. Most melanomas detected by follow-up were in situ melanomas. It has always been a matter of debate whether these melanomas could have been spotted at the patient s first visit. 21 However, by comparing baseline images of melanomas and nevi using prospectively defined criteria, we showed that melanomas selected for sequential imaging could not be differentiated from melanocytic nevi at baseline. At baseline, most melanomas did not show even a single specific dermoscopy criterion. Hence, dermoscopy criteria for detecting melanoma do not allow the identification of incipient melanomas. It seems that most melanomas grow slowly and mainly horizontally at the beginning. Even when melanomas are detected later in the course of the disease, when the criteria for melanoma become more obvious, the chances are still good that they can be detected when they are noninvasive. 1116

5 This raises the question of how quick melanoma progresses from a clinically inconspicuous, small lesion that cannot be differentiated from a melanocytic nevus to a clear-cut melanoma. To address this important issue, we reexamined only the follow-up images without comparison with the baseline images. After follow-up of 1.5 to 4.5 months (short-term follow-up), 61.8% of the melanomas showed no positive dermoscopy-specific features of melanoma. It is likely that these melanomas would have been left untouched without the information regarding change. Although some melanomas developed specific features, such as pseudopods, broadened pigment network, and black dots beyond 4.5 months, the overall frequency of melanomas without a positive feature was still high (45.0% when follow-up was months and 35.1% when follow-up was 8.0 months). In summary, we found that the frequency of melanomaspecific criteria increased with the length of follow-up, but, most importantly, we found that incipient melanomas may remain featureless for a certain period. We believe that except for detection by chance, without follow-up information these melanomas would remain unrecognized until they develop specific dermoscopy criteria. The information regarding change helps detect melanoma during this inconspicuous period. A major motivation for this study was to address the question of whether all types of changes are relevant and which types differentiate melanomas from changing melanocytic nevi. Not unexpectedly, the answer is that it depends on the length of follow-up. For short-term monitored lesions, we could not detect a single type of change or a combination of changes that reliably differentiated melanomas and changing nevi. This confirms the recommendation by Menzies et al 9 that every lesion showing any change after 1.5 to 4.5 months should be excised. The situation is different when follow-up is longer than 4.5 months. After this period, melanomas tend to show an asymmetrical increase in size and architectural changes. Melanocytic nevi, on the other hand, tend to enlarge symmetrically, without architectural changes. This confirms the recommendation by Kittler et al 8 to divide changes across time into significant and nonsignificant changes. Color changes in melanoma (in particular the appearance of new colors) become more evident after 8.0 months of follow-up (Table 3). This may indicate that color variegation, usually said to be an important diagnostic clue for melanoma, is a feature of melanomas that have existed for a long time. Surprisingly, architectural changes were found more frequently in short-term monitored lesions. One explanation might be that differences in the resolution of the images provided by the imaging systems used in Australia and Austria are responsible for this finding. Another possible explanation is the difference between lesions selected for short- and longterm follow-up. There was a relatively high frequency of completely inconspicuous lesions with symmetry of pattern or only a single color among long-term monitored lesions compared with short-term monitored lesions. It is possible that this difference at baseline affected the frequency of architectural changes at follow-up. The proportion of in situ melanomas was highest after short-term follow-up (77.0% of all melanomas in this group). It declined to 45.8% after follow-up of 4.5 to 8.0 months and increased again to 62.2% when follow-up was longer than 8.0 months. There is no straightforward explanation for this finding, but it may also be attributed to differences in selecting lesions for short- and longterm monitoring. The criteria for selecting lesions for short-term monitoring have been defined by Menzies et al. 9 Short-term monitoring has been tailored to single lesions that do not show criteria for melanoma but that are not completely inconspicuous. Digital monitoring for longer periods has been used mainly for patients with multiple nevi. However, criteria for the selection of lesions in patients with multiple nevi have not been clearly defined. In the Department of Dermatology in Vienna, where most of the lesions with longer follow-up have been collected for this study, the policy is to monitor as many lesions as possible, including completely inconspicuous lesions. This creates a considerable workload, and the question of whether this policy is cost-effective remains unresolved. The high frequency of in situ melanomas and the low invasion thickness of invasive melanomas in this sample suggest that this procedure may actually save lives by diagnosing melanoma as early as possible when the probability of metastatic disease is either zero (for in situ melanomas) or exceedingly low (for early invasive melanomas). Two approaches to digital monitoring are examined in this study. Short-term monitoring occurs in the setting of a suggestive lesion without dermoscopy features of melanoma. This is usually found in nevi symmetrical or, more frequently, near symmetrical in pigmentation pattern and having a patient history of change or in more asymmetrical lesions but without specific dermoscopy features of melanoma and without a history of change. All the lesions are flat or only superficially raised. Short-term monitoring can, therefore, be found in any patient irrespective of their phenotype. The median suggested follow-up for short-term monitoring is 3 months. Data were collected in a range up to 4.5 months, allowing for variations in patient appointment times. In contrast, long-term monitoring usually occurs in patients with multiple nevi or other high-risk phenotypes for developing primary melanoma. Melanocytic lesions, including completely inconspicuous nevi, are referred for digital monitoring at standard surveillance periods. Hence, for a median of 6 months of follow-up (chosen because it represents the shortest surveillance period for very high-risk patients), a range of 4.5 to 8.0 months allowed variation in appointment times. Data were also collected at yearly follow-up (within a range 8.0 months). The current recommended short-term follow-up is 3 months, and long-term follow-up is 6 to 12 months depending on overall patient risk factors for developing a new primary melanoma. In summary, digital dermoscopy monitoring detects melanoma earlier than any other noninvasive procedure when specific criteria for melanoma are still absent. It is a safe procedure if the criteria for selecting lesions for monitoring are applied consistently. The major clues for detecting incipient melanomas are subtle morphologic changes. The interpretation of these changes depends on the length of follow-up. When combining the 1117

6 A B C Figure 1. Melanoma in situ identified by short-term (3-month) monitoring. A, Baseline image of inconspicuous lesion without dermoscopic features of melanomas. B, The follow-up lesion image shows an asymmetrical increase in size (arrow), with scattered areas of architectural change. C, The histopathologic study shows melanocytes arranged in irregular nests and as single cells, some of them disposed in higher layers of the epidermis (hematoxylin-eosin, original magnification 40). Histopathologic diagnosis: melanoma in situ. A B C Figure 2. Melanoma in situ identified by long-term (16-month) follow-up in a patient with multiple melanocytic nevi. A, The baseline image. B, The follow-up image shows an asymmetrical increase in size and the appearance of a pigment network at the periphery. C, The histopathologic study shows melanocytes arranged in irregular nests and as single cells, some of them disposed in higher layers of the epidermis (hematoxylin-eosin, original magnification 40). Histopathologic diagnosis: melanoma in situ. findings of this study and works previously described, 7-9 our suggested guidelines for the management of melanocytic lesions after digital monitoring are as follows. When a lesion is unchanged after short- or longterm monitoring, it can be considered benign. Further imaging may occur depending on physician discretion, such as at the next standard patient surveillance interval. Except for a change in the number of milia-like cysts, or an overall increase or decrease in pigmentation without architectural change due to sun exposure in the perimonitoring period, any morphologic change after shortterm monitoring leads to excision of the lesion (Figure 1). For long-term monitoring, some nonsignificant changes occur commonly in nevi. These are a darker and lighter overall appearance, changes in the number or distribution of brown globules, decrease in the num- 1118

7 ber of black dots, disappearance of an inflammatory reaction, or disappearance of parts of the pigment network and replacement by diffuse brown pigmentation. Such changes do not require an excision biopsy. Apart from these nonsignificant changes, a certain proportion of monitored nevi will show symmetrical enlargement during follow-up without structural changes. This proportion is higher in younger individuals. Usually more than 1 melanocytic nevus in a patient will show symmetrical enlargement, and excision is not required. When asymmetrical enlargement, focal changes in pigmentation and structure, regression features, or change in color (appearance of new colors) occur during long-term followup, a decision to excise must be considered to rule out melanoma even in an otherwise inconspicuous melanocytic lesion (Figure 2). Accepted for Publication: April 20, Correspondence: Harald Kittler, MD, Department of Dermatology, University of Vienna Medical School, Waehringerguertel 18-20, A-1090 Vienna, Austria (harald.kittler@meduniwien.ac.at). Author Contributions: Study concept and design: Kittler, Guitera, Riedl, Dawid, and Menzies. Acquisition of data: Kittler, Riedl, Avramidis, Teban, Weger, Dawid, and Menzies. Analysis and interpretation of data: Kittler, Guitera, Fiebiger, and Menzies. Drafting of the manuscript: Kittler, Guitera, Avramidis, Teban, Dawid, and Menzies. Critical revision of the manuscript for important intellectual content: Kittler, Guitera, Riedl, Avramidis, Fiebiger, Weger, and Menzies. Statistical analysis: Kittler and Menzies. Obtained funding: Menzies. Administrative, technical, and material support: Kittler, Guitera, Avramidis, Teban, Fiebiger, Weger, and Menzies. Study supervision: Kittler and Menzies. Financial Disclosure: Dr Menzies is a paid consultant for and Dr Avramidis is an employee of Polartechnics Ltd. Funding/Support: This study was supported by a grant (project 9952) from the Austrian Federal Bank. Acknowledgment: We thank A. Bernard Ackerman, MD, for reviewing tissue sections from 150 cases from the University of Vienna Medical School. REFERENCES 1. Ackerman AB. No one should die of malignant melanoma. J Am Acad Dermatol. 1985;12: Ackerman AB. Malignant melanoma in situ: the flat, curable stage of malignant melanoma. Pathology. 1985;17: Balch CM, Soong SJ, Gershenwald JE, et al. Prognostic factors analysis of 17,600 melanoma patients: validation of the American Joint Committee on Cancer melanoma staging system. J Clin Oncol. 2001;19: Argenziano G, Soyer HP. Dermoscopy of pigmented skin lesions: a valuable tool for early diagnosis of melanoma. Lancet Oncol. 2001;2: Kittler H, Pehamberger H, Wolff K, Binder M. Diagnostic accuracy of dermoscopy. Lancet Oncol. 2002;3: Menzies SW, Ingvar C, Crotty KA, McCarthy WH. Frequency and morphologic characteristics of invasive melanomas lacking specific surface microscopic features. Arch Dermatol. 1996;132: Skvara H, Teban L, Fiebiger M, Binder M, Kittler H. Limitations of dermoscopy in the recognition of melanoma. Arch Dermatol. 2005;141: Kittler H, Pehamberger H, Wolff K, Binder M. Follow-up of melanocytic skin lesions with digital epiluminescence microscopy: patterns of modifications observed in early melanoma, atypical nevi, and common nevi. J Am Acad Dermatol. 2000;43: Menzies SW, Gutenev A, Avramidis M, Batrac A, McCarthy WH. Short-term digital surface microscopic monitoring of atypical or changing melanocytic lesions. Arch Dermatol. 2001;137: Kittler H, Binder M. Follow-up of melanocytic skin lesions with digital dermoscopy: risks and benefits [letter]. Arch Dermatol. 2002;138: Stolz W, Schiffner R, Pillet L, et al. Improvement of monitoring of melanocytic skin lesions with the use of a computerized acquisition and surveillance unit with a skin surface microscopic television camera. J Am Acad Dermatol. 1996;35: Braun RP, Lemonnier E, Guillod J, Skaria A, Salomon D, Saurat JH. Two types of pattern modification detected on the follow-up of benign melanocytic skin lesions by digitized epiluminescence microscopy. Melanoma Res. 1998;8: Bauer J, Blum A, Strohhacker U, Garbe C. Surveillance of patients at high risk for cutaneous malignant melanoma using digital dermoscopy. Br J Dermatol. 2005;152: Haenssle HA, Vente C, Bertsch HP, et al. Results of a surveillance programme for patients at high risk of malignant melanoma using digital and conventional dermoscopy. Eur J Cancer Prev. 2004;13: Malvehy J, Puig S. Follow-up of melanocytic skin lesions with digital total-body photography and digital dermoscopy: a two-step method. Clin Dermatol. 2002; 20: Schiffner R, Schiffner-Rohe J, Landthaler M, Stolz W. Long-term dermoscopic follow-up of melanocytic naevi: clinical outcome and patient compliance. Br J Dermatol. 2003;149: Robinson JK, Nickoloff BJ. Digital epiluminescence microscopy monitoring of high-risk patients. Arch Dermatol. 2004;140: Argenziano G, Soyer HP, Chimenti S, et al. Dermoscopy of pigmented skin lesions: results of a consensus meeting via the Internet. J Am Acad Dermatol. 2003; 48: Dolianitis C, Kelly J, Wolfe R, Simpson P. Comparative performance of 4 dermoscopic algorithms by nonexperts for the diagnosis of melanocytic lesions. Arch Dermatol. 2005;141: Blum A, Leudtke H, Ellwanger U, Schwabe R, Rassner G, Garbe C. Digital image analysis for diagnosis of cutaneous melanoma: development of a highly effective computer algorithm based on analysis of 837 melanocytic lesions. Br J Dermatol. 2004;151: Carli P, De Giorgi V, Giannotti B. Dermoscopy and early diagnosis of melanoma: the light and the dark. Arch Dermatol. 2001;137:

ORIGINAL ARTICLE. 980 Journal of Investigative Dermatology (2006), Volume 126 & 2006 The Society for Investigative Dermatology

ORIGINAL ARTICLE. 980 Journal of Investigative Dermatology (2006), Volume 126 & 2006 The Society for Investigative Dermatology ORIGINAL ARTICLE Results from an Observational Trial: Digital Epiluminescence Microscopy Follow-Up of Atypical Nevi Increases the Sensitivity and the Chance of Success of Conventional Dermoscopy in Detecting

More information

MODULE 1. LOCAL AND GENERAL CRITERIA IN PIGMENTED MELANOCYTIC LESIONS.

MODULE 1. LOCAL AND GENERAL CRITERIA IN PIGMENTED MELANOCYTIC LESIONS. DERMOSCOPY TEACHING PROGRAMME Dermoscopy Teaching Programme Module 1 MODULE 1. LOCAL AND GENERAL CRITERIA IN PIGMENTED MELANOCYTIC LESIONS. Dermoscopy is a non-invasive in vivo technique that provides

More information

Cancer Council Australia Wiki Guidelines 2017

Cancer Council Australia Wiki Guidelines 2017 WHAT IS THE ROLE OF SEQUENTIAL DIGITAL DERMOSCOPY IMAGING IN MELANOMA DIAGNOSIS? Cancer Council Australia Wiki Guidelines 2017 SHORT-TERM MONITORING 3 months Any change leads to excision Any melanocytic

More information

STUDY. Selection of Patients for Long-term Surveillance With Digital Dermoscopy by Assessment of Melanoma Risk Factors

STUDY. Selection of Patients for Long-term Surveillance With Digital Dermoscopy by Assessment of Melanoma Risk Factors STUDY Selection of Patients for Long-term Surveillance With Digital Dermoscopy by Assessment of Melanoma Risk Factors Holger A. Haenssle, MD; Bianca Korpas; Christian Hansen-Hagge; Timo Buhl, MD; Kjell

More information

22/04/2015. Dermoscopy of Melanoma. Ilsphi Browne. Overview

22/04/2015. Dermoscopy of Melanoma. Ilsphi Browne. Overview Dermoscopy of Melanoma Ilsphi Browne Overview The device Dermoscopic criteria (terminology) Colour Patterns Global features Local features Approach to diagnosing pigmented lesions Other uses in general

More information

STUDY. Risks and Benefits of Sequential Imaging of Melanocytic Skin Lesions in Patients With Multiple Atypical Nevi

STUDY. Risks and Benefits of Sequential Imaging of Melanocytic Skin Lesions in Patients With Multiple Atypical Nevi Risks and Benefits of Sequential Imaging of Melanocytic Skin Lesions in Patients With Multiple Atypical Nevi Harald Kittler, MD; Michael Binder, MD STUDY Objective: To evaluate the utility of sequential

More information

DERMATOLOGY PRACTICAL & CONCEPTUAL. Gabriel Salerni 1,2, Teresita Terán 3, Carlos Alonso 1,2, Ramón Fernández-Bussy 1 ABSTRACT

DERMATOLOGY PRACTICAL & CONCEPTUAL.   Gabriel Salerni 1,2, Teresita Terán 3, Carlos Alonso 1,2, Ramón Fernández-Bussy 1 ABSTRACT DERMATOLOGY PRACTICAL & CONCEPTUAL www.derm101.com The role of dermoscopy and digital dermoscopy follow-up in the clinical diagnosis of melanoma: clinical and dermoscopic features of 99 consecutive primary

More information

Clinical and Dermoscopic Features of Thin Nodular Melanoma

Clinical and Dermoscopic Features of Thin Nodular Melanoma Clinical and Dermoscopic Features of Thin Nodular Melanoma A study of the International Dermoscopy Society Coordinator: Dr. Alexander J. Stratigos and colleagues, alstrat2@gmail.com ** Extended to May

More information

Dermoscopy. Enhanced Diagnostic Ability: Pigmented Lesions. Ted Rosen, MD Baylor College of Medicine Houston, Texas

Dermoscopy. Enhanced Diagnostic Ability: Pigmented Lesions. Ted Rosen, MD Baylor College of Medicine Houston, Texas Dermoscopy Enhanced Diagnostic Ability: Pigmented Lesions Ted Rosen, MD Baylor College of Medicine Houston, Texas Faculty Disclosure Statement No conflicts relevant to this workshop! Sir William Osler

More information

Morphologic characteristics of nevi associated with melanoma: a clinical, dermatoscopic and histopathologic analysis

Morphologic characteristics of nevi associated with melanoma: a clinical, dermatoscopic and histopathologic analysis DERMATOLOGY PRACTICAL & CONCEPTUAL www.derm101.com Morphologic characteristics of nevi associated with melanoma: a clinical, dermatoscopic and histopathologic analysis Temeida Alendar 1, Harald Kittler

More information

Impact of Mole Mapping in the Italian Health System

Impact of Mole Mapping in the Italian Health System Dermatology 2013;226(suppl 1):13 17 Published online: May 29, 2013 Impact of Mole Mapping in the Italian Health System Ignazio Stanganelli a Paolo Ascierto b Riccardo Bono c Vincenzo De Giorgi d Nicola

More information

STUDY. Epiluminescence Microscopy for the Diagnosis of Doubtful Melanocytic Skin Lesions

STUDY. Epiluminescence Microscopy for the Diagnosis of Doubtful Melanocytic Skin Lesions STUDY Epiluminescence Microscopy for the Diagnosis of Doubtful Melanocytic Skin Lesions Comparison of the ABCD Rule of Dermatoscopy and a New 7-Point Checklist Based on Pattern Analysis Giuseppe Argenziano,

More information

Growth rate of melanoma in vivo and correlation with dermatoscopic and dermatopathologic findings

Growth rate of melanoma in vivo and correlation with dermatoscopic and dermatopathologic findings Dermatology Practical & Conceptual www.derm101.com Growth rate of melanoma in vivo and correlation with dermatoscopic and dermatopathologic findings Jürgen Beer, M.D. 1, Lina Xu, M.D. 1, Philipp Tschandl,

More information

Dermoscopy. Sir William Osler. Dermoscopy. Dermoscopy. Melanoma USA Primary Care Update Faculty Disclosure Statement

Dermoscopy. Sir William Osler. Dermoscopy. Dermoscopy. Melanoma USA Primary Care Update Faculty Disclosure Statement Diagnostic Ability: Pigmented Lesions Ted Rosen, MD Baylor College of Medicine Houston, Texas Enhanced 2010 Primary Care Update Faculty Disclosure Statement Ted Rosen, MD Speakers Bureau: Abbott, Amgen,

More information

Cover Page. The handle holds various files of this Leiden University dissertation.

Cover Page. The handle   holds various files of this Leiden University dissertation. Cover Page The handle http://hdl.handle.net/1887/22172 holds various files of this Leiden University dissertation. Author: Rhee, Jasper Immanuel van der Title: Clinical characteristics and management of

More information

INCREASE IN incidence and mortality rates for

INCREASE IN incidence and mortality rates for Skin Research and Technology 2005; 11: 236 241 Copyright & Blackwell Munksgaard 2005 Printed in Denmark. All rights reserved Skin Research and Technology Pigment distribution in melanocytic lesion images:

More information

Mole mapping and monitoring. Dr Stephen Hayes. Associate Specialist in Dermatology, University Hospital Southampton

Mole mapping and monitoring. Dr Stephen Hayes. Associate Specialist in Dermatology, University Hospital Southampton Mole mapping and monitoring Dr Stephen Hayes Associate Specialist in Dermatology, University Hospital Southampton Outline of presentation The melanoma epidemic Benefits of early detection Risks of the

More information

Review Article New Trends in Dermoscopy to Minimize the Risk of Missing Melanoma

Review Article New Trends in Dermoscopy to Minimize the Risk of Missing Melanoma Skin Cancer Volume 2012, Article ID 820474, 5 pages doi:10.1155/2012/820474 Review Article New Trends in Dermoscopy to Minimize the Risk of Missing Melanoma Aimilios Lallas, 1 Zoe Apalla, 1 and Georgios

More information

STUDY. Scott W. Menzies, MB,BS, PhD; Karin Westerhoff, MD; Harold Rabinovitz, MD; Alfred W. Kopf, MD; William H. McCarthy, MBBS, MEd; Brian Katz

STUDY. Scott W. Menzies, MB,BS, PhD; Karin Westerhoff, MD; Harold Rabinovitz, MD; Alfred W. Kopf, MD; William H. McCarthy, MBBS, MEd; Brian Katz STUDY Surface Microscopy of Pigmented Basal Cell Carcinoma Scott W. Menzies, MB,BS, PhD; Karin Westerhoff, MD; Harold Rabinovitz, MD; Alfred W. Kopf, MD; William H. McCarthy, MBBS, MEd; Brian Katz Objectives:

More information

Dermoscopy: Recognizing Top Five Common In- Office Diagnoses

Dermoscopy: Recognizing Top Five Common In- Office Diagnoses Dermoscopy: Recognizing Top Five Common In- Office Diagnoses Vu A. Ngo, DO Department of Family Medicine and Dermatology Choctaw Nation Health Services Authority Learning Objectives Introduction to dermoscopy

More information

What is Dermoscopy? Early Dermoscopes. Deciphering Dermoscopy: Terminology, Features & Algorithms 6/17/2018

What is Dermoscopy? Early Dermoscopes. Deciphering Dermoscopy: Terminology, Features & Algorithms 6/17/2018 Deciphering Dermoscopy: Terminology, Features & Algorithms Where did it come from and why do we use it? Jennie T. Clarke, MD Associate Professor of Dermatology University of Utah School of Medicine What

More information

6/17/2018. Breaking Bad (Part 1) Dermoscopy of Brown(ish) Things. Bad?

6/17/2018. Breaking Bad (Part 1) Dermoscopy of Brown(ish) Things. Bad? Breaking Bad (Part 1) Dermoscopy of Brown(ish) Things Jennie T. Clarke, MD ssociate Professor of Dermatology University of Utah School of Medicine Bad? 1 Brown(ish) Things Bad Melanoma Pigmented basal

More information

Regression 2/3/18. Histologically regression is characterized: melanosis fibrosis combination of both. Distribution: partial or focal!

Regression 2/3/18. Histologically regression is characterized: melanosis fibrosis combination of both. Distribution: partial or focal! Regression Margaret Oliviero MSN, ARNP Harold S. Rabinovitz MD Histologically regression is characterized: melanosis fibrosis combination of both Distribution: partial or focal! Dermatoscopic terminology

More information

Dermoscopy Quiz 3-Point Checklist Algorithm

Dermoscopy Quiz 3-Point Checklist Algorithm Dermoscopy Quiz 3-Point Checklist Algorithm GLOBAL PATTERN Globular LOCAL CRITERIA Aggregated globules Milia-like cysts 3 POINT CHECK LIST Symmetrical No abnormal net Slight Blue-white veil BENIGN MELANOCYTIC

More information

Disclosure. Objectives. PAFP CME Conference Lou Mancano MD, FAAFP Reading Health System November 18, 2016

Disclosure. Objectives. PAFP CME Conference Lou Mancano MD, FAAFP Reading Health System November 18, 2016 PAFP CME Conference Lou Mancano MD, FAAFP Reading Health System November 18, 2016 1 Disclosure The speaker has no conflict of interest, financial agreement, or working affiliation with any group or organization.

More information

Multiple Primary Melanoma in a Thai Male: A Case Report

Multiple Primary Melanoma in a Thai Male: A Case Report Case Report Multiple Primary Melanoma in a Thai Male: A Case Report J Med Assoc Thai 2014; 97 (Suppl. 2): S234-S238 Full text. e-journal: http://www.jmatonline.com Kittisak Payapvipapong MD*, Pinyapat

More information

Skin Cancer A Personal Approach. Dr Matthew Strack Dunedin New Zealand

Skin Cancer A Personal Approach. Dr Matthew Strack Dunedin New Zealand Skin Cancer A Personal Approach Dr Matthew Strack Dunedin New Zealand Outline Dermoscopy Instruments and setup Photochemosurgery Clinical Aim: Leave with 2-3 ideas JLE Benign Junctional Nevus Management

More information

Asymmetry in Dermoscopic Melanocytic Lesion Images: a Computer Description Based on Colour Distribution

Asymmetry in Dermoscopic Melanocytic Lesion Images: a Computer Description Based on Colour Distribution Acta Derm Venereol INVESTIGATIVE REPORT Asymmetry in Dermoscopic Melanocytic Lesion Images: a Computer Description Based on Colour Distribution Stefania Seidenari 1, Giovanni Pellacani 1 and Costantino

More information

INTRODUCTION HOUSEKEEPING June 11 th Dr John Adams Dermatologist/Dermoscopist MOLEMAP NZ/Australia MOLESAFE USA

INTRODUCTION HOUSEKEEPING June 11 th Dr John Adams Dermatologist/Dermoscopist MOLEMAP NZ/Australia MOLESAFE USA INTRODUCTION HOUSEKEEPING June 11 th 2015 Dr John Adams Dermatologist/Dermoscopist MOLEMAP NZ/Australia MOLESAFE USA Program Skin cancer statistics. Dermoscopy description and usefulness. Patient /lesion

More information

STUDY. Characteristic Epiluminescent Microscopic Features of Early Malignant Melanoma on Glabrous Skin

STUDY. Characteristic Epiluminescent Microscopic Features of Early Malignant Melanoma on Glabrous Skin Characteristic Epiluminescent Microscopic Features of Early Malignant Melanoma on Glabrous Skin A Videomicroscopic Analysis STUDY Shinji Oguchi, MD; Toshiaki Saida, MD, PhD; Yoko Koganehira, MD; Sachiko

More information

Case Report Micromelanomas: A Review of Melanomas 2mmand a Case Report

Case Report Micromelanomas: A Review of Melanomas 2mmand a Case Report Case Reports in Oncological Medicine, Article ID 206260, 4 pages http://dx.doi.org/10.1155/2014/206260 Case Report Micromelanomas: A Review of Melanomas 2mmand a Case Report Sharad P. Paul 1,2,3 1 Skin

More information

NIH Public Access Author Manuscript Br J Dermatol. Author manuscript; available in PMC 2015 April 01.

NIH Public Access Author Manuscript Br J Dermatol. Author manuscript; available in PMC 2015 April 01. NIH Public Access Author Manuscript Published in final edited form as: Br J Dermatol. 2014 April ; 170(4): 802 808. doi:10.1111/bjd.12678. Impact of in vivo reflectance confocal microscopy on the number

More information

Abrupt Intralesional Color Change on Dermoscopy as a New Indicator of Early Superficial Spreading Melanoma in a Japanese Woman

Abrupt Intralesional Color Change on Dermoscopy as a New Indicator of Early Superficial Spreading Melanoma in a Japanese Woman Published online: June 24, 2015 1662 6567/15/0072 0123$39.50/0 This is an Open Access article licensed under the terms of the Creative Commons Attribution-NonCommercial 3.0 Unported license (CC BY-NC)

More information

Graph-based Pigment Network Detection in Skin Images

Graph-based Pigment Network Detection in Skin Images Graph-based Pigment Network Detection in Skin Images M. Sadeghi a,b, M. Razmara a, M. Ester a, T. K. Lee a,b,c, M. S. Atkins a a Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada, V5A1S6;

More information

Appendix : Dermoscopy

Appendix : Dermoscopy Go Back to the Top To Order, Visit the Purchasing Page for Details APP Appendix : Dermoscopy Dermoscopy, also known as dermatoscopy, epiluminoscopy and epiluminescent microscopy, is an effective non-invasive

More information

R J M E Romanian Journal of Morphology & Embryology

R J M E Romanian Journal of Morphology & Embryology Rom J Morphol Embryol 2013, 54(2):315 320 ORIGINAL PAPER R J M E Romanian Journal of Morphology & Embryology http://www.rjme.ro/ Correlation of dermatoscopy with the histopathological changes in the diagnosis

More information

Introduction to Dermoscopy. Nicholas Compton, MD June 16, 2010

Introduction to Dermoscopy. Nicholas Compton, MD June 16, 2010 Introduction to Dermoscopy Nicholas Compton, MD June 16, 2010 Overview What is dermoscopy Brief history Types of dermoscopy General approach to lesion of interest 2 step algorithm 3-point checklist Practice

More information

Basics in Dermoscopy

Basics in Dermoscopy Basics in Dermoscopy Manal Bosseila Professor of Dermatology, Cairo University Member of European Academy Dermatology & Venereology EADV Member of International Dermoscopy Society IDS Member of Aesthetic

More information

STUDY. Dermoscopy of Squamous Cell Carcinoma and Keratoacanthoma

STUDY. Dermoscopy of Squamous Cell Carcinoma and Keratoacanthoma ONLINE FIRST STUDY Dermoscopy of Squamous Cell Carcinoma and Keratoacanthoma Cliff Rosendahl, MBBS; Alan Cameron, MBBS; Giuseppe Argenziano, MD; Iris Zalaudek, MD; Philipp Tschandl, MD; Harald Kittler,

More information

Key factors in successfully integrating dermoscopy into your clinical practice

Key factors in successfully integrating dermoscopy into your clinical practice Key factors in successfully integrating dermoscopy into your clinical practice S051 Dilemmas and challenges in skin cancer therapies and management Monday, March 4 th 2019 (9AM-12PM) Room 209A 10:56-11:09AM

More information

DIFFERENCES IN DERMOSCOPIC IMAGES FROM NON-POLARIZED DERMOSCOPE AND POLARIZED DERMOSCOPE INFLUENCE THE DIAGNOSTIC ACCURACY AND CONFIDENCE LEVEL.

DIFFERENCES IN DERMOSCOPIC IMAGES FROM NON-POLARIZED DERMOSCOPE AND POLARIZED DERMOSCOPE INFLUENCE THE DIAGNOSTIC ACCURACY AND CONFIDENCE LEVEL. DIFFERENCES IN DERMOSCOPIC IMAGES FROM NON-POLARIZED DERMOSCOPE AND POLARIZED DERMOSCOPE INFLUENCE THE DIAGNOSTIC ACCURACY AND CONFIDENCE LEVEL. 1. Steven Q. Wang MD 1 (wangs@mskcc.org) 2. Stephen W. Dusza

More information

Total body photography in high risk patients

Total body photography in high risk patients Total body photography in high risk patients Doug Grossman, MD, PhD Department of Dermatology Huntsman Cancer Institute University of Utah Summer AAD F032 Practical Considerations for Patients with Melanoma

More information

The impact of GP sub-specialisation and dermatoscopy use on diagnostic accuracy for melanomas in Australia

The impact of GP sub-specialisation and dermatoscopy use on diagnostic accuracy for melanomas in Australia The impact of GP sub-specialisation and dermatoscopy use on diagnostic accuracy for melanomas in Australia Cliff Rosendahl, Gail Williams, Diann Eley, Tobias Wilson, Greg Canning, Jeffrey Keir, Ian McColl,

More information

Dermoscopy-a BRIEF introduction

Dermoscopy-a BRIEF introduction Dermoscopy-a BRIEF introduction Aim of presentation -to tell you what dermoscopy is -to show some of what it can do -point the interested learner to further resources Overview of dermoscopy Dermoscopy

More information

Management of Atypical Pigmented Lesions

Management of Atypical Pigmented Lesions Management of Atypical Pigmented Lesions Jennifer A. Stein MD, PhD Associate Director, Pigmented Lesion Section Ronald O. Perelman Department of Dermatology NYU Langone Medical Center July 29, 2017 1-4

More information

Algorithmic reproduction of asymmetry and border cut-off parameters according to the ABCD rule for dermoscopy

Algorithmic reproduction of asymmetry and border cut-off parameters according to the ABCD rule for dermoscopy JEADV ISSN 1468-3083 Blackwell Publishing Ltd ORIGINAL ARTICLE Algorithmic reproduction of asymmetry and border cut-off parameters according to the ABCD rule for dermoscopy G Pellacani,* C Grana, S Seidenari

More information

Melanoma. Consultation on draft guideline - stakeholder comments. Comments to be submitted before 5pm on Friday 13 March 2015

Melanoma. Consultation on draft guideline - stakeholder comments. Comments to be submitted before 5pm on Friday 13 March 2015 Please note: Please fill in both the stakeholder organisation and name of commentator fields. We cannot accept forms with attachments such as research articles, letters or leaflets. Stakeholder organisation(s)

More information

Strategies for early recognition of cutaneous melanoma present and future

Strategies for early recognition of cutaneous melanoma present and future DERMATOLOGY PRACTICAL & CONCEPTUAL www.derm101.com Strategies for early recognition of cutaneous melanoma present and future Franziska Brehmer, M.D. 1, Martina Ulrich, M.D. 2, Holger A. Haenssle, M.D.

More information

Acral and Mucosal Dermoscopy

Acral and Mucosal Dermoscopy Acral and Mucosal Dermoscopy Caroline C. Kim, MD Assistant Professor, Department of Dermatology Harvard Medical School Director, Pigmented Lesion Clinic Associate Director, Cutaneous Oncology Program Beth

More information

IV.4. Early Evolution of Melanoma (Small-Diameter Melanoma)

IV.4. Early Evolution of Melanoma (Small-Diameter Melanoma) Chapter Early Evolution of Melanoma (Small-Diameter Melanoma) Robert J. Friedman, Melanie Warycha, Michele Farber, Dina Gutkowicz-Krusin, Harold Rabinovitz, David Polsky, Margaret Oliviero, Darrell S.

More information

Age-related prevalence of dermatoscopic patterns of acral melanocytic nevi

Age-related prevalence of dermatoscopic patterns of acral melanocytic nevi DERMATOLOGY PRACTICAL & CONCEPTUAL www.derm101.com Age-related prevalence of dermatoscopic patterns of acral melanocytic nevi Reiko Suzaki 1, Sumiko Ishizaki 1, Hitoshi Iyatomi 2, Masaru Tanaka 1 1 Department

More information

Diagnosis of Lentigo Maligna Melanoma. Steven Q. Wang, M.D. Memorial Sloan-Kettering Cancer Center Basking Ridge, NJ

Diagnosis of Lentigo Maligna Melanoma. Steven Q. Wang, M.D. Memorial Sloan-Kettering Cancer Center Basking Ridge, NJ Diagnosis of Lentigo Maligna Melanoma Steven Q. Wang, M.D. Memorial Sloan-Kettering Cancer Center Basking Ridge, NJ Conflict of Interest: None Topics Epidemiology and Natural History Clinical and Histologic

More information

Supplementary Online Content

Supplementary Online Content Supplementary Online Content Chernoff KA, Marghoob AA, Lacouture ME, Deng L, Busam KJ, Myskowski PL. Dermoscopic findings in cutaneous metastases. JAMA Dermatol. Published online January 15, 2014. doi:10.1001/jamadermatol.2013.8502

More information

Evaluation of electrical impedance spectroscopy as an adjunct to dermoscopy in short-term monitoring of atypical melanocytic lesions

Evaluation of electrical impedance spectroscopy as an adjunct to dermoscopy in short-term monitoring of atypical melanocytic lesions DERMATOLOGY PRACTICAL & CONCEPTUAL www.derm101.com Evaluation of electrical impedance spectroscopy as an adjunct to dermoscopy in short-term monitoring of atypical melanocytic lesions Hannah Ceder 1, Alexandra

More information

Comparative Analysis of Total Body and Dermatoscopic Photographic Monitoring of Nevi in Similar Patient Populations at Risk for Cutaneous Melanoma

Comparative Analysis of Total Body and Dermatoscopic Photographic Monitoring of Nevi in Similar Patient Populations at Risk for Cutaneous Melanoma Comparative Analysis of Total Body and Dermatoscopic Photographic Monitoring of Nevi in Similar Patient Populations at Risk for Cutaneous Melanoma AGNESSA GADELIYA GOODSON, MD, SCOTT R. FLORELL, MD, MARK

More information

Dr. Brent Doolan, BSc MBBS MPH

Dr. Brent Doolan, BSc MBBS MPH Impact of partial biopsies on the need for complete excisional surgery in the management of cutaneous melanomas: A multi-centre review Dr. Brent Doolan, BSc MBBS MPH Peter MacCallum Cancer Centre, Melbourne

More information

Description of Some Dermatoscopic Features of Acral Pigmented Lesions in Iranian Patients: A Preliminary Study

Description of Some Dermatoscopic Features of Acral Pigmented Lesions in Iranian Patients: A Preliminary Study ORIGINAL REPORT Description of Some Dermatoscopic Features of Acral Pigmented Lesions in Iranian Patients: A Preliminary Study Reza Nemati Ahmadabad 1, Hayede Ghaninezhad 1, Homayoon Moslehi 2, Sahar Azizahari

More information

Prediction without Pigment: a decision algorithm for non-pigmented skin malignancy

Prediction without Pigment: a decision algorithm for non-pigmented skin malignancy DERMATOLOGY PRACTICAL & CONCEPTUAL www.derm101.com Prediction without Pigment: a decision algorithm for non-pigmented skin malignancy Cliff Rosendahl 1, Alan Cameron 1, Philipp Tschandl 2, Agata Bulinska

More information

Dermoscopy. Synonyms. Dermoscopy. Definition. Dermoscopy opens up a world of colour and structure that can t be seen with the naked eye

Dermoscopy. Synonyms. Dermoscopy. Definition. Dermoscopy opens up a world of colour and structure that can t be seen with the naked eye Synonyms Dermoscopy Australasian College of Dermatologists G.P Training Module Dermoscopy Dermatoscopy Epiluminescence microscopy Skin surface microscopy Incident light microscopy Oil immersion microscopy

More information

Melanoma and Dermoscopy. Disclosure Statement: ABCDE's of melanoma. Co-President, Usatine Media

Melanoma and Dermoscopy. Disclosure Statement: ABCDE's of melanoma. Co-President, Usatine Media Melanoma and Dermoscopy Richard P. Usatine, MD, FAAFP Professor, Family and Community Medicine Professor, Dermatology and Cutaneous Surgery Medical Director, University Skin Clinic University of Texas

More information

BJD British Journal of Dermatology. Summary. What s already known about this topic? CLINICAL AND LABORATORY INVESTIGATIONS

BJD British Journal of Dermatology. Summary. What s already known about this topic? CLINICAL AND LABORATORY INVESTIGATIONS CLINICAL AND LABORATORY INVESTIGATIONS BJD British Journal of Dermatology Pigmented nodular melanoma: the predictive value of dermoscopic features using multivariate analysis M.A. Pizzichetta, 1 H. Kittler,

More information

Malignant non-melanocytic lesions

Malignant non-melanocytic lesions Malignant non-melanocytic lesions Course C023: Fundamentals of Dermoscopy March 4, 2019, 11:20 AM - 11:50 PM Room: 146B Jason B. Lee, MD Professor & Vice Chair Director of Dermatopathology & Pigmented

More information

=C 0= C8E4 <4;0=><0 3806=>B8B

=C 0= C8E4 <4;0=><0 3806=>B8B 4558284=C 0=3 45542C8E4 B8B Wednesday 20 th November 2002 Centenary Institute of Cancer Medicine & Cell Biology Royal Prince Alfred Hospital Missenden Road Camperdown NSW WORKSHOP SUMMARY

More information

Benign and malignant epithelial lesions: Seborrheic keratosis: A common benign pigmented epidermal tumor occur in middle-aged or older persons more

Benign and malignant epithelial lesions: Seborrheic keratosis: A common benign pigmented epidermal tumor occur in middle-aged or older persons more Benign and malignant epithelial lesions: Seborrheic keratosis: A common benign pigmented epidermal tumor occur in middle-aged or older persons more common on the trunk; but extremities, head and neck are

More information

Dermoscopy in everyday practice. What and Why? When in doubt cut it out? Trilokraj Tejasvi MD

Dermoscopy in everyday practice. What and Why? When in doubt cut it out? Trilokraj Tejasvi MD Dermoscopy in everyday practice Trilokraj Tejasvi MD Assistant Professor, Department of Dermatology, Director Teledermatology services, University of Michigan, Faculty Associate, GLOBAL REACH, Michigan

More information

Trends in dermoscopy use in the UK: results from surveys in 2003 and 2012

Trends in dermoscopy use in the UK: results from surveys in 2003 and 2012 DERMATOLOGY PRACTICAL & CONCEPTUAL www.derm101.com Trends in dermoscopy use in the UK: results from surveys in 2003 and 2012 Thomas D. Butler 1, Rubeta N. Matin 1, Andrew G. Affleck 2, Colin J. Fleming

More information

Contrast with Australian Guidelines A/Pr Pascale Guitera,

Contrast with Australian Guidelines A/Pr Pascale Guitera, Contrast with Australian Guidelines A/Pr Pascale Guitera, Dermatologist, Sydney University NO CONFLICT OF INTEREST Sydney Melanoma Diagnostic Centre, RPAH 2011 2008 225 pages 16 pages http://www.cancer.org.au/file/healthprofessionals/clinica

More information

It can be helpful in some cases of actinic keratosis, Bowen s disease and squamous cell carcinoma

It can be helpful in some cases of actinic keratosis, Bowen s disease and squamous cell carcinoma Dermoscopy Introduction, Terminology and Structures (to be read in conjunction with the Diagnostic Dermoscopic Algorithm) Copyright to Cunliffe TP (Jan. 2017) All rights reserved Introduction Dermoscopy

More information

Case Report A Case of Cystic Basal Cell Carcinoma Which Shows a Homogenous Blue/Black Area under Dermatoscopy

Case Report A Case of Cystic Basal Cell Carcinoma Which Shows a Homogenous Blue/Black Area under Dermatoscopy Volume 20, Article ID 450472, 4 pages doi:0.55/20/450472 Case Report A Case of Cystic Basal Cell Carcinoma Which Shows a Homogenous Blue/Black Area under Dermatoscopy Akihiro Yoneta, Kohei Horimoto, Keiko

More information

Multispectral Digital Skin Lesion Analysis. Summary

Multispectral Digital Skin Lesion Analysis. Summary Subject: Multispectral Digital Skin Lesion Analysis Page: 1 of 8 Last Review Status/Date: March 2016 Multispectral Digital Skin Lesion Analysis Summary There is interest in noninvasive devices that will

More information

Melanoma Update: 8th Edition of AJCC Staging System

Melanoma Update: 8th Edition of AJCC Staging System Melanoma Update: 8th Edition of AJCC Staging System Rosalie Elenitsas, M.D. Professor of Dermatology Director, Dermatopathology University of Pennsylvania DISCLOSURE OF RELATIONSHIPS WITH INDUSTRY None

More information

BLINCK A diagnostic algorithm for skin cancer diagnosis combining clinical features with dermatoscopy findings

BLINCK A diagnostic algorithm for skin cancer diagnosis combining clinical features with dermatoscopy findings DERMATOLOGY PRACTICAL & CONCEPTUAL www.derm101.com BLINCK A diagnostic algorithm for skin cancer diagnosis combining clinical features with dermatoscopy findings Peter Bourne, MBBS 1, Cliff Rosendahl,

More information

Accepted Article. Dermoscopic diagnosis of amelanotic/hypomelanotic melanoma

Accepted Article. Dermoscopic diagnosis of amelanotic/hypomelanotic melanoma Received Date : 19-May-2016 Revised Date : 01-Sep-2016 Accepted Date : 20-Sep-2016 Article type : Research Letter Dermoscopic diagnosis of amelanotic/hypomelanotic melanoma M.A. Pizzichetta, 1 H. Kittler,

More information

STUDY. Dermoscopic Characteristics of Congenital Melanocytic Nevi Affecting Acral Volar Skin

STUDY. Dermoscopic Characteristics of Congenital Melanocytic Nevi Affecting Acral Volar Skin STUDY Dermoscopic Characteristics of Congenital Melanocytic Nevi Affecting Acral Volar Skin Akane Minagawa, MD; Hiroshi Koga, MD; Toshiaki Saida, MD, PhD Objective: To characterize the dermoscopic features

More information

1 Cancer Council Queensland, Brisbane, Queensland, Australia.

1 Cancer Council Queensland, Brisbane, Queensland, Australia. Title: Diagnosis of an additional in situ does not influence survival for patients with a single invasive : A registry-based follow-up study Authors: Danny R Youlden1, Kiarash Khosrotehrani2, Adele C Green3,4,

More information

INFOSCIENCE TECHNOLOGY: THE IMPACT OF INTERNET ACCESSIBLE MELANOID DATA ON HEALTH ISSUES

INFOSCIENCE TECHNOLOGY: THE IMPACT OF INTERNET ACCESSIBLE MELANOID DATA ON HEALTH ISSUES INFOSCIENCE TECHNOLOGY: THE IMPACT OF INTERNET ACCESSIBLE MELANOID DATA ON HEALTH ISSUES JW Grzymała-Busse 1, ZS Hippe 2, M Knap 2 and W Paja 2 1 Department of Electrical Engineering and Computer Science,

More information

STUDY. The Impact of Partial Biopsy on Histopathologic Diagnosis of Cutaneous Melanoma

STUDY. The Impact of Partial Biopsy on Histopathologic Diagnosis of Cutaneous Melanoma STUDY The Impact of Partial Biopsy on Histopathologic Diagnosis of Cutaneous Melanoma Experience of an Australian Tertiary Referral Service Jonathan C. Ng, MBBS, MBiomedSc; Sarah Swain, MBBS, FRCPA; John

More information

Fundamentals of dermoscopy

Fundamentals of dermoscopy Fundamentals of dermoscopy Learning objectives Upon completion of this session, participants should be able to: describe the basic principles of dermoscopy identify features associated with pigmented and

More information

This is a repository copy of Easily missed? Amelanotic melanoma. White Rose Research Online URL for this paper:

This is a repository copy of Easily missed? Amelanotic melanoma. White Rose Research Online URL for this paper: This is a repository copy of Easily missed? Amelanotic melanoma. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/127789/ Version: Accepted Version Article: Muinonen-Martin,

More information

Phoebe Rich MD Adjunct Professor OHSU Portland, Oregon

Phoebe Rich MD Adjunct Professor OHSU Portland, Oregon Nail Tips for Diagnosis and Management of Nail Disorders Winter Clinical Dermatology Conference 2017 Hawaii Phoebe Rich MD Adjunct Professor OHSU Portland, Oregon Objectives diagnostic clues for benign

More information

The most common mistakes on dermatoscopy of melanocytic lesions

The most common mistakes on dermatoscopy of melanocytic lesions Review paper The most common mistakes on dermatoscopy of melanocytic lesions Grażyna Kamińska-Winciorek 1, Waldemar Placek 2 1 The Center for Diagnostics and Treatment of Skin Diseases, Katowice, Poland

More information

Dermatoscopic features of cutaneous non-facial non-acral lentiginous growth pattern melanomas

Dermatoscopic features of cutaneous non-facial non-acral lentiginous growth pattern melanomas DERMATOLOGY PRACTICAL & CONCEPTUAL www.derm101.com Dermatoscopic features of cutaneous non-facial non-acral lentiginous growth pattern melanomas Jeff Keir 1 1 Department of Dermatology, School of Medicine,

More information

Features Causing Confusion between Basal Cell Carcinoma and Squamous Cell Carcinoma in Clinical Diagnosis

Features Causing Confusion between Basal Cell Carcinoma and Squamous Cell Carcinoma in Clinical Diagnosis TH Ryu, et al pissn 1013-9087ㆍeISSN 2005-3894 Ann Dermatol Vol. 30, No. 1, 2018 https://doi.org/10.5021/ad.2018.30.1.64 ORIGINAL ARTICLE Features Causing Confusion between Basal Cell Carcinoma and Squamous

More information

Dermoscopy STFM Richard Usatine, MD 5/2/16. Disclosure Statement: Some Dermatoscopes. Dermoscopy Video. Thanks to Dr.

Dermoscopy STFM Richard Usatine, MD 5/2/16. Disclosure Statement: Some Dermatoscopes. Dermoscopy Video. Thanks to Dr. Disclosure Statement: Dermoscopy STFM 2016 Richard P. Usatine, MD, FAAFP Professor, Family and Community Medicine Professor, Dermatology and Cutaneous Surgery Medical Director, Clinic University of Texas

More information

Sensitivity and Specificity of Confocal Laser-Scanning Microscopy for In Vivo Diagnosis of Malignant Skin Tumors

Sensitivity and Specificity of Confocal Laser-Scanning Microscopy for In Vivo Diagnosis of Malignant Skin Tumors 193 Sensitivity and Specificity of Confocal Laser-Scanning Microscopy for In Vivo Diagnosis of Malignant Skin Tumors Armin Gerger, MD 1 Silvia Koller, MD 2 Wolfgang Weger, MD 2 Erika Richtig, MD 2 Helmut

More information

Dermoscopy, the use of a handheld

Dermoscopy, the use of a handheld ONLINE EXCLUSIVE Dermoscopy in family medicine: A primer Dermoscopy allows you to see deeper into the skin than with the naked eye. Here s how you can make use of it to spot malignant conditions sooner.

More information

Chronology of lichen planus-like keratosis features by dermoscopy: a summary of 17 cases

Chronology of lichen planus-like keratosis features by dermoscopy: a summary of 17 cases DERMATOLOGY PRACTICAL & CONCEPTUAL www.derm101.com Chronology of lichen planus-like keratosis features by dermoscopy: a summary of 17 cases Soko Watanabe 1, Mizuki Sawada 1, Itaru Dekio 1, Sumiko Ishizaki

More information

A novel algorithm for the detection of melanoma border

A novel algorithm for the detection of melanoma border A novel algorithm for the detection of melanoma border A. HATZIGAIDAS, A. PAPASTERGIOU, P. TZEKIS Department of Electronics, Alexander Technological Educational Institute of Thessaloniki, Sindos, 57400

More information

Assisting diagnosis of melanoma through the noninvasive biopsy of skin lesions

Assisting diagnosis of melanoma through the noninvasive biopsy of skin lesions Assisting diagnosis of melanoma through the noninvasive biopsy of skin lesions Symon D Oyly Cotton Ela Claridge School of Computer Science, The University of Birmingham Birmingham B15 2TT, UK Per Hall

More information

Benign versus Cancerous Lesions How to tell the difference FMF 2014 Christie Freeman MD, CCFP, DipPDerm, MSc

Benign versus Cancerous Lesions How to tell the difference FMF 2014 Christie Freeman MD, CCFP, DipPDerm, MSc 1 Benign versus Cancerous Lesions How to tell the difference FMF 2014 Christie Freeman MD, CCFP, DipPDerm, MSc Benign lesions Seborrheic Keratoses: Warty, stuck-on Genetics and birthdays Can start in late

More information

Non-melanocytic Patterns

Non-melanocytic Patterns Non-melanocytic Lesions Non-melanocytic Patterns Michelle Tarbox, MD Assistant Professor of Dermatology and Dermatopathology Texas Tech University Health Sciences Center 2018 Seborrheic keratoses Acanthotic

More information

Automated Detection and Analysis of Dermoscopic Structures on Dermoscopy Images

Automated Detection and Analysis of Dermoscopic Structures on Dermoscopy Images Automated Detection and Analysis of Dermoscopic Structures on Dermoscopy Images Maryam Sadeghi Computing Science Simon Fraser University Burnaby, BC, Canada msa68@sfu.ca Tim K. Lee Cancer Control Research

More information

STUDY. Nevus Type in Dermoscopy Is Related to Skin Type in White Persons

STUDY. Nevus Type in Dermoscopy Is Related to Skin Type in White Persons STUDY Nevus Type in Dermoscopy Is Related to Skin Type in White Persons Iris Zalaudek, MD; Giuseppe Argenziano, MD; Ines Mordente, MD; Elvira Moscarella, MD; Rosamaria Corona, MD, DSc; Francesco Sera,

More information

Revised Pattern Analysis: a method for the accurate diagnosis of pigmented skin lesions

Revised Pattern Analysis: a method for the accurate diagnosis of pigmented skin lesions Dermatoscopy for Students A concise outline of: Revised Pattern Analysis: a method for the accurate diagnosis of pigmented skin lesions And Chaos and Clues: a decision algorithm for routine practice to

More information

INVESTIGATION. Dermoscopic and Clinical Features of Pigmented Skin Lesions of the Genital Area*

INVESTIGATION. Dermoscopic and Clinical Features of Pigmented Skin Lesions of the Genital Area* INVESTIGATION 178 Dermoscopic and Clinical Features of Pigmented Skin Lesions of the Genital Area* Fatma Pelin Cengiz 1 Nazan Emiroglu 1 Rainer Hofmann Wellenhof 2 DOI: http://dx.doi.org/10.1590/abd1806-4841.20153294

More information

MELANOMA: HANDS-ON OR HANDS-OFF?

MELANOMA: HANDS-ON OR HANDS-OFF? MELANOMA: HANDS-ON OR HANDS-OFF? M SCHAMM MBChB (Pret), FCS (SA) Endocrine and Transplant Surgeon, Department of Surgery, University of the Witwatersrand; and Clinical Head Transplant Surgery, Charlotte

More information

DERMATOLOGY PRACTICAL & CONCEPTUAL. Introduction. Dermoscopy. Hiroshi Sakai 1, Kyoko Tonomura 1, Hirotsugu Shirabe 1, Masaru Tanaka 2

DERMATOLOGY PRACTICAL & CONCEPTUAL. Introduction. Dermoscopy.  Hiroshi Sakai 1, Kyoko Tonomura 1, Hirotsugu Shirabe 1, Masaru Tanaka 2 DERMATOLOGY PRACTICAL & CONCEPTUAL www.derm101.com Assessment of the colors of melanin pigment in acral compound nevus by using a novel dermoscopy technique with surgical light illumination and saturation

More information