Keep Imaging Simple: An Introduction To Neuroimaging

Size: px
Start display at page:

Download "Keep Imaging Simple: An Introduction To Neuroimaging"

Transcription

1 Keep Imaging Simple: An Introduction To Neuroimaging Meghan Elkins, OD, FAAO Please silence all mobile devices and remove items from chairs so others can sit. Unauthorized recording of this session is prohibited.

2 Disclosure Statement: Nothing to disclose

3 COURSE OBJECTIVES Brief radiation introduction Brief review of how X-rays, CTs, and MRIs work Recognize anatomic structures for normal patients Examples of pathologic and incidental findings

4 RADIATION

5 RADIATION Ionizing Radiation: DNA damage d/t high energy wavelengths Natural occurring sources: sun, radon Millisieverts (msv) NOT measured by Geiger counter Quantity of radiation dose Milligray (mgy) Approximate dose of radiation absorbed

6 RADIATION RISKS msv Comparisons Chest X-Ray Hour Flight 0.1 Lumbar Spine X-Ray 1.5 Head CT 2 Chest CT 5 Angiogram 16 Potential for increased cancer risk if multiple CT scans

7 X-RAYS!

8 INDICATIONS qhistory of metal in/around eyes qused prior to MRI

9 EXAMPLES!

10 EXAMPLES!

11 COMPUTED TOMOGRAPHY CT

12 INDICATIONS Trauma Exophthalmos Acute CVA Cellulitis Sinus Visualization And many more!

13 CT STRATEGY Utilizes x-rays and computer algorithms to visualize bone and organ structures Best for blood and bone Black and white images: Tissue density White à High density à bone Black à Low density à air

14 CT REPORTS Technique Slice size Location Method DLP: Dose Length Product Required by law Total energy into pt Findings Impression

15 CONTRAST Iodine based Required for CTA Contraindications: Allergy Asthma Kidney Issues Pregnancy Children Blocks or attenuates x-rays Anywhere contrast goes, enhancement follows Hyperdense Brighter

16 CONTRAST Not needed for imaging of high density structures Hemorrhagic stroke Bony structures Metallic Foreign bodies Wood = contrast helps BUN/Creatinine GFR > 60 = okay < 30 = not okay

17 NO CONTRAST CONTRAST

18 MAGNETIC RESONANCE IMAGING MRI

19 BACKGROUND Uses magnets! CT is good for bones and blood MRI is good for anatomy and soft tissue Depends on hydrogen nuclei which release energy absorbed from short electromagnetic pulsations

20 BACKGROUND Two main imaging sequences T1 T2 Weighting: measurement of excited proton relaxation time after magnet turned off Specific tissues have different relaxation times viewed best in either T1or T2

21 CONTRAINDICATIONS Metal unless manufactured approved Tattoos BUSTED in 2004 Claustrophobia (relative) 350+ lbs (relative)

22 CONTRAINDICATIONS Metal unless manufactured approved Tattoos BUSTED in 2004 Claustrophobia (relative) 350+ lbs (relative)

23

24 T1-WEIGHTED Normal anatomy highlighted Recovery time < 1000 msec Vitreous will help you determine which type of scan you are looking at (CSF will, too) DARK Vitreous = HYPOintense = T1 Utilize T1 images with contrast to compare enhancements

25 T2-WEIGHTED Pathologies highlighted: water and edema are Recovery time > 1000 msec Bright CSF/Vitreous = HYPERintense = T2 Blood = black

26 T1 VS T2 CHART Tissue T1 T2 CSF Dark Bright Muscle Gray Dark Gray Fat Bright Light Gray Air Very Dark Very Dark Inflammation Dark Bright Adapted from Accessed: 01/29/2018.

27 MRI WITH CONTRAST Gandolinium based Blood-brain barrier T1 images Enhanced images = Tumors Inflammation BUN/Creatinine à Calculate GFR Omniscan > 60 Prohance Contrast Contraindicated < 30 Less adverse events than iodine

28 FAT SUPPRESSION Suppresses bright signal from fat: Better visualizes orbital structures Tumors Inflammation Vascular Malformations Short T1 Inversion Recovery: best for optic neuritis Optic nerve enhancement post-contrast Must have fat suppression

29 FLUID ATTENUATION INVERSION RECOVERY Recovery time > 1000 msec Suppresses bright CSF on T2 Vitreous is also dark Remember: T2 should have a bright vitreous VERY useful for demyelination (periventricular plaques) Useful for pathology near sinuses

30 DIFFUSION WEIGHTED IMAGING Acute infarcts! = BAD Significant artifacts Poorer resolution Typically T2-weighted May have T2 shine-through ADC Map Post-processing used in conjunction with DWI Dark = Bad

31 OTHER OPTIONS MRA Contrast not needed Blood moves through vessels producing dark signal but bright on MRA d/t series of images processed Circle of Willis! MRV Example: venous sinus thrombosis No contrast

32 OTHER OPTIONS Orbital CT No need for fat suppression Fat is inherently dark on CT Orbital MRI Must use fat suppression technique Supposedly: cannot do in open MRI

33 T2 T1 FLAIR T2 FLAIR DWI ADC EXAMPLES Many more strategies!

34 ANATOMIC REVIEW

35 ANATOMIC REVIEW Axial Sagittal

36 AXIAL SCANS 3 1. Medulla 2. Cerebellum 3. Maxillary Sinus 4. Masseter Muscle 5. Semicircular Canals

37 AXIAL SCANS 3 1. Pons 2. Fourth Ventricle 3. Ethmoid Sinus 4. Basilar Artery 5. Internal Carotid Artery 6. Temporal Lobe 7. Sphenoid Sinus

38 AXIAL SCANS 1. Pons Almost Midbrain! 2. Superior Cerebral Peduncle 3. Tegmentum 4. Temporal Lobe 5. Cavernous Sinus

39 AXIAL SCANS 6 1. Midbrain 2. Cerebral Aqueduct 3. Cerebellum 4. Straight Sinus 5. Occipital Lobe 6. Optic Nerve

40 AXIAL SCANS 1. Higher Midbrain 2. Inferior Colliculus 3. Pituitary Stalk 4. Optic Tract 5. Optic Chiasm 6. Mammillary Bodies 7. Occipital Lobe

41 AXIAL SCANS 1. Superior Colliculus 2. Superior Sagittal Sinus 3. Occipital Lobe 4. Temporal Lobe 5. Third Ventricle

42 AXIAL SCANS Corpus Callosum 2. Septum Pellucidum 3. Lateral Ventricles 4. Superior Sagittal Sinus 5. Frontal Lobe 6. Parietal Lobe

43 CORONAL SCANS

44 SAGITTAL SCANS 1

45 FUN FINDINGS CT MRI

46 CALCIFICATIONS Pineal Gland Choroidal Plexus

47 ISCHEMIC STROKE T2 FLAIR T2

48 ORBITAL INFLAMMATION

49 BRAIN ABSCESS

50 ORBITAL FRACTURE (CT)

51 WHAT DOES AN INTRAOCULAR FOREIGN BODY LOOK LIKE?

52 IDIOPATHIC INTRACRANIAL HYPERTENSION

53 T1 post MENINGIOMA 60-something wm No complaints Incidental finding: pseudopapilledema vs papilledema MRIs ordered STAT Patient came back to eye clinic to await results T1 Pre T2 Pre

54 GENERALIZED ATROPHY

55 RETINAL CALCIFICATIONS

56 CHOROIDAL MELANOMA T1 FLAIR Fat Sat T1 FLAIR

57 AV MALFORMATION

58 SOURCES 1. Radiation risk from medical imaging. Published: October Accessed: 4 October The millisievert and milligray as measures of radiation dose and exposure. Accessed: 4 October Mettler FA, et al. "Effective Doses in Radiology and Diagnostic Nuclear Medicine: A Catalog," Radiology (July 2008), Vol. 248, pp Tiny FB picture: 5. Cat picture: 6. Magnetic Resonance Imaging (MRI) of the Brain and Spine: Basics. Accessed: 01/29/ Korchi, AM, et al. Imaging of the cavernous sinus lesions. Diagnostic and Interventional Imaging. (95)9: September This lecture could not have been possible without the assistance of Dr. Amina Tariq, Staff Radiologist, Huntington VAMC.

59 Please remember to complete your session evaluations on the Academy.18 meeting app Tweet about this session using the official meeting hashtag #Academy18

TRANSVERSE SECTION PLANE Scalp 2. Cranium. 13. Superior sagittal sinus

TRANSVERSE SECTION PLANE Scalp 2. Cranium. 13. Superior sagittal sinus TRANSVERSE SECTION PLANE 1 1. Scalp 2. Cranium 3. Superior sagittal sinus 4. Dura mater 5. Falx cerebri 6. Frontal lobes of the cerebrum 7. Middle meningeal artery 8. Cortex, grey matter 9. Cerebral vessels

More information

Attenuation value in HU From -500 To HU From -10 To HU From 60 To 90 HU. From 200 HU and above

Attenuation value in HU From -500 To HU From -10 To HU From 60 To 90 HU. From 200 HU and above Brain Imaging Common CT attenuation values Structure Air Fat Water Brain tissue Recent hematoma Calcifications Bone Brain edema and infarction Normal liver parenchyma Attenuation value in HU From -500

More information

HEAD AND NECK IMAGING. James Chen (MS IV)

HEAD AND NECK IMAGING. James Chen (MS IV) HEAD AND NECK IMAGING James Chen (MS IV) Anatomy Course Johns Hopkins School of Medicine Sept. 27, 2011 OBJECTIVES Introduce cross sectional imaging of head and neck Computed tomography (CT) Review head

More information

CNS Imaging. Dr Amir Monir, MD. Lecturer of radiodiagnosis.

CNS Imaging. Dr Amir Monir, MD. Lecturer of radiodiagnosis. CNS Imaging Dr Amir Monir, MD Lecturer of radiodiagnosis www.dramir.net Types of radiological examinations you know Plain X ray X ray with contrast GIT : barium (swallow, meal, follow through, enema) ERCP

More information

Sectional Anatomy Head Practice Problems

Sectional Anatomy Head Practice Problems 1. Which of the following is illustrated by #3? (Fig. 5-42) A) maxillary sinus B) vomer C) septal cartilage D) perpendicular plate of ethmoid bone 2. What number illustrates the cornea? (Fig. 5-42) A)

More information

Applicable Neuroradiology

Applicable Neuroradiology For the Clinical Neurology Clerkship LSU Medical School New Orleans Amy W Voigt, MD Clerkship Director Introduction The field of Radiology first developed following the discovery of X-Rays by Wilhelm Roentgen

More information

CT - Brain Examination

CT - Brain Examination CT - Brain Examination Submitted by: Felemban 1 CT - Brain Examination The clinical indication of CT brain are: a) Chronic cases (e.g. headache - tumor - abscess) b) ER cases (e.g. trauma - RTA - child

More information

Neuroradiology MR Protocols

Neuroradiology MR Protocols Neuroradiology MR Protocols Brain protocols N 1: Brain MRI without contrast N 2: Pre- and post-contrast brain MRI N 3 is deleted N 4: Brain MRI without or pre-/post-contrast (seizure protocol) N 5: Pre-

More information

RADIOLOGY TEACHING CONFERENCE

RADIOLOGY TEACHING CONFERENCE RADIOLOGY TEACHING CONFERENCE John Athas, MD Monica Tadros, MD Columbia University, College of Physicians & Surgeons Department of Otolaryngology- Head & Neck Surgery September 27, 2007 CT SCAN IMAGING

More information

NEURO IMAGING OF ACUTE STROKE

NEURO IMAGING OF ACUTE STROKE 1 1 NEURO IMAGING OF ACUTE STROKE ALICIA RICHARDSON, MSN, RN, ACCNS-AG, ANVP-BC WENDY SMITH, MA, RN, MBA, SCRN, FAHA LYNN HUNDLEY, APRN, CNRN, CCNS, ANVP-BC 2 2 1 DISCLOSURES Alicia Richardson: Stryker

More information

Magnetic Resonance Imaging. Basics of MRI in practice. Generation of MR signal. Generation of MR signal. Spin echo imaging. Generation of MR signal

Magnetic Resonance Imaging. Basics of MRI in practice. Generation of MR signal. Generation of MR signal. Spin echo imaging. Generation of MR signal Magnetic Resonance Imaging Protons aligned with B0 magnetic filed Longitudinal magnetization - T1 relaxation Transverse magnetization - T2 relaxation Signal measured in the transverse plane Basics of MRI

More information

Magnetic Resonance Imaging for Neurological Conditions. Lawrance Yip Department of Radiology Queen Mary Hospital

Magnetic Resonance Imaging for Neurological Conditions. Lawrance Yip Department of Radiology Queen Mary Hospital Magnetic Resonance Imaging for Neurological Conditions Lawrance Yip Department of Radiology Queen Mary Hospital Outline Strength and limitations of MRI for neurological conditions MR Imaging techniques

More information

MRI and CT of the CNS

MRI and CT of the CNS MRI and CT of the CNS Dr.Maha ELBeltagy Assistant Professor of Anatomy Faculty of Medicine The University of Jordan 2018 Computed Tomography CT is used for the detection of intracranial lesions. CT relies

More information

BRAIN STEM AND CEREBELLUM..

BRAIN STEM AND CEREBELLUM.. Lecture Title: BRAIN STEM AND CEREBELLUM.. (CNS Block, Radiology) Dr. Hamdy Hassan Ass.Prof. Consultant Radiology Department KKHU King Saud University Lecture Objectives.. Students at the end of the lecture

More information

FOR CMS (MEDICARE) MEMBERS ONLY NATIONAL COVERAGE DETERMINATION (NCD) FOR MAGNETIC RESONANCE IMAGING:

FOR CMS (MEDICARE) MEMBERS ONLY NATIONAL COVERAGE DETERMINATION (NCD) FOR MAGNETIC RESONANCE IMAGING: National Imaging Associates, Inc. Clinical guidelines SINUS MRI Original Date: November 2007 Page 1 of 5 CPT Codes: 70540, 70542, 70543 Last Review Date: July 2014 NCD 220.2 MRI Last Effective Date: July

More information

Professor Dr.Muhammad Ajmal Dr.Tehmina Nazir. HOLY FAMILY HOSPITAL Rawalpindi

Professor Dr.Muhammad Ajmal Dr.Tehmina Nazir. HOLY FAMILY HOSPITAL Rawalpindi Professor Dr.Muhammad Ajmal Dr.Tehmina Nazir HOLY FAMILY HOSPITAL Rawalpindi SCHEME OF PRESENTATION PLAIN X-RAYS CT SCAN MRI CONCLUSION IMAGING MODALITIES PLAIN X-RAYS CT SCAN MRI OCCIPITOMENTAL/WATER

More information

Pearls and Pitfalls in Neuroradiology of Cerebrovascular Disease The Essentials with MR and CT

Pearls and Pitfalls in Neuroradiology of Cerebrovascular Disease The Essentials with MR and CT Pearls and Pitfalls in Neuroradiology of Cerebrovascular Disease The Essentials with MR and CT Val M. Runge, MD Wendy R. K. Smoker, MD Anton Valavanis, MD Control # 823 Purpose The focus of this educational

More information

Meninges and Ventricles

Meninges and Ventricles Meninges and Ventricles Irene Yu, class of 2019 LEARNING OBJECTIVES Describe the meningeal layers, the dural infolds, and the spaces they create. Name the contents of the subarachnoid space. Describe the

More information

Gross Organization I The Brain. Reading: BCP Chapter 7

Gross Organization I The Brain. Reading: BCP Chapter 7 Gross Organization I The Brain Reading: BCP Chapter 7 Layout of the Nervous System Central Nervous System (CNS) Located inside of bone Includes the brain (in the skull) and the spinal cord (in the backbone)

More information

brain MRI for neuropsychiatrists: what do you need to know

brain MRI for neuropsychiatrists: what do you need to know brain MRI for neuropsychiatrists: what do you need to know Christoforos Stoupis, MD, PhD Department of Radiology, Spital Maennedorf, Zurich & Inselspital, University of Bern, Switzerland c.stoupis@spitalmaennedorf.ch

More information

Principles Arteries & Veins of the CNS LO14

Principles Arteries & Veins of the CNS LO14 Principles Arteries & Veins of the CNS LO14 14. Identify (on cadaver specimens, models and diagrams) and name the principal arteries and veins of the CNS: Why is it important to understand blood supply

More information

Slide 1. Slide 2. Slide 3. Tomography vs Topography. Computed Tomography (CT): A simplified Topographical review of the Brain. Learning Objective

Slide 1. Slide 2. Slide 3. Tomography vs Topography. Computed Tomography (CT): A simplified Topographical review of the Brain. Learning Objective Slide 1 Computed Tomography (CT): A simplified Topographical review of the Brain Jon Wheiler, ACNP-BC Slide 2 Tomography vs Topography Tomography: A technique for displaying a representation of a cross

More information

Brainstem and Cerebellum

Brainstem and Cerebellum Brainstem and Cerebellum Lecture two Objectives: 1. Identify radiological anatomy of brain stem and cerebellum. 2. Compares CT and MRI imaging of brain stem and cerebellum. 3. Recognize the imaging findings

More information

The central nervous system

The central nervous system Sectc.qxd 29/06/99 09:42 Page 81 Section C The central nervous system CNS haemorrhage Subarachnoid haemorrhage Cerebral infarction Brain atrophy Ring enhancing lesions MRI of the pituitary Multiple sclerosis

More information

NEURO IMAGING 2. Dr. Said Huwaijah Chairman of radiology Dep, Damascus Univercity

NEURO IMAGING 2. Dr. Said Huwaijah Chairman of radiology Dep, Damascus Univercity NEURO IMAGING 2 Dr. Said Huwaijah Chairman of radiology Dep, Damascus Univercity I. EPIDURAL HEMATOMA (EDH) LOCATION Seventy to seventy-five percent occur in temporoparietal region. CAUSE Most likely caused

More information

M555 Medical Neuroscience Lab 1: Gross Anatomy of Brain, Crainal Nerves and Cerebral Blood Vessels

M555 Medical Neuroscience Lab 1: Gross Anatomy of Brain, Crainal Nerves and Cerebral Blood Vessels M555 Medical Neuroscience Lab 1: Gross Anatomy of Brain, Crainal Nerves and Cerebral Blood Vessels Anatomical Directions Terms like dorsal, ventral, and posterior provide a means of locating structures

More information

Medical Review Guidelines Magnetic Resonance Angiography

Medical Review Guidelines Magnetic Resonance Angiography Medical Review Guidelines Magnetic Resonance Angiography Medical Guideline Number: MRG2001-05 Effective Date: 2/13/01 Revised Date: 2/14/2006 OHCA Reference OAC 317:30-5-24. Radiology. (f) Magnetic Resonance

More information

NEURO PROTOCOLS MRI NEURO PROTOCOLS (SIEMENS SCANNERS)

NEURO PROTOCOLS MRI NEURO PROTOCOLS (SIEMENS SCANNERS) Page 1 NEURO PROTOCOLS Brain Stroke Brain Brain with contrast Brain for seizures Brain for MS Brain for Pineal gland Sella FAST Scan for hydrocephalus MRA/MRV Brain MRA carotids 8 th nerve Cranial nerves

More information

Basics of MR Imaging. Dynamic MRI. MRI Closed. The bed rotates from Upright to Recumbent, stopping at any angle in between.

Basics of MR Imaging. Dynamic MRI. MRI Closed. The bed rotates from Upright to Recumbent, stopping at any angle in between. Basics of MR Imaging Dynamic MRI MRI Closed The bed rotates from Upright to Recumbent, stopping at any angle in between MRI Open Patient with Low Back Pain After Surgery Extremity MRI Sagittal T2 WI of

More information

An Introduction to Imaging the Brain. Dr Amy Davis

An Introduction to Imaging the Brain. Dr Amy Davis An Introduction to Imaging the Brain Dr Amy Davis Common reasons for imaging: Clinical scenarios: - Trauma (NICE guidelines) - Stroke - Tumours - Seizure - Neurological degeneration memory, motor dysfunction,

More information

Laura Tormoehlen, M.D. Neurology and EM-Toxicology Indiana University

Laura Tormoehlen, M.D. Neurology and EM-Toxicology Indiana University Laura Tormoehlen, M.D. Neurology and EM-Toxicology Indiana University Disclosures! No conflicts of interest to disclose Neuroimaging 101! Plain films! Computed tomography " Angiography " Perfusion! Magnetic

More information

Lab Photo Review Sheet

Lab Photo Review Sheet 9 8 0. Posterior Median Sulcus. Central Canal. Dorsal (Posterior) Horn. Ventral (Anterior) Horn. Grey Matter. White Matter. Anterior Median Fissure 8. Ventral (Anterior) Root (ramus) 9. Dorsal (Posterior)

More information

FOR CMS (MEDICARE) MEMBERS ONLY NATIONAL COVERAGE DETERMINATION (NCD) FOR MAGNETIC RESONANCE IMAGING:

FOR CMS (MEDICARE) MEMBERS ONLY NATIONAL COVERAGE DETERMINATION (NCD) FOR MAGNETIC RESONANCE IMAGING: National Imaging Associates, Inc. Clinical guidelines BONE MARROW MRI Original Date: July 2008 Page 1 of 5 CPT Codes: 77084 Last Review Date: September 2014 NCD 220.2 MRI Last Effective Date: July 2011

More information

NEURORADIOLOGY Part I

NEURORADIOLOGY Part I NEURORADIOLOGY Part I Vörös Erika University of Szeged Department of Radiology SZEGED BRAIN IMAGING METHODS Plain film radiography Ultrasonography (US) Computer tomography (CT) Magnetic resonance imaging

More information

[(PHY-3a) Initials of MD reviewing films] [(PHY-3b) Initials of 2 nd opinion MD]

[(PHY-3a) Initials of MD reviewing films] [(PHY-3b) Initials of 2 nd opinion MD] 2015 PHYSICIAN SIGN-OFF (1) STUDY NO (PHY-1) CASE, PER PHYSICIAN REVIEW 1=yes 2=no [strictly meets case definition] (PHY-1a) CASE, IN PHYSICIAN S OPINION 1=yes 2=no (PHY-2) (PHY-3) [based on all available

More information

OBJECTIVES. At the end of the lecture, students should be able to: List the cerebral arteries.

OBJECTIVES. At the end of the lecture, students should be able to: List the cerebral arteries. DR JAMILA EL MEDANY OBJECTIVES At the end of the lecture, students should be able to: List the cerebral arteries. Describe the cerebral arterial supply regarding the origin, distribution and branches.

More information

Introduction to Radiology

Introduction to Radiology Introduction - Lecture 1 436 Teams Introduction to Radiology Objectives Introduce the various Medical Imaging Modalities. Understand the basics of image generation. Relate imaging to gross anatomy. Appreciate

More information

Index. aneurysm, 92 carotid occlusion, 94 ICA stenosis, 95 intracranial, 92 MCA, 94

Index. aneurysm, 92 carotid occlusion, 94 ICA stenosis, 95 intracranial, 92 MCA, 94 A ADC. See Apparent diffusion coefficient (ADC) Aneurysm cerebral artery aneurysm, 93 CT scan, 93 gadolinium, 93 Angiography, 13 Anoxic brain injury, 25 Apparent diffusion coefficient (ADC), 7 Arachnoid

More information

Cerebral aneurysms A case study

Cerebral aneurysms A case study August 2001 Cerebral aneurysms A case study Heather L. Hinds, Harvard Medical School Year III Our Patient 57yr old woman History of migraines Presents with persistent headache several months duration different

More information

NEURORADIOLOGY Angela Lignelli, MD

NEURORADIOLOGY Angela Lignelli, MD Neuroradiology NEURORADIOLOGY Angela Lignelli, MD Plain radiographs CT MRI Cerebral Angiogram Myelograms Neuroradiology Computerized Axial Tomography (CT) CT without and with contrast CTA CT angiogram

More information

NEURORADIOLOGY Angela Lignelli, MD

NEURORADIOLOGY Angela Lignelli, MD NEURORADIOLOGY Angela Lignelli, MD Neuroradiology Plain radiographs CT MRI Cerebral Angiogram Myelograms 1 Neuroradiology Computerized Axial Tomography (CT) CT without and with contrast CTA CT angiogram

More information

If I Only Had a Brain

If I Only Had a Brain If I Only Had a Brain A Heart. (The Nerve!) Regions of the Brain Cerebral hemisphere Diencephalon Cerebellum (b) Adult brain Brain stem Regions of the Brain: Cerebrum Precentral gyrus Frontal lobe Central

More information

Head CT Scan Interpretation: A Five-Step Approach to Seeing Inside the Head Lawrence B. Stack, MD

Head CT Scan Interpretation: A Five-Step Approach to Seeing Inside the Head Lawrence B. Stack, MD Head CT Scan Interpretation: A Five-Step Approach to Seeing Inside the Head Lawrence B. Stack, MD Five Step Approach 1. Adequate study 2. Bone windows 3. Ventricles 4. Quadrigeminal cistern 5. Parenchyma

More information

ACTIVITY 7: NERVOUS SYSTEM HISTOLOGY, BRAIN, CRANIAL NERVES

ACTIVITY 7: NERVOUS SYSTEM HISTOLOGY, BRAIN, CRANIAL NERVES ACTIVITY 7: NERVOUS SYSTEM HISTOLOGY, BRAIN, CRANIAL NERVES LABORATORY OBJECTIVES: 1. Histology: Identify structures indicated on three different slides or images of nervous system tissue. These images

More information

Automated Identification of Neoplasia in Diagnostic Imaging text reports

Automated Identification of Neoplasia in Diagnostic Imaging text reports Automated Identification of Neoplasia in Diagnostic Imaging text reports "This work has been funded in whole or in part with Federal funds from the National Cancer Institute, National Institutes of Health,

More information

MRI of the Brain: A Primer on What, How, Why, and When. September Amit Malhotra, Harvard Medical School, Year- IV. Gillian Lieberman, MD

MRI of the Brain: A Primer on What, How, Why, and When. September Amit Malhotra, Harvard Medical School, Year- IV. Gillian Lieberman, MD September 2000 MRI of the Brain: A Primer on What, How, Why, and When Hornak, J.P. The Basics of MRI. 1996-2000 Amit Malhotra, Harvard Medical School, Year- IV Magnetic Resonance Imaging A Brief History

More information

Yin-Hui Siow MD, FRCPC Director of Nuclear Medicine Southlake Regional Health Centre

Yin-Hui Siow MD, FRCPC Director of Nuclear Medicine Southlake Regional Health Centre Yin-Hui Siow MD, FRCPC Director of Nuclear Medicine Southlake Regional Health Centre Today Introduction to CT Introduction to MRI Introduction to nuclear medicine Imaging the dementias The Brain ~ 1.5

More information

Neurosonography: State of the art

Neurosonography: State of the art Neurosonography: State of the art Lisa H Lowe, MD, FAAP Professor and Academic Chair, University MO-Kansas City Pediatric Radiologist, Children s Mercy Hospitals and Clinics Learning objectives After this

More information

Central Nervous System (CNS) -> brain and spinal cord. Major Divisions of the nervous system:

Central Nervous System (CNS) -> brain and spinal cord. Major Divisions of the nervous system: Central Nervous System (CNS) -> brain and spinal cord Major Divisions of the nervous system: Afferent (sensory input) -> cell bodies outside of the central nervous system (CNS), carry info into the CNS

More information

Essentials of Clinical MR, 2 nd edition. 14. Ischemia and Infarction II

Essentials of Clinical MR, 2 nd edition. 14. Ischemia and Infarction II 14. Ischemia and Infarction II Lacunar infarcts are small deep parenchymal lesions involving the basal ganglia, internal capsule, thalamus, and brainstem. The vascular supply of these areas includes the

More information

SWI including phase and magnitude images

SWI including phase and magnitude images On-line Table: MRI imaging recommendation and summary of key features Sequence Pathologies Visible Key Features T1 volumetric high-resolution whole-brain reformatted in axial, coronal, and sagittal planes

More information

Brain Meninges, Ventricles and CSF

Brain Meninges, Ventricles and CSF Brain Meninges, Ventricles and CSF Lecture Objectives Describe the arrangement of the meninges and their relationship to brain and spinal cord. Explain the occurrence of epidural, subdural and subarachnoid

More information

Magnetic Resonance Derived CSF Production Rate as a Predictor of Orbital Abnormalities after Exposure to Microgravity

Magnetic Resonance Derived CSF Production Rate as a Predictor of Orbital Abnormalities after Exposure to Microgravity Magnetic Resonance Derived CSF Production Rate as a Predictor of Orbital Abnormalities after Exposure to Microgravity Courtesy of NASA Disclosure Information 84th Annual AsMA Scientific Meeting Larry A.

More information

BRAIN PART I (A & B): VENTRICLES & MENINGES

BRAIN PART I (A & B): VENTRICLES & MENINGES BRAIN PART I (A & B): VENTRICLES & MENINGES Cranial Meninges Cranial meninges are continuous with spinal meninges Dura mater: inner layer (meningeal layer) outer layer (endosteal layer) fused to periosteum

More information

Clinician s Guide To Ordering NeuroImaging Studies

Clinician s Guide To Ordering NeuroImaging Studies Clinician s Guide To Ordering NeuroImaging Studies MRI CT South Jersey Radiology Associates The purpose of this general guide is to assist you in choosing the appropriate imaging test to best help your

More information

ACTIVITY 7: NERVOUS SYSTEM HISTOLOGY, BRAIN, CRANIAL NERVES NERVOUS SYSTEM TISSUES: HISTOLOGY SLIDES

ACTIVITY 7: NERVOUS SYSTEM HISTOLOGY, BRAIN, CRANIAL NERVES NERVOUS SYSTEM TISSUES: HISTOLOGY SLIDES ACTIVITY 7: NERVOUS SYSTEM HISTOLOGY, BRAIN, CRANIAL NERVES OBJECTIVES: 1) How to get ready: Read Chapter 14 & 15 McKinley et al., Human Anatomy, 4e. All text references are for this textbook. Read dissection

More information

Student Lab #: Date. Lab: Gross Anatomy of Brain Sheep Brain Dissection Organ System: Nervous Subdivision: CNS (Central Nervous System)

Student Lab #: Date. Lab: Gross Anatomy of Brain Sheep Brain Dissection Organ System: Nervous Subdivision: CNS (Central Nervous System) Lab: Gross Anatomy of Brain Sheep Brain Dissection Organ System: Nervous Subdivision: CNS (Central Nervous System) Student Lab #: Date 1 Objectives: 1. Learn the main components making up a motor neuron.

More information

Laboratory Manual for Comparative Anatomy and Physiology Figure 15.1 Transparency Master 114

Laboratory Manual for Comparative Anatomy and Physiology Figure 15.1 Transparency Master 114 Neuron Capillary Astrocyte Microglial cell Neuron Fluid-filled cavity Process of oligodendrocyte Ependymal cells Brain or spinal cord tissue Myelin sheath Nerve fibers Figure 15.1 Transparency Master 114

More information

Neuro Imaging ENHANCE YOUR UNDERSTANDING OF NEURO- IMAGING. Optometric Practice 5/11/2015. CT Computed Tomography

Neuro Imaging ENHANCE YOUR UNDERSTANDING OF NEURO- IMAGING. Optometric Practice 5/11/2015. CT Computed Tomography ENHANCE YOUR UNDERSTANDING OF NEURO- IMAGING Presented by Kelly A. Malloy, OD June, 2015 Nothing to Disclose Neuro Imaging In Optometric Practice Kelly A. Malloy, OD NOTHING TO DISCLOSE CT Computed Tomography

More information

Enhancement of Cranial US: Utility of Supplementary Acoustic Windows and Doppler Harriet J. Paltiel, MD

Enhancement of Cranial US: Utility of Supplementary Acoustic Windows and Doppler Harriet J. Paltiel, MD Enhancement of Cranial US: Utility of Supplementary Acoustic Windows and Doppler Harriet J. Paltiel, MD Boston Children s Hospital Harvard Medical School None Disclosures Conventional US Anterior fontanelle

More information

Introduction to the Central Nervous System: Internal Structure

Introduction to the Central Nervous System: Internal Structure Introduction to the Central Nervous System: Internal Structure Objective To understand, in general terms, the internal organization of the brain and spinal cord. To understand the 3-dimensional organization

More information

Model 3-50B or 3-88 III VIII. Olfactory Nerve. Optic Nerve. Oculomotor Nerve. Trochlear Nerve. Trigeminal Nerve. Abducens Nerve.

Model 3-50B or 3-88 III VIII. Olfactory Nerve. Optic Nerve. Oculomotor Nerve. Trochlear Nerve. Trigeminal Nerve. Abducens Nerve. Model 3-50B or 3-88 I Olfactory Nerve II Optic Nerve Oculomotor Nerve III IV Trochlear Nerve Trigeminal Nerve V VI Abducens Nerve Glossopharyngeal Nerve IX VII Facial Nerve VIII Vestibocochlear Nerve or

More information

Introduction to Neuroimaging Aaron S. Field, MD, PhD Assistant Professor of Radiology Neuroradiology Section University of Wisconsin Madison

Introduction to Neuroimaging Aaron S. Field, MD, PhD Assistant Professor of Radiology Neuroradiology Section University of Wisconsin Madison Introduction to Neuroimaging Aaron S. Field, MD, PhD Assistant Professor of Radiology Neuroradiology Section University of Wisconsin Madison Updated 7/17/07 Neuroimaging Modalities Radiography (X-Ray)

More information

DISSECTION OF THE SHEEP'S BRAIN

DISSECTION OF THE SHEEP'S BRAIN Sheep Brain Dissection Guide Page 1 DISSECTION OF THE SHEEP'S BRAIN Introduction The purpose of the sheep brain dissection is to familiarize you with the threedimensional structure of the brain and teach

More information

For Emergency Doctors. Dr Suzanne Smallbane November 2011

For Emergency Doctors. Dr Suzanne Smallbane November 2011 For Emergency Doctors Dr Suzanne Smallbane November 2011 A: Orbit B: Sphenoid Sinus C: Temporal Lobe D: EAC E: Mastoid air cells F: Cerebellar hemisphere A: Frontal lobe B: Frontal bone C: Dorsum sellae

More information

Sheep Brain Dissection

Sheep Brain Dissection Sheep Brain Dissection Mammalian brains have many features in common. Human brains may not be available, so sheep brains often are dissected as an aid to understanding the mammalian brain since he general

More information

www.oralradiologists.com CONE BEAM CT REPORT CASE ---- Case Information Referring Doctor: - Patient Name: - Scan Date: December 1, 2015 Patient DOB: - Reason for Exam: - Study Details: icat Flex, 160x160x112

More information

The Nervous System PART B

The Nervous System PART B 7 The Nervous System PART B PowerPoint Lecture Slide Presentation by Jerry L. Cook, Sam Houston University ESSENTIALS OF HUMAN ANATOMY & PHYSIOLOGY EIGHTH EDITION ELAINE N. MARIEB The Reflex Arc Reflex

More information

FOR CMS (MEDICARE) MEMBERS ONLY NATIONAL COVERAGE DETERMINATION (NCD) FOR MAGNETIC RESONANCE IMAGING:

FOR CMS (MEDICARE) MEMBERS ONLY NATIONAL COVERAGE DETERMINATION (NCD) FOR MAGNETIC RESONANCE IMAGING: National Imaging Associates, Inc. Clinical guidelines ORBIT MRI Original Date: September 1997 Page 1 of 7 CPT Codes: 70540, 70542, 70543 Last Review Date: August 2015 NCD 220.2 MRI Last Effective Date:

More information

b. The groove between the two crests is called 2. The neural folds move toward each other & the fuse to create a

b. The groove between the two crests is called 2. The neural folds move toward each other & the fuse to create a Chapter 13: Brain and Cranial Nerves I. Development of the CNS A. The CNS begins as a flat plate called the B. The process proceeds as: 1. The lateral sides of the become elevated as waves called a. The

More information

Overview of imaging modalities for cerebral aneurysms

Overview of imaging modalities for cerebral aneurysms Overview of imaging modalities for cerebral aneurysms Soroush Zaghi BIDMC PCE: Radiology August 2008 (Images from BIDMC, PACS.) Our Patient: Presentation Our patient is a 57 y/o woman who reports blowing

More information

Brain ميهاربا لض اف دمح ا د The Meninges 1- Dura Mater of the Brain endosteal layer does not extend meningeal layer falx cerebri tentorium cerebelli

Brain ميهاربا لض اف دمح ا د The Meninges 1- Dura Mater of the Brain endosteal layer does not extend meningeal layer falx cerebri tentorium cerebelli .احمد د فاضل ابراهيم Lecture 15 Brain The Meninges Three protective membranes or meninges surround the brain in the skull: the dura mater, the arachnoid mater, and the pia mater 1- Dura Mater of the Brain

More information

CMS Limitations Guide MRA Radiology Services

CMS Limitations Guide MRA Radiology Services CMS Limitations Guide MRA Radiology Services Starting July 1, 2008, CMS has placed numerous medical necessity limits on tests and procedures. This reference guide provides you with all of the latest changes.

More information

How to read the report

How to read the report Dear Client, This is your second opinion report. How to read the report 1. Always consult your findings with your doctor. 2. Please bear in mind that the report is based only on the information you provide

More information

Imaging of the 3 Ps in Stroke An introduction of stroke diagnostics for the non-neurologist

Imaging of the 3 Ps in Stroke An introduction of stroke diagnostics for the non-neurologist A picture is worth 1000 words but what do they mean? Imaging of the 3 Ps in Stroke An introduction of stroke diagnostics for the non-neurologist Sharon Jaspers Thunder Bay Regional Health Sciences Centre

More information

Anatomy of Pituitary Gland

Anatomy of Pituitary Gland Anatomy of Pituitary Gland Please view our Editing File before studying this lecture to check for any changes. Color Code Important Doctors Notes Notes/Extra explanation Objectives At the end of the lecture,

More information

JUSTIFICATION PROTOCOLS FOR CT SCANNING ALBURY WODONGA HEALTH WODONGA CAMPUS

JUSTIFICATION PROTOCOLS FOR CT SCANNING ALBURY WODONGA HEALTH WODONGA CAMPUS JUSTIFICATION PROTOCOLS FOR CT SCANNING ALBURY WODONGA HEALTH WODONGA CAMPUS JUSTIFICATION PROTOCOLS FOR CT SCANNING INTRODUCTION: In accordance with the Victorian Radiation Act 2005 Wodonga Medical Imaging,

More information

Medical Neuroscience Tutorial Notes

Medical Neuroscience Tutorial Notes Medical Neuroscience Tutorial Notes Blood Supply to the Brain MAP TO NEUROSCIENCE CORE CONCEPTS 1 NCC1. The brain is the body's most complex organ. LEARNING OBJECTIVES After study of the assigned learning

More information

Organization of The Nervous System PROF. MOUSAED ALFAYEZ & DR. SANAA ALSHAARAWY

Organization of The Nervous System PROF. MOUSAED ALFAYEZ & DR. SANAA ALSHAARAWY Organization of The Nervous System PROF. MOUSAED ALFAYEZ & DR. SANAA ALSHAARAWY Objectives At the end of the lecture, the students should be able to: List the parts of the nervous system. List the function

More information

Diagnostic Imaging

Diagnostic Imaging www.fisiokinesiterapia.biz Diagnostic Imaging Diagnostic Imaging is no longer limited to radiography. Major technological advancements have lead to the use of new and improved imaging technologies. The

More information

FOR CMS (MEDICARE) MEMBERS ONLY NATIONAL COVERAGE DETERMINATION (NCD) FOR MAGNETIC RESONANCE IMAGING:

FOR CMS (MEDICARE) MEMBERS ONLY NATIONAL COVERAGE DETERMINATION (NCD) FOR MAGNETIC RESONANCE IMAGING: National Imaging Associates, Inc. Clinical guidelines TEMPOROMANDIBULAR JOINT (TMJ) MRI Original Date: May 23, 2003 Page 1 of 5 CPT Code: 70336 Last Review Date: May 2016 NCD 220.2 MRI Last Effective Date:

More information

Bones of the Skull Lateral View

Bones of the Skull Lateral View Bones of the Skull Lateral View Frontal Bone Parietal Bone Occipital Bone Temporal Bone Sphenoid Bone Pterion Sutures of the Skull Lateral View Coronal Suture Lambdoid Suture Squamous Suture Sutures of

More information

Stroke Imaging Basics. Jeremy Hopkin M.D.

Stroke Imaging Basics. Jeremy Hopkin M.D. Stroke Imaging Basics Jeremy Hopkin M.D. Goals Introduce the basic physical properties of imaging used in stroke. Understand why each modality is used in the setting of stroke. Understand some strengths

More information

Blood Supply. Allen Chung, class of 2013

Blood Supply. Allen Chung, class of 2013 Blood Supply Allen Chung, class of 2013 Objectives Understand the importance of the cerebral circulation. Understand stroke and the types of vascular problems that cause it. Understand ischemic penumbra

More information

PRESERVE: How intensively should we treat blood pressure in established cerebral small vessel disease? Guide to assessing MRI scans

PRESERVE: How intensively should we treat blood pressure in established cerebral small vessel disease? Guide to assessing MRI scans PRESERVE: How intensively should we treat blood pressure in established cerebral small vessel disease? Guide to assessing MRI scans Inclusion Criteria Clinical syndrome Patients must have clinical evidence

More information

Major Anatomic Components of the Orbit

Major Anatomic Components of the Orbit Major Anatomic Components of the Orbit 1. Osseous Framework 2. Globe 3. Optic nerve and sheath 4. Extraocular muscles Bony Orbit Seven Bones Frontal bone Zygomatic bone Maxillary bone Ethmoid bone Sphenoid

More information

The Nervous System PART B

The Nervous System PART B 7 The Nervous System PART B PowerPoint Lecture Slide Presentation by Jerry L. Cook, Sam Houston University ESSENTIALS OF HUMAN ANATOMY & PHYSIOLOGY EIGHTH EDITION ELAINE N. MARIEB Central Nervous System

More information

Magnetic Resonance Angiography

Magnetic Resonance Angiography Magnetic Resonance Angiography 1 Magnetic Resonance Angiography exploits flow enhancement of GR sequences saturation of venous flow allows arterial visualization saturation of arterial flow allows venous

More information

TIME: 3 Hours Marks: 100. I. FILL IN THE BLANKS - ANSWER FOR ANY 10 QUESTIONS 1 x 10 = 10

TIME: 3 Hours Marks: 100. I. FILL IN THE BLANKS - ANSWER FOR ANY 10 QUESTIONS 1 x 10 = 10 1 BHARAT SEVAK SAMAJ NATIONAL DEVELOPMENT AGENCY, PROMOTED BY GOVERNMENT OF INDIA CENTRAL BOARD OF EXAMINATIONS BSS NATIONAL VOCATIONAL EDUCATION MISSION AHE009-CT SCAN TECHNICIAN ONE YEAR EXAMINATION

More information

Imaging Orbit/Periorbital Injury

Imaging Orbit/Periorbital Injury Imaging Orbit/Periorbital Injury 9 th Nordic Trauma Radiology Course 2016 Stuart E. Mirvis, M.D., FACR Department of Radiology University of Maryland School of Medicine Fireworks Topics to Cover Struts

More information

Joana Ramalho, MD C. Ryan Miller, MD, PhD

Joana Ramalho, MD C. Ryan Miller, MD, PhD Joana Ramalho, MD C. Ryan Miller, MD, PhD Case 1 3 month old baby girl Presented with new onset of seizures Newborn. Questionable blurring of the gray-white junction within the right occipital lobe. Findings

More information

MRI Imaging of GP Medicare Eligible Conditions

MRI Imaging of GP Medicare Eligible Conditions MRI Imaging of GP Medicare Eligible Conditions By Dr. Andrew Stuart Radiologist Sydney Adventist Hospital 0562/SAH/1112/SAH Learning Objectives Indications for GP referred Medicare eligible MRI scans MRI

More information

Index. Note: Page numbers of article titles are in boldface type.

Index. Note: Page numbers of article titles are in boldface type. Index Note: Page numbers of article titles are in boldface type. A Acetazolamide, in idiopathic intracranial hypertension, 49 52, 60 Angiography, computed tomography, in cranial nerve palsy, 103 107 digital

More information

A Case of Carotid-Cavernous Fistula

A Case of Carotid-Cavernous Fistula A Case of Carotid-Cavernous Fistula By : Mohamed Elkhawaga 2 nd Year Resident of Ophthalmology Alexandria University A 19 year old male patient came to our outpatient clinic, complaining of : -Severe conjunctival

More information

Organization of The Nervous System PROF. SAEED ABUEL MAKAREM

Organization of The Nervous System PROF. SAEED ABUEL MAKAREM Organization of The Nervous System PROF. SAEED ABUEL MAKAREM Objectives By the end of the lecture, you should be able to: List the parts of the nervous system. List the function of the nervous system.

More information

Cryptogenic Enlargement Of Bilateral Superior Ophthalmic Veins

Cryptogenic Enlargement Of Bilateral Superior Ophthalmic Veins ISPUB.COM The Internet Journal of Radiology Volume 18 Number 1 Cryptogenic Enlargement Of Bilateral Superior Ophthalmic Veins K Kragha Citation K Kragha. Cryptogenic Enlargement Of Bilateral Superior Ophthalmic

More information

Anatomy & Physiology Central Nervous System Worksheet

Anatomy & Physiology Central Nervous System Worksheet 1. What are the two parts of the CNS? 2. What are the four functions of the CNS Anatomy & Physiology Central Nervous System Worksheet 3. What are the four functions of the meninges? (p430) 4. Starting

More information

Brain, Cranial Nerves, and Spinal Cord

Brain, Cranial Nerves, and Spinal Cord Bio101 Laboratory 13 Neuron/Spinal Cord Histology Brain Anatomy Ear & Eye Anatomy 1 Brain, Cranial Nerves, and Spinal Cord Objectives for today s lab Become familiar with the gross anatomy of the brain

More information

National Imaging Associates, Inc. Clinical guidelines/considerations SINUS & MAXILLOFACIAL AREA CT 70486, 70487, 70488

National Imaging Associates, Inc. Clinical guidelines/considerations SINUS & MAXILLOFACIAL AREA CT 70486, 70487, 70488 National Imaging Associates, Inc. Clinical guidelines/considerations SINUS & MAXILLOFACIAL AREA CT 70486, 70487, 70488 Date: September 1997 Page 1 of 5 LIMITED OR LOCALIZED FOLLOW UP - SINUS CT 76380 Guideline

More information

I. Anatomy of the Brain A. Cranial Meninges and Ventricles of the Brain 1. Meninges a. Dura mater 1) Endosteal/Periosteal Layer - Outer 2) Meningeal

I. Anatomy of the Brain A. Cranial Meninges and Ventricles of the Brain 1. Meninges a. Dura mater 1) Endosteal/Periosteal Layer - Outer 2) Meningeal I. Anatomy of the Brain A. Cranial Meninges and Ventricles of the Brain 1. Meninges a. Dura mater 1) Endosteal/Periosteal Layer - Outer 2) Meningeal Layer - Inner 3) Falx cerebri a) Superior sagittal sinus

More information