Electron transport chain, oxidative phosphorylation, mitochondrial transport systems
|
|
- Gregory Stone
- 1 years ago
- Views:
Transcription
1 Electron transport chain, oxidative phosphorylation, mitochondrial transport systems JAN ILLNER
2 Respiratory chain & oxidative phosphorylation INTERMEMBRANE SPACE ubiquinone cytochrome c ATPase
3 Production of energy in living systems ATP source of energy for biochemical reactions Production of ATP: ADP + P i 1) Substrate phosphorylation minority part, importance under anaerobic conditions 2) Photosynthetic phosphorylation chloroplast of green plants, chlorophyll 3) Oxidative phosphorylation dominant mode of ATP production for animal cells
4 Production of energy in living systems Utilization of nutrients for the ATP production: Oxidation by dehydrogenases Production of reduced coenzymes Transport of reduced equivalents Production of proton gradient Production of ATP Oxidative breakdown of foodstuffs
5 Nicotinamide coenzymes nicotinamide NAD + nicotinamide adenine dinucleotide NAD + oxidized form of coenzyme NADH nicotinamide adenine dinucleotide NADH reduced form of coenzyme
6 Flavin coenzymes FAD flavin adenine dinucleotide FAD oxidized form of coenzyme FADH 2 flavin adenine dinucleotide FADH2 reduced form of coenzyme
7 Fate of coenzymes Reduced coenzymes NADH a FADH 2 generated during TCA cycle fatty acid oxidation glycolysis are oxidized by the electron transport chain Oxidative breakdown of foodstuffs
8 Mitochondria Inner membrane large surface cristae impermeable, transporters cardiolipin, enzymes of ETC, ATP synthase Inner membrane Outer membrane Outer membrane monoaminooxidase (MAO) permeable through the porin enzymes: acyl-coa synthase, glycerolphosphate acyltransferase Matrix enzymes of TCA cycle, oxidation of FA, particular synthesis of heme Cristae Matrix Intermembrane space Intermembrane space adenylyl kinase, creatine kinase
9 Oxidation reduction (redox) reactions A ox + B red A red + B ox NADH + H + + Q NAD + + QH 2 QH 2 + cyt(fe 3+ ) Q + cyt(fe 2+ ) cyt(fe 2+ ) + 2H + + 1/2O 2 cyt(fe 3+ ) + H 2 O E 0 standard oxidation reduction potential Redox system E 0 [V] NAD + /NADH + H + - 0,32 pyruvate/lactate - 0,19 oxaloacetate/malate - 0,17 FAD/FADH 2-0,12 2H + /H 2 (ph = 0) 0 fumarate/succinate + 0,03 ubiquinone ox/red + 0,10 cytochrome c (Fe 3+ /Fe 2+ ) + 0,23 cytochrome a 3 (Fe 3+ /Fe 2+, Cu 2+ /Cu + ) + 0,39 1/2 O 2 /H 2 O + 0,81
10 Respiratory chain (ETC) The system of electron carriers transfers electrons from reduced coenzymes to final acceptor O 2 parts of respiratory chain: 4 large enzyme lipoprotein Green complexes fixed in membrane coenzyme Q (ubiquinone, CoQ) mobile molecules cytochrome c electron carriers (ETC complexes) are arranged in order of increasing redox potential = from the most negative (NADH/NAD + ) to the most positive (1/2 O 2 /H 2 O) redox potential Increasing affinity of electrons, which drives the flow of electron in this direction!
11 Respiratory chain (ETC) electrons are transferred from one complex to another in steps to final acceptor oxygen
12 Respiratory chain (ETC) during redox reaction the energy is released pumping H + from matrix into intermembrane space electrochemical gradient proton gradient energy for ATP synthesis
13 = proton-motive force electric + chemical potential Electrochemical potential gradient ΔpH = ph units ΔΨ = V Mitchell s chemiosmotic theory mechanisms of electron transfer production of proton gradient production of ATP The energy stored in proton-motive force drives the synthesis of ATP by movement of protons down the electrochemical gradient through the ATP-synthase
14 Complex I NADH: ubiquinone-oxidoreductase NADH dehydrogenase transfer of 2 electrons from NADH to Q associated with transfer of 4 protons through membrane
15 Iron-sulfur (Fe-S) proteins proteins contain non-heme iron (1, 2 or 4 atoms) a sulfur Fe atoms linked to inorganic S atoms and/or via cysteine SH groups to the proteins
16 Complex II succinate: ubiquinone-oxidoreductase succinate dehydrogenase production of FADH 2 in TCA cycle and transfer 2 electrons to Q
17 Oxidation of FADH 2 in respiratory chain (ETC) GLYCEROL 3-PHOSPHATE-DEHYDROGENASE COMPLEX 1 NADH-DEHYDROGENASE NADH SUCCINATE-DEHYDROGENASE β-oxidation OF FATTY ACIDS ACYL-CoA DEHYDROGENASE
18 Complex III ubiquinol: cytochrome c-oxidoreductase cytochrome c reductase transfer of 2 electrons from QH 2 to cyt c by cooperation with cyt c 1, b L, b H and Rieske s FeS
19 Forms of coenzyme Q fully oxidized form quinone Q reduced form quinol QH 2 semiquinone form Q free radical
20 Cycle of coenzyme Q rotation of 1 cycle leads to o oxidation of 2 molecules of QH 2 and 4 H + are released into intermembrane space o reduction of 1 molecule of Q and 2 H + are accepted from matrix
21 Complex IV cytochrome c: oxygen-oxidoreductase cytochrome c oxidase transfer of 4 electrons from cyt c to O 2 by cooperation with hem groups a, a 3 and cooper 8 H + is removed from matrix: 4 H + are used for production of 2 molecules of water 4 H + are transferred into intermembrane space
22 Cytochrome a, b, c heme proteins contain protoporphyrin IX and Fe atom cytochromes have different side chains
23 Complex V ATP synthase localized in inner membrane, driven by H +, production of ATP = ADP + P i F 1 head F 0 subunit: proton channel C protein complex with subunit passage of H + = rotational movement F 1 subunit: phosphorylation mechanism head with three and three subunits connected with membrane, no rotation F 0 pore
24 ATP synthesis ADP and P i are transferred to subunit, production of ATP ATP is released after subunits conformation change 3 conformation of subunit: loose (L) tight (T) open (O) Rotation of subunit + energy Setting of ADP and P i to loose conformation conformation change ATP synthesis and their release from open conformation Regeneration of the enzyme to native state subunit
25 Majority of energy is generated in respiratory chain NADH oxidation (2 e - ). 2,5 mol of ATP 1 mol of substrate is oxidized through complexes I, III and IV FADH 2 oxidation (2 e - ) 1,5 mol of ATP 1 mol of substrate is oxidized by complexes II, III and IV Overall, mol of ATP from oxidation of 1 mol of glucose, mol of ATP is generated in ETC
26 Inhibitors of respiratory chain intermembrane space piericidin A dimerkaprol H 2 S inner mitochondrial membrane karboxin TTFA
27 Inhibitors of oxidative phosphorylation inhibitors foreign substances that are toxic in case of energy production process inhibitory action is specific for specific place antraktylosid inhibits transporter of ADP into and ATP out of the mitochondrion oligomycin completely blocks oxidation and phosphorylation by blocking the flow of protons through ATP synthase
28 Uncouplers of oxidative phosphorylation uncouplers dissociate oxidation in the respiratory chain from phosphorylation in vivo toxic compounds causing respiration to become uncontrolled 2,4-dinitrophenol transfers proton through membrane, disrupts proton gradient thermogenin physiological uncoupler in brown adipose tissue low ph intermembrane space inner membrane high ph
29 Mitochondrial transport systems
30 Mitochondrial transporters Inner membrane is freely permeable only for: a) small uncharged molecules: H 2 O, CO 2, NH 3 b) monocarboxylic acids (3-hydroxybutyric, acetic) cytosol Long-chain fatty acids via the carnitine system Di- and trikarboxylate anions and amino acids specific transporters ATP/ADP TRANSLOCASE SYMPORT ANTIPORT
31 Shuttles Transport systems cytosol mitochondria NADH cannot penetrate the mitochondrial membrane Transfer through membrane requires substrate pairs, linked by suitable dehydrogenases on each side of membrane Glycerophosphate shuttle Malate shuttle
32 Glycerophosphate shuttle Enzyme: glycerol-3-phosphate dehydrogenase (G3PDH) glycerol-3-phosphate G3DH G3DH dihydroxyacetone phosphate
33 Malate shuttle Enzymes: malate dehydrogenase (MDH), glutamate oxaloacetate transaminase (GOT) = aspartate aminotransferase (AST) malate MDH MDH glutamate oxaloacetate AST AST aspartate -ketoglutarate
34 Transfer of ADP/ATP through membrane Enzyme: ADP/ATP translocase translocase
35 Export of citrate Mitochondrion Malate Citrate CoASH Citrate synthase Acetyl CoA Oxaloacetate
36 Malic enzyme NADPH-malate dehydrogenase = source of NADPH except pentose phosphate pathway the reaction that converts malate to pyruvate catalyzed by malic enzyme
37 Summary I Respiratory chain (ETC) is a sequence of redox reactions in direction of increasing potential, further electrons are transferred to final acceptor oxygen. Energy released in redox reaction is used for pumping H + from matrix into intermembrane space. Production of proton-motive force.
38 Summary II Flow of H + back into matrix drives the ATP synthesis in process called oxidative phosphorylation. ATP synthesis takes place by changing the -subunits conformation of ATP-synthase. Releasing new synthetized ATP and using for biochemical reaction out of mitochondrion. For transfer of ATP the specific transporter ADP/ATP translocase is used.
39 Summary III (1/2) glucose malate malate NAD + MDH glyceraldehyde 3-phosphate P i NAD + G3PDH NADH 1,3- BPG MDH oxaloacetate α-kg ASP AST α-kg ASP AST NADH oxaloacetate glutamate glutamate pyruvate Cytosol inner membrane Mitochondria ASP aspartate α-kg α-ketoglutarate MDH malate dehydrogenase G3PDH glyceraldehyde-3-phosphate dehydrogenase AST aspartate aminotransferase Intermediates of biochemical reactions can be transferred through the membrane only by using transport systems!
40 Literature D. Dobrota et all., Lekárska biochémia, first edition (2012), Osveta Publishing R. K. Murray et all., Harper s Illustrated Biochemistry, 28 th edition (2009), The McGraw-Hill Companies, Inc. J. Koolman, K. H. Roehm, Color Atlas of Biochemistry, second edition (2005), Thieme M. Lieberman, A.D. Marks, Marks Basic Medical Biochemistry A Clinical Approach, third edition (2009) T. M. Devlin, Textbook of Biochemistry with Clinical Correlations, sixth edition (2006)
41 Thank you for your attention! Time for your questions
42 Contact information Jan ILLNER Address: Plzeňská street 130/221, Prague5, Office: new building Earthworm, 3 rd floor, door number 331 Telephone:
Oxidative Phosphorylation
Electron Transport Chain (overview) The NADH and FADH 2, formed during glycolysis, β- oxidation and the TCA cycle, give up their electrons to reduce molecular O 2 to H 2 O. Electron transfer occurs through
Chapter 14 - Electron Transport and Oxidative Phosphorylation
Chapter 14 - Electron Transport and Oxidative Phosphorylation The cheetah, whose capacity for aerobic metabolism makes it one of the fastest animals Prentice Hall c2002 Chapter 14 1 14.4 Oxidative Phosphorylation
Electron Transport and Oxidative. Phosphorylation
Electron Transport and Oxidative Phosphorylation Electron-transport chain electron- Definition: The set of proteins and small molecules involved in the orderly sequence of transfer to oxygen within the
19 Oxidative Phosphorylation and Photophosphorylation W. H. Freeman and Company
19 Oxidative Phosphorylation and Photophosphorylation 2013 W. H. Freeman and Company CHAPTER 19 Oxidative Phosphorylation and Photophosphorylation Key topics: Electron transport chain in mitochondria Capture
FREE ENERGY Reactions involving free energy: 1. Exergonic 2. Endergonic
BIOENERGETICS FREE ENERGY It is the portion of the total energy change in a system that is available for doing work at constant temperature and pressure; it is represented as ΔG. Reactions involving free
MITOCHONDRIA LECTURES OVERVIEW
1 MITOCHONDRIA LECTURES OVERVIEW A. MITOCHONDRIA LECTURES OVERVIEW Mitochondrial Structure The arrangement of membranes: distinct inner and outer membranes, The location of ATPase, DNA and ribosomes The
Electron transport chain,oxidative phosphorylation & mitochondrial transport systems. M.Kohutiar, B.Sopko
Electron transport chain,oxidative phosphorylation & mitochondrial transport systems. M.Kohutiar, B.Sopko Content 1. Structure of mitochondria Mitochondrial transport systems 2. Electron transport 3. Parts
Nafith Abu Tarboush DDS, MSc, PhD
Nafith Abu Tarboush DDS, MSc, PhD natarboush@ju.edu.jo www.facebook.com/natarboush OMM: permeable to small molecules (MW
Oxidative phosphorylation & Photophosphorylation
Oxidative phosphorylation & Photophosphorylation Oxidative phosphorylation is the last step in the formation of energy-yielding metabolism in aerobic organisms. All oxidative steps in the degradation of
Biology 638 Biochemistry II Exam-2
Biology 638 Biochemistry II Exam-2 Biol 638, Exam-2 (Code-1) 1. Assume that 16 glucose molecules enter into a liver cell and are attached to a liner glycogen one by one. Later, this glycogen is broken-down
Chapter 9. Cellular Respiration and Fermentation
Chapter 9 Cellular Respiration and Fermentation Energy flows into an ecosystem as sunlight and leaves as heat Photosynthesis generates O 2 and organic molecules, which are used in cellular respiration
How Cells Harvest Energy. Chapter 7. Respiration
How Cells Harvest Energy Chapter 7 Respiration Organisms classified on how they obtain energy: autotrophs: produce their own organic molecules through photosynthesis heterotrophs: live on organic compounds
Electron Transport and oxidative phosphorylation (ATP Synthesis) Dr. Howaida Nounou Biochemistry department Sciences college
Electron Transport and oxidative phosphorylation (ATP Synthesis) Dr. Howaida Nounou Biochemistry department Sciences college The Metabolic Pathway of Cellular Respiration All of the reactions involved
Electron Transport Chain and Oxidative phosphorylation
Electron Transport Chain and Oxidative phosphorylation So far we have discussed the catabolism involving oxidation of 6 carbons of glucose to CO 2 via glycolysis and CAC without any oxygen molecule directly
Electron Transport System Supplemental Reading. Key Concepts PETER MITCHELL'S CHEMIOSMOTIC THEORY
Electron Transport System Supplemental Reading Key Concepts - PETER MITCHELL'S CHEMIOSMOTIC THEORY - THE ELECTRON TRANSPORT SYSTEM IS A SERIES OF COUPLED REDOX REACTIONS Complex I: NADH-ubiquinone oxidoreductase
CELLULAR RESPIRATION SUMMARY EQUATION. C 6 H 12 O 6 + O 2 6CO2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION
CELLULAR RESPIRATION SUMMARY EQUATION C 6 H 12 O 6 + O 2 6CO2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION Oxidation: partial or complete loss of electrons Reduction: partial or complete gain of electrons
A) Choose the correct answer: 1) Reduction of a substance can mostly occur in the living cells by:
Code: 1 1) Reduction of a substance can mostly occur in the living cells by: (a) Addition of oxygen (b) Removal of electrons (c) Addition of electrons (d) Addition of hydrogen 2) Starting with succinate
3.2 Aerobic Respiration
3.2 Aerobic Respiration Aerobic Cellular Respiration Catabolic pathways Breaks down energy-rich compounds to make ATP Requires oxygen Occurs in different parts of the cell C 6 H 12 O 6 (s) + 6O 2 (g) 6CO
Cellular Respiration: Harvesting Chemical Energy
Chapter 9 Cellular Respiration: Harvesting Chemical Energy You should be able to: 1. Explain how redox reactions are involved in energy exchanges. Name and describe the three stages of cellular respiration;
Cellular Respiration: Harvesting Chemical Energy Chapter 9
Cellular Respiration: Harvesting Chemical Energy Chapter 9 Assemble polymers, pump substances across membranes, move and reproduce The giant panda Obtains energy for its cells by eating plants which get
4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5
1. Which of the following statements about NAD + is false? a. NAD + is reduced to NADH during both glycolysis and the citric acid cycle. b. NAD + has more chemical energy than NADH. c. NAD + is reduced
CH 7: Cell Respiration and Fermentation Overview. Concept 7.1: Catabolic pathways yield energy by oxidizing organic fuels
CH 7: Cell Respiration and Fermentation Overview Living cells require energy from outside sources Some animals obtain energy by eating plants, and some animals feed on other organisms Energy flows into
Enzymes and Metabolism
PowerPoint Lecture Slides prepared by Vince Austin, University of Kentucky Enzymes and Metabolism Human Anatomy & Physiology, Sixth Edition Elaine N. Marieb 1 Protein Macromolecules composed of combinations
BIOLOGICAL OXIDATION, ELECTRON TRANSFER CHAIN AND OXIDATIVE PHOSPHORYLATION
MODULE Biological Oxidation, Electron transfer Chain and Oxidative Phosphorylation 9 BIOLOGICAL OXIDATION, ELECTRON TRANSFER CHAIN AND OXIDATIVE PHOSPHORYLATION 9.1 INTRODUCTION Chemically, oxidation is
Photosynthesis in chloroplasts. Cellular respiration in mitochondria ATP. ATP powers most cellular work
Light energy ECOSYSTEM CO + H O Photosynthesis in chloroplasts Cellular respiration in mitochondria Organic molecules + O powers most cellular work Heat energy 1 becomes oxidized (loses electron) becomes
Respiration. Respiration. How Cells Harvest Energy. Chapter 7
How Cells Harvest Energy Chapter 7 Respiration Organisms can be classified based on how they obtain energy: autotrophs: are able to produce their own organic molecules through photosynthesis heterotrophs:
Photosynthesis in chloroplasts CO2 + H2O. Cellular respiration in mitochondria ATP. powers most cellular work. Heat energy
Figure 9-01 LE 9-2 Light energy ECOSYSTEM Photosynthesis in chloroplasts CO2 + H2O Cellular respiration in mitochondria Organic + O molecules 2 powers most cellular work Heat energy LE 9-UN161a becomes
Cellular Respiration- -conversion of stored energy in glucose to usable energy for the cell -energy in cells is stored in the form of ATP
Cellular Respiration Notes Chapter 7 How Cells Make ATP Energy Releasing Pathways Cellular Respiration- -conversion of stored energy in glucose to usable energy for the cell -energy in cells is stored
Electron Transport Chain and Oxidative Phosphorylation 20-1
Electron Transport Chain and Oxidative Phosphorylation 20-1 Learning Objectives 1. What Role Does Electron Transport Play in Met.? 2. What Are the Reduction Potentials for the Electron Transport Chain?
Section B: The Process of Cellular Respiration
CHAPTER 9 CELLULAR RESPIRATION: HARVESTING CHEMICAL ENERGY Section B: The Process of Cellular Respiration 1. Respiration involves glycolysis, the Krebs cycle, and electron transport: an overview 2. Glycolysis
2) The molecule that functions as the reducing agent (electron donor) in a redox or oxidationreduction
Campbell Biology in Focus (Urry) Chapter 7 Cellular Respiration and Fermentation 7.1 Multiple-Choice Questions 1) What is the term for metabolic pathways that release stored energy by breaking down complex
Part III => METABOLISM and ENERGY. 3.6 Oxidative Phosphorylation 3.6a Electron Transport 3.6b ATP Synthesis
Part III => METABOLISM and ENERGY 3.6 Oxidative Phosphorylation 3.6a Electron Transport 3.6b ATP Synthesis Section 3.6a: Electron Transport Synopsis 3.6a - During processes such as glycolysis and Krebs
Cellular Metabolism 9/24/2013. Metabolism. Cellular Metabolism. Consists of all the chemical reactions that take place in a cell!
Cellular Metabolism Biology 105 Lecture 6 Chapter 3 (pages 56-61) Metabolism Consists of all the chemical reactions that take place in a cell! Cellular Metabolism Aerobic cellular respiration requires
BY: RASAQ NURUDEEN OLAJIDE
BY: RASAQ NURUDEEN OLAJIDE LECTURE CONTENT INTRODUCTION CITRIC ACID CYCLE (T.C.A) PRODUCTION OF ACETYL CoA REACTIONS OF THE CITIRC ACID CYCLE THE AMPHIBOLIC NATURE OF THE T.C.A CYCLE THE GLYOXYLATE CYCLE
Cellular Metabolism. Biol 105 Lecture 6 Read Chapter 3 (pages 63 69)
Cellular Metabolism Biol 105 Lecture 6 Read Chapter 3 (pages 63 69) Metabolism Consists of all of the chemical reactions that take place in a cell Metabolism Animation Breaking Down Glucose For Energy
MULTIPLE CHOICE QUESTIONS
MULTIPLE CHOICE QUESTIONS 1. Which of the following statements concerning anabolic reactions is FALSE? A. They are generally endergonic. B. They usually require ATP. C. They are part of metabolism. D.
Class XI Chapter 14 Respiration in Plants Biology. 1. It is a biochemical process. 1. It is a physiochemical process.
Question 1: Differentiate between (a) Respiration and Combustion (b) Glycolysis and Krebs cycle (c) Aerobic respiration and Fermentation (a) Respiration and combustion Respiration Combustion 1. It is a
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Respiration Practice Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which of the following statements describes NAD+? A) NAD+ can donate
Unit 2: Metabolic Processes
How is energy obtained biologically? Recall: Red Ox Reactions Unit 2: Metabolic Processes Oxidation Is the chief mechanism by which chemical potential energy is released This energy comes from reduced
Cell Respiration - 1
Cell Respiration - 1 All cells must do work to stay alive and maintain their cellular environment. The energy needed for cell work comes from the bonds of ATP. Cells obtain their ATP by oxidizing organic
Chapter 8 Mitochondria and Cellular Respiration
Chapter 8 Mitochondria and Cellular Respiration Cellular respiration is the process of oxidizing food molecules, like glucose, to carbon dioxide and water. The energy released is trapped in the form of
Chapter 9 Notes. Cellular Respiration and Fermentation
Chapter 9 Notes Cellular Respiration and Fermentation Objectives Distinguish between fermentation and anaerobic respiration. Name the three stages of cellular respiration and state the region of the cell
Review. Respiration. Glycolysis. Glycolysis is the decomposition (lysis) of glucose (glyco) to pyruvate (or pyruvic acid).
Review Photosynthesis is the process of incorporating energy from light into energy-rich molecules like glucose. Respiration is the opposite process extracting that stored energy from glucose to form ATP
3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP]
3.7 Cell respiration ( Chapter 9 in Campbell's book) 3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP] Organic compounds store
Chapter 9 Overview. Aerobic Metabolism I: The Citric Acid Cycle. Live processes - series of oxidation-reduction reactions. Aerobic metabolism I
n n Chapter 9 Overview Aerobic Metabolism I: The Citric Acid Cycle Live processes - series of oxidation-reduction reactions Ingestion of proteins, carbohydrates, lipids Provide basic building blocks for
Cellular Respiration: Harvesting Chemical Energy
Chapter 9 Cellular Respiration: Harvesting Chemical Energy Edited by Shawn Lester PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated
Cellular Respiration Harvesting Chemical Energy ATP
Cellular Respiration Harvesting Chemical Energy ATP 2006-2007 What s the point? The point is to make ATP! ATP 2006-2007 Harvesting stored energy Energy is stored in organic molecules carbohydrates, fats,
Cellular Respiration Harvesting Chemical Energy ATP
Cellular Respiration Harvesting Chemical Energy ATP 2006-2007 What s the point? The point is to make ATP! ATP 2006-2007 Harvesting stored energy Energy is stored in organic molecules carbohydrates, fats,
Chapter 7 Cellular Respiration and Fermentation*
Chapter 7 Cellular Respiration and Fermentation* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. Life Is Work
Cellular Respiration and Fermentation
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 9 Cellular Respiration and Fermentation
Lecture 5: Cell Metabolism. Biology 219 Dr. Adam Ross
Lecture 5: Cell Metabolism Biology 219 Dr. Adam Ross Cellular Respiration Set of reactions that take place during the conversion of nutrients into ATP Intricate regulatory relationship between several
Cellular Respiration and Fermentation
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 9 Cellular Respiration and Fermentation
ATP. Principles of Energy Harvest. Chapter 9~ The point is to make ATP! Cellular Respiration: Harvesting Chemical Energy. What s the point?
Chapter 9~ Cellular Respiration: Harvesting Chemical Energy What s the point? The point is to make! 2006-2007 Principles of Energy Harvest Catabolic pathway Fermentation Cellular Respiration C6H126 + 62
Cellular Respiration and Fermentation
Chapter 9 LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Cellular Respiration and Fermentation
Lesson Overview. Cellular Respiration: An Overview. 9.2 process of cell respiration
9.2 process of cell respiration Glycolysis During glycolysis, glucose is broken down into 2 molecules of the 3-carbon molecule pyruvic acid. Pyruvic acid is a reactant in the Krebs cycle. ATP and NADH
9.2 The Process of Cellular Respiration
9.2 The Process of Cellular Respiration Oxygen Carbon 2 2 Dioxide 34 Water Glycolysis Glycolysis is the first stage of cellular respiration. During glycolysis, glucose is broken down into 2 molecules of
Chemistry 5.07 Problem Set
Chemistry 5.07 Problem Set 8 2013 Problem 1. All oxidation steps in the pathway from glucose to CO 2 result in the production of NADH, except the succinate dehydrogenase (SDH) step in the TCA cycle, which
Cellular Respiration: Harvesting Chemical Energy
Chapter 9 Cellular Respiration: Harvesting Chemical Energy PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with
Consists of all of the chemical reactions that take place in a cell. Summary of Cellular Respiration. Electrons transferred. Cytoplasm Blood vessel
7/19/2014 Metabolism Cellular Metabolism Metabolism Consists of all of the chemical reactions that take place in a cell PLAY Animation Breaking Down Glucose For Energy Biol 105 Lecture Packet 6 Read Chapter
Releasing Chemical Energy
Releasing Chemical Energy Ø Energy From Carbohydrates Ø Aerobic Respiration/ Stages Ø Fermentation Ø Food as a Source of Energy How Do Cells Access the Chemical Energy in Carbohydrayes? Aerobic Respiration
Microbial Metabolism. PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R
PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College C H A P T E R 5 Microbial Metabolism Big Picture: Metabolism Metabolism is the buildup and breakdown of nutrients
BCMB 3100 Fall 2013 Exam III
BCMB 3100 Fall 2013 Exam III 1. (10 pts.) (a.) Briefly describe the purpose of the glycerol dehydrogenase phosphate shuttle. (b.) How many ATPs can be made when electrons enter the electron transport chain
Chapter 14. Energy conversion: Energy & Behavior
Chapter 14 Energy conversion: Energy & Behavior Why do you Eat and Breath? To generate ATP Foods, Oxygen, and Mitochodria Cells Obtain Energy by the Oxidation of Organic Molecules Food making ATP making
Physiological Chemistry II Exam IV Dr. Melissa Kelley April 13, 2004
Name Write your name on the back of the exam Physiological Chemistry II Exam IV Dr. Melissa Kelley April 13, 2004 This examination consists of forty-four questions, each having 2 points. The remaining
Citric Acid Cycle: Central Role in Catabolism. Entry of Pyruvate into the TCA cycle
Citric Acid Cycle: Central Role in Catabolism Stage II of catabolism involves the conversion of carbohydrates, fats and aminoacids into acetylcoa In aerobic organisms, citric acid cycle makes up the final
number Done by Corrected by Doctor Nafeth Abu Tarboush
number 7 Done by حسام أبو عوض Corrected by Shahd Alqudah Doctor Nafeth Abu Tarboush 1 P a g e As we have studied before, in the fourth reaction of the Krebs cycle, α- ketoglutarate is converted into Succinyl-CoA
Energy Production In A Cell (Chapter 25 Metabolism)
Energy Production In A Cell (Chapter 25 Metabolism) Large food molecules contain a lot of potential energy in the form of chemical bonds but it requires a lot of work to liberate the energy. Cells need
Ch. 9 Cellular Respiration Stage 2 & 3: Oxidation of Pyruvate Krebs Cycle
Ch. 9 Cellular Respiration Stage 2 & 3: Oxidation of Pyruvate Krebs Cycle 2006-2007 Glycolysis is only the start Glycolysis glucose pyruvate 6C Pyruvate has more energy to yield 3 more C to strip off (to
9/10/2012. The electron transfer system in the inner membrane of mitochondria in plants
LECT 6. RESPIRATION COMPETENCIES Students, after mastering the materials of Plant Physiology course, should be able to: 1. To explain the process of respiration (the oxidation of substrates particularly
NAME KEY ID # EXAM 3a BIOC 460. Wednesday April 10, Please include your name and ID# on each page. Limit your answers to the space provided!
EXAM 3a BIOC 460 Wednesday April 10, 2002 Please include your name and ID# on each page. Limit your answers to the space provided! 1 1. (5 pts.) Define the term energy charge: Energy charge refers to the
Gluconeogenesis. Presented by Dr. Mohammad Saadeh The requirements for the Pharmaceutical Biochemistry II Philadelphia University Faculty of pharmacy
Gluconeogenesis Presented by Dr. Mohammad Saadeh The requirements for the Pharmaceutical Biochemistry II Philadelphia University Faculty of pharmacy Gluconeogenesis Some tissues, such as the brain, red
Citrate Cycle Supplemental Reading
Citrate Cycle Supplemental Reading Key Concepts - The Citrate Cycle captures energy using redox reactions - Eight enzymatic reactions of the Citrate Cycle - Key control points in the citrate cycle regulate
Cellular Respiration: Harvesting Chemical Energy
Chapter 9 Cellular Respiration: Harvesting Chemical Energy PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with
Concept 9.1: Catabolic pathways yield energy by oxidizing organic fuels Several processes are central to cellular respiration and related pathways
Overview: Life Is Work Living cells require energy from outside sources Some animals, such as the chimpanzee, obtain energy by eating plants, and some animals feed on other organisms that eat plants Energy
2. What are the products of cellular respiration? Include all forms of energy that are products.
Name Per Cellular Respiration An Overview Why Respire Anyhoo? Because bucko all cells need usable chemical energy to do work. The methods cells use to convert glucose into ATP vary depending on the availability
Cellular Respiration: Harvesting Chemical Energy
Chapter 9 Cellular Respiration: Harvesting Chemical Energy Overview: Life Is Work Living cells require energy from outside sources Some animals, such as the giant panda, obtain energy by eating plants,
1 CH:14 RESPIRATION IN PLANTS https://biologyaipmt.com/
1 CH:14 RESPIRATION IN PLANTS https://biologyaipmt.com/ CHAPTER 14 RESPIRATION IN PLANTS All the energy required for 'life' processes is obtained by oxidation of some macromolecules that we call 'food'.
True or False: 1. Reactions are called endergonic if they occur spontaneously and release free energy.
True or False: 1. Reactions are called endergonic if they occur spontaneously and release free energy. 2. Enzymes catalyze chemical reactions by lowering the activation energy 3. Biochemical pathways are
CELLULAR RESPIRATION: HARVESTING CHEMICAL ENERGY. The Principles of Energy Harvest
CELLULAR RESPIRATION: HARVESTING CHEMICAL ENERGY The Principles of Energy Harvest 1. Cellular respiration and fermentation are catabolic, energy-yielding pathways 2. Cells recycle the ATP they use for
Cell Respiration. Anaerobic & Aerobic Respiration
Cell Respiration Anaerobic & Aerobic Respiration Understandings/Objectives 2.8.U1: Cell respiration is the controlled release of energy from organic compounds to produce ATP. Define cell respiration State
How Cells Harvest Chemical Energy
How Cells Harvest Chemical Energy Chapter 6 Introduction: How Is a Marathoner Different from a Sprinter? Individuals inherit various percentages of the two main types of muscle fibers, slow and fast The
Metabolism. Chapter 5. Catabolism Drives Anabolism 8/29/11. Complete Catabolism of Glucose
8/29/11 Metabolism Chapter 5 All of the reactions in the body that require energy transfer. Can be divided into: Cell Respiration and Metabolism Anabolism: requires the input of energy to synthesize large
Citrate Cycle. Lecture 28. Key Concepts. The Citrate Cycle captures energy using redox reactions
Citrate Cycle Lecture 28 Key Concepts The Citrate Cycle captures energy using redox reactions Eight reactions of the Citrate Cycle Key control points in the Citrate Cycle regulate metabolic flux What role
How Cells Release Chemical Energy Cellular Respiration
How Cells Release Chemical Energy Cellular Respiration Overview of Cellular Respiration HO double membrane outer membrane inner membrane CO matrix Produces molecules Requires oxygen Releases carbon dioxide
Cellular Respiration. Overview of Cellular Respiration. Lecture 8 Fall Overview of Cellular Respiration. Overview of Cellular Respiration
Overview of Cellular Respiration 1 Cellular Respiration Lecture 8 Fall 2008 All organisms need ATP to do cellular work Cellular Respiration: The conversion of chemical energy of carbon compounds into another
g) Cellular Respiration Higher Human Biology
g) Cellular Respiration Higher Human Biology What can you remember about respiration? 1. What is respiration? 2. What are the raw materials? 3. What are the products? 4. Where does it occur? 5. Why does
Metabolism. Metabolic pathways. BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 11: Metabolic Pathways
BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 11: Metabolic Pathways http://compbio.uchsc.edu/hunter/bio5099 Larry.Hunter@uchsc.edu Metabolism Metabolism is the chemical change of
Cellular Respira,on. Topic 3.7 and 3.8
Cellular Respira,on Topic 3.7 and 3.8 Defini,on of cellular respira,on Controlled release of energy from organic compounds to produce ATP Cells break down organic compounds by SLOW oxida,on Chemical energy
LECT 6. RESPIRATION COMPETENCIES. Students, after mastering materials of the present lecture, should be able:
LECT 6. RESPIRATION COMPETENCIES Students, after mastering materials of the present lecture, should be able: 1. 2. To explain the process of respiration (the oxidation of substrates particularly carbohydrates
Life is based on redox
Life is based on redox All energy generation in biological systems is due to redox (reduction-oxidation) reactions Aerobic Respiration: C 6 H 12 O 6 + 6 H 2 O ==> 6 CO 2 + 24 H + +24 e - oxidation electron
Lecture Outline Correlates with our Chapter 7
Chapter 9 Cellular Respiration: Harvesting Chemical Energy Lecture Outline Correlates with our Chapter 7 Overview: Life Is Work To perform their many tasks, living cells require energy from outside sources.
ATP ATP. Cellular Respiration Harvesting Chemical Energy. The point is to make ATP!
ellular Respiration Harvesting hemical Energy 1 The point is to make! 2 Harvesting stored energy Energy is stored in organic molecules carbohydrates, fats, proteins Heterotrophs eat these organic molecules
Cellular Respiration
ellular Respiration 1 ellular Respiration A catabolic, exergonic, oxygen (O 2 ) requiring process that uses energy extracted from macromolecules (glucose) to produce energy (ATP) and water (H 2 O). 6 H
Aerobic Respiration. The four stages in the breakdown of glucose
Aerobic Respiration The four stages in the breakdown of glucose 1 I. Aerobic Respiration Why can t we break down Glucose in one step? (Flaming Gummy Bear) Enzymes gently lower the potential energy until
CHE 242 Exam 3 Practice Questions
CHE 242 Exam 3 Practice Questions Glucose metabolism 1. Below is depicted glucose catabolism. Indicate on the pathways the following: A) which reaction(s) of glycolysis are irreversible B) where energy
Chapter 9 Cellular Respiration. Copyright Pearson Prentice Hall
Chapter 9 Cellular Respiration Copyright Pearson Prentice Hall 9-1 Chemical Pathways Both plant and animal cells carry out the final stages of cellular respiration in the mitochondria. Animal Cells Animal
Biology Kevin Dees. Chapter 9 Harvesting Chemical Energy: Cellular Respiration
Chapter 9 Harvesting Chemical Energy: Cellular Respiration Life is Work!!! Biology Kevin Dees Catabolic pathways and ATP production Catabolic pathways release energy by breaking down large molecules into
TCA CYCLE (Citric Acid Cycle)
TCA CYCLE (Citric Acid Cycle) TCA CYCLE The Citric Acid Cycle is also known as: Kreb s cycle Sir Hans Krebs Nobel prize, 1953 TCA (tricarboxylic acid) cycle The citric acid cycle requires aerobic conditions!!!!
Sheet #13. #Citric acid cycle made by zaid al-ghnaneem corrected by amer Al-salamat date 11/8/2016. Here we go.. Record #18
1 Sheet #13 #Citric acid cycle made by zaid al-ghnaneem corrected by amer Al-salamat date 11/8/2016 Here we go.. Record #18 2 Three processes play central role in aerobic metabolism: 1) The citric acid
Energy Flow. Chapter 7. Cellular Respiration: Overview. Cellular Respiration. Cellular Respiration. Cellular Respiration occurs in three stages
Energy Flow Chapter 7 Cellular Respiration hotosynthesis uses solar energy to produce glucose and O from CO and H O Cellular respiration makes and consumes O during the oxidation of glucose to CO and H