Chapter 9 Cellular Respiration Overview: Life Is Work Living cells require energy from outside sources
|
|
- Jasper Powell
- 1 years ago
- Views:
Transcription
1 Chapter 9 Cellular Respiration Overview: Life Is Work Living cells require energy from outside sources Some animals, such as the giant panda, obtain energy by eating plants, and some animals feed on other organisms that eat plants
2 Fig. 9-2 Light energy ECOSYSTEM CO 2 + H 2 O Photosynthesis in chloroplasts Cellular respiration in mitochondria Organic molecules + O 2 ATP ATP powers most cellular work Heat energy
3 Overview: Metabolism Remember Metabolism is the TOTAL Chemical activity within an organism! Starts at food that is broken into macromolecules. The breakdown of organic molecules is exergonic
4 Concept 9.1: Catabolic pathways yield energy by oxidizing organic fuels Several processes are central to cellular respiration and related pathways Fermentation is a partial degradation of sugars that occurs without O 2 Aerobic respiration consumes organic molecules and O 2 and yields ATP Anaerobic respiration is similar to aerobic respiration but does not consume O 2
5 Cellular respiration includes both aerobic and anaerobic respiration but is often used to refer to aerobic respiration Although carbohydrates, fats, and proteins are all consumed as fuel, it is helpful to trace cellular respiration with the sugar glucose: C 6 H 12 O O 2 6 CO H 2 O + Energy (ATP + heat)
6 The Stages of Cellular Respiration: A Preview Cellular respiration has three stages: Glycolysis (breaks down glucose into two molecules of pyruvate) The citric acid cycle also called the Kreb Cycle (completes the breakdown of glucose) Oxidative phosphorylation (accounts for most of the ATP synthesis)
7 Fig Electrons carried via NADH Electrons carried via NADH and FADH 2 Glucose Glycolysis Pyruvate 2 Acetyl CoA Citric acid cycle Oxidative phosphorylation: electron transport and chemiosmosis Cytosol Mitochondrion 2 ATP Substrate-level phosphorylation - 2 ATP For active transport 2 ATP Substrate-level phosphorylation 30 ATP Oxidative phosphorylation About 32 ATP maximum produced per glucose
8 Concept 9.2: Glycolysis harvests chemical energy by oxidizing glucose to pyruvate Glycolysis ( splitting of sugar ) breaks down glucose into two molecules of pyruvate Glycolysis occurs in the cytoplasm and has two major phases: Energy investment phase Energy payoff phase
9 Fig. 9-8 Energy investment phase Glucose 2 ADP + 2 P 2 ATP used Energy payoff phase 4 ADP + 4 P 4 ATP formed 2 NAD e + 4 H + 2 NADH + 2 H + 2 Pyruvate + 2 H 2 O Net Glucose 2 Pyruvate + 2 H 2 O 4 ATP formed 2 ATP used 2 ATP 2 NAD e + 4 H + 2 NADH + 2 H +
10 In the presence of O 2, pyruvate enters the mitochondria Pyruvate converts to acetyl CoA to start the citric acid cycle (essentially, one C is cut off to make Pyruvate turn into Acetyl CoA) CYTOSOL MITOCHONDRION NAD + NADH + H + 2 Pyruvate 1 3 CO 2 Coenzyme A Acetyl CoA Transport protein Fig. 9-10
11 Concept 9.3: The citric acid cycle completes the energy-yielding oxidation of organic molecules The citric acid cycle, (also called the Krebs cycle), takes place within the mitochondrial matrix This cycle constitutes the major source of energy in all living organisms.
12 Fig The citric acid cycle oxidizes organic fuel derived from pyruvate Pyruvate NAD + NADH + H + CO 2 CoA Acetyl CoA CoA CoA Pyruvate is converted to Acetyl CoA This ultimately generates 1 ATP, 3 NADH, 1 FADH 2 for each turn of the cycle FADH 2 FAD ATP Citric acid cycle ADP + P i 3 2 CO 2 3 NAD + NADH + 3 H +
13 The citric acid cycle has eight steps, each catalyzed by a specific enzyme The acetyl group of acetyl CoA joins the cycle by combining with oxaloacetate, forming citrate The next seven steps decompose the citrate back to oxaloacetate, making the process a cycle The NADH and FADH 2 produced by the cycle relay electrons extracted from food to the electron transport chain
14 Fig Acetyl CoA CoA SH NADH +H + 1 H 2 O NAD + 8 Oxaloacetate 2 H 2 O 7 Malate Citric acid cycle Citrate Isocitrate NAD + 3 CO 2 NADH + H + Fumarate 6 CoA SH CoA SH 4 -Ketoglutarate FADH 2 FAD 5 NAD + CO 2 Succinate GTP GDP P i Succinyl CoA NADH + H + ADP ATP
15 Concept 9.4: During oxidative phosphorylation, chemiosmosis couples electron transport to ATP synthesis Following glycolysis and the citric acid cycle, NADH and FADH 2 account for most of the energy extracted from food These two electron carriers donate electrons to the electron transport chain, which powers ATP synthesis via oxidative phosphorylation
16 The Pathway of Electron Transport The electron transport chain is in the cristae of the mitochondrion Most of the chain s components are proteins, which exist in multiprotein complexes The carriers alternate reduced and oxidized states as they accept and donate electrons Electrons drop in free energy as they go down the chain and are finally passed to O 2, forming H 2 O
17 Fig NADH 50 2 e NAD + FADH 2 40 FMN Fe S e 2 FAD FAD Fe S Multiprotein complexes Q Cyt b 30 Fe S Cyt c 1 Cyt c I V Cyt a 20 Cyt a e (from NADH or FADH 2 ) 0 2 H / 2 O 2 H 2 O
18 Electrons are transferred from NADH or FADH 2 to the electron transport chain Electrons are passed through a number of proteins including cytochromes (each with an iron atom) to O 2 The electron transport chain generates no ATP The chain s function is to break the large freeenergy drop from food to O 2 into smaller steps that release energy in manageable amounts
19 Chemiosmosis: The Energy-Coupling Mechanism Electron transfer in the electron transport chain causes proteins to pump H + from the mitochondrial matrix to the intermembrane space H + then moves back across the membrane, passing through channels in ATP synthase ATP synthase uses the exergonic flow of H + to drive phosphorylation of ATP
20 The energy stored in a H + gradient across a membrane couples the redox reactions of the electron transport chain to ATP synthesis The H + gradient is referred to as a protonmotive force, emphasizing its capacity to do work
21 Fig H + H + Protein complex of electron carriers H + Cyt c H + Q FADH 2 FAD V 2 H / 2 O 2 H 2 O ATP synthase NADH (carrying electrons from food) NAD + ADP + P i H + ATP 1 Electron transport chain 2 Chemiosmosis Oxidative phosphorylation
22 An Accounting of ATP Production by Cellular Respiration During cellular respiration, most energy flows in this sequence: glucose NADH electron transport chain proton-motive force ATP About 40% of the energy in a glucose molecule is transferred to ATP during cellular respiration, making about 36 to 38 ATP
23 Fig CYTOSOL Electron shuttles span membrane 2 NADH or MITOCHONDRION 2 FADH 2 2 NADH 2 NADH 6 NADH 2 FADH 2 Glycolysis 2 Glucose Pyruvate 2 Acetyl CoA Citric acid cycle Oxidative phosphorylation: electron transport and chemiosmosis + 2 ATP + 2 ATP + about 32 or 34 ATP Maximum per glucose: About 36 or 38 ATP
24 Concept 9.5: Fermentation and anaerobic respiration enable cells to produce ATP without the use of oxygen Most cellular respiration requires O 2 to produce ATP Glycolysis can produce ATP with or without O 2 (in aerobic or anaerobic conditions) In the absence of O 2, glycolysis couples with fermentation or anaerobic respiration to produce ATP
25 Anaerobic respiration uses an electron transport chain with an electron acceptor other than O 2, for example sulfate Fermentation uses phosphorylation instead of an electron transport chain to generate ATP
26 Types of Fermentation Fermentation consists of glycolysis plus reactions that regenerate NAD +, which can be reused by glycolysis Two common types are alcohol fermentation and lactic acid fermentation
27 In alcohol fermentation, pyruvate is converted to ethanol in two steps, with the first releasing CO 2 Alcohol fermentation by yeast is used in brewing, winemaking, and baking
28 Fig. 9-18a 2 ADP + 2 P i 2 ATP Glucose Glycolysis 2 NAD + 2 NADH + 2 H + 2 Pyruvate 2 CO 2 2 Ethanol 2 Acetaldehyde (a) Alcohol fermentation
29 In lactic acid fermentation, pyruvate is reduced to NADH, forming lactate as an end product, with no release of CO 2 Lactic acid fermentation by some fungi and bacteria is used to make cheese and yogurt Human muscle cells use lactic acid fermentation to generate ATP when O 2 is scarce
30 Fig. 9-18b 2 ADP + 2 P i 2 ATP Glucose Glycolysis 2 NAD + 2 NADH + 2 H + 2 Pyruvate 2 Lactate (b) Lactic acid fermentation
31 Fermentation and Aerobic Respiration Compared Both processes use glycolysis to oxidize glucose and other organic fuels to pyruvate The processes have different final electron acceptors: an organic molecule (such as pyruvate or acetaldehyde) in fermentation and O 2 in cellular respiration Cellular respiration produces 38 ATP per glucose molecule; fermentation produces 2 ATP per glucose molecule
32 Obligate anaerobes carry out fermentation or anaerobic respiration and cannot survive in the presence of O 2 Yeast and many bacteria are facultative anaerobes, meaning that they can survive using either fermentation or cellular respiration In a facultative anaerobe, pyruvate is a fork in the metabolic road that leads to two alternative catabolic routes
33 Fig Glucose CYTOSOL Glycolysis No O 2 present: Fermentation Pyruvate O 2 present: Aerobic cellular respiration Ethanol or lactate Acetyl CoA MITOCHONDRION Citric acid cycle
34 The Evolutionary Significance of Glycolysis Glycolysis occurs in nearly all organisms Glycolysis probably evolved in ancient prokaryotes before there was oxygen in the atmosphere
Cellular Respiration: Harvesting Chemical Energy
Chapter 9 Cellular Respiration: Harvesting Chemical Energy You should be able to: 1. Explain how redox reactions are involved in energy exchanges. Name and describe the three stages of cellular respiration;
Chapter 9. Cellular Respiration and Fermentation
Chapter 9 Cellular Respiration and Fermentation Energy flows into an ecosystem as sunlight and leaves as heat Photosynthesis generates O 2 and organic molecules, which are used in cellular respiration
Chapter 9. Cellular Respiration: Harvesting Chemical Energy
Chapter 9 Cellular Respiration: Harvesting Chemical Energy Living cells require energy from outside sources Energy flows into an ecosystem as sunlight and leaves as heat Photosynthesis generates O 2 and
Cellular Respiration: Harvesting Chemical Energy
Chapter 9 Cellular Respiration: Harvesting Chemical Energy PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with
Concept 9.1: Catabolic pathways yield energy by oxidizing organic fuels Several processes are central to cellular respiration and related pathways
Overview: Life Is Work Living cells require energy from outside sources Some animals, such as the chimpanzee, obtain energy by eating plants, and some animals feed on other organisms that eat plants Energy
CH 7: Cell Respiration and Fermentation Overview. Concept 7.1: Catabolic pathways yield energy by oxidizing organic fuels
CH 7: Cell Respiration and Fermentation Overview Living cells require energy from outside sources Some animals obtain energy by eating plants, and some animals feed on other organisms Energy flows into
BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson
CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 9 Cellular Respiration and Fermentation Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Figure 9.2 Light energy
Cellular Respiration: Harvesting Chemical Energy
Chapter 9 Cellular Respiration: Harvesting Chemical Energy PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with
Campbell Biology 9. Chapter 9 Cellular Respiration and Fermentation. Chul-Su Yang, Ph.D., Lecture on General Biology 1
Lecture on General Biology 1 Campbell Biology 9 th edition Chapter 9 Cellular Respiration and Fermentation Chul-Su Yang, Ph.D., chulsuyang@hanyang.ac.kr Infection Biology Lab., Dept. of Molecular & Life
7 Cellular Respiration and Fermentation
CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION
Cellular Respiration: Harvesting Chemical Energy
Chapter 9 Cellular Respiration: Harvesting Chemical Energy PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with
Cellular Respiration and Fermentation
CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION
BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Photosynthesis in chloroplasts. Light energy ECOSYSTEM. Organic molecules CO 2 + H 2 O
9 Cellular Respiration and Fermentation CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Figure 9.1 Figure 9.2
Cellular Respiration and Fermentation
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 9 Cellular Respiration and Fermentation
BIOLOGY. Cellular Respiration and Fermentation. Concept 9.1: Catabolic pathways yield energy by oxidizing organic fuels
9 Cellular Respiration and Fermentation CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Energy flows into an ecosystem as sunlight and leaves as heat Photosynthesis generates
Cellular Respiration and Fermentation
CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION
7 Cellular Respiration and Fermentation
CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION
Cellular Respiration: Harvesting Chemical Energy
Chapter 9 Cellular Respiration: Harvesting Chemical Energy Edited by Shawn Lester PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated
Cellular Respiration and Fermentation
Chapter 9 LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Cellular Respiration and Fermentation
7 Cellular Respiration and Fermentation
CAMPBELL BIOLOGY IN FOCUS Urry Cain Wasserman Minorsky Jackson Reece 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Overview: Life Is Work Living
BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson
CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 9 Cellular Respiration and Fermentation Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Life Is Work Living cells
7 Cellular Respiration and Fermentation
CAMPBELL BIOLOGY IN FOCUS Urry Cain Wasserman Minorsky Jackson Reece 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Overview: Life Is Work Living
Cellular Respiration and Fermentation
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 9 Cellular Respiration and Fermentation
Cellular Respiration: Harvesting Chemical Energy
Chapter 9 Cellular Respiration: Harvesting Chemical Energy Overview: Life Is Work Living cells require energy from outside sources Some animals, such as the giant panda, obtain energy by eating plants,
BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson
CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 9 Cellular Respiration and Fermentation Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Life Is Work Living cells
Chapter 9: Cellular Respiration Overview: Life Is Work. Living cells. Require transfusions of energy from outside sources to perform their many tasks
Chapter 9: Cellular Respiration Overview: Life Is Work Living cells Require transfusions of energy from outside sources to perform their many tasks Biology, 7 th Edition Neil Campbell and Jane Reece The
7 Cellular Respiration and Fermentation
CAMPBELL BIOLOGY IN FOCUS Urry Cain Wasserman Minorsky Jackson Reece 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Overview: Life Is Work Living
Cellular Respiration Part V: Oxidative Phosphorylation
Cellular Respiration Part V: Oxidative Phosphorylation Figure 9.16 Electron shuttles span membrane 2 NADH or 2 FADH 2 MITOCHONDRION 2 NADH 2 NADH 6 NADH 2 FADH 2 Glucose Glycolysis 2 Pyruvate Pyruvate
Chapter 9: Cellular Respiration
Chapter 9: Cellular Respiration To perform their many tasks, living cells require energy from outside sources. Energy stored in food utimately comes from the sun. Photosynthesis makes the raw materials
Harvesting energy: photosynthesis & cellular respiration
Harvesting energy: photosynthesis & cellular respiration Learning Objectives Know the relationship between photosynthesis & cellular respiration Know the formulae of the chemical reactions for photosynthesis
10/25/2010 CHAPTER 9 CELLULAR RESPIRATION. Life is Work. Types of cellular respiration. Catabolic pathways = oxidizing fuels
CHAPTER 9 CELLULAR RESPIRATION Life is Work Living cells require transfusions of energy from outside sources to perform their many tasks: Chemical work Transport work Mechanical work Energy stored in the
Chapter 10. Cellular Respiration Pearson Education Ltd
Chapter 10 Cellular Respiration Life Is Work a) Living cells require energy from outside sources b) Some animals, such as the giraffe, obtain energy by eating plants, and some animals feed on other organisms
Cellular Respiration: Harvesting Chemical Energy Chapter 9
Cellular Respiration: Harvesting Chemical Energy Chapter 9 Assemble polymers, pump substances across membranes, move and reproduce The giant panda Obtains energy for its cells by eating plants which get
Introduction. Living is work. To perform their many tasks, cells must bring in energy from outside sources.
Introduction Living is work. To perform their many tasks, cells must bring in energy from outside sources. In most ecosystems, energy enters as sunlight. Light energy trapped in organic molecules is available
Harvesting energy: photosynthesis & cellular respiration part 1I
Harvesting energy: photosynthesis & cellular respiration part 1I Agenda I. Overview (Big Pictures) of Photosynthesis & Cellular Respiration II. Making Glucose - Photosynthesis III. Making ATP - Cellular
Cellular Respiration: Harvesting Chemical Energy
Chapter 9 Cellular Respiration: Harvesting Chemical Energy PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with
Cellular Respiration: Harvesting Chemical Energy CHAPTER 9
Cellular Respiration: Harvesting Chemical Energy CHAPTER 9 9.1 Metabolic pathways that release energy are exergonic and considered catabolic pathways. Fermentation: partial degradation of sugars that occurs
Chapter 7 Cellular Respiration and Fermentation*
Chapter 7 Cellular Respiration and Fermentation* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. Life Is Work
Biology Kevin Dees. Chapter 9 Harvesting Chemical Energy: Cellular Respiration
Chapter 9 Harvesting Chemical Energy: Cellular Respiration Life is Work!!! Biology Kevin Dees Catabolic pathways and ATP production Catabolic pathways release energy by breaking down large molecules into
Chapter 9 Notes. Cellular Respiration and Fermentation
Chapter 9 Notes Cellular Respiration and Fermentation Objectives Distinguish between fermentation and anaerobic respiration. Name the three stages of cellular respiration and state the region of the cell
Structure of the Mitochondrion. Cell Respiration. Cellular Respiration. Catabolic Pathways. Photosynthesis vs. Cell Respiration ATP 10/14/2014
Structure of the Mitochondrion Cellular Respiration Chapter 9 Pgs. 163 183 Enclosed by a double membrane Outer membrane is smooth Inner, or cristae, membrane is folded - this divides the mitochondrion
Ch. 9 Cell Respiration. Title: Oct 15 3:24 PM (1 of 53)
Ch. 9 Cell Respiration Title: Oct 15 3:24 PM (1 of 53) Essential question: How do cells use stored chemical energy in organic molecules and to generate ATP? Title: Oct 15 3:28 PM (2 of 53) Title: Oct 19
NOTES: Ch 9, part & Fermentation & Regulation of Cellular Respiration
NOTES: Ch 9, part 4-9.5 & 9.6 - Fermentation & Regulation of Cellular Respiration 9.5 - Fermentation enables some cells to produce ATP without the use of oxygen Cellular respiration requires O 2 to produce
Photosynthesis in chloroplasts. Cellular respiration in mitochondria ATP. ATP powers most cellular work
Light energy ECOSYSTEM CO + H O Photosynthesis in chloroplasts Cellular respiration in mitochondria Organic molecules + O powers most cellular work Heat energy 1 becomes oxidized (loses electron) becomes
Ch 9: Cellular Respiration
Ch 9: Cellular Respiration Cellular Respiration An overview Exergonic reactions and catabolic pathway Energy stored in bonds of food molecules is transferred to ATP Cellular respiration provides the energy
Section B: The Process of Cellular Respiration
CHAPTER 9 CELLULAR RESPIRATION: HARVESTING CHEMICAL ENERGY Section B: The Process of Cellular Respiration 1. Respiration involves glycolysis, the Krebs cycle, and electron transport: an overview 2. Glycolysis
NOTES: Ch 9 Cellular Respiration: Harvesting Chemical Energy Part 1: The Overview
NOTES: Ch 9 Cellular Respiration: Harvesting Chemical Energy Part 1: The Overview Overview: Life Is Work Living cells require energy from outside sources Some animals, such as the giant panda, obtain energy
What s the point? The point is to make ATP! ATP
ATP Chapter 8 What s the point? The point is to make ATP! ATP Flows into an ecosystem as sunlight and leaves as heat Energy is stored in organic compounds Carbohydrates, lipids, proteins Heterotrophs eat
AP BIOLOGY Chapter 7 Cellular Respiration =
1 AP BIOLOGY Chapter 7 Cellular Respiration = Day 1 p. I. Overview A. Cellular Respiration 1. Respiration breathing, exchange of O 2 for CO 2 2. Cellular respiration aerobic harvesting of energy from food
Cellular Respiration. Biochemistry Part II 4/28/2014 1
Cellular Respiration Biochemistry Part II 4/28/2014 1 4/28/2014 2 The Mitochondria The mitochondria is a double membrane organelle Two membranes Outer membrane Inter membrane space Inner membrane Location
Chemical Energy. Valencia College
9 Pathways that Harvest Chemical Energy Valencia College 9 Pathways that Harvest Chemical Energy Chapter objectives: How Does Glucose Oxidation Release Chemical Energy? What Are the Aerobic Pathways of
BIOLOGY 101. CHAPTER 9: Cellular Respiration - Fermentation: Life is Work
BIOLOGY 101 CHAPTER 9: Cellular Respiration - Fermentation: Life is Work An Introduction to Metabolism: Energy of Life 8.3 ATP powers cellular work by coupling exergonic reactions to endergonic reactions
Cellular Respiration. Unit 5: Plants, Photosynthesis, and Cellular Respiration
Cellular Respiration Unit 5: Plants, Photosynthesis, and Cellular Respiration Overview! Organisms obtain energy (ATP) by breaking down (catabolic pathway, exergonic reaction) organic molecules (glucose)
Photosynthesis in chloroplasts CO2 + H2O. Cellular respiration in mitochondria ATP. powers most cellular work. Heat energy
Figure 9-01 LE 9-2 Light energy ECOSYSTEM Photosynthesis in chloroplasts CO2 + H2O Cellular respiration in mitochondria Organic + O molecules 2 powers most cellular work Heat energy LE 9-UN161a becomes
4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5
1. Which of the following statements about NAD + is false? a. NAD + is reduced to NADH during both glycolysis and the citric acid cycle. b. NAD + has more chemical energy than NADH. c. NAD + is reduced
BIOLOGY - CLUTCH CH.9 - RESPIRATION.
!! www.clutchprep.com CONCEPT: REDOX REACTIONS Redox reaction a chemical reaction that involves the transfer of electrons from one atom to another Oxidation loss of electrons Reduction gain of electrons
MULTIPLE CHOICE QUESTIONS
MULTIPLE CHOICE QUESTIONS 1. Which of the following statements concerning anabolic reactions is FALSE? A. They are generally endergonic. B. They usually require ATP. C. They are part of metabolism. D.
Respiration. Respiration. How Cells Harvest Energy. Chapter 7
How Cells Harvest Energy Chapter 7 Respiration Organisms can be classified based on how they obtain energy: autotrophs: are able to produce their own organic molecules through photosynthesis heterotrophs:
How Cells Harvest Chemical Energy
How Cells Harvest Chemical Energy Chapter 6 Introduction: How Is a Marathoner Different from a Sprinter? Individuals inherit various percentages of the two main types of muscle fibers, slow and fast The
Respiration. Respiration. Respiration. How Cells Harvest Energy. Chapter 7
How Cells Harvest Energy Chapter 7 Organisms can be classified based on how they obtain energy: autotrophs: are able to produce their own organic molecules through photosynthesis heterotrophs: live on
Cellular Pathways That Harvest Chemical Energy. Cellular Pathways That Harvest Chemical Energy. Cellular Pathways In General
Cellular Pathways That Harvest Chemical Energy A. Obtaining Energy and Electrons from Glucose Lecture Series 12 Cellular Pathways That Harvest Chemical Energy B. An Overview: Releasing Energy from Glucose
Cellular Respiration: Harvesting Chemical Energy
Chapter 9 Cellular Respiration: Harvesting Chemical Energy PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with
Chapter 9: Cellular Respiration: Harvesting Chemical Energy
AP Biology Reading Guide Name: Date: Period Chapter 9: Cellular Respiration: Harvesting Chemical Energy Overview: Before getting involved with the details of cellular respiration and photosynthesis, take
Cellular Respiration Stage 2 & 3. Glycolysis is only the start. Cellular respiration. Oxidation of Pyruvate Krebs Cycle.
Cellular Respiration Stage 2 & 3 Oxidation of Pyruvate Krebs Cycle AP 2006-2007 Biology Glycolysis is only the start Glycolysis glucose pyruvate 6C 2x 3C Pyruvate has more energy to yield 3 more C to strip
Cellular Respiration. Objectives
Lecture 07 Objectives At the end of this series of lectures, you should be able to: Define terms. Compare the processes and locations of cellular respiration and photosynthesis. Explain how breathing and
Cellular Metabolism. Biol 105 Lecture 6 Read Chapter 3 (pages 63 69)
Cellular Metabolism Biol 105 Lecture 6 Read Chapter 3 (pages 63 69) Metabolism Consists of all of the chemical reactions that take place in a cell Metabolism Animation Breaking Down Glucose For Energy
Cellular Metabolism 6/20/2015. Metabolism. Summary of Cellular Respiration. Consists of all the chemical reactions that take place in a cell!
Cellular Metabolism Biology 105 Lecture 6 Chapter 3 (pages 56-61) Metabolism Consists of all the chemical reactions that take place in a cell! Cellular metabolism: Aerobic cellular respiration requires
2/4/17. Cellular Metabolism. Metabolism. Cellular Metabolism. Consists of all of the chemical reactions that take place in a cell.
Metabolism Cellular Metabolism Consists of all of the chemical reactions that take place in a cell. Can be reactions that break things down. (Catabolism) Or reactions that build things up. (Anabolism)
Cellular Respiration Harvesting Chemical Energy ATP
Cellular Respiration Harvesting Chemical Energy ATP 2006-2007 What s the point? The point is to make ATP! ATP 2006-2007 Harvesting stored energy Energy is stored in organic molecules carbohydrates, fats,
Cellular Metabolism 9/24/2013. Metabolism. Cellular Metabolism. Consists of all the chemical reactions that take place in a cell!
Cellular Metabolism Biology 105 Lecture 6 Chapter 3 (pages 56-61) Metabolism Consists of all the chemical reactions that take place in a cell! Cellular Metabolism Aerobic cellular respiration requires
How Cells Harvest Energy. Chapter 7. Respiration
How Cells Harvest Energy Chapter 7 Respiration Organisms classified on how they obtain energy: autotrophs: produce their own organic molecules through photosynthesis heterotrophs: live on organic compounds
CELLULAR RESPIRATION: AEROBIC HARVESTING OF CELLULAR ENERGY Pearson Education, Inc.
CELLULAR RESPIRATION: AEROBIC HARVESTING OF CELLULAR ENERGY 2012 Pearson Education, Inc. Introduction In chemo heterotrophs, eukaryotes perform cellular respiration That harvests energy from food which
3. Distinguish between aerobic and anaerobic in terms of cell respiration. Outline the general process of both.
3.7 Cell Respiration 1. Define cell respiration. Cell respiration is the controlled release of energy from organic molecules in cells to form ATP. 2. State the equation for the process of cell respiration.
Cellular Metabolism. Biology 105 Lecture 6 Chapter 3 (pages 56-61)
Cellular Metabolism Biology 105 Lecture 6 Chapter 3 (pages 56-61) Metabolism Consists of all the chemical reactions that take place in a cell! Cellular Metabolism Aerobic cellular respiration requires
Cellular Respiration- -conversion of stored energy in glucose to usable energy for the cell -energy in cells is stored in the form of ATP
Cellular Respiration Notes Chapter 7 How Cells Make ATP Energy Releasing Pathways Cellular Respiration- -conversion of stored energy in glucose to usable energy for the cell -energy in cells is stored
Cellular Respiration. Overview of Cellular Respiration. Lecture 8 Fall Overview of Cellular Respiration. Overview of Cellular Respiration
Overview of Cellular Respiration 1 Cellular Respiration Lecture 8 Fall 2008 All organisms need ATP to do cellular work Cellular Respiration: The conversion of chemical energy of carbon compounds into another
Cellular Respiration
Cellular Respiration C 6 H 12 O 6 + 6O 2 -----> 6CO 2 + 6H 2 0 + energy (heat and ATP) 1. Energy Capacity to move or change matter Forms of energy are important to life include Chemical, radiant (heat
3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP]
3.7 Cell respiration ( Chapter 9 in Campbell's book) 3.7.1 Define cell respiration [Cell respiration is the controlled release of energy from organic compounds in cells to form ATP] Organic compounds store
How Cells Release Chemical Energy. Chapter 7
How Cells Release Chemical Energy Chapter 7 7.1 Overview of Carbohydrate Breakdown Pathways All organisms (including photoautotrophs) convert chemical energy of organic compounds to chemical energy of
III. 6. Test. Respiració cel lular
III. 6. Test. Respiració cel lular Chapter Questions 1) What is the term for metabolic pathways that release stored energy by breaking down complex molecules? A) anabolic pathways B) catabolic pathways
Releasing Chemical Energy
Releasing Chemical Energy Ø Energy From Carbohydrates Ø Aerobic Respiration/ Stages Ø Fermentation Ø Food as a Source of Energy How Do Cells Access the Chemical Energy in Carbohydrayes? Aerobic Respiration
CELLULAR RESPIRATION SUMMARY EQUATION. C 6 H 12 O 6 + O 2 6CO2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION
CELLULAR RESPIRATION SUMMARY EQUATION C 6 H 12 O 6 + O 2 6CO2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION Oxidation: partial or complete loss of electrons Reduction: partial or complete gain of electrons
Chapter Seven (Cellular Respiration)
Chapter Seven (Cellular Respiration) 1 SECTION ONE: GLYCOLYSIS AND FERMENTATION HARVESTING CHEMICAL ENERGY Cellular respiration is the process in which cells make adenosine triphosphate (ATP) by breaking
Respiration. Energy is everything!
Respiration Energy is everything! Tesla was incredible Everyone was intrigued by Tesla Tesla showed that energy does not need to be feared So what does this have to do with twinkies? Everything! Cellular
Chapter 9 Cellular Respiration: Harvesting Chemical Energy Lecture Outline
Chapter 9 Cellular Respiration: Harvesting Chemical Energy Lecture Outline Overview: Life Is Work To perform their many tasks, living cells require energy from outside sources. Energy enters most ecosystems
Objective: You will be able to construct an explanation for how each phase of respiration captures and stores free energy.
Objective: You will be able to construct an explanation for how each phase of respiration captures and stores free energy. Do Now: Compare and contrast the three black equations below ADP + P + Energy
RESPIRATION Worksheet
A.P. Bio L.C. RESPIRATION Worksheet 1. In the conversion of glucose and oxygen to carbon dioxide and water a) which molecule becomes reduced? b) which molecule becomes oxidized? c) what happens to the
Respiration. Energy is everything!
Respiration Energy is everything! Tesla was incredible Everyone was intrigued by Tesla Tesla showed that energy does not need to be feared So what does this have to do with twinkies? Everything! Cellular
Metabolism. Metabolism. Energy. Metabolism. Energy. Energy 5/22/2016
5//016 Metabolism Metabolism All the biochemical reactions occurring in the body Generating, storing and expending energy ATP Supports body activities Assists in constructing new tissue Metabolism Two
Notes CELLULAR RESPIRATION SUMMARY EQUATION C 6 H 12 O 6 + O 2. 6CO 2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION
AP BIOLOGY CELLULAR ENERGETICS ACTIVITY #2 Notes NAME DATE HOUR SUMMARY EQUATION CELLULAR RESPIRATION C 6 H 12 O 6 + O 2 6CO 2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION Oxidation: partial or complete
CELLULAR RESPIRATION: HARVESTING CHEMICAL ENERGY. The Principles of Energy Harvest
CELLULAR RESPIRATION: HARVESTING CHEMICAL ENERGY The Principles of Energy Harvest 1. Cellular respiration and fermentation are catabolic, energy-yielding pathways 2. Cells recycle the ATP they use for
Chapter 9: Cellular Respiration
Chapter 9: Cellular Respiration Breaking down glucose a little at a time.. It s like turning a five pound bag of sugar into several tiny sugar packets worth of energy in the form of ATP. Remember the carbon
Cellular Respiration. Cellular Respiration. C 6 H 12 O 6 + 6O > 6CO 2 + 6H energy. Heat + ATP. You need to know this!
Cellular Respiration LISA Biology Cellular Respiration C 6 H 12 O 6 + 6O 2 - - - - - > 6CO 2 + 6H 2 0 + energy You need to know this! Heat + ATP 1 Did that equation look familiar? * The equation for cellular
Cell Respiration - 1
Cell Respiration - 1 All cells must do work to stay alive and maintain their cellular environment. The energy needed for cell work comes from the bonds of ATP. Cells obtain their ATP by oxidizing organic
Chapter 6. How Cells Harvest Chemical Energy. Lecture by Richard L. Myers
Chapter 6 How Cells Harvest Chemical Energy oweroint Lectures for Biology: Concepts & Connections, Sixth Edition Campbell, Reece, Taylor, Simon, and Dickey Copyright 2009 earson Education, Inc. Lecture
Cellular Respiration
Cellular Respiration The breakdown of glucose for cellular energy. happens in all living cells. is exothermic H atoms and e are removed from glucose (oxidization) and added to oxygen (reduction) excess