Dr. Puntarica Suwanprathes. Version 2007

Size: px
Start display at page:

Download "Dr. Puntarica Suwanprathes. Version 2007"

Transcription

1 Dr. Puntarica Suwanprathes Version 2007

2

3 O 2 and CO 2 transport in blood Oxyhemoglobin dissociation curve O 2 consumption (VO 2 ) CO 2 production (VCO 2 )

4 O 2 capacity O 2 content: CaO 2 or CvO 2 %saturation of Hb with O 2 : %SaO 2 O 2 delivery: DaO 2 O 2 extract

5 CaO 2 PaO 2 O 2 capacity CvO 2 %SaO 2 VCO 2 VO2 2 DaO 2 Q CaO 2

6 1. Dissolved in plasma dissolved O 2 2. Combination with Hemoglobin Oxyhemoglobin

7 Dissolved in plasma 3% Henry s law volume α partial pressure of that gas of dissolved gas blood 100 ml PO 2 1 mmhg dissolved O ml Po 2 in arterial blood = 100 mmhg dissolved O 2 = 0.3 ml / 100 ml.blood

8 dissolved O 2 = 0.3 ml/ 100 ml.blood O 2 consumption (at rest) = 250 ml/min If use only dissolved O 2..? cardiac output = 250 x 100 ml/min = 83.3 L/min 0.3 BUT cardiac output (at rest) = 5-6 L/min

9 Combination with Hemoglobin 97% O 2 Hemoglobin (Hb) Oxyhemoglobin Hb + O 2 HbO 2 reversible reaction total O 2 carrying capacity times

10 Hemoglobin 4 polypeptide chains or subunit Globin protein Heme (iron-porphyrin compound) conjugated protein 1Hbmolecule = 4 subunits Heme O 2

11 saturation Hemoglobin Hb + O 2 HbO 2 reversible reaction deoxyhemoglobin (reduced Hb) oxyhemoglobin Hb 4 +4O 2 Hb 4 O 8 oxygenation (0.01 sec.)

12 purple-red deoxygenated hemoglobin of the venous blood bright-red oxyhemoglobin of the arterial blood Hb + O 2 Hemoglobin acid warm low O 2 high CO 2 neutral cool high O 2 low CO 2 Hb(O 2 ) 4 oxyhemoglobin oxyhemoglobin gives up its oxygen

13 in the capillaries of the lungs lower temperature higher ph oxygen pressure

14 Gas transportation in blood dissolved O 2 /CO 2 exert pressure Binding O 2 /CO 2 (chemical reaction)

15 Oxygen capacity Oxygen content % hemoglobin saturation Oxygen delivery Oxygen consumption

16 Oxygen content Oxygen capacity % hemoglobin saturation oxygen content = dissolved O 2 + oxyhemoglobin oxyhemoglobin = oxygen content - dissolved O 2 %saturation of Hb = O 2 combine with Hb with O 2 O 2 capacity of Hb (or %SaO 2 ) X 100

17 oxygen content = dissolved O 2 + oxyhemoglobin oxyhemoglobin = oxygen content - dissolved O 2 %saturation of Hb = O 2 combine with Hb with O 2 O 2 capacity of Hb (or %SaO 2 ) X 100 (oxyhemoglobin) O 2 combine with Hb = %saturation of Hb x O 2 capacity of Hb 100

18 size? Htc.? p.560

19 Oxygen capacity of Hb In normal: Hb 15 gm/ 100ml. blood 15gm% Hb 1 gm O ml (max.) Oxygen capacity = O 2 (max.) combine with Hb in 100ml. blood = 15 x 1.34 = 20.1 ml in 100ml. blood O ml ~ 20 vol%

20 CaO 2 Oxygen content O 2 content = totalo 2 in blood (arterial blood) = dissolved O 2 + oxyhemoglobin 0.3 ml ml 19.8 ml ~ 20 ml = (PO 2 x 0.003) + [(O 2 capacity)x %SaO 2 ] / mmhg A-V shunt = 1.34 x 15 = 20.1 ml 97% of (20.1 ml) = 19.5 ml 100% saturation 97% saturation

21 CvO 2 Oxygen content O 2 content = totalo 2 in blood (venous blood) = dissolved O 2 + oxyhemoglobin = (PO 2 x 0.003) + [( O 2 capacity) x %SvO 2 ]/ mmhg O 2 combine with Hb = % saturation = % of (20.1 ml) = ml = ml = 15 ml

22 DO 2 Oxygen delivery O 2 content = total O 2 in blood (arterial blood) ~ 20 ml (in 100 ml. blood) Q = 5 L/min cells DO 2 Q x CaO 2 (x10) (unit: ml/min)

23 Oxygen delivery venous blood O 2 15 ml in 100ml. blood arterial blood O 2 20 ml in 100ml. blood

24 Venous blood PO 2 = 40 mmhg in 100ml. blood Arterial blood PO 2 = 100 mmhg dissolved O 2 = ml = 0.12 ml Oxyhemoglobin = ml ~ 15 ml dissolved O 2 = ml = 0.3 ml Oxyhemoglobin = 19.5 ml ~ 20 ml ~ 5 ml or 250 ml/min (if C.O. = 5000 ml/min) O 2

25 VO 2 Oxygen consumption in 100ml. blood oxygen content Arterial blood ~ 20 ml Venous blood ~ 15 ml cells ~ 5 ml

26 O 2 content in 100ml. blood Arterial blood ~ 20 ml Venous blood ~ 15 ml in 100ml. blood cells ~ 5 ml cells use ~ 5 ml VO 2 Q = 5 L/min C.O. = 5000 ml/min 5000 x 5 ml 100 = 250 ml Oxygen consumption

27 VO ml/min Oxygen consumption

28 Oxyhemoglobin dissociation curve dissociation separation O 2 dissociation release O 2 from HbO 2 Hb + O 2 HbO 2 reversible reaction %SaO 2

29 Arterial blood Venous blood Oxyhemoglobin dissociation curve v a 50% SaO 2 %SaO 2 p.563

30 Oxyhemoglobin dissociation curve a v unloading loading associated part or flat part dissociated part or steep part %SaO 2

31 Factors affecting O 2 dissociation curve 1. PCO 2 2. H + concentration 3. temperature 4. 2,3 diaphsphoglyceric acid (2,3 DPG) in RBC ( β chain of oxyhemoglobin)

32 Factors O 2 affinity to Hb release O 2 Shift to left Factors Shift to right O 2 affinity to Hb release O 2 PCO 2 ph Bohr effect

33 P50 Normal o C, ph 7.4 PCO 2 40 mmhg Shift to right P50 O 2 affinity to Hb ***

34 Effect of 2,3 diphosphoglyceric acid (2,3 DPG) 2,3 DPG RBC HbO 2 + 2,3 DPG Hb-2,3 DPG + O 2 2,3 DPG HbO 2 release O 2 shift to right = O 2 affinity to Hb hypoxia (>2-3 hrs) 2,3 DPG anemia blood (in Blood bank) hypoxemia chronic lung diseases exercise

35 1. Dissolved in plasma dissolved CO 2 (6%) 2. Diffuse to RBC dissolved CO 2 in intracellular fluid react with NH 2 -group carbaminohemogloblin react with H 2 O bicarbonate

36 Dissolved in plasma Henry s law volume α of dissolved gas dissolved CO 2 (6%) partial pressure of that gas solubility-20 times : CO 2 > O 2 in blood 100 ml: PCO 2 1 mmhg 20x(0.003) = 0.06 dissolved CO ml

37 react with H 2 O bicarbonate in plasma (88%)*** in RBC *** (500 times faster) in RBC in plasma slow CA CO 2 + H 2 O H 2 CO 3 H + + HCO 3 Carbonic acid Bicarbonate CA: carbonic anhydrase

38 react with NH 2 - (amino group) carbaminohemogloblin (6%) in plasma in plasma in RBC CO 2 +R-NH 2 RNHCOOH RNHCOO + H + plasma protein in RBC protein part in Hb carbamino compounds CO 2 + HbO 2 carbamino hemoglobin + O 2 HbCO 2

39 Venous blood PCO 2 = 46 mmhg dissolved CO 2 = 46 x 0.06 ml = 2.7 ml Bicarbonate carbaminohb = 50.3 ml ~ 53 ml ~ 4 ml or ml/min (if C.O. = ml/min) average 210 ml/min in 100ml. blood CO 2 Arterial blood PCO 2 = 40 mmhg dissolved CO 2 = 40 x 0.06 ml = 2.4 ml Bicarbonate = 43.8 ml carbaminohb = 2.6 ml ~ 49 ml

40 VCO 2 Carbon dioxide production Carbondioxide content in 100ml. blood Arterial blood Venous blood ~ 49 ml ~ 53 ml cells ~ 4 ml

41 in 100ml. blood Carbondioxide content Arterial blood ~ 49 ml Venous blood ~ 53 ml VCO 2 cells ~ 4 ml in 100ml. blood cells release ~ 4 ml C.O. = 5000 ml/min 5000 x 4 ml 100 = 200 ml Carbondioxide production

42 VCO ml/min carbon dioxide production

43 tissue capillary CO 2 dissolved CO 2 CO 2 +R-NH 2 RNHCOOH RNHCOO + H + *** O 2 dissolved CO 2 CO 2 + H 2 O H 2 CO 3 H + + HCO 3 plasma CO 2 pulm. capillary oxygenation p.568 (HbCO 2 ) CO 2 + HbO 2 carbaminohb + O 2 CO 2 + H 2 O H 2 CO 3 RBC H 2 O Cl - Chloride shift CA HCO 3 + H + H + + HbO 2 buffered H + Hb - + O Peripheral blood 2 de-oxygenation higher ph affinity to CO 2 HHb= reduced Hb Haldane effect *** plasma

44 Haldane effect PO 2 carbaminohb: HbCO 2 release CO2 Oxygenation (@ lungs) ph HbCO 2 + O 2 HbO 2 + CO 2 affinity to CO 2 expired air

45 Carbon dioxide dissociation curve 53 vol% 49 vol% 4vol% arterial blood venous blood dissolved CO 2

46 more steep *** p.571

47

Gas Exchange in the Tissues

Gas Exchange in the Tissues Gas Exchange in the Tissues As the systemic arterial blood enters capillaries throughout the body, it is separated from the interstitial fluid by only the thin capillary wall, which is highly permeable

More information

PBL SEMINAR. HEMOGLOBIN, O 2 -TRANSPORT and CYANOSIS An Overview

PBL SEMINAR. HEMOGLOBIN, O 2 -TRANSPORT and CYANOSIS An Overview 1 University of Papua New Guinea School of Medicine and Health Sciences Division of Basic Medical Sciences Discipline of Biochemistry and Molecular Biology PBL SEMINAR HEMOGLOBIN, O 2 -TRANSPORT and CYANOSIS

More information

3. Which of the following would be inconsistent with respiratory alkalosis? A. ph = 7.57 B. PaCO = 30 mm Hg C. ph = 7.63 D.

3. Which of the following would be inconsistent with respiratory alkalosis? A. ph = 7.57 B. PaCO = 30 mm Hg C. ph = 7.63 D. Pilbeam: Mechanical Ventilation, 4 th Edition Test Bank Chapter 1: Oxygenation and Acid-Base Evaluation MULTIPLE CHOICE 1. The diffusion of carbon dioxide across the alveolar capillary membrane is. A.

More information

Module G: Oxygen Transport. Oxygen Transport. Dissolved Oxygen. Combined Oxygen. Topics to Cover

Module G: Oxygen Transport. Oxygen Transport. Dissolved Oxygen. Combined Oxygen. Topics to Cover Topics to Cover Module G: Oxygen Transport Oxygen Transport Oxygen Dissociation Curve Oxygen Transport Studies Tissue Hypoxia Cyanosis Polycythemia Oxygen Transport Oxygen is carried from the lungs to

More information

Globular proteins Proteins globular fibrous

Globular proteins Proteins globular fibrous Globular proteins Globular proteins Proteins are biochemical compounds consisting of one or more polypeptides typically folded into a globular or fibrous form in a biologically functional way. Globular

More information

OpenStax-CNX module: m Transport of Gases. OpenStax College. Abstract

OpenStax-CNX module: m Transport of Gases. OpenStax College. Abstract OpenStax-CNX module: m46545 1 Transport of Gases OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 By the end of this section, you will

More information

Lecture 5. Dr. Sameh Sarray Hlaoui

Lecture 5. Dr. Sameh Sarray Hlaoui Lecture 5 Myoglobin & Hemoglobin Dr. Sameh Sarray Hlaoui Myoglobin and Hemoglobin Myoglobin - Myoglobin and Hemoglobin are (metalloprotein containing a heme prosthetic group). hemeproteins - Function as

More information

Carbon Dioxide Transport. Carbon Dioxide. Carbon Dioxide Transport. Carbon Dioxide Transport - Plasma. Hydrolysis of Water

Carbon Dioxide Transport. Carbon Dioxide. Carbon Dioxide Transport. Carbon Dioxide Transport - Plasma. Hydrolysis of Water Module H: Carbon Dioxide Transport Beachey Ch 9 & 10 Egan pp. 244-246, 281-284 Carbon Dioxide Transport At the end of today s session you will be able to : Describe the relationship free hydrogen ions

More information

Critical Care Monitoring. Assessing the Adequacy of Tissue Oxygenation. Tissue Oxygenation - Step 1. Tissue Oxygenation

Critical Care Monitoring. Assessing the Adequacy of Tissue Oxygenation. Tissue Oxygenation - Step 1. Tissue Oxygenation Critical Care Monitoring 1 Assessing the Adequacy of Tissue oxygenation is the end-product of many complex steps 2 - Step 1 Oxygen must be made available to alveoli 3 1 - Step 2 Oxygen must cross the alveolarcapillary

More information

OXYGENATION AND ACID- BASE EVALUATION. Chapter 1

OXYGENATION AND ACID- BASE EVALUATION. Chapter 1 OXYGENATION AND ACID- BASE EVALUATION Chapter 1 MECHANICAL VENTILATION Used when patients are unable to sustain the level of ventilation necessary to maintain the gas exchange functions Artificial support

More information

Ola Al-juneidi Abdel-Mu'ez Siyam. Dr. Nayef

Ola Al-juneidi Abdel-Mu'ez Siyam. Dr. Nayef 3 Ola Al-juneidi Abdel-Mu'ez Siyam Dr. Nayef Transport of CO 2 We have talked previously about the role of hemoglobin in the transport of oxygen and how it is regulated by various allosteric effectors,

More information

Lecture 10. Circulatory systems; flow dynamics, flow regulation in response to environmental and internal conditions.

Lecture 10. Circulatory systems; flow dynamics, flow regulation in response to environmental and internal conditions. Lecture 10 Circulatory systems; flow dynamics, flow regulation in response to environmental and internal conditions Professor Simchon Influence of P O2 on Hemoglobin Saturation Hemoglobin saturation plotted

More information

Mechanical Ventilation. Assessing the Adequacy of Tissue Oxygenation. Tissue Oxygenation - Step 1. Tissue Oxygenation

Mechanical Ventilation. Assessing the Adequacy of Tissue Oxygenation. Tissue Oxygenation - Step 1. Tissue Oxygenation 1 Mechanical Ventilation Assessing the Adequacy of 2 Tissue oxygenation is the end-product of many complex steps - Step 1 3 Oxygen must be made available to alveoli 1 - Step 2 4 Oxygen must cross the alveolarcapillary

More information

Lecture 19, 04 Nov 2003 Chapter 13, Respiration, Gas Exchange, Acid-Base Balance. Vertebrate Physiology ECOL 437 University of Arizona Fall 2003

Lecture 19, 04 Nov 2003 Chapter 13, Respiration, Gas Exchange, Acid-Base Balance. Vertebrate Physiology ECOL 437 University of Arizona Fall 2003 1 Lecture 19, 04 Nov 003 Chapter 13, Respiration, Gas Exchange, Acid-Base Balance Vertebrate Physiology ECOL 437 University of Arizona Fall 003 instr: Kevin Bonine t.a.: Bret Pasch Vertebrate Physiology

More information

Acid - base equilibrium

Acid - base equilibrium Acid base equilibrium ph concept ph = log [H + ] ph [H+] 1 100 mmol/l D = 90 mmol/l 2 10 mmol/l D = 9 mmol/l 3 1 mmol/l 2 ph = log [H + ] 3 ph ph = log [H + ] ph of capillary blood norm: 7,35 7,45 Sorensen

More information

Fluid and Electrolytes P A R T 4

Fluid and Electrolytes P A R T 4 Fluid and Electrolytes P A R T 4 Mechanisms that control acid-base homeostasis Acids and bases continually enter and leave body Hydrogen ions also result from metabolic activity Acids Hydrogen ion donors

More information

Biochemistry. Structure and function of hemoglobin M E D I C I N E. Be like stem cells, differentiate yourself from others! Editing file PO 4.

Biochemistry. Structure and function of hemoglobin M E D I C I N E. Be like stem cells, differentiate yourself from others! Editing file PO 4. HbA NH 2 H 2 O 2 KClO 3 Cl 2 O 7 PO 4 CH2O NAOH KMnO 4 M E D I C I N E KING SAUD UNIVERSITY Co 2 COOH MgCl 2 H 2 O Important Extra Information Doctors slides Doctors notes SO 2 HCN CCl 4 CuCl 2 Biochemistry

More information

Chapter 7. Heme proteins Cooperativity Bohr effect

Chapter 7. Heme proteins Cooperativity Bohr effect Chapter 7 Heme proteins Cooperativity Bohr effect Hemoglobin is a red blood cell protein that transports oxygen from the lungs to the tissues. Hemoglobin is an allosteric protein that displays cooperativity

More information

Oxygen and CO 2 transport. Biochemistry II

Oxygen and CO 2 transport. Biochemistry II Oxygen and CO 2 transport 2 Acid- base balance Biochemistry II Lecture 9 2008 (J.S.) 1 Transport of O 2 and CO 2 O 2 INSPIRED AIR CO 2 EXPIRED AIR HCO 3 + HHb + Lungs HbO 2 + H + + HCO 3 HbO 2 + H 2 O

More information

Pharmacist. Drugs. body physiology. ( molecular constituents)

Pharmacist. Drugs. body physiology. ( molecular constituents) Why? Pharmacist Drugs body physiology ( molecular constituents) Mechanistic levels of response: Altered patient response physiologic systems Vascular system blood, muscle, liver tissues / organs cellular

More information

Why Old Blood is Bad. tales from the electronic perfusion record. Molly Marko, BS, BSE, CCP Geisinger Health System Danville, Pennsylvania

Why Old Blood is Bad. tales from the electronic perfusion record. Molly Marko, BS, BSE, CCP Geisinger Health System Danville, Pennsylvania Why Old Blood is Bad tales from the electronic perfusion record Molly Marko, BS, BSE, CCP Geisinger Health System Danville, Pennsylvania Disclosure I have no financial relationship with any of the companies

More information

O 2 O 2 O 2. Haemoglobin

O 2 O 2 O 2. Haemoglobin O 2 O 2 O 2 Haemoglobin O 2 O 2 O 2 98% travels in oxyhaemoglobin (in red blood cells) 2% is dissolved in plasma (compared to carbon dioxide, oxygen is relatively insoluble in plasma) O 2 is not very soluble

More information

UNIVERSITY OF JORDAN DEPT. OF PHYSIOLOGY & BIOCHEMISTRY RESPIRATORY PHYSIOLOGY MEDICAL STUDENTS FALL 2014/2015 (lecture 1)

UNIVERSITY OF JORDAN DEPT. OF PHYSIOLOGY & BIOCHEMISTRY RESPIRATORY PHYSIOLOGY MEDICAL STUDENTS FALL 2014/2015 (lecture 1) UNIVERSITY OF JORDAN DEPT. OF PHYSIOLOGY & BIOCHEMISTRY RESPIRATORY PHYSIOLOGY MEDICAL STUDENTS FALL 2014/2015 (lecture 1) Textbook of medical physiology, by A.C. Guyton and John E, Hall, Twelfth Edition,

More information

1. Hemoglobin and the Movement of Oxygen. Respirator system/biochemistry

1. Hemoglobin and the Movement of Oxygen. Respirator system/biochemistry 1. Hemoglobin and the Movement of Oxygen Respirator system/biochemistry YOU MUST BE ABLE TO: Hemoglobin and the Movement of Oxygen specific aims 1. Compare structure of myoglobin and hemoglobin 2. Understand

More information

RESPIRATORY TRACT RESPIRATORY ORGAN TGESBIOLOGY ISC 11

RESPIRATORY TRACT RESPIRATORY ORGAN TGESBIOLOGY ISC 11 RESPIRATORY TRACT RESPIRATORY ORGAN Difference between dry and wet cough Irritation of respiratory tract Due to dust or smoke Accumulation of mucus Due to infections The respiratory tract Tracheal epithelium

More information

Respiratory Physiology Part II. Bio 219 Napa Valley College Dr. Adam Ross

Respiratory Physiology Part II. Bio 219 Napa Valley College Dr. Adam Ross Respiratory Physiology Part II Bio 219 Napa Valley College Dr. Adam Ross Gas exchange Gas exchange in the lungs (to capillaries) occurs by diffusion across respiratory membrane due to differences in partial

More information

Blood Gases, ph, Acid- Base Balance

Blood Gases, ph, Acid- Base Balance Blood Gases, ph, Acid- Base Balance Blood Gases Acid-Base Physiology Clinical Acid-Base Disturbances Blood Gases Respiratory Gas Exchange Chemical Control of Respiration Dyshemoglobins Oxygen Transport

More information

i. Zone 1 = dead space ii. Zone 2 = ventilation = perfusion (ideal situation) iii. Zone 3 = shunt

i. Zone 1 = dead space ii. Zone 2 = ventilation = perfusion (ideal situation) iii. Zone 3 = shunt Respiratory Review I. Oxygen transport a. Oxygen content of blood i. Dissolved oxygen =.003 x PaO 2, per 100 ml plasma 1. Henry s Law ii. Oxygen on hemoglobin = 1.34 ml x sat x Hgb iii. CaO 2 = Dissolved

More information

The hemoglobin (Hb) can bind a maximum of 220 ml O2 per liter.

The hemoglobin (Hb) can bind a maximum of 220 ml O2 per liter. Hemoglobin Hemoglobin The most important function of the red blood cells is totransport (O2) from the lungs into the tissues, and carbon dioxide (CO2) from the tissues back into the lungs. O2 is poorly

More information

Decreased Affinity of Blood for Oxygen in Patients with Low-Output Heart Failure

Decreased Affinity of Blood for Oxygen in Patients with Low-Output Heart Failure Decreased Affinity of Blood for Oxygen in Patients with Low-Output Heart Failure By James Metcalfe, M.D., Dharam S. Dhindsa, Ph.D., Miles J. Edwards, M.D., and Athanasios Mourdjinis, M.D. ABSTRACT Oxygen

More information

Transport of oxygen and carbon dioxide in body fluids. Circulation and Hearts. Circulation in vertebrates and invertebrates

Transport of oxygen and carbon dioxide in body fluids. Circulation and Hearts. Circulation in vertebrates and invertebrates Circulation Transport of oxygen and carbon dioxide in body fluids Circulation and Hearts Circulation in vertebrates and invertebrates Respiratory pigments Increase the amount of oxygen carried by blood

More information

3. Which statement is false about anatomical dead space?

3. Which statement is false about anatomical dead space? Respiratory MCQs 1. Which of these statements is correct? a. Regular bronchioles are the most distal part of the respiratory tract to contain glands. b. Larynx do contain significant amounts of smooth

More information

Renal physiology V. Regulation of acid-base balance. Dr Alida Koorts BMS

Renal physiology V. Regulation of acid-base balance. Dr Alida Koorts BMS Renal physiology V Regulation of acidbase balance Dr Alida Koorts BMS 712 012 319 2921 akoorts@medic.up.ac.za Hydrogen ions (H + ): Concentration and origin Concentration in arterial blood, resting: [H

More information

Control of Ventilation [2]

Control of Ventilation [2] Control of Ventilation [2] สรช ย ศร ส มะ พบ., Ph.D. ภาคว ชาสร รว ทยา คณะแพทยศาสตร ศ ร ราชพยาบาล มหาว ทยาล ยมห ดล Describe the effects of alterations in chemical stimuli, their mechanisms and response to

More information

Chronic Obstructive Pulmonary Disease

Chronic Obstructive Pulmonary Disease 136 PHYSIOLOGY CASES AND PROBLEMS Case 24 Chronic Obstructive Pulmonary Disease Bernice Betweiler is a 73-year-old retired seamstress who has never been married. She worked in the alterations department

More information

Question Expected Answers Marks Additional Guidance 1 (a) C ; E ; A ; B ; 4. PhysicsAndMathsTutor.com

Question Expected Answers Marks Additional Guidance 1 (a) C ; E ; A ; B ; 4. PhysicsAndMathsTutor.com Question Expected Answers Marks Additional Guidance 1 (a) C ; E ; A ; B ; 4 Question Expected Answers Marks Additional Guidance (b) (i) P wave combined with larger peak before QRS complex ; Note: - look

More information

2018 Biochemistry 110 California Institute of Technology Lecture 7: Molecular Disease: Sickle-Cell Anemia

2018 Biochemistry 110 California Institute of Technology Lecture 7: Molecular Disease: Sickle-Cell Anemia 2018 Biochemistry 110 California Institute of Technology Lecture 7: Molecular Disease: Sickle-Cell Anemia James Herrick (1861-1954) Phase-Contrast microscopy image of Sickle Cells intermingled with erythrocytes.

More information

Oximeters. Hsiao-Lung Chan, Ph.D. Dept Electrical Engineering Chang Gung University, Taiwan

Oximeters. Hsiao-Lung Chan, Ph.D. Dept Electrical Engineering Chang Gung University, Taiwan Oximeters Hsiao-Lung Chan, Ph.D. Dept Electrical Engineering Chang Gung University, Taiwan chanhl@mail.cgu.edu.tw Pulse oximeter Masimo pulse CO-oximeter http://www.masimo.com/produc ts/continuous/radical-7/

More information

Content Display. - Introduction to Unit 4. Unit 4 - Cardiorespiratory Response to Exercise : Lesson 1. KINE xxxx Exercise Physiology

Content Display. - Introduction to Unit 4. Unit 4 - Cardiorespiratory Response to Exercise : Lesson 1. KINE xxxx Exercise Physiology Content Display Unit 4 - Cardiorespiratory Response to Exercise : Lesson KINE xxxx Exercise Physiology 5 Unit 4 - Cardiorespiratory Response to Exercise Lesson U4LP - Introduction to Unit 4 The specific

More information

UNIVERSITY OF BOLTON SCHOOL OF SPORT AND BIOMEDICAL SCIENCES SPORT PATHWAYS WITH FOUNDATION YEAR SEMESTER TWO EXAMINATIONS 2015/2016

UNIVERSITY OF BOLTON SCHOOL OF SPORT AND BIOMEDICAL SCIENCES SPORT PATHWAYS WITH FOUNDATION YEAR SEMESTER TWO EXAMINATIONS 2015/2016 LH8 UNIVERSITY OF BOLTON SCHOOL OF SPORT AND BIOMEDICAL SCIENCES SPORT PATHWAYS WITH FOUNDATION YEAR SEMESTER TWO EXAMINATIONS 2015/2016 INTRODUCTION TO HUMAN PHYSIOLOGY MODULE NO: SRB3008 Date: Monday

More information

Acid-Base Tutorial 2/10/2014. Overview. Physiology (2) Physiology (1)

Acid-Base Tutorial 2/10/2014. Overview. Physiology (2) Physiology (1) Overview Acid-Base Tutorial Nicola Barlow Physiology Buffering systems Control mechanisms Laboratory assessment of acid-base Disorders of H + ion homeostasis Respiratory acidosis Metabolic acidosis Respiratory

More information

Dr. Suzana Voiculescu

Dr. Suzana Voiculescu Dr. Suzana Voiculescu Definition All the processes inside the body which keep the H+ concentration within normal values. Depends on water and ion balance blood gas homeostasis Blood acidity may be expressed

More information

Heinz-Hermann Weitkemper, EBCP. 4th Joint Scandinavian Conference in Cardiothoracic Surgery 2012 Vilnius / Lithuania

Heinz-Hermann Weitkemper, EBCP. 4th Joint Scandinavian Conference in Cardiothoracic Surgery 2012 Vilnius / Lithuania Heinz-Hermann Weitkemper, EBCP Everyone who earnestly practices perfusion is acting with the full belief that what they are doing is in the best interest of their patients. Perfusion can never be normal,

More information

The Respiratory System

The Respiratory System I. Organization of the Respiratory System The Respiratory System The respiratory system allows the circulation of air and the gas exchange between the body and the outside environment. It consists of the

More information

Exercise Respiratory system Ventilation rate matches work rate Not a limiting factor Elite athletes

Exercise Respiratory system Ventilation rate matches work rate Not a limiting factor Elite athletes Respiratory Exercise Response Chapter 11 Exercise Respiratory system Ventilation rate matches work rate Not a limiting factor Elite athletes Submaximal (

More information

Biology A-level: Transport. Blood. Page 1 of 22 1/18/2009. Red blood cells

Biology A-level: Transport. Blood. Page 1 of 22 1/18/2009. Red blood cells Page 1 of 22 Home A-level Biology Transport Blood Biology A-level: Transport Blood Just over half of the blood volume is made up of a pale yellow fluid called plasma. The rest of the blood is made up of

More information

How Does Pulse Oximetry Work? SpO2 Sensors Absorption at the Sensor Site Oxyhemoglobin Dissociation Curve

How Does Pulse Oximetry Work? SpO2 Sensors Absorption at the Sensor Site Oxyhemoglobin Dissociation Curve SpO2 Monitoring Contents 1 Introduction 1 What is SpO 2? How Does Pulse Oximetry Work? SpO2 Sensors Absorption at the Sensor Site Oxyhemoglobin Dissociation Curve 5 How Do I Use SpO2? Choosing a Sensor

More information

Maternal and Fetal Physiology

Maternal and Fetal Physiology Background Maternal and Fetal Physiology Anderson Lo, DO Fellow, Maternal-Fetal Medicine Wayne State University School of Medicine SEMCME Fetal Assessment Course July 20, 2018 Oxygen pathway Mother Placenta

More information

Slide 1. Slide 2. Slide 3. Learning Outcomes. Acid base terminology ARTERIAL BLOOD GAS INTERPRETATION

Slide 1. Slide 2. Slide 3. Learning Outcomes. Acid base terminology ARTERIAL BLOOD GAS INTERPRETATION Slide 1 ARTERIAL BLOOD GAS INTERPRETATION David O Neill MSc BSc RN NMP FHEA Associate Lecturer (Non Medical Prescribing) Cardiff University Advanced Nurse Practitioner Respiratory Medicine Slide 2 Learning

More information

Red blood cell transfusions Risks, benefits, and surprises

Red blood cell transfusions Risks, benefits, and surprises SIOP PODC Supportive Care Education Presentation Date: 19 th January 2016 www.cure4kids.org Red blood cell transfusions Risks, benefits, and surprises Scott Howard, MD, MSc Professor, Universidad de Memphis,

More information

GAS EXCHANGE IB TOPIC 6.4 CARDIOPULMONARY SYSTEM CARDIOPULMONARY SYSTEM. Terminal bronchiole Nasal cavity. Pharynx Left lung Alveoli.

GAS EXCHANGE IB TOPIC 6.4 CARDIOPULMONARY SYSTEM CARDIOPULMONARY SYSTEM. Terminal bronchiole Nasal cavity. Pharynx Left lung Alveoli. IB TOPIC 6.4 GAS EXCHANGE CARDIOPULMONARY SYSTEM CARDIOPULMONARY SYSTEM Branch from the pulmonary artery (oxygen-poor blood) Branch from the pulmonary vein (oxygen-rich blood) Terminal bronchiole Nasal

More information

IB TOPIC 6.4 GAS EXCHANGE

IB TOPIC 6.4 GAS EXCHANGE IB TOPIC 6.4 GAS EXCHANGE CARDIOPULMONARY SYSTEM CARDIOPULMONARY SYSTEM Branch from the pulmonary artery (oxygen-poor blood) Branch from the pulmonary vein (oxygen-rich blood) Terminal bronchiole Nasal

More information

O X Y G E N ADVANTAGE THEORY 1

O X Y G E N ADVANTAGE THEORY 1 O X Y G E N ADVANTAGE THEORY 1 The Oxygen Advantage Measurement appraisal called BOLT Unblock the nose by holding the breath Switch to nasal breathing on a permanent basis Address dysfunctional breathing

More information

Hemoglobin. Each alpha subunit has 141 amino acids, and each beta subunit has 146 amino acids.

Hemoglobin. Each alpha subunit has 141 amino acids, and each beta subunit has 146 amino acids. In the previous lecture we talked about erythropoiesis and its regulation by many vitamins like vitamin B12 and folic acid, proteins, iron and trace elements copper and cobalt. Also we talked about pernicious

More information

thebiotutor.com AS Biology Unit 2 Exchange & Transport

thebiotutor.com AS Biology Unit 2 Exchange & Transport thebiotutor.com AS Biology Unit 2 Exchange & Transport 1 Exchange of materials Oxygen and Carbon dioxide are obtained passively by simple diffusion Fick s law The rate of diffusion = concentration difference

More information

Anatomy and Physiology

Anatomy and Physiology Anatomy and Physiology For The First Class 2 nd Semester Erythrocytes = Red Blood Cells (RBC) Erythrocytes = Red Blood Cells Red blood cells are biconcave discs, they have no nucleus and cytoplasmic organelles.

More information

sounds are distant with inspiratory crackles. He sits on the edge of his chair, leaning forward, with both hands on his

sounds are distant with inspiratory crackles. He sits on the edge of his chair, leaning forward, with both hands on his I NTE R P R ETI N G A R T E R I A L B L O O D G A S E S : EASY AS A B C Take this step-by-step approach to demystify the parameters of oxygenation, ventilation, acid-base balance. BY WILLIAM C. PRUITT,

More information

Respiratory System 1. A function of the structure labelled X is to

Respiratory System 1. A function of the structure labelled X is to 1 Respiratory System 1. A function of the structure labelled X is to A. produce sound. B. exchange gases. C. carry air into and out of the lung. D. stimulate the breathing centre in the brain. 2. Identify

More information

The equilibrium between basis and acid can be calculated and termed as the equilibrium constant = Ka. (sometimes referred as the dissociation constant

The equilibrium between basis and acid can be calculated and termed as the equilibrium constant = Ka. (sometimes referred as the dissociation constant Acid base balance Dobroslav Hájek dhajek@med.muni.cz May 2004 The equilibrium between basis and acid can be calculated and termed as the equilibrium constant = Ka. (sometimes referred as the dissociation

More information

Arterial Blood Gas Analysis

Arterial Blood Gas Analysis Arterial Blood Gas Analysis L Lester www.3bv.org Bones, Brains & Blood Vessels Drawn from radial or femoral arteries. Invasive procedure Caution must be taken with patient on anticoagulants ph: 7.35-7.45

More information

FUNCTIONS OF HEMOGLOBIN:

FUNCTIONS OF HEMOGLOBIN: HEMOGLOBIN: Conjugated protein Simple protein combined with a non-protein substance Hemoglobin HEME +GLOBIN nonprotein substance HEME( prosthetic group) Red colour of blood is due to Hb in RBCs Normal

More information

Acute Changes in Oxyhemoglobin Affinity EFFECTS ON OXYGEN TRANSPORT AND UTILIZATION

Acute Changes in Oxyhemoglobin Affinity EFFECTS ON OXYGEN TRANSPORT AND UTILIZATION Acute Changes in Oxyhemoglobin Affinity EFFECTS ON OXYGEN TRANSPORT AND UTILIZATION Thomas E. Riggs,, A. William Shafer, Clarence A. Guenter J Clin Invest. 1973;52(10):2660-2663. https://doi.org/10.1172/jci107459.

More information

Introduction. Invasive Hemodynamic Monitoring. Determinants of Cardiovascular Function. Cardiovascular System. Hemodynamic Monitoring

Introduction. Invasive Hemodynamic Monitoring. Determinants of Cardiovascular Function. Cardiovascular System. Hemodynamic Monitoring Introduction Invasive Hemodynamic Monitoring Audis Bethea, Pharm.D. Assistant Professor Therapeutics IV January 21, 2004 Hemodynamic monitoring is necessary to assess and manage shock Information obtained

More information

Acid-Base 1, 2, and 3 Linda Costanzo, Ph.D.

Acid-Base 1, 2, and 3 Linda Costanzo, Ph.D. Acid-Base 1, 2, and 3 Linda Costanzo, Ph.D. OBJECTIVES: After studying this lecture, the student should understand: 1. The relationship between hydrogen ion concentration and ph. 2. Production of acid

More information

Mammalian Transport and The Heart

Mammalian Transport and The Heart Cardiovascular System AS-G, Chapters 8-9 Blood flows through the body in a closed system (circuit) driven by the pumping power of the heart Closed vs open: does the system have vessels contained the entire

More information

Advanced Monitoring of Cardiovascular and Respiratory Systems in Infants Kuwait 2018 Dr. Yasser Elsayed, MD, PhD Director of the Targeted Neonatal

Advanced Monitoring of Cardiovascular and Respiratory Systems in Infants Kuwait 2018 Dr. Yasser Elsayed, MD, PhD Director of the Targeted Neonatal Advanced Monitoring of Cardiovascular and Respiratory Systems in Infants Kuwait 2018 Dr. Yasser Elsayed, MD, PhD Director of the Targeted Neonatal Echocardiography, Point of Care and Hemodynamics Program

More information

Alternatives to RBC Transfusion: Erythropoietin and beyond

Alternatives to RBC Transfusion: Erythropoietin and beyond Alternatives to RBC Transfusion: Erythropoietin and beyond David Shimabukuro, MDCM Department of Anesthesia and Perioperative Care Medical Director, 13 ICU UC SF 1 Agenda Physiology of Oxygen Transport

More information

Chapter 12. Capillaries. Circulation. The circulatory system connects with all body tissues

Chapter 12. Capillaries. Circulation. The circulatory system connects with all body tissues Chapter 12 Circulation The circulatory system connects with all body s In many animals, microscopic blood vessels called capillaries Form an intricate network among the Red blood cell song Figure 23.1A

More information

Red Blood Cells (Erythrocytes) Lecture-2

Red Blood Cells (Erythrocytes) Lecture-2 Red Blood Cells (Erythrocytes) Lecture-2 Functions Transport hemoglobin, which in turn carries oxygen from the lungs to the tissues. RBCs contain a large quantity of carbonic anhydrase, an enzyme that

More information

Physiological Causes of Abnormal ABG s

Physiological Causes of Abnormal ABG s Physiological Causes of Abnormal ABG s Major Student Performance Objective 1 1. The student will be able to discuss causes for various types of blood gas results. 2. They will also be required to discuss

More information

Respiratory Pathophysiology Cases Linda Costanzo Ph.D.

Respiratory Pathophysiology Cases Linda Costanzo Ph.D. Respiratory Pathophysiology Cases Linda Costanzo Ph.D. I. Case of Pulmonary Fibrosis Susan was diagnosed 3 years ago with diffuse interstitial pulmonary fibrosis. She tries to continue normal activities,

More information

The Respiratory System

The Respiratory System Elaine N. Marieb Katja Hoehn Human Anatomy & Physiology SEVENTH EDITION C H A P T E R PowerPoint Lecture Slides prepared by Vince Austin, Bluegrass Technical and Community College 22P A R T B The Respiratory

More information

The Circulatory System. Blood and Blood Pressure

The Circulatory System. Blood and Blood Pressure The Circulatory System Blood and Blood Pressure Blood Total volume = 8-9% of body mass Average person = 5 L of blood DYK? Blood is actually a tissue! Plasma: - water, proteins, salts, gases, nutrients,

More information

Carbon Dioxide Transport and Acid-Base Balance

Carbon Dioxide Transport and Acid-Base Balance CHAPTER 7 Carbon Dioxide Transport and Acid-Base Balance Carbon Dioxide Transport Dioxide Transport In plasma: Carbamino compound (bound to protein) Bicarbonate Dissolved CO 2 CO 2 Is Converted to HCO

More information

Haemoglobin Revision. May minutes. 85 marks. Page 1 of 32

Haemoglobin Revision. May minutes. 85 marks. Page 1 of 32 Haemoglobin Revision May 103 97 minutes 85 marks Page 1 of 3 Q1. (a) The graph shows a dissociation curve for human haemoglobin at ph 7.4. The position of the curve is different at ph 7.. (i) (ii) Sketch

More information

Chapter 34 Active Reading Guide Circulation and Gas Exchange

Chapter 34 Active Reading Guide Circulation and Gas Exchange Name: AP Biology Mr. Croft Chapter 34 Active Reading Guide Circulation and Gas Exchange Section 1 1. Gaining O 2 and nutrients while shedding CO 2 and other waste products occurs with every cell in the

More information

The Hemodynamic Puzzle

The Hemodynamic Puzzle The Hemodynamic Puzzle SVV NIRS O 2 ER Lactate Energy Metabolism (Oxygen Consumption) (Ml/min/m 2 ) Oxygen Debt: To Pay or Not to Pay? Full Recovery Possible Delayed Repayment of O 2 Debt Oxygen Deficit

More information

A. Incorrect! The left ventricle receives oxygenated blood from the lungs via the left atrium.

A. Incorrect! The left ventricle receives oxygenated blood from the lungs via the left atrium. DAT Biology - Problem Drill 10: The Circulatory System Question No. 1 of 10 1. What is the flow of deoxygenated blood through the heart as it returns from the body? Question #01 (A) Vena cava; right ventricle;

More information

Chemistry and Biochemistry 153A Spring Exam 2

Chemistry and Biochemistry 153A Spring Exam 2 hemistry and Biochemistry 153A Spring 2011 Exam 2 Instructions: You will have 1 hour 45 minutes to complete the exam. You may use a pencil (recommended) or blue or black ink pen to write your answers.

More information

Anatomy of the Respiratory System

Anatomy of the Respiratory System Anatomy of the Respiratory System Respiration is a term used to refer to ventilation of the lungs (breathing) In other contexts it can be used to refer to part of cellular metabolism Functions of respiration

More information

Feeling Blue? Aaron St-Laurent Montreal Children s Hospital Pulmonology Cross Canada Rounds

Feeling Blue? Aaron St-Laurent Montreal Children s Hospital Pulmonology Cross Canada Rounds Feeling Blue? Aaron St-Laurent Montreal Children s Hospital Pulmonology Cross Canada Rounds Case I Identification & chief complaint 8 year-old patient with hypoxemia on overnight oximetry Found to have

More information

بسم هللا الرحمن الرحيم

بسم هللا الرحمن الرحيم بسم هللا الرحمن الرحيم Yesterday we spoke of the increased airway resistance and its two examples: 1) emphysema, where we have destruction of the alveolar wall and thus reducing the area available for

More information

a. Describe the physiological consequences of intermittent positive pressure ventilation and positive end-expiratory pressure.

a. Describe the physiological consequences of intermittent positive pressure ventilation and positive end-expiratory pressure. B. 10 Applied Respiratory Physiology a. Describe the physiological consequences of intermittent positive pressure ventilation and positive end-expiratory pressure. Intermittent positive pressure ventilation

More information

Empowering the RT with New Noninvasive Monitoring Capabilities

Empowering the RT with New Noninvasive Monitoring Capabilities Empowering the RT with New Noninvasive Monitoring Capabilities Thomas Lamphere BS, RRT, RPFT Executive Director, Pennsylvania Society for Respiratory Care Adjunct Instructor, Respiratory Care Program,

More information

Respiratory System. Introduction. Atmosphere. Some Properties of Gases. Human Respiratory System. Introduction

Respiratory System. Introduction. Atmosphere. Some Properties of Gases. Human Respiratory System. Introduction Introduction Respiratory System Energy that we consume in our food is temporarily stored in the bonds of ATP (adenosine triphosphate) before being used by the cell. Cells use ATP for movement and to drive

More information

Key Concepts. Learning Objectives

Key Concepts. Learning Objectives Lectures 8 and 9: Protein Function, Ligand Binding -- Oxygen Binding and Allosteric Regulation in Hemoglobin [PDF] Reading: Berg, Tymoczko & Stryer, Chapter 7, pp. 183-199 problems in textbook: chapter

More information

Defining Optimal Perfusion during CPB. Carlo Alberto Tassi Marketing Manager Eurosets Italy

Defining Optimal Perfusion during CPB. Carlo Alberto Tassi Marketing Manager Eurosets Italy Defining Optimal Perfusion during CPB Carlo Alberto Tassi Marketing Manager Eurosets Italy It is a device able to monitor in a real time vital parameters and able to provide information regarding the transport

More information

Blood Substitutes. Roy Wang Ellen Quach November 2005

Blood Substitutes. Roy Wang Ellen Quach November 2005 Blood Substitutes Roy Wang Ellen Quach November 2005 Why Do We Need Blood Substitutes? Provides disease-free alternative to transfusions Universal Compatibility Longer shelf-life than allogeneic blood

More information

6. Fill in the following as you describe the details of Erythrocytes:

6. Fill in the following as you describe the details of Erythrocytes: 1 Key to Blood Power Quiz 1. The physical characteristics of blood include the following: Blood color depends on oxygen content, bright red is rich whereas dark red is poor. Blood is times more viscous

More information

Haemoglobin BY: MUHAMMAD RADWAN WISSAM MUHAMMAD

Haemoglobin BY: MUHAMMAD RADWAN WISSAM MUHAMMAD Haemoglobin BY: MUHAMMAD RADWAN WISSAM MUHAMMAD Introduction is the iron-containing oxygen transport metalloprotein in the red blood cells Hemoglobin in the blood carries oxygen from the respiratory organs

More information

Wanchai Wongkornrat Cardiovascular Thoracic Surgery Siriraj Hospital Mahidol University

Wanchai Wongkornrat Cardiovascular Thoracic Surgery Siriraj Hospital Mahidol University Wanchai Wongkornrat Cardiovascular Thoracic Surgery Siriraj Hospital Mahidol University Assess adequacy of ventilation and oxygenation Aids in establishing a diagnosis and severity of respiratory failure

More information

PHAR3316 Pharmacy biochemistry Exam #2 Fall 2010 KEY

PHAR3316 Pharmacy biochemistry Exam #2 Fall 2010 KEY 1. How many protons is(are) lost when the amino acid Asparagine is titrated from its fully protonated state to a fully deprotonated state? A. 0 B. 1 * C. 2 D. 3 E. none Correct Answer: C (this question

More information

Acid-Base Physiology

Acid-Base Physiology AcidBase Physiology 1990 Write short notes on buffers. 1. A buffer is a solution which has the ability to minimised changes in ph when an acid or base is added to it. It usually consists of a weak acid

More information

Acute care testing. handbook. Your knowledge source

Acute care testing. handbook. Your knowledge source Acute care testing handbook Your knowledge source Authors: Corina Seeger, MSc Biochemistry, Scientific advisor, Radiometer Medical ApS Chris Higgins, MSc Medical Biochemistry, Medical writer, UK Illustrations

More information

BIOLOGY - CLUTCH CH.42 - CIRCULATORY SYSTEM.

BIOLOGY - CLUTCH CH.42 - CIRCULATORY SYSTEM. !! www.clutchprep.com CONCEPT: GAS EXCHANGE AND CIRCULATION Respiratory system draws in gases from the environment, intakes O2 and outputs CO2 Circulatory system transports O2, CO2, nutrients, hormones,

More information

Oxygenation, oxygen saturation, oxygen content, alveolar gas equation, indices of

Oxygenation, oxygen saturation, oxygen content, alveolar gas equation, indices of BLOOD GAS ANALYSIS Contents 1. Introduction, indications and sources of errors 2. Terminology and normal arterial blood gases 3. Understanding the print outs 4. Details about (i) (ii) ph Oxygenation, oxygen

More information

ATP. Chapter 7, parts of 48 Cellular Respiration: Gas Exchange, Other Metabolites & Control of Respiration. Cellular Respiration

ATP. Chapter 7, parts of 48 Cellular Respiration: Gas Exchange, Other Metabolites & Control of Respiration. Cellular Respiration Chapter 7, parts of 48 Cellular Respiration: Gas Exchange, Other Metabolites & Control of Respiration Cellular Respiration ATP Gas Exchange O 2 & CO 2 exchange provides O 2 for aerobic cellular respiration

More information

Exercise Stress Testing: Cardiovascular or Respiratory Limitation?

Exercise Stress Testing: Cardiovascular or Respiratory Limitation? Exercise Stress Testing: Cardiovascular or Respiratory Limitation? Marshall B. Dunning III, Ph.D., M.S. Professor of Medicine & Physiology Medical College of Wisconsin What is exercise? Physical activity

More information

Chapter 15 Fluid and Acid-Base Balance

Chapter 15 Fluid and Acid-Base Balance Chapter 15 Fluid and Acid-Base Balance by Dr. Jay M. Templin Brooks/Cole - Thomson Learning Fluid Balance Water constitutes ~60% of body weight. All cells and tissues are surrounded by an aqueous environment.

More information

Physiological Buffers

Physiological Buffers CHM333 LECTURES 6 & 7: 9/9 9/14 FALL 2009 Professor Christine Hrycyna Physiological Buffers All about maintaining equilibrium Major buffer in blood (ph 7.4) and other extracellular fluids is the carbonic

More information