Diagnosis and Treatment of Constrictive Pericarditis

Size: px
Start display at page:

Download "Diagnosis and Treatment of Constrictive Pericarditis"

Transcription

1 Diagnosis and Treatment of Constrictive Pericarditis Edwin G. Avery, IV, M.D. Chief, Division of Cardiac Anesthesia University Hospitals Case Medical Center Associate Professor of Anesthesiology Case Western Reserve Univ. School of Medicine 36 th SCA Annual Meeting & Workshops March 29 April 2, 2014 New Orleans, LA Objectives: 1) Develop a basic understanding of diastolic cardiac function as assessed by cardiac ultrasound exam 2) Understand the difference between constrictive and restrictive cardiac pathologies 3) Be aware of the most effective diagnostic modalities employed to determine the need for pericardiectomy I. Pathophysiology of Constrictive Pericarditis Constrictive pericarditis (CP) represents the final stages in the progression of an inflammatory process resulting from a wide range of possible pathologies affecting the pericardium (e.g., idiopathic, postsurgical/trauma, infectious, autoimmune disorders, irradiation, uremia, neoplastic, sarcoid, methysergide therapy). The end result is that the heart s diastolic function (i.e. lusitropism) is limited by constriction related to changes in the pericardium (i.e. thickening, fibrosis and calcification), thus the term constrictive pericarditis. The time course for constriction to occur following an inflammatory insult is variable and may span from months to years. In some cases the fibrosis with associated thickening can develop rapidly and may be reversible (most commonly following cardiac surgery). 1 The dense fibrosis that characterizes CP commonly involves adhesions between the visceral and parietal pericardial layers. From a pathophysiologic standpoint the developed constriction affects lusitropism and effectively limits cardiac chamber filling. Elevation of systemic and pulmonary venous pressures further characterizes the pathophysiology. In CP the ventricular chambers are known to fill rapidly in early diastole as a result of the elevated atrial pressures; ventricular filling ceases early and abruptly when the chamber reaches its limited maximum volumetric capacity. The limited filling capacity of the ventricle(s) has different pathologic consequences depending on whether one or both sides of the heart are affected. For example, in an individual with constrictive changes isolated to the right ventricle there will be signs/symptoms of systemic venous congestion (e.g., hepatic congestion with associated coagulopathy and hepatic dysfunction, peripheral edema, ascites, anasarca and possibly hepatic cirrhosis). Alternatively, constrictive changes primarily affecting the left ventricle will result in pulmonary edema/hypertension and respiratory symptoms (e.g., exertional dyspnea, orthopnea and cough) The limited cardiac filling may also result in a compromised stroke volume and thus reduced cardiac output putting all organs at risk for impaired perfusion. In individuals suffering from constrictive changes to both sides of the heart the signs and symptoms will be mixed. Further, the reduced cardiac output may result in physiologic compensatory changes involving the retention of sodium and water by the kidneys that can contribute to elevation of the already high venous pressures. When CP is severe affected individuals may develop atrial fibrillation, atrioventricular regurgitation, severe fatique and cachexia. An important aspect of CP pathophysiology is that the thickened pericardium often insulates the heart from the changes in intrathoracic pressures that result from normal negative pressure respiration. Under normal physiologic conditions the decrease in inspiratory pressure during spontaneous respiration results in augmented filling of the right ventricle and some pooling of blood in the lower compliance pulmonary veins that is associated with decreased filling of the left ventricle. Because the thickened pericardium effectively insulates the heart from these pressures changes ventricular function is further compromised. As one might suspect the changes in ventricular filling in this diastolic disorder can result in readily apparent changes in the movement of the Interventricular septum. In many advanced cases of CP there is a characteristic septal bounce observed that can be seen with a number of diastolic disorders, including restrictive pathologies (e.g., hypertrophic cardiomyopathy, sarcoid cardiomyopathy, hypertensive cardiomyopathy). To better understand the physiologic changes associated with CP readers are encouraged to fully review the anatomy and physiology of the pericardium. 2,3 II. Diagnosing Constrictive Pericarditis General Considerations The accurate diagnosis of CP is complicated by its overlap with the clinical signs and symptoms that characterize other cardiac pathologies that primarily stem from diastolic dysfunction (e.g., restrictive cardiomyopathies as referenced in the preceding section). In general while the clinical signs and symptoms may bring the affected patient to seek medical care they are not specific enough to help make the distinction between constrictive and restrictive physiologic disorders. Thus, other more advanced diagnostic methodologies are employed that fall into the realm of diagnostic imaging. The most common diagnostic approach in an individual with apparent signs and symptoms of diastolic dysfunction will include obtaining a chest roentgenogram, an electrocardiogram and a cardiac ultrasound (i.e. transthoracic and/or transesophageal).

2 Avery EG/Pericardial Disease Page 2 of 6 While the chest film and ECG are of minimal help in making this diagnosis the cardiac ultrasound exam, especially transesophageal echocardiography is common practice in making the diagnosis of CP. Cardiac ultrasound accomplishes two essential elements of diagnosing CP; first, to verify the diffuse nature of the presence of pericardial thickening and calcification, and the second, to demonstrate diastolic dysfunction in the setting of normal to near normal systolic function and/or normal appearing myocardium. Higher fidelity imaging studies such as cardiac MRI or 320, or 256 slice computed tomography far outshine transthoracic and even transesophageal echocardiography in quantifying the diffuse nature of the presence of a thickened pericardium (normally the pericardium is 2-3 mm in thickness). Cardiac MRI, also termed cardiovascular magnetic resonance (CMR) or cine-based CT imaging may also reveal the characteristic and nonspecific septal bounce associated with CP and many other forms of diastolic dysfunction. Additionally, CMR is considered the gold standard for volumetric assessment of the left ventricle and can thus most accurately determine stroke volume and cardiac output (i.e. systolic function). Despite the strengths of the higher fidelity, non-ultrasound based imaging modalities, they have historically not been able to provide the same level of physiologic insight into the collective nature of cardiac physiological dysfunction, somewhat related to a lack of temporal resolution capacity. However, recent advances in CMR techniques appears to prove that this technique can also accurately detect and measure the transatrioventricular valvular velocities as well as the transpulmonary venous flow velocities associated with CP and potentially other cardiac pathologies. 4 Further, CMR is also able to provide analysis of both mitral annular tissue velocities as well as flow propagation velocities across the mitral valve. 5 Considering the widespread use, relative accessibility to, relatively shorter time to complete an exam and lower expense associated with the use of cardiac ultrasound as well as the large body of literature which has accumulated to prove that cardiac ultrasound examination can accurately and reliably diagnose CP it seems apparent for the present that use of cardiac ultrasound will remain the mainstay of diagnosis for this disorder. It is anticipated that as the body of literature related to the use of CMR to diagnose CP grows that it will effectively challenge the use of cardiac ultrasound as the mainstay of diagnosing CP. III. Diagnosing Constrictive Pericarditis Cardiac Ultrasound Examination Pericarditis is an inflammation of the pericardium and can occur as the result of multiple pathologies. Pericarditis may present as either a chronic or acute process and is often associated with the development of a pericardial effusion. Clinically, one examines the patient suspected of having pericarditis for the presence of the classic triad of chest pain, ECG evidence of pericarditis (e.g., diffuse ST segment elevations), and a pericardial rub on auscultation. Etiologies of pericarditis include the following: Infections (e.g., postviral, bacterial-especially tuberculosis) Neoplastic (e.g., primary-mesothelioma or fibrosarcoma; secondary metastatic disease-melanoma, lymphoma, leukemia or direct extension of a pulmonic or breast tumor) Immune/Inflammatory (e.g., rheumatoid arthritis, systemic lupus erythematosus, scleroderma, acute rheumatic fever, dermatomyositis, Wegener s granulomatosis, mixed collagen vascular disease; post-myocardial infarction (Dressler s syndrome); uremia; postcardiac surgery Intracardiac-pericardial communications (e.g., chest trauma, post-interventional catheter procedures, postmyocardial ventricular rupture) 2. Echocardiographically, one inspects the pericardium for evidence of thickening that appears as an increase in the brightness, or echogenicity of the ultrasound signal. Normal pericardial thickness is approximately 2-3 mm. M-mode analysis of a patient with pericarditis will reveal multiple parallel ultrasound reflections and can be helpful to discern the thickened pericardium (Figure 1). Multiple echo windows should be obtained to verify the diffuse or localized nature of the pericarditis. Echocardiography lacks sufficient fidelity to consistently quantify the degree of pericarditis and thus carries an unreliable sensitivity and specificity for detecting this disorder compared to other imaging techniques (e.g, cardiac MRI or high resolution (256 or 320 slice) computed tomography). The evaluation of a subtype of pericarditis termed Constrictive pericarditis is important to be aware of when diagnosing pericardial disease. Clinically significant constrictive pericarditis (CP) will affect ventricular filling in that it can mimic restrictive diastolic dysfunction. CP has been reported to occur in % of cardiac surgical patients and has a number of pathophysiologic features that include: fibrotic pericardium, inflamed pericardium, calcific thickening of the pericardium, abnormal diastolic filling, a narrow RV pulse pressure (i.e. the systolic RV pressure is normal but the diastolic RV pressure is elevated), a prominent early diastolic RV pressure dip and later plateau (termed the square root sign (Figure 2) 3. Additionally, the RA pressure exhibits a pronounced systolic drop (y descent followed by an increase and then plateau) that appears as an M-like wave on the CVP tracing (Figure 2). The diagnosis of CP is made by using a combination of 2D echocardiographic analysis and Doppler analysis. The 2D echocardiographic exam will generally reveal a thickened, highly reflective pericardium in patients with CP. TEE can detect the thickened pericardium but computed tomography and magnetic resonance imaging are considered to provide more accurate

3 Avery EG/Pericardial Disease Page 3 of 6 measurements of the pericardial thickness. Table 1 lists a number of nonspecific echocardiographic findings associated with CP 1. Figure 1. M-mode image (the arrows highlight a thickened pericardium). Avery EG & Shernan SK. Comprehensive Textbook of Perioperative Transesophageal Echocardiography 2ed. Chapter Figure 2 Table 1. 2D-Echocardiographic Findings Associated with CP Paradoxical ventricular septal motion Ventricular septal "bounce" Diastolic flattening of the posterior LV Premature mid-diastolic pulmonary valve opening Spontaneous inspiratory leftward shift of the atrial & ventricular septum Enlarged hepatic veins Dilated IVC without variation in size during respiration Normal ventricular size Normal or enlarged atria with reduced wall excursion Doppler assessment of patients with CP is complex in that multiple Doppler modalities are recommended to accurately diagnose this pathology. Doppler modalities used to assess CP include: pulse wave Doppler transmitral tracings, pulse wave Doppler pulmonary vein tracings, tissue Doppler imaging of the mitral annulus and color Doppler M-mode (flow propagation, V p ) of the transmitral inflow. Transmitral blood flow has proven to be a useful diagnostic and prognostic tool for individuals with CP. By color Doppler assessment patients with CP may exhibit tricuspid or mitral valve incompetence. Similar to pericardial tamponade, the transmitral pulse wave Doppler profile of most patients with CP will demonstrate an exaggerated respirophasic variation (i.e. it will decrease by approximately 25% during spontaneous inspiration). Note that up to 20% of patients with CP will not exhibit this Doppler finding although the application of preload reducing maneuvers (e.g., reverse Trendelenberg position) may be useful to amplify the transmitral velocity respiratory variation that is expected in these patients 15. The thickened pericardium insulates the intrapericardial structures from the intrathoracic pressure changes associated with the respiratory cycle and produces an exaggerated respirophasic variation as a result (as seen in tamponade); similar respirophasic variation is observed in the pulmonary veins with CP and the S:D ratios observed are similar to those of patients with restrictive myocardial pathology (e.g., the pulmonary vein diastolic flow velocity will be greater than the systolic flow velocity in patients with a restrictive LV filling pattern, or S:D ratio < 1) 3, Additionally, unique to CP relative to restrictive cardiomyopathy is that the peak amplitude of the pulmonary venous D wave has been noted to exhibit pronounced respiratory variation ( > 18% increase upon inspiration in patients receiving IPPV) in CP 20. During mechanical ventilation the transmitral E-wave velocity will increase with early inspiration in CP, thus the exaggerated respirophasic variation seen with spontaneously breathing CP patients is also observed with IPPV, although the direction of change in velocity will be opposite in direction 21. The increase in intrathoracic pressure expels blood from the extrapericardial pulmonary veins into the left atrium which results in an increase in transmitral flow velocity. Again the mechanism for the

4 Avery EG/Pericardial Disease Page 4 of 6 exaggerated respirophasic variation observed in CP patients is that the thickened pericardium insulates the intracardiac chambers (the LA in this case) from the changes in intrathoracic pressure thus increasing the gradient between the pulmonary veins and the LA during inspiration. Overall, as with pericardial tamponade, the transmitral velocities will be reduced in amplitude in CP. Given that the CP limits the volume of both cardiac chambers the inspiratory increase in transmitral E wave velocity will be accompanied by a simultaneous decrease in transtricuspid E wave velocity for two reasons. First, the increase in intrathoracic pressure will limit right sided filling and second, the increased filling velocity and increased amount of blood in the LV will result in a shift of the interventricular septum to the right and thus compromises RV filling during inspiration (i.e. ventricular interdependence is demonstrated). These changes in the transmitral velocities appear to be reversible with surgical treatment (pericardial stripping or pericardiectomy) of CP although this therapy has been associated with LV dilation and transient ventricular diastolic dysfunction 3,20. Much has been written about making the distinction between CP and restrictive cardiomyopathy (RCM). Both of these pathologies share the common pathophysiology of decreased left ventricular compliance, but different mechanisms account for the decreased compliance in each case. In CP the decreased compliance relates to the restrictive nature of the thickened pericardium while in RCM the restriction is related to pathology within the myocardium (e.g., infiltrative disease of the muscle or hypertrophy). Recall that severely decreased LV compliance will present a restrictive LV filling pattern (Figure 3) 1-3. Figure 3 Restrictive Diastology The differentiation of CP from RCM is best approached by assessing the patient for the described exaggerated respiratory variation in transmitral Doppler flow velocity profiles and for echocardiographic, or cardiac MRI/high resolution CT scan evidence of pericardial thickening. As previously discussed above this exaggerated respirophasic variation has been demonstrated in anesthetized patients using TEE 21. Newer echocardiographic modalities that have been used to differentiate CP from RCM include color M-mode flow propagation velocities (Vp), Doppler tissue imaging (DTI) at the level of the mitral annulus, and Doppler myocardial velocity gradients (MVGs) 23. DTI has been demonstrated to provide a highly sensitive and specific means to differentiate CP from RCM in one study of a homogeneous CP patient population 24,25. See Table 2. DTI has been shown to be less sensitive to preload (a limitation of transmitral pulse wave Doppler) in differentiating CP from RCM. DTI at the level of the lateral mitral annulus provides a reproducible means to align the pulse wave tissue Doppler cursor with the longitudinal axis of myocardial excursion during relaxation of the muscle. Patients with CP generally have preserved myocardial diastolic function that therefore will demonstrate normal (E m > 8 cm/sec) myocardial velocities. The converse is true for patients with RCM in that the muscle is inherently pathologic in these patients with infiltrative cardiomyopathies and thus will demonstrate abnormal (E m < 8 cm/sec). See Figure 4. Figure 4. Transthoracic TDI of the lateral mitral annulus in a patient with CP. Note the high E m velocity here. E m E m Transthoracic TDI of the lateral mitral annulus in a patient with restrictive physiology. Note the diminished (E a ) or E m velocity. Rajagopalan. Am J Card 2001;87:86-94

5 Avery EG/Pericardial Disease Page 5 of 6 Color M-mode, or the velocity of propagation (V p ) of transmitral flow is also recommended to be incorporated into the assessment of patients suspected of CP. Although the results of color M-mode are not as easily reproduced as DTI it is advantageous in that it appears to be preload independent and has the benefit of providing both excellent spatial and temporal resolution of diastolic mitral inflow. Color M-mode assessment of patients with CP will generally demonstrate high values of flow propagation toward the LV apex while those with RCM will have decreased V p values. See Figure 5. Figure 5. Transesophageal echocardiographic Color M-mode (Vp) of a patient with CP. Note the steep slope of the first aliasing velocity of mitral inflow (140 cm/sec) 1. Transthoracic echocardiographic Color M-mode (Vp) of a patient with restrictive physiology. Note the much more gradual slope (35 cm/sec) of the first aliasing velocity as compared to the tracing displayed above. The relative sensitivities and specificities of each technique to distinguish CP from RCM are presented in Table 5. Table 2. Relative Sensitivity and Specificity of Various Doppler techniques to distinguish CP from RCM. Sensitivity Specificity E wave peak (MV) (resp. variation 10%) D wave peak (Pulmonary Vein) (resp. variation 18%) Color M-mode Vp (slope 100 cm/s) Note that although these newer Doppler techniques are considered validated for use in determining diastolic dysfunction direct validation studies for TEE and patients receiving IPPV have not been performed. Tissue Doppler, (Em 8 cm/s) IV. Treatment of Constrictive Pericarditis With the less common exception of patients with transient CP (most commonly occurs in patients who have recently undergone cardiac surgical procedures) the definitive treatment is surgical pericardiectomy. In those patients who are suspected to have a transient version of the disorder conservative medical treatment and watchful

6 Avery EG/Pericardial Disease Page 6 of 6 waiting with the addition of systemic corticosteroids is indicated. Severely ill CP patients with multiple comorbidities may not tolerate surgical pericardiectomy and thus may not be candidates for the procedure; reported mortality in one series was 5-15%. Further, radiation induced CP is considered a relative contraindication to pericardiectomy. The medical management may involve salt restriction, diuretics and avoiding the use of beta blockers or calcium channels antagonists as affected patients develop tachycardia as this response is a helpful compensatory mechanism. If atrial fibrillation with a rapid ventricular rate develops in a CP patient then initial therapy is recommended to be digoxin and only use the beta blockers or calcium channel blockers as a last resort. Likely because it is unclear as to the exact amount of tissue that must be excised to successfully relieve the constriction not all patients will improve following pericardiectomy and while not all patients that undergo pericardiectomy will improve the reported mortality after 7 year follow up was 63% in one single center study. 28 References: 1. Haley JH, Tajik AJ, Danielson GK, et al: Transient Constrictive Pericarditis: Causes and Natural History. J Am Coll Cardiol 2004; 43: Avery EG and Shernan SK. Pericardial Disease. In Comprehensive Perioperative Transesophageal Echocardiography. 2 ed. Eds Savage RM, Aronson S, Shernan SK. Lippincott, Williams and Wilkins. Chapter Klick JC, Ali J, Avery EG. Echocardiographic Evaluation of Pericardial Disease. Perioperative Tranesophageal Echocardiography: A Companion to Kaplan s Cardiac Anesthesia. Eds Reich DL, Fischer GW. Elsevier Saunders. Chapter Paaladinesh T,Verhaert D, Walls MC, et al. Simultaneous Right and Left Heart Real-Time, Free Breathing CMR Flow Quantification Identifies Constrictive Physiology. J Am Coll Cardio Img 2012; 5(1): Westenberg JJM. CMR for Assessment of Diastolic Function Curr Cardiovasc Imaging RepI; 4(2): Otto C. Pericardial Disease. In Textbook of Clinical Echocardiography. 3 ed. Elsevier Saunders pp Maisch B, Seferovic PM, Ristic AD, et al. Guidelines on the diagnosis and management of pericardial disease. Eur Heart J 2004;25: Spodick DH. Macrophysiology, microphysiology, and anatomy of the pericardium: a synopsis. Am Heart J 1992;124: Spodick DH. Acute Cardiac Tamponade. N Engl J Med 2003;349; Shabetai R. Pericardial and cardiac pressure. Circ 1988;77: Faehnrich JA, Noone RB, White WD, et al. Effects of positive-pressure ventilation, pericardial effusion, and cardiac tamponade on respiratory variation in transmitral flow velocities. J Cardiothorac Vasc Anesth 2003;17(1): Gatzoulis MA, Munk MD, Merchant N, et al. Isolated congenital absence of the pericardium: clinical presentation, diagnosis, and management. Ann Thorac Surg 2000;69: Fukuda N, Oki T, Iuchi A, at al. Pulmonary and systemic venous flow patterns assessed by transesophageal Doppler echocardiography in congenital absence of the pericardium. Am J Cardiol 1995;75: Goldschlager N, Goldman MJ. Principles of Clinical Electrocardiography. 13 th ed. Appleton and Lange East Norwalk, CT. pp Hoit BD, Faulx MD. Diseases of the Pericardium (Chapter 80). Fuster VR, Alexander W, O'Rourke RA, Eds. Hurst s The Heart 11ed. The McGraw-Hill Companies, Inc Lewinter MM, Kannani S. Pericardial Diseases (Chapter 64 Figure 64-6B). Zipes DP, Libby P, Bonow RO, Braunwald E, Eds. In Braunwald s Heart Disease 7 th ed. Elsevier Saunders Burstow DJ, Oh JK, Bailey KR, et al. Cardiac tamponade: characteristic Doppler observations. Mayo Clin Pro 1989;64: Skubas NJ, Beardslee M, Barzilai B, et al. Constrictive Pericarditis: Intraoperative hemodynamic and echocardiographic evaluation of cardiac filling dynamics. Anesthesia and Analgesia 2001;92: Oh J, Tajik J, Appleton C, et al. Preload reduction to unmask the characteristic Doppler features of constrictive pericarditis: a new observation. Circ 1997;95(4): Klein AL, Cohen GI, Pietrolungo JF, et al. Differentiation of constrictive pericarditis from restrictive cardiomyopathy by Doppler transesophageal echocardiographic measurements of respiratory variations in pulmonary vein flow. J Am Coll Cardiol 1993;22: Abdalla IA, Murray D, Awad HE, et al. Reversal of the pattern of respiratory variation of Doppler inflow velocities in constrictive pericarditis during mechanical ventilation. J Am Soc Echocardiogr 2000;13: Senni M, Redfield M, Ling H, et al. Left ventricular systolic and diastolic function after pericardiectomy in patients with constrictive pericarditis: postoperative and serial Doppler echocardiographic findings. J Am Coll Card 1999;33: Rodriguez, Ares MA, Vandervoot PM, et al. Does color M-mode flow propagation differentiate between patients with restrictive vs. constrictive physiology? [Abstract] J Am Coll Cardiol 1996;27:268A. 24. Rajagopalan N, Garcia M, Rodriguez L, et al. Comparison of new Doppler echocardiographic methods to differentiate constrictive pericardial heart disease and restrictive cardiomyopathy. Am J Cardiol 2001;87: Palka P, Lange A, Donnelly E, et al. Differentiation between restrictive cardiomyopathy and constrictive pericarditis by early diastolic Doppler myocardial velocity gradient at the posterior wall. Circ 2000;102: Garcia MJ, Thomas JD, Klein AL. New Doppler echocardiographic applications for the study of diastolic function. J Amer Coll Cardiol 1998;32: Abbas AE, Appleton CP, Liu PT, et al. Congenital absence of the pericardium: case presentation and review of the literature. International J Cardiol 2005;98: Ling LH, Oh JK. Schaff HV, et al. Constrictive Pericarditis in the Modern Era: Evolving Clinical Spectrum and Impact on Outcome After Pericardiectomy. J Am Coll Cardiol 2004; 43:1445.

Echocardiographic Evaluation of Pericardial Disease

Echocardiographic Evaluation of Pericardial Disease Echocardiographic Evaluation of Pericardial Disease Edwin G. Avery, IV, M.D. Chief, Division of Cardiac Anesthesia University Hospitals Case Medical Center Associate Professor of Anesthesiology Case Western

More information

An Uncommon Cardiac Etiology of Liver Cirrhosis, Recurrent Ascites, Atrial Fibrillation and Congestive Heart Failure

An Uncommon Cardiac Etiology of Liver Cirrhosis, Recurrent Ascites, Atrial Fibrillation and Congestive Heart Failure Cronicon OPEN ACCESS EC CARDIOLOGY Case Report An Uncommon Cardiac Etiology of Liver Cirrhosis, Recurrent Ascites, Atrial Fibrillation and Congestive Heart Failure Montaser Y Ismail 1 *, Mohammed I Nassar

More information

Pericardial Diseases. Smonporn Boonyaratavej, MD. Division of Cardiology, Department of Medicine Chulalongkorn University

Pericardial Diseases. Smonporn Boonyaratavej, MD. Division of Cardiology, Department of Medicine Chulalongkorn University Pericardial Diseases Smonporn Boonyaratavej, MD Division of Cardiology, Department of Medicine Chulalongkorn University Cardiac Center, King Chulalongkorn Memorial Hospital 21 AUGUST 2016 Pericardial

More information

Adel Hasanin Ahmed 1

Adel Hasanin Ahmed 1 Adel Hasanin Ahmed 1 PERICARDIAL DISEASE The pericardial effusion ends anteriorly to the descending aorta and is best visualised in the PLAX. PSAX is actually very useful sometimes for looking at posterior

More information

Echocardiography as a diagnostic and management tool in medical emergencies

Echocardiography as a diagnostic and management tool in medical emergencies Echocardiography as a diagnostic and management tool in medical emergencies Frank van der Heusen MD Department of Anesthesia and perioperative Care UCSF Medical Center Objective of this presentation Indications

More information

Pericardial Disease: Case Examples. Echo Fiesta 2017

Pericardial Disease: Case Examples. Echo Fiesta 2017 Pericardial Disease: Case Examples Echo Fiesta 2017 2014 2014 MFMER MFMER 3346252-1 slide-1 Objectives Have a systematic approach to evaluation of constriction 2014 MFMER 3346252-2 CASE 1 2013 MFMER 3248567-3

More information

Constrictive Pericarditis Pitfalls in MR Diagnosis Cylen Javidan-Nejad Associate Professor Mallinckrodt Institute of Radiology Washington University

Constrictive Pericarditis Pitfalls in MR Diagnosis Cylen Javidan-Nejad Associate Professor Mallinckrodt Institute of Radiology Washington University Constrictive Pericarditis Pitfalls in MR Diagnosis Cylen Javidan-Nejad Associate Professor Mallinckrodt Institute of Radiology Washington University in St. Louis Goal o To review the imaging criteria of

More information

ΚΑΡΔΙΟΛΟΓΟΣ EUROPEAN ACCREDITATION IN TRANSTHORACIC AND TRANSESOPHAGEAL ECHOCARDIOGRAPHY

ΚΑΡΔΙΟΛΟΓΟΣ EUROPEAN ACCREDITATION IN TRANSTHORACIC AND TRANSESOPHAGEAL ECHOCARDIOGRAPHY 1 ΚΑΡΔΙΟΛΟΓΟΣ EUROPEAN ACCREDITATION IN TRANSTHORACIC AND TRANSESOPHAGEAL ECHOCARDIOGRAPHY 2 Constrictive pericarditis (CP) is characterized by impaired ventricular filling due to a stiffened or noncompliant

More information

PERICARDIAL DIAESE. Kaijun Cui Associated professor Sichuan University

PERICARDIAL DIAESE. Kaijun Cui Associated professor Sichuan University PERICARDIAL DIAESE Kaijun Cui Associated professor Sichuan University CLASSIFICATION acute pericarditis pericardial effusion cardiac tamponade constrictive pericarditis congenitally absent pericardium

More information

Pericardial disease. Se-Jung Yoon Cardiology division NHIS Ilsan hospital

Pericardial disease. Se-Jung Yoon Cardiology division NHIS Ilsan hospital Pericardial disease Se-Jung Yoon Cardiology division NHIS Ilsan hospital Normal pericardial effusion Normal pericardium Normal pericardium Pericardial Layers: Visceral layer Parietal layer Fibrous pericardium

More information

Transient Constrictive Pericarditis: Causes and Natural History

Transient Constrictive Pericarditis: Causes and Natural History Journal of the American College of Cardiology Vol. 43, No. 2, 2004 2004 by the American College of Cardiology Foundation ISSN 0735-1097/04/$30.00 Published by Elsevier Inc. doi:10.1016/j.jacc.2003.08.032

More information

Outline. Echocardiographic Assessment of Pericardial Effusion/Tamponade: The Essentials

Outline. Echocardiographic Assessment of Pericardial Effusion/Tamponade: The Essentials Echocardiographic Assessment of Pericardial Effusion/Tamponade: The Essentials John R Schairer DO FACC Henry Ford Heart and Vascular Institute No Disclosures Outline Normal Anatomy and Physiology Pathophysiology

More information

Constrictive/Restrictive Cardiomyopathies: Diagnosis and Management Update; Radiation Induced Heart Disease. Alexander (Sandy) Dick, MD

Constrictive/Restrictive Cardiomyopathies: Diagnosis and Management Update; Radiation Induced Heart Disease. Alexander (Sandy) Dick, MD Constrictive/Restrictive Cardiomyopathies: Diagnosis and Management Update; Radiation Induced Heart Disease Alexander (Sandy) Dick, MD Outline Pericardial Constriction Diagnosis: Imaging, Hemodynamics

More information

UPDATE ON CONSTRICTIVE PERICARDITIS ECHOCARDIOGRAPHY AND CARDIAC CATHETERISATION

UPDATE ON CONSTRICTIVE PERICARDITIS ECHOCARDIOGRAPHY AND CARDIAC CATHETERISATION Arsen D. Ristić, MD, PhD, FESC (no conflicts of interest to disclose regarding this presentation) UPDATE ON CONSTRICTIVE PERICARDITIS ECHOCARDIOGRAPHY AND CARDIAC CATHETERISATION Department of Cardiology,

More information

THE PERICARDIUM: LOOKING OUTSIDE THE HEART

THE PERICARDIUM: LOOKING OUTSIDE THE HEART THE PERICARDIUM: LOOKING OUTSIDE THE HEART DISCLOSURE Relevant relationships with commercial entities none Potential for conflicts of interest within this presentation none Steps taken to review and mitigate

More information

Imaging in Heart Failure: A Multimodality Approach. Thomas Ryan, MD

Imaging in Heart Failure: A Multimodality Approach. Thomas Ryan, MD Imaging in Heart Failure: A Multimodality Approach Thomas Ryan, MD Heart Failure HFrEF HFpEF EF50% Lifetime risk 20% Prevalence 6M Americans Societal costs - $30B 50% 5-year survival 1 Systolic

More information

Constriction vs Restriction Case-based Discussion

Constriction vs Restriction Case-based Discussion Mayo Clinic Department of Cardiovascular Diseases Mayo Clinic Echocardiography Review Course for Boards and Recertification Constriction vs Restriction Case-based Discussion Jae K. Oh, MD Samsung Professor

More information

TAMPONADE CARDIAQUE. Dr Cédrick Zaouter TUSAR 15 décembre 2015

TAMPONADE CARDIAQUE. Dr Cédrick Zaouter TUSAR 15 décembre 2015 TAMPONADE CARDIAQUE Dr Cédrick Zaouter TUSAR 15 décembre 2015 OUTLINE History Incidence Definition Pathophysiology Aetiologies Investigations - Echocardiography Treatment of cardiac tamponade Pericardial

More information

Constrictive Pericarditis

Constrictive Pericarditis Constrictive Pericarditis Never Confused with Anything Else Jae K. Oh, MD 2018 MFMER 3712003-1 ARS #1 CP Which of following patients has constrictive pericarditis? 1 2 3 Medial e 13 cm/s Medial e 3 cm/s

More information

Adult Echocardiography Examination Content Outline

Adult Echocardiography Examination Content Outline Adult Echocardiography Examination Content Outline (Outline Summary) # Domain Subdomain Percentage 1 2 3 4 5 Anatomy and Physiology Pathology Clinical Care and Safety Measurement Techniques, Maneuvers,

More information

Diastolic Function: What the Sonographer Needs to Know. Echocardiographic Assessment of Diastolic Function: Basic Concepts 2/8/2012

Diastolic Function: What the Sonographer Needs to Know. Echocardiographic Assessment of Diastolic Function: Basic Concepts 2/8/2012 Diastolic Function: What the Sonographer Needs to Know Pat Bailey, RDCS, FASE Technical Director Beaumont Health System Echocardiographic Assessment of Diastolic Function: Basic Concepts Practical Hints

More information

10/1/2016. Constrictive Pericarditis Unique Hemodynamics. What s New in Pericardial Disease? Case-based Discussion

10/1/2016. Constrictive Pericarditis Unique Hemodynamics. What s New in Pericardial Disease? Case-based Discussion Mayo Clinic Department of Cardiovascular Diseases Mayo Clinic Echocardiography Review Course for Boards and Recertification What s New in Pericardial Disease? Case-based Discussion Jae K. Oh, MD Samsung

More information

Constrictive Pericarditis in the Modern Era

Constrictive Pericarditis in the Modern Era Journal of the American College of Cardiology Vol. 51, No. 3, 2008 2008 by the American College of Cardiology Foundation ISSN 0735-1097/08/$34.00 Published by Elsevier Inc. doi:10.1016/j.jacc.2007.09.039

More information

Left atrial function. Aliakbar Arvandi MD

Left atrial function. Aliakbar Arvandi MD In the clinic Left atrial function Abstract The left atrium (LA) is a left posterior cardiac chamber which is located adjacent to the esophagus. It is separated from the right atrium by the inter-atrial

More information

Objectives. Diastology: What the Radiologist Needs to Know. LV Diastolic Function: Introduction. LV Diastolic Function: Introduction

Objectives. Diastology: What the Radiologist Needs to Know. LV Diastolic Function: Introduction. LV Diastolic Function: Introduction Objectives Diastology: What the Radiologist Needs to Know. Jacobo Kirsch, MD Cardiopulmonary Imaging, Section Head Division of Radiology Cleveland Clinic Florida Weston, FL To review the physiology and

More information

Restrictive Cardiomyopathy

Restrictive Cardiomyopathy ESC Congress 2011, Paris Imaging Unusual Causes of Cardiomyopathy Restrictive Cardiomyopathy Kazuaki Tanabe, MD, PhD Professor of Medicine Chair, Division of Cardiology Izumo, Japan I Have No Disclosures

More information

Introduction. Cardiac Imaging Modalities MRI. Overview. MRI (Continued) MRI (Continued) Arnaud Bistoquet 12/19/03

Introduction. Cardiac Imaging Modalities MRI. Overview. MRI (Continued) MRI (Continued) Arnaud Bistoquet 12/19/03 Introduction Cardiac Imaging Modalities Arnaud Bistoquet 12/19/03 Coronary heart disease: the vessels that supply oxygen-carrying blood to the heart, become narrowed and unable to carry a normal amount

More information

Valve Disease Board Review Questions

Valve Disease Board Review Questions Valve Disease Board Review Questions Dennis A. Tighe, MD, FASE University of Massachusetts Medical School Worcester, MA Case 1 History A 61 year-old man Presents to hospital with worsening shortness of

More information

Μαρία Μπόνου Διευθύντρια ΕΣΥ, ΓΝΑ Λαϊκό

Μαρία Μπόνου Διευθύντρια ΕΣΥ, ΓΝΑ Λαϊκό Μαρία Μπόνου Διευθύντρια ΕΣΥ, ΓΝΑ Λαϊκό Diastolic HF DD: Diastolic Dysfunction DHF: Diastolic HF HFpEF: HF with preserved EF DD Pathophysiologic condition: impaired relaxation, LV compliance, LV filling

More information

Heart Failure Syndromes related to Unusual Cardiomyopathies

Heart Failure Syndromes related to Unusual Cardiomyopathies Heart Failure Syndromes related to Unusual Cardiomyopathies Juan M. Aranda Jr., M.D. Professor of Medicine Medical Director of Heart Failure/ Transplant Program University of Florida College of Medicine

More information

Evalua&on)of)Le-)Ventricular)Diastolic) Dysfunc&on)by)Echocardiography:) Role)of)Ejec&on)Frac&on)

Evalua&on)of)Le-)Ventricular)Diastolic) Dysfunc&on)by)Echocardiography:) Role)of)Ejec&on)Frac&on) Evalua&on)of)Le-)Ventricular)Diastolic) Dysfunc&on)by)Echocardiography:) Role)of)Ejec&on)Frac&on) N.Koutsogiannis) Department)of)Cardiology) University)Hospital)of)Patras)! I have no conflicts of interest

More information

Normal Pericardial Physiology

Normal Pericardial Physiology Normal Pericardial Physiology Normal pericardium contains 20-30 ml of lymphoid fluid lubricating function that facilitates normal myocardial rotation and translation during each cardiac cycle in that the

More information

Index. K Knobology, TTE artifact, image resolution, ultrasound, 14

Index. K Knobology, TTE artifact, image resolution, ultrasound, 14 A Acute aortic regurgitation (AR), 124 128 Acute aortic syndrome (AAS) classic aortic dissection diagnosis, 251 263 evolutive patterns, 253 255 pathology, 250 251 classifications, 247 248 incomplete aortic

More information

Basic Approach to the Echocardiographic Evaluation of Ventricular Diastolic Function

Basic Approach to the Echocardiographic Evaluation of Ventricular Diastolic Function Basic Approach to the Echocardiographic Evaluation of Ventricular Diastolic Function J A F E R A L I, M D U N I V E R S I T Y H O S P I T A L S C A S E M E D I C A L C E N T E R S T A F F C A R D I O T

More information

Essentials of Pericardial Diseases

Essentials of Pericardial Diseases Essentials of Pericardial Diseases 1 Nikolaos Skubas MD, 2 Manuel Fontes MD The pericardial diseases result in cardiovascular perturbations ranging from asymptomatic electrocardiographic findings (in pericarditis

More information

DOPPLER HEMODYNAMICS (1) QUANTIFICATION OF PRESSURE GRADIENTS and INTRACARDIAC PRESSURES

DOPPLER HEMODYNAMICS (1) QUANTIFICATION OF PRESSURE GRADIENTS and INTRACARDIAC PRESSURES THORAXCENTRE DOPPLER HEMODYNAMICS (1) QUANTIFICATION OF PRESSURE GRADIENTS and INTRACARDIAC PRESSURES J. Roelandt DOPPLER HEMODYNAMICS Intracardiac pressures and pressure gradients Volumetric measurement

More information

Index. Note: Page numbers of article titles are in boldface type.

Index. Note: Page numbers of article titles are in boldface type. Index Note: Page numbers of article titles are in boldface type. A Acute coronary syndrome(s), anticoagulant therapy in, 706, 707 antiplatelet therapy in, 702 ß-blockers in, 703 cardiac biomarkers in,

More information

Choose the grading of diastolic function in 82 yo woman

Choose the grading of diastolic function in 82 yo woman Question #1 Choose the grading of diastolic function in 82 yo woman E= 80 cm/s A= 70 cm/s LAVI < 34 ml/m 2 1= Grade 1 2= Grade 2 3= Grade 3 4= Normal 5= Indeterminate 2018 MFMER 3712003-1 Choose the grading

More information

An Integrated Approach to Study LV Diastolic Function

An Integrated Approach to Study LV Diastolic Function An Integrated Approach to Study LV Diastolic Function Assoc. Prof. Adriana Ilieşiu, FESC University of Medicine Carol Davila Bucharest, Romania LV Diastolic Dysfunction impaired relaxation (early diastole)

More information

Cardiac MRI: Clinical Application to Disease

Cardiac MRI: Clinical Application to Disease Cardiac MRI: Clinical Application to Disease Jessi Smith, MD Cardiothoracic imaging, Indiana University Slides courtesy of Stacy Rissing, MD Outline Imaging planes Disease findings Pulse sequences used

More information

Diastolic Function Overview

Diastolic Function Overview Diastolic Function Overview Richard Palma BS, RDCS, RCS, APS, FASE Director and Clinical Coordinator The Hoffman Heart and Vascular Institute School of Cardiac Ultrasound None Disclosures Learning Objectives

More information

PROSTHETIC VALVE BOARD REVIEW

PROSTHETIC VALVE BOARD REVIEW PROSTHETIC VALVE BOARD REVIEW The correct answer D This two chamber view shows a porcine mitral prosthesis with the typical appearance of the struts although the leaflets are not well seen. The valve

More information

Review of Cardiac Imaging Modalities in the Renal Patient. George Youssef

Review of Cardiac Imaging Modalities in the Renal Patient. George Youssef Review of Cardiac Imaging Modalities in the Renal Patient George Youssef ECHO Left ventricular hypertrophy (LVH) assessment Diastolic dysfunction Stress ECHO Cardiac CT angiography Echocardiography - positives

More information

Bogdan A. Popescu. University of Medicine and Pharmacy Bucharest, Romania. EAE Course, Bucharest, April 2010

Bogdan A. Popescu. University of Medicine and Pharmacy Bucharest, Romania. EAE Course, Bucharest, April 2010 Bogdan A. Popescu University of Medicine and Pharmacy Bucharest, Romania EAE Course, Bucharest, April 2010 This is how it started Mitral stenosis at a glance 2D echo narrow diastolic opening of MV leaflets

More information

ECHOCARDIOGRAPHY. Patient Care. Goals and Objectives PF EF MF LF Aspirational

ECHOCARDIOGRAPHY. Patient Care. Goals and Objectives PF EF MF LF Aspirational Patient Care Be able to: Perform and interpret basic TTE and X cardiac Doppler examinations Perform and interpret a comprehensive X TTE and cardiac Doppler examination Perform and interpret a comprehensive

More information

RIGHT VENTRICULAR SIZE AND FUNCTION

RIGHT VENTRICULAR SIZE AND FUNCTION RIGHT VENTRICULAR SIZE AND FUNCTION Edwin S. Tucay, MD, FPCC, FPCC, FPSE Philippine Society of Echocardiography Quezon City, Philippines Echo Mission, BRTTH, Legaspi City, July 1-2, 2016 NO DISCLOSURE

More information

Hemodynamic Assessment. Assessment of Systolic Function Doppler Hemodynamics

Hemodynamic Assessment. Assessment of Systolic Function Doppler Hemodynamics Hemodynamic Assessment Matt M. Umland, RDCS, FASE Aurora Medical Group Milwaukee, WI Assessment of Systolic Function Doppler Hemodynamics Stroke Volume Cardiac Output Cardiac Index Tei Index/Index of myocardial

More information

General Cardiovascular Magnetic Resonance Imaging

General Cardiovascular Magnetic Resonance Imaging 2 General Cardiovascular Magnetic Resonance Imaging 19 Peter G. Danias, Cardiovascular MRI: 150 Multiple-Choice Questions and Answers Humana Press 2008 20 Cardiovascular MRI: 150 Multiple-Choice Questions

More information

A Case of Impending Cardiac Tamponade Caused by Effusive Constrictive Pericarditis

A Case of Impending Cardiac Tamponade Caused by Effusive Constrictive Pericarditis Archives of Clinical and Medical Case Reports doi: 10.26502/acmcr.96550038 Volume 2, Issue 5 Case Report A Case of Impending Cardiac Tamponade Caused by Effusive Constrictive Pericarditis Catalina Sanchez-Alvarez

More information

Constrictive Pericarditis as a Long-term Undetermined Etiology of Ascites and Edema

Constrictive Pericarditis as a Long-term Undetermined Etiology of Ascites and Edema doi: 10.2169/internalmedicine.9455-17 http://internmed.jp CASE REPORT Constrictive Pericarditis as a Long-term Undetermined Etiology of Ascites and Edema Takahiro Kamio 1, Eiji Hiraoka 2, Kotaro Obunai

More information

M-Mode Echocardiography Is it still Alive? Itzhak Kronzon, MD,FASE. Sampling Rate M-Mode: 1800 / sec 2D: 30 / sec

M-Mode Echocardiography Is it still Alive? Itzhak Kronzon, MD,FASE. Sampling Rate M-Mode: 1800 / sec 2D: 30 / sec M-Mode Echocardiography Is it still Alive? Itzhak Kronzon, MD,FASE Honoraria: Philips Classical M-mode Echocardiography M-Mode offers better time and image resolution. Sampling Rate M-Mode: 1800 / sec

More information

Constrictive pericarditis: Morphological, functional and haemodynamic evaluation

Constrictive pericarditis: Morphological, functional and haemodynamic evaluation Constrictive pericarditis: Morphological, functional and haemodynamic evaluation Poster No.: C-0743 Congress: ECR 2010 Type: Educational Exhibit Topic: Cardiac Authors: B. Graca, P. Donato, M. Ferreira,

More information

TAVR: Echo Measurements Pre, Post And Intra Procedure

TAVR: Echo Measurements Pre, Post And Intra Procedure 2017 ASE Florida, Orlando, FL October 10, 2017 8:00 8:25 AM 25 min TAVR: Echo Measurements Pre, Post And Intra Procedure Muhamed Sarić MD, PhD, MPA Director of Noninvasive Cardiology Echo Lab Associate

More information

Cardiovascular manifestations of HIV

Cardiovascular manifestations of HIV Cardiovascular manifestations of HIV Prabhakar Rajiah, MBBS, MD, FRCR Associate Professor of Radiology Associate Director, Cardiac CT and MRI University of Texas Southwestern Medical Center, Dallas, USA

More information

Πνευμονική υπέρταση και περικαρδιακή συλλογή. Τρόποι αντιμετώπισης

Πνευμονική υπέρταση και περικαρδιακή συλλογή. Τρόποι αντιμετώπισης Πνευμονική υπέρταση και περικαρδιακή συλλογή. Τρόποι αντιμετώπισης Γεώργιος Λάζαρος Καρδιολόγος, Διευθυντής ΕΣΥ Α Πανεπιστημιακή Καρδιολογική Κλινική Ιπποκράτειο Γ.Ν. Αθηνών Pericardial syndromes o Acute

More information

Pericardial diseases

Pericardial diseases Pericardial diseases Anatomy of the pericardium Consists of parietal and visceral membranes. The space between them(pericardial space is normally filled by a lymph like fluid. The fluid s normal quantity

More information

MITRAL STENOSIS. Joanne Cusack

MITRAL STENOSIS. Joanne Cusack MITRAL STENOSIS Joanne Cusack BSE Breakdown Recognition of rheumatic mitral stenosis Qualitative description of valve and sub-valve calcification and fibrosis Measurement of orifice area by planimetry

More information

The Doppler Examination. Katie Twomley, MD Wake Forest Baptist Health - Lexington

The Doppler Examination. Katie Twomley, MD Wake Forest Baptist Health - Lexington The Doppler Examination Katie Twomley, MD Wake Forest Baptist Health - Lexington OUTLINE Principles/Physics Use in valvular assessment Aortic stenosis (continuity equation) Aortic regurgitation (pressure

More information

Department of Cardiac, Thoracic and Vascular Sciences University of Padua Cardiac Tamponade. Echocardiography in Diagnosis and Management

Department of Cardiac, Thoracic and Vascular Sciences University of Padua Cardiac Tamponade. Echocardiography in Diagnosis and Management Department of Cardiac, Thoracic and Vascular Sciences University of Padua Cardiac Tamponade. Echocardiography in Diagnosis and Management Luigi P. Badano, MD, FESC, FACC Declaration of interest **Dr. Badano

More information

Certificate in Clinician Performed Ultrasound (CCPU) Syllabus. Rapid Cardiac Echo (RCE)

Certificate in Clinician Performed Ultrasound (CCPU) Syllabus. Rapid Cardiac Echo (RCE) Certificate in Clinician Performed Ultrasound (CCPU) Syllabus Rapid Cardiac Echo (RCE) Purpose: Rapid Cardiac Echocardiography (RCE) This unit is designed to cover the theoretical and practical curriculum

More information

E/Ea is NOT an essential estimator of LV filling pressures

E/Ea is NOT an essential estimator of LV filling pressures Euroecho Kopenhagen Echo in Resynchronization in 2010 E/Ea is NOT an essential estimator of LV filling pressures Wilfried Mullens, MD, PhD December 10, 2010 Ziekenhuis Oost Limburg Genk University Hasselt

More information

Cor pulmonale. Dr hamid reza javadi

Cor pulmonale. Dr hamid reza javadi 1 Cor pulmonale Dr hamid reza javadi 2 Definition Cor pulmonale ;pulmonary heart disease; is defined as dilation and hypertrophy of the right ventricle (RV) in response to diseases of the pulmonary vasculature

More information

How NOT to miss Hypertrophic Cardiomyopathy? Adaya Weissler-Snir, MD University Health Network, University of Toronto

How NOT to miss Hypertrophic Cardiomyopathy? Adaya Weissler-Snir, MD University Health Network, University of Toronto How NOT to miss Hypertrophic Cardiomyopathy? Adaya Weissler-Snir, MD University Health Network, University of Toronto Introduction Hypertrophic cardiomyopathy is the most common genetic cardiomyopathy,

More information

Cardiac MRI: Clinical Application to Disease

Cardiac MRI: Clinical Application to Disease Cardiac MRI: Clinical Application to Disease Stacy Rissing, MD! Cardiothoracic imaging, Indiana University! Outline Imaging planes Disease findings Pulse sequences used for each indication Pathophysiology

More information

Integrative Clinical Hemodyamics

Integrative Clinical Hemodyamics Integrative Clinical Hemodyamics James A. Goldstein, MD Director, Research & Education Division of Cardiology William Beaumont Hospital Disclosure Information Integrative Clinical Hemodyamics James A.

More information

LV FUNCTION ASSESSMENT: WHAT IS BEYOND EJECTION FRACTION

LV FUNCTION ASSESSMENT: WHAT IS BEYOND EJECTION FRACTION LV FUNCTION ASSESSMENT: WHAT IS BEYOND EJECTION FRACTION Jamilah S AlRahimi Assistant Professor, KSU-HS Consultant Noninvasive Cardiology KFCC, MNGHA-WR Introduction LV function assessment in Heart Failure:

More information

HISTORY. Question: How do you interpret the patient s history? CHIEF COMPLAINT: Dyspnea of two days duration. PRESENT ILLNESS: 45-year-old man.

HISTORY. Question: How do you interpret the patient s history? CHIEF COMPLAINT: Dyspnea of two days duration. PRESENT ILLNESS: 45-year-old man. HISTORY 45-year-old man. CHIEF COMPLAINT: Dyspnea of two days duration. PRESENT ILLNESS: His dyspnea began suddenly and has been associated with orthopnea, but no chest pain. For two months he has felt

More information

Cardiac Mass in a 15-Year-Old Boy

Cardiac Mass in a 15-Year-Old Boy Cardiac Mass in a 15-Year-Old Boy Echocardiographic Case Report Hortensia Vuçini Department of Cardiology and Cardiac Surgery UHC Mother Theresa Tirana, Albania October 20, 2007 Case Presentation 15 year-old

More information

Index of subjects. effect on ventricular tachycardia 30 treatment with 101, 116 boosterpump 80 Brockenbrough phenomenon 55, 125

Index of subjects. effect on ventricular tachycardia 30 treatment with 101, 116 boosterpump 80 Brockenbrough phenomenon 55, 125 145 Index of subjects A accessory pathways 3 amiodarone 4, 5, 6, 23, 30, 97, 102 angina pectoris 4, 24, 1l0, 137, 139, 140 angulation, of cavity 73, 74 aorta aortic flow velocity 2 aortic insufficiency

More information

Echocardiography Conference

Echocardiography Conference Echocardiography Conference David Stultz, MD Cardiology Fellow, PGY-6 September 20, 2005 Atrial Septal Aneurysm Bulging of Fossa Ovalis Associated commonly with Atrial septal defect or small perforations

More information

How to Assess Diastolic Dysfunction?

How to Assess Diastolic Dysfunction? How to Assess Diastolic Dysfunction? Fausto J Pinto, MD, PhD, FESC, FACC, FASE Lisbon University Dyastolic Dysfunction Impaired relaxation Elevated filling pressures Ischemic heart disease Cardiomyopathies

More information

Uncommon Doppler Echocardiographic Findings of Severe Pulmonic Insufficiency

Uncommon Doppler Echocardiographic Findings of Severe Pulmonic Insufficiency Uncommon Doppler Echocardiographic Findings of Severe Pulmonic Insufficiency Rahul R. Jhaveri, MD, Muhamed Saric, MD, PhD, FASE, and Itzhak Kronzon, MD, FASE, New York, New York Background: Two-dimensional

More information

Przemysław Palka, MD; Aleksandra Lange, MD; J. Elisabeth Donnelly, MD; Petros Nihoyannopoulos, MD

Przemysław Palka, MD; Aleksandra Lange, MD; J. Elisabeth Donnelly, MD; Petros Nihoyannopoulos, MD Differentiation Between Restrictive Cardiomyopathy and Constrictive Pericarditis by Early Diastolic Doppler Myocardial Velocity Gradient at the Posterior Wall Przemysław Palka, MD; Aleksandra Lange, MD;

More information

HISTORY. Question: What category of heart disease is suggested by the fact that a murmur was heard at birth?

HISTORY. Question: What category of heart disease is suggested by the fact that a murmur was heard at birth? HISTORY 23-year-old man. CHIEF COMPLAINT: Decreasing exercise tolerance of several years duration. PRESENT ILLNESS: The patient is the product of an uncomplicated term pregnancy. A heart murmur was discovered

More information

Extensive pericardial thickening without constriction

Extensive pericardial thickening without constriction www.edoriumjournals.com clinical images PEER REVIEWED OPEN ACCESS Extensive pericardial thickening without constriction ABSTRACT Abstract is not required for Clinical Images International Journal of Case

More information

Diastology State of The Art Assessment

Diastology State of The Art Assessment Diastology State of The Art Assessment Dr. Mohammad AlGhamdi Assistant professor, KSAU-HS Consultant Cardiologist King AbdulAziz Cardiac Center Ministry of National Guard Health Affairs Diagnostic Clinical

More information

Tricuspid and Pulmonic Valve Disease

Tricuspid and Pulmonic Valve Disease Chapter 31 Tricuspid and Pulmonic Valve Disease David A. Tate Acquired disease of the right-sided cardiac valves is much less common than disease of the leftsided counterparts, possibly because of the

More information

Νόσοι του περικαρδίου. Γεώργιος Λάζαρος Α Πανεπιστημιακή Καρδιολογική Κλινική Ιπποκράτειο Γ.Ν. Αθηνών

Νόσοι του περικαρδίου. Γεώργιος Λάζαρος Α Πανεπιστημιακή Καρδιολογική Κλινική Ιπποκράτειο Γ.Ν. Αθηνών Νόσοι του περικαρδίου Γεώργιος Λάζαρος Α Πανεπιστημιακή Καρδιολογική Κλινική Ιπποκράτειο Γ.Ν. Αθηνών I do not have any conflict of interests relevant to this presentation to declare. Pericardial syndromes

More information

Evaluation of the Right Ventricle in Candidates for Right Ventricular Assist Device Implantation.

Evaluation of the Right Ventricle in Candidates for Right Ventricular Assist Device Implantation. Evaluation of the Right Ventricle in Candidates for Right Ventricular Assist Device Implantation. Evaluation of RVAD Function. Ioannis A Paraskevaidis Attikon University Hospital Historical Perspective

More information

Rotation: Echocardiography: Transthoracic Echocardiography (TTE)

Rotation: Echocardiography: Transthoracic Echocardiography (TTE) Rotation: Echocardiography: Transthoracic Echocardiography (TTE) Rotation Format and Responsibilities: Fellows rotate in the echocardiography laboratory in each clinical year. Rotations during the first

More information

Advanced imaging of the left atrium - strain, CT, 3D, MRI -

Advanced imaging of the left atrium - strain, CT, 3D, MRI - Advanced imaging of the left atrium - strain, CT, 3D, MRI - Monica Rosca, MD Carol Davila University of Medicine and Pharmacy, Bucharest, Romania Declaration of interest: I have nothing to declare Case

More information

Cardiac Sarcoidosis. Millee Singh DO Non Invasive Cardiology First Coast Heart and Vascluar

Cardiac Sarcoidosis. Millee Singh DO Non Invasive Cardiology First Coast Heart and Vascluar Cardiac Sarcoidosis Millee Singh DO Non Invasive Cardiology First Coast Heart and Vascluar Introduction Multisystem granulomatous disease of unknown etiology characterized by noncaseating granulomas in

More information

Echo in Pulmonary HTN

Echo in Pulmonary HTN Echo in Pulmonary HTN Steven A. Goldstein MD FACC FASE Professor of Medicine Georgetown University Medical Center MedStar Heart Institute Washington Hospital Center Monday, October 10, 2017 Pulmonary Artery

More information

Pericardial Diseases/Tamponade Illustrative Cases

Pericardial Diseases/Tamponade Illustrative Cases Pericardial Diseases/Tamponade Illustrative Cases Jae K. Oh, MD Echo Hawaii 2017 2012 MFMER 3200268v3(2010)-1 Case #1 47 year old man Chest pain Not exertional Normal Examination 2016 MFMER slide-2 1 47

More information

Echocardiographic Evaluation of the Cardiomyopathies. Stephanie Coulter, MD, FACC, FASE April, 2016

Echocardiographic Evaluation of the Cardiomyopathies. Stephanie Coulter, MD, FACC, FASE April, 2016 Echocardiographic Evaluation of the Cardiomyopathies Stephanie Coulter, MD, FACC, FASE April, 2016 Cardiomyopathies (CMP) primary disease intrinsic to cardiac muscle Dilated CMP Hypertrophic CMP Infiltrative

More information

Tissue Doppler Imaging in Congenital Heart Disease

Tissue Doppler Imaging in Congenital Heart Disease Tissue Doppler Imaging in Congenital Heart Disease L. Youngmin Eun, M.D. Department of Pediatrics, Division of Pediatric Cardiology, Kwandong University College of Medicine The potential advantage of ultrasound

More information

Cardiac Radiology In-Training Test Questions for Diagnostic Radiology Residents

Cardiac Radiology In-Training Test Questions for Diagnostic Radiology Residents Cardiac Radiology In-Training Test Questions for Diagnostic Radiology Residents March, 2013 Sponsored by: Commission on Education Committee on Residency Training in Diagnostic Radiology 2013 by American

More information

Value of echocardiography in chronic dyspnea

Value of echocardiography in chronic dyspnea Value of echocardiography in chronic dyspnea Jahrestagung Schweizerische Gesellschaft für /Schweizerische Gesellschaft für Pneumologie B. Kaufmann 16.06.2016 Chronic dyspnea Shortness of breath lasting

More information

What s New in Cardiac MRI

What s New in Cardiac MRI What s New in Cardiac MRI Katie M. Hawthorne, MD Director, Cardiac MRI Main Line Health Philadelphia Cardiovascular Summit November 18, 2017 Cardiac MRI: Disclosure 2 Disclosures No financial disclosures

More information

LV geometric and functional changes in VHD: How to assess? Mi-Seung Shin M.D., Ph.D. Gachon University Gil Hospital

LV geometric and functional changes in VHD: How to assess? Mi-Seung Shin M.D., Ph.D. Gachon University Gil Hospital LV geometric and functional changes in VHD: How to assess? Mi-Seung Shin M.D., Ph.D. Gachon University Gil Hospital LV inflow across MV LV LV outflow across AV LV LV geometric changes Pressure overload

More information

The Patient with Atrial Fibrilation

The Patient with Atrial Fibrilation Assessment of Diastolic Function The Patient with Atrial Fibrilation Assoc. Prof. Adriana Ilieşiu, FESC University of Medicine Carol Davila Bucharest, Romania Associated Conditions with Atrial Fibrillation

More information

PART II ECHOCARDIOGRAPHY LABORATORY OPERATIONS ADULT TRANSTHORACIC ECHOCARDIOGRAPHY TESTING

PART II ECHOCARDIOGRAPHY LABORATORY OPERATIONS ADULT TRANSTHORACIC ECHOCARDIOGRAPHY TESTING PART II ECHOCARDIOGRAPHY LABORATORY OPERATIONS ADULT TRANSTHORACIC ECHOCARDIOGRAPHY TESTING STANDARD - Primary Instrumentation 1.1 Cardiac Ultrasound Systems SECTION 1 Instrumentation Ultrasound instruments

More information

Cardiovascular Nursing Practice: A Comprehensive Resource Manual and Study Guide for Clinical Nurses 2 nd Edition

Cardiovascular Nursing Practice: A Comprehensive Resource Manual and Study Guide for Clinical Nurses 2 nd Edition Cardiovascular Nursing Practice: A Comprehensive Resource Manual and Study Guide for Clinical Nurses 2 nd Edition Table of Contents Volume 1 Chapter 1: Cardiovascular Anatomy and Physiology Basic Cardiac

More information

Objectives. Highlight typical feature of TB pericarditis. How to make a diagnosis. How to treat TB pericarditis

Objectives. Highlight typical feature of TB pericarditis. How to make a diagnosis. How to treat TB pericarditis Dr. Conteh Objectives Highlight typical feature of TB pericarditis How to make a diagnosis How to treat TB pericarditis New evidence for adjunctive corticosteroid Introduction TB pericarditis occurs in

More information

Tricuspid and Pulmonary Valve Disease

Tricuspid and Pulmonary Valve Disease Tricuspid and Pulmonary Valve Disease Lawrence Rudski MD FRCPC FACC FASE Professor of Medicine Director, Division of Cardiology Jewish General Hospital McGill University Question 1 All of the following

More information

When Does 3D Echo Make A Difference?

When Does 3D Echo Make A Difference? When Does 3D Echo Make A Difference? Wendy Tsang, MD, SM Assistant Professor, University of Toronto Toronto General Hospital, University Health Network 1 Practical Applications of 3D Echocardiography Recommended

More information

Tissue Doppler Imaging

Tissue Doppler Imaging Cronicon OPEN ACCESS Hesham Rashid* Tissue Doppler Imaging CARDIOLOGY Editorial Department of Cardiology, Benha University, Egypt *Corresponding Author: Hesham Rashid, Department of Cardiology, Benha University,

More information

Structural Heart Disease. Echocardiographic Diagnosis of Constrictive Pericarditis Mayo Clinic Criteria

Structural Heart Disease. Echocardiographic Diagnosis of Constrictive Pericarditis Mayo Clinic Criteria Structural Heart Disease Echocardiographic Diagnosis of Constrictive Pericarditis Mayo Clinic Criteria Terrence D. Welch, MD; Lieng H. Ling, MBBS, MD; Raul E. Espinosa, MD; Nandan S. Anavekar, MBBCh; Heather

More information

DISCLOSURE. Echocardiography in Systemic Diseases: Questions. Relevant Financial Relationship(s) None. Off Label Usage None 5/7/2018

DISCLOSURE. Echocardiography in Systemic Diseases: Questions. Relevant Financial Relationship(s) None. Off Label Usage None 5/7/2018 Echocardiography in Systemic Diseases: Questions Sunil Mankad, MD, FACC, FCCP, FASE Associate Professor of Medicine Mayo Clinic College of Medicine Director, Transesophageal Echocardiography Associate

More information

Prof. JL Zamorano Hospital Universitario Ramón y Cajal

Prof. JL Zamorano Hospital Universitario Ramón y Cajal Prof. JL Zamorano Hospital Universitario Ramón y Cajal Should we forget TR? Nath J et al. Impact of tricuspid regurgitation on long-term survival. J Am Coll Cardiol. 2004; 43:405-409 Why is it difficult

More information