Julia Vorholt Lecture 8:

Size: px
Start display at page:

Download "Julia Vorholt Lecture 8:"

Transcription

1 L Mikrobiologie Julia Vorholt Lecture 8: Nov 12, 2012 Brock Biology of Microorganisms, Twelfth Edition Madigan / Martinko / Dunlap / Clark

2 1) Nutrients and microbial growth 2) Introduction to principles of metabolism 3) Chemoorganotrophy 4) Chemolithotrophy 5) Phototrophy 6) Autotrophy, nitrogen fixation 7) Global carbon, nitrogen, sulfur cycles Brock Biology of Microorganisms, Twelfth Edition Madigan / Martinko / Dunlap / Clark

3 Glycolysis and Citric Acid Cycle Glucose Substrate-levelphosphorylation Pyruvate Acetyl-CoA C 2 C 4 2 lactate Electron transport-coupled phosphorylation C 5 2 Pyruvate C 6 Oxalacetate 2 Citrate 3 Aconitate 3 Malate 2 Isocitrate 3 Fumarate 2 Succinate 2 Succinyl-CoA -Ketoglutarate 2 Electron transportcoupled phosphorylation Fig. 4.14

4 Aerobic Respiration E 0 (V) Electron transport process in the membrane of Paracoccus denitrificans 0.22 Complex I (NADH:quinone oxidoreductase) NADH donates e - to FMN FMN donates e - to quinone Complex II (succinate dehydrogenase complex) Bypasses Complex I Feeds e - and H + from FADH directly to quinone pool ENVIRONMENT Q cycle Complex II Succinate Fumarate CYTOPLASM Complex III (cytochrome bc 1 complex) Transfers e - from quinones to cytochrome c Cytochrome c shuttles e - to cytochromes a and a Complex IV (cytochromes a and a 3 ) Terminal oxidase; reduces O 2 to H 2 O 0.39 E 0 (V) Chap Fig. 4.19

5 Aerobic Respiration Electron transport process in the membrane of Escherichia coli Chap Fig a

6 Anaerobic Respiration The use of electron acceptors other than oxygen Examples include nitrate (NO 3- ), ferric iron (Fe 3+ ), sulfate (SO 4 2- ), carbonate (CO 3 2- ), certain organic compounds Less energy released compared to aerobic respiration Energy released from redox reactions can be determined by comparing reduction potentials of each electron acceptor Dependent on electron transport, generation of a proton motive force, and ATPase activity Chap. 4.12, 14.6

7 Major Forms of Anaerobic Respiration Anoxic Proton reduction; Pyrococcus furiosus, obligate anaerobe Carbonate respiration; acetogenic bacteria, obligate anaerobes Sulfur respiration; facultative aerobes and obligate anaerobes Carbonate respiration; methanogenic Archaea; obligate anaerobes 0.22 E 0 (V) 0 Sulfate respiration (sulfate reduction); obligate anaerobes (SO 4 2- SO 3 2-, E ) Fumarate respiration; facultative aerobes 0.2 Iron respiration; facultative aerobes and obligate anaerobes Thermodynamic hierarchy of electron acceptors Oxic (oxygen present) Reductive dechlorination; facultative aerobes and obligate anaerobes Nitrate respiration; facultative aerobes (some reduce NO 3- to NH 4 ) Denitrification; facultative aerobes Manganese reduction; facultative aerobes Aerobic respiration; obligate and facultative aerobes Organisms: Enterobacteria, e.g. E. coli Organisms: (many) Pseudomonas Paracoccus Chap Fig

8 Dissimilative Reduction of Nitrate Nitrate Nitrite NO 3 Nitrate reductase NO 2 Nitrate reduction (Escherichia coli) NH 4 + Nitrite reductase Nitric oxide NO Nitric oxide reductase Denitrification (Pseudomonas stutzeri) Gases Nitrous oxide N 2 O Nitrous oxide reductase Dinitrogen N 2 -> Denitrification is a biological source of gaseous N 2 Chap Fig

9 Respiration and Anaerobic Respiration Periplasm Periplasm Nitrate reductase complex Q cycle Q cycle Nitrate reductase Cytoplasm Cytoplasm Aerobic respiration Nitrate reduction Periplasm Nitrate reductase complex NO 2 reductase N 2 O reductase Q cycle Nitrate reductase Nitric oxide reductase Cytoplasm Denitrification Chap Fig

10 Major Forms of Anaerobic Respiration Anoxic Proton reduction; Pyrococcus furiosus, obligate anaerobe Carbonate respiration; acetogenic bacteria, obligate anaerobes Sulfur respiration; facultative aerobes and obligate anaerobes Carbonate respiration; methanogenic Archaea; obligate anaerobes 0.22 E 0 (V) 0 Sulfate respiration (sulfate reduction); obligate anaerobes (SO 4 2- SO 3 2-, E ) Fumarate respiration; facultative aerobes Iron respiration; facultative aerobes and obligate anaerobes Reductive dechlorination; facultative aerobes and obligate anaerobes Nitrate respiration; facultative aerobes (some reduce NO 3- to NH 4 ) Organisms: Shewanella Geobacter 0.75 Denitrification; facultative aerobes Manganese reduction; facultative aerobes 0.82 Oxic (oxygen present) Aerobic respiration; obligate and facultative aerobes Chap Fig

11 Microbial Fuel Cell

12 Electricigens Potential mechanisms for electron transfer

13 Major Forms of Anaerobic Respiration Anoxic Proton reduction; Pyrococcus furiosus, obligate anaerobe Carbonate respiration; acetogenic bacteria, obligate anaerobes E 0 (V) 0 Sulfur respiration; facultative aerobes and obligate anaerobes Carbonate respiration; methanogenic Archaea; obligate anaerobes Sulfate respiration (sulfate reduction); obligate anaerobes (SO 4 2- SO 3 2-, E ) Fumarate respiration; facultative aerobes Organisms: Methanosarcina Methanobacterium Methanococcus Methanopyrus Iron respiration; facultative aerobes and obligate anaerobes Reductive dechlorination; facultative aerobes and obligate anaerobes 0.4 Nitrate respiration; facultative aerobes (some reduce NO 3- to NH 4 ) 0.75 Denitrification; facultative aerobes 0.82 Oxic (oxygen present) Manganese reduction; facultative aerobes Aerobic respiration; obligate and facultative aerobes Chap Fig

14 Methanogenesis and Acetogenesis Methanogenesis ( G kj) Proton or sodium motive force (plus substrate-level phosphorylation for acetogens) Acetogenesis ( G kj) at 1-10 Pa H 2 : G = - 17 kj/mol) Some methanogens also use acetate or methanol as substrate Chap Fig

15 Methanogenesis Methanogenesis is the only way that methanogenic archaea can obtain energy for growth. => Specialization Methanogens are the only organisms known to produce methane (CH 4 ) as a catabolic end product. They are strict anaerobes. Atmospheric concentrations of methane have doubled since 200 years.

16 Anoxic Decomposition

17 Rumen and Gastrointestinal System of a Cow The rumen contains microbes/g of rumen constituents Microbial fermentation in the rumen is mediated by celluloytic microbes that hydrolyze cellulose to free glucose that is then fermented, producing volatile fatty acids (e.g., acetic, propionic, butyric) and the CH 4 and CO 2 Fatty acids pass through rumen wall into bloodstream and are utilized by the animal as its main energy source Chap Fig

18 Biochemical Reactions in the Rumen Rumen microbes also synthesize amino acids and vitamins for their animal host Rumen microbes themselves can serve as a source of protein to their host when they are directly digested Chap Fig

19 Rumen and Gastrointestinal System of a Cow The rumen contains microbes/g of rumen constituents Microbial fermentation in the rumen is mediated by celluloytic microbes that hydrolyze cellulose to free glucose that is then fermented, producing volatile fatty acids (e.g., acetic, propionic, butyric) and the CH 4 and CO 2 Fatty acids pass through rumen wall into bloodstream and are utilized by the animal as its main energy source Chap Fig

20 Biochemical Reactions in the Rumen Rumen microbes also synthesize amino acids and vitamins for their animal host FEED, HAY, etc. Cellulose, starch, sugars Cellulolysis, amylolysis Fermentation Fermentation SUGARS Formate Rumen microbes themselves can serve as a source of protein to their host when they are directly digested Pyruvate Succinate Lactate Propionate CO 2 Ruminant bloodstream Acetate Propionate Rumen wall Butyrate VFAs Acetate Removed by eructation to atmosphere Overall stoichiometry of rumen fermentation: Chap Fig

21 1) Nutrients and microbial growth 2) Introduction to principles of metabolism 3) Chemoorganotrophy 4) Chemolithotrophy 5) Phototrophy 6) Autotrophy, nitrogen fixation 7) Global carbon, nitrogen, sulfur cycles Brock Biology of Microorganisms, Twelfth Edition Madigan / Martinko / Dunlap / Clark

22 Chemolithotrophy: Beggiatoa

23 Sergej Winogradsky: Concept of Chemolithotrophy 1887 Sulfur oxidizers Drawings made by Winogradsky of Beggiatoa. Fig. 1. The tip of a filament of Beggiatoa alba: (a) in sulfurous [sulfidecontaining] water, (b) after 24 h in water nearly depleted in H 2 S, (c) after 48 h in water without H2S. Fig. 2. The tip of a filament of Beggiatoa media. Fig. 3. The tip of a filament of Beggiatoa minima. From Winogradsky, S Microbiologie du Sol. Masson, Paris. Fig. 1.2

24 Chemolithotrophy Chemolithotrophs are organisms that obtain energy from the oxidation of inorganic compounds Most chemolithotrophs obtain their carbon from CO 2 (autotrophs) Many sources of reduced molecules exist in the environment The oxidation of different reduced compounds yields varying amounts of energy Chap. 13.6

25 Chemolithotrophic processes Chap. 13.6

26 Energy Yields from Oxidation of Inorganic Electron Donors Chap. 13.6

27 Hydrogen Oxidizers (aerobic) / Knallgas bacteria > Large amounts of hydrogen are formed during the anaerobic biological degradation of organic material. > Low amounts are also released during geochemical processes and are found in vulcanic gases. H O 2 -> H 2 O ( G = kj/mol) Key enzyme: Hydrogenase (Fe, S) (Ni, Fe) Knallgasbakterien aerobic hydrogen oxidizing microorganisms: Ralstonia eutropha (Alcaligenes), Paracoccus (usually facultative chemolithotroph) Chap. 13.7

28 Hydrogenases of Aerobic Hydrogen oxidizing Bacteria Membrane-integrated hydrogenase Out In Cytoplasmic hydrogenase Cell material Chap Fig

29 Nitrification NH 3 and NO 2 - are oxidized by nitrifying bacteria (and archaea) during the process of nitrification Ammonium-oxidizing Two groups of bacteria work in concert to fully oxidize ammonia to nitrate The nitrifiers are widespread in soil and water. They can be found in nature wherever ammonium is liberated and oxygen is available. Like many other chemolithotrophs, the nitrifiers are particularly active at the oxic/anoxic interface of sediments and water bodies. Nitrite-oxidizing Only small energy yields from this reaction => Growth of nitrifying bacteria is very slow Chap

30 Oxidation of Ammonia by Ammonia-Oxidizing Bacteria AMO, ammonia monooxygenase Oxidation of hydroxylamine Out HAO, hydroxylamine oxidoreductase Cyt aa3, terminal cyt c oxidase (complex IV) In Oxidation of ammonia Reduction of oxygen Chap Fig

31 Oxidation of Nitrite to Nitrate by Nitrifying Bacteria NXR, nitrite oxidoreductase Periplasm Cyt aa3, terminal cyt c oxidase (complex IV) Reverse e flow to make NADH Cytoplasm Oxidation of nitrite Reduction of oxygen Chap Fig

32 Degradation of limestone Agriculture NH 3 NO 2 - NO 3 - salpetrige Säure Nitrous acid Salpetersäure Nitric acid Ca(CO 3 ) 2

33 Nitrifiers in waste-water treatment The chemolithoautotrophic ammonium- and nitrite-oxidizing bacteria play a vital role in modern waste-water treatment for nitrogen removal.

34 Anammox Anammox: anoxic ammonia oxidation (to N 2 gas) NH NO 2 - -> N 2 + H 2 O Performed by unusual group of obligate aerobic bacteria (Plantomycetes) Anammoxosome is compartment where anammox reactions occur Protects cell from reactions occuring during anammox Hydrazine (H 2 N-NH 2 ) is an intermediate of anammox Anammox is very beneficial in the treatment of wastewater Anammoxosome membrane Electron transport Out In Chap Fig

Julia Vorholt Lecture 7:

Julia Vorholt Lecture 7: 752-4001-00L Mikrobiologie Julia Vorholt Lecture 7: Chemoorganotrophy Nov 5, 2012 Brock Biology of Microorganisms, Twelfth Edition Madigan / Martinko / Dunlap / Clark Copyright 2009 Pearson Education Inc.,

More information

Catabolism of Organic Compounds

Catabolism of Organic Compounds LECTURE PRESENTATIONS For BROCK BIOLOGY OF MICROORGANISMS, THIRTEENTH EDITION Michael T. Madigan, John M. Martinko, David A. Stahl, David P. Clark Chapter 14 Lectures by John Zamora Middle Tennessee State

More information

Life is based on redox

Life is based on redox Life is based on redox All energy generation in biological systems is due to redox (reduction-oxidation) reactions Aerobic Respiration: C 6 H 12 O 6 + 6 H 2 O ==> 6 CO 2 + 24 H + +24 e - oxidation electron

More information

BIOLOGY - CLUTCH CH.9 - RESPIRATION.

BIOLOGY - CLUTCH CH.9 - RESPIRATION. !! www.clutchprep.com CONCEPT: REDOX REACTIONS Redox reaction a chemical reaction that involves the transfer of electrons from one atom to another Oxidation loss of electrons Reduction gain of electrons

More information

Chapter 9 Cellular Respiration Overview: Life Is Work Living cells require energy from outside sources

Chapter 9 Cellular Respiration Overview: Life Is Work Living cells require energy from outside sources Chapter 9 Cellular Respiration Overview: Life Is Work Living cells require energy from outside sources Some animals, such as the giant panda, obtain energy by eating plants, and some animals feed on other

More information

Chapter 9. Cellular Respiration: Harvesting Chemical Energy

Chapter 9. Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy Living cells require energy from outside sources Energy flows into an ecosystem as sunlight and leaves as heat Photosynthesis generates O 2 and

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy You should be able to: 1. Explain how redox reactions are involved in energy exchanges. Name and describe the three stages of cellular respiration;

More information

CH 7: Cell Respiration and Fermentation Overview. Concept 7.1: Catabolic pathways yield energy by oxidizing organic fuels

CH 7: Cell Respiration and Fermentation Overview. Concept 7.1: Catabolic pathways yield energy by oxidizing organic fuels CH 7: Cell Respiration and Fermentation Overview Living cells require energy from outside sources Some animals obtain energy by eating plants, and some animals feed on other organisms Energy flows into

More information

Chapter 9. Cellular Respiration and Fermentation

Chapter 9. Cellular Respiration and Fermentation Chapter 9 Cellular Respiration and Fermentation Energy flows into an ecosystem as sunlight and leaves as heat Photosynthesis generates O 2 and organic molecules, which are used in cellular respiration

More information

Ch 07. Microbial Metabolism

Ch 07. Microbial Metabolism Ch 07 Microbial Metabolism SLOs Differentiate between metabolism, catabolism, and anabolism. Fully describe the structure and function of enzymes. Differentiate between constitutive and regulated enzymes.

More information

Tema 4. Electron Transport. Cap. 4 pages

Tema 4. Electron Transport. Cap. 4 pages Tema 4. Electron Transport Cap. 4 pages 120-145 The generation of energy for growth-related physiological processes in respiring prokaryotes is by coupling the flow of electrons in membranes to the creation

More information

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 9 Cellular Respiration and Fermentation Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Figure 9.2 Light energy

More information

FARM MICROBIOLOGY 2008 PART 3: BASIC METABOLISM & NUTRITION OF BACTERIA I. General Overview of Microbial Metabolism and Nutritional Requirements.

FARM MICROBIOLOGY 2008 PART 3: BASIC METABOLISM & NUTRITION OF BACTERIA I. General Overview of Microbial Metabolism and Nutritional Requirements. FARM MICROBIOLOGY 2008 PART 3: BASIC METABOLISM & NUTRITION OF BACTERIA I. General Overview of Microbial Metabolism and Nutritional Requirements. Under the right physical conditions, every microorganism

More information

Chapter 9: Cellular Respiration Overview: Life Is Work. Living cells. Require transfusions of energy from outside sources to perform their many tasks

Chapter 9: Cellular Respiration Overview: Life Is Work. Living cells. Require transfusions of energy from outside sources to perform their many tasks Chapter 9: Cellular Respiration Overview: Life Is Work Living cells Require transfusions of energy from outside sources to perform their many tasks Biology, 7 th Edition Neil Campbell and Jane Reece The

More information

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Photosynthesis in chloroplasts. Light energy ECOSYSTEM. Organic molecules CO 2 + H 2 O

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Photosynthesis in chloroplasts. Light energy ECOSYSTEM. Organic molecules CO 2 + H 2 O 9 Cellular Respiration and Fermentation CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Figure 9.1 Figure 9.2

More information

Respiration. Respiration. Respiration. How Cells Harvest Energy. Chapter 7

Respiration. Respiration. Respiration. How Cells Harvest Energy. Chapter 7 How Cells Harvest Energy Chapter 7 Organisms can be classified based on how they obtain energy: autotrophs: are able to produce their own organic molecules through photosynthesis heterotrophs: live on

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION

More information

Respiration. Respiration. How Cells Harvest Energy. Chapter 7

Respiration. Respiration. How Cells Harvest Energy. Chapter 7 How Cells Harvest Energy Chapter 7 Respiration Organisms can be classified based on how they obtain energy: autotrophs: are able to produce their own organic molecules through photosynthesis heterotrophs:

More information

Campbell Biology 9. Chapter 9 Cellular Respiration and Fermentation. Chul-Su Yang, Ph.D., Lecture on General Biology 1

Campbell Biology 9. Chapter 9 Cellular Respiration and Fermentation. Chul-Su Yang, Ph.D., Lecture on General Biology 1 Lecture on General Biology 1 Campbell Biology 9 th edition Chapter 9 Cellular Respiration and Fermentation Chul-Su Yang, Ph.D., chulsuyang@hanyang.ac.kr Infection Biology Lab., Dept. of Molecular & Life

More information

7 Cellular Respiration and Fermentation

7 Cellular Respiration and Fermentation CAMPBELL BIOLOGY IN FOCUS Urry Cain Wasserman Minorsky Jackson Reece 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Overview: Life Is Work Living

More information

Chapter 7 Cellular Respiration and Fermentation*

Chapter 7 Cellular Respiration and Fermentation* Chapter 7 Cellular Respiration and Fermentation* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. Life Is Work

More information

7 Cellular Respiration and Fermentation

7 Cellular Respiration and Fermentation CAMPBELL BIOLOGY IN FOCUS Urry Cain Wasserman Minorsky Jackson Reece 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Overview: Life Is Work Living

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION

More information

7 Cellular Respiration and Fermentation

7 Cellular Respiration and Fermentation CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION

More information

BIOLOGY. Cellular Respiration and Fermentation. Concept 9.1: Catabolic pathways yield energy by oxidizing organic fuels

BIOLOGY. Cellular Respiration and Fermentation. Concept 9.1: Catabolic pathways yield energy by oxidizing organic fuels 9 Cellular Respiration and Fermentation CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Energy flows into an ecosystem as sunlight and leaves as heat Photosynthesis generates

More information

AP BIOLOGY Chapter 7 Cellular Respiration =

AP BIOLOGY Chapter 7 Cellular Respiration = 1 AP BIOLOGY Chapter 7 Cellular Respiration = Day 1 p. I. Overview A. Cellular Respiration 1. Respiration breathing, exchange of O 2 for CO 2 2. Cellular respiration aerobic harvesting of energy from food

More information

Cellular Respiration: Harvesting Chemical Energy Chapter 9

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy Chapter 9 Assemble polymers, pump substances across membranes, move and reproduce The giant panda Obtains energy for its cells by eating plants which get

More information

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 9 Cellular Respiration and Fermentation Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Life Is Work Living cells

More information

How Cells Harvest Energy. Chapter 7. Respiration

How Cells Harvest Energy. Chapter 7. Respiration How Cells Harvest Energy Chapter 7 Respiration Organisms classified on how they obtain energy: autotrophs: produce their own organic molecules through photosynthesis heterotrophs: live on organic compounds

More information

Concept 9.1: Catabolic pathways yield energy by oxidizing organic fuels Several processes are central to cellular respiration and related pathways

Concept 9.1: Catabolic pathways yield energy by oxidizing organic fuels Several processes are central to cellular respiration and related pathways Overview: Life Is Work Living cells require energy from outside sources Some animals, such as the chimpanzee, obtain energy by eating plants, and some animals feed on other organisms that eat plants Energy

More information

Ch. 9 Cell Respiration. Title: Oct 15 3:24 PM (1 of 53)

Ch. 9 Cell Respiration. Title: Oct 15 3:24 PM (1 of 53) Ch. 9 Cell Respiration Title: Oct 15 3:24 PM (1 of 53) Essential question: How do cells use stored chemical energy in organic molecules and to generate ATP? Title: Oct 15 3:28 PM (2 of 53) Title: Oct 19

More information

7 Cellular Respiration and Fermentation

7 Cellular Respiration and Fermentation CAMPBELL BIOLOGY IN FOCUS Urry Cain Wasserman Minorsky Jackson Reece 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge Overview: Life Is Work Living

More information

Cellular Pathways That Harvest Chemical Energy. Cellular Pathways That Harvest Chemical Energy. Cellular Pathways In General

Cellular Pathways That Harvest Chemical Energy. Cellular Pathways That Harvest Chemical Energy. Cellular Pathways In General Cellular Pathways That Harvest Chemical Energy A. Obtaining Energy and Electrons from Glucose Lecture Series 12 Cellular Pathways That Harvest Chemical Energy B. An Overview: Releasing Energy from Glucose

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 9 Cellular Respiration and Fermentation

More information

MULTIPLE CHOICE QUESTIONS

MULTIPLE CHOICE QUESTIONS MULTIPLE CHOICE QUESTIONS 1. Which of the following statements concerning anabolic reactions is FALSE? A. They are generally endergonic. B. They usually require ATP. C. They are part of metabolism. D.

More information

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 9 Cellular Respiration and Fermentation Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Life Is Work Living cells

More information

Cellular Respiration Part V: Oxidative Phosphorylation

Cellular Respiration Part V: Oxidative Phosphorylation Cellular Respiration Part V: Oxidative Phosphorylation Figure 9.16 Electron shuttles span membrane 2 NADH or 2 FADH 2 MITOCHONDRION 2 NADH 2 NADH 6 NADH 2 FADH 2 Glucose Glycolysis 2 Pyruvate Pyruvate

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with

More information

III. 6. Test. Respiració cel lular

III. 6. Test. Respiració cel lular III. 6. Test. Respiració cel lular Chapter Questions 1) What is the term for metabolic pathways that release stored energy by breaking down complex molecules? A) anabolic pathways B) catabolic pathways

More information

4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5

4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5 1. Which of the following statements about NAD + is false? a. NAD + is reduced to NADH during both glycolysis and the citric acid cycle. b. NAD + has more chemical energy than NADH. c. NAD + is reduced

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with

More information

2) The molecule that functions as the reducing agent (electron donor) in a redox or oxidationreduction

2) The molecule that functions as the reducing agent (electron donor) in a redox or oxidationreduction Campbell Biology in Focus (Urry) Chapter 7 Cellular Respiration and Fermentation 7.1 Multiple-Choice Questions 1) What is the term for metabolic pathways that release stored energy by breaking down complex

More information

Chapter 8. Metabolism. Topics in lectures 15 and 16. Chemical foundations Catabolism Biosynthesis

Chapter 8. Metabolism. Topics in lectures 15 and 16. Chemical foundations Catabolism Biosynthesis Chapter 8 Topics in lectures 15 and 16 Metabolism Chemical foundations Catabolism Biosynthesis 1 Metabolism Chemical Foundations Enzymes REDOX Catabolism Pathways Anabolism Principles and pathways 2 Enzymes

More information

OCN621: Biological Oceanography- Bioenergetics-II

OCN621: Biological Oceanography- Bioenergetics-II OCN621: Biological Oceanography- Bioenergetics-II Zackary Johnson MSB614 zij@hawaii.edu Chemosynthesis (Chemolithotrophy) Use of small inorganic

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Respiration Practice Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which of the following statements describes NAD+? A) NAD+ can donate

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation Chapter 9 LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Cellular Respiration and Fermentation

More information

Chemical Energy. Valencia College

Chemical Energy. Valencia College 9 Pathways that Harvest Chemical Energy Valencia College 9 Pathways that Harvest Chemical Energy Chapter objectives: How Does Glucose Oxidation Release Chemical Energy? What Are the Aerobic Pathways of

More information

7 Cellular Respiration and Fermentation

7 Cellular Respiration and Fermentation CAMPBELL BIOLOGY IN FOCUS URRY CAIN WASSERMAN MINORSKY REECE 7 Cellular Respiration and Fermentation Lecture Presentations by Kathleen Fitzpatrick and Nicole Tunbridge, Simon Fraser University SECOND EDITION

More information

Chapter 8. An Introduction to Microbial Metabolism

Chapter 8. An Introduction to Microbial Metabolism Chapter 8 An Introduction to Microbial Metabolism The metabolism of microbes Metabolism sum of all chemical reactions that help cells function Two types of chemical reactions: Catabolism -degradative;

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy Edited by Shawn Lester PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated

More information

O 2. What is anaerobic digestion?

O 2. What is anaerobic digestion? What is anaerobic digestion? Microbial degradation of organic material under anaerobic conditions Ubiquitous, naturally-occurring process Occurs in swamps, hydric soils, landfills, digestive tracks of

More information

Metabolism Energy Pathways Biosynthesis. Catabolism Anabolism Enzymes

Metabolism Energy Pathways Biosynthesis. Catabolism Anabolism Enzymes Topics Microbial Metabolism Metabolism Energy Pathways Biosynthesis 2 Metabolism Catabolism Catabolism Anabolism Enzymes Breakdown of complex organic molecules in order to extract energy and dform simpler

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with

More information

Guangyi Wang. Chemosynthesis (Chemolithotrophy)

Guangyi Wang. Chemosynthesis (Chemolithotrophy) OCN621: Biological Oceanography- Bioenergetics-II Guangyi Wang POST 103B guangyi@hawaii.edu http://www.soest.hawaii.edu/oceanography/zij/education/ocn621/ Chemosynthesis (Chemolithotrophy) Use of small

More information

Cellular Respiration and Fermentation

Cellular Respiration and Fermentation LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 9 Cellular Respiration and Fermentation

More information

NOTES: Ch 9, part & Fermentation & Regulation of Cellular Respiration

NOTES: Ch 9, part & Fermentation & Regulation of Cellular Respiration NOTES: Ch 9, part 4-9.5 & 9.6 - Fermentation & Regulation of Cellular Respiration 9.5 - Fermentation enables some cells to produce ATP without the use of oxygen Cellular respiration requires O 2 to produce

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with

More information

Chapter 9: Cellular Respiration

Chapter 9: Cellular Respiration Chapter 9: Cellular Respiration To perform their many tasks, living cells require energy from outside sources. Energy stored in food utimately comes from the sun. Photosynthesis makes the raw materials

More information

10/25/2010 CHAPTER 9 CELLULAR RESPIRATION. Life is Work. Types of cellular respiration. Catabolic pathways = oxidizing fuels

10/25/2010 CHAPTER 9 CELLULAR RESPIRATION. Life is Work. Types of cellular respiration. Catabolic pathways = oxidizing fuels CHAPTER 9 CELLULAR RESPIRATION Life is Work Living cells require transfusions of energy from outside sources to perform their many tasks: Chemical work Transport work Mechanical work Energy stored in the

More information

Chapter 2. Biochemistry of Anaerobic Digestion. Anaerobic Digestion

Chapter 2. Biochemistry of Anaerobic Digestion. Anaerobic Digestion Chapter Biochemistry of Anaerobic Digestion Anaerobic Digestion Complex Organics (Carbohydrates, proteins, lipids) Mono and Oligomers (sugars, aminoacids, longchained fatty acids) Intermediates 3 3 (Propionate,

More information

Metabolism. Metabolism. Energy. Metabolism. Energy. Energy 5/22/2016

Metabolism. Metabolism. Energy. Metabolism. Energy. Energy 5/22/2016 5//016 Metabolism Metabolism All the biochemical reactions occurring in the body Generating, storing and expending energy ATP Supports body activities Assists in constructing new tissue Metabolism Two

More information

Plant Respiration. Exchange of Gases in Plants:

Plant Respiration. Exchange of Gases in Plants: Plant Respiration Exchange of Gases in Plants: Plants do not have great demands for gaseous exchange. The rate of respiration in plants is much lower than in animals. Large amounts of gases are exchanged

More information

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration: Harvesting Chemical Energy Chapter 9 Cellular Respiration: Harvesting Chemical Energy Overview: Life Is Work Living cells require energy from outside sources Some animals, such as the giant panda, obtain energy by eating plants,

More information

By: Mochamad Nurcholis Food Science Department Brawijaya University 2013

By: Mochamad Nurcholis Food Science Department Brawijaya University 2013 PHYSIOLOGY & METABOLISMS of Microorganisms By: Mochamad Nurcholis Food Science Department Brawijaya University 2013 What is metabolisms? Can you explain it? Overall biochemical reaction within cells of

More information

Class XI Chapter 14 Respiration in Plants Biology. 1. It is a biochemical process. 1. It is a physiochemical process.

Class XI Chapter 14 Respiration in Plants Biology. 1. It is a biochemical process. 1. It is a physiochemical process. Question 1: Differentiate between (a) Respiration and Combustion (b) Glycolysis and Krebs cycle (c) Aerobic respiration and Fermentation (a) Respiration and combustion Respiration Combustion 1. It is a

More information

MITOCHONDRIA LECTURES OVERVIEW

MITOCHONDRIA LECTURES OVERVIEW 1 MITOCHONDRIA LECTURES OVERVIEW A. MITOCHONDRIA LECTURES OVERVIEW Mitochondrial Structure The arrangement of membranes: distinct inner and outer membranes, The location of ATPase, DNA and ribosomes The

More information

Unit 2 Cellular Respiration

Unit 2 Cellular Respiration Metabolism Unit 2 Cellular Respiration Living organisms must continually to carry out the functions of life. Without energy, comes to an end. The breakdown of complex substances are the result of. The

More information

Metabolism. Chapter 8 Microbial Metabolism. Metabolic balancing act. Catabolism Anabolism Enzymes. Topics. Metabolism Energy Pathways Biosynthesis

Metabolism. Chapter 8 Microbial Metabolism. Metabolic balancing act. Catabolism Anabolism Enzymes. Topics. Metabolism Energy Pathways Biosynthesis Chapter 8 Microbial Metabolism Topics Metabolism Energy Pathways Biosynthesis Catabolism Anabolism Enzymes Metabolism 1 2 Metabolic balancing act Catabolism and anabolism simple model Catabolism Enzymes

More information

Enzymes what are they?

Enzymes what are they? Topic 11 (ch8) Microbial Metabolism Topics Metabolism Energy Pathways Biosynthesis 1 Catabolism Anabolism Enzymes Metabolism 2 Metabolic balancing act Catabolism Enzymes involved in breakdown of complex

More information

Cellular Respiration: Harvesting Chemical Energy CHAPTER 9

Cellular Respiration: Harvesting Chemical Energy CHAPTER 9 Cellular Respiration: Harvesting Chemical Energy CHAPTER 9 9.1 Metabolic pathways that release energy are exergonic and considered catabolic pathways. Fermentation: partial degradation of sugars that occurs

More information

Chapter 9 Notes. Cellular Respiration and Fermentation

Chapter 9 Notes. Cellular Respiration and Fermentation Chapter 9 Notes Cellular Respiration and Fermentation Objectives Distinguish between fermentation and anaerobic respiration. Name the three stages of cellular respiration and state the region of the cell

More information

Question 1: Differentiate between (a) Respiration and Combustion (b) Glycolysis and Krebs cycle (c) Aerobic respiration and Fermentation (a) Respiration and combustion Respiration Combustion 1. It is a

More information

Brock Biology of Microorganisms, 15e (Madigan et al.) Chapter 3 Microbial Metabolism. 3.1 Multiple Choice Questions

Brock Biology of Microorganisms, 15e (Madigan et al.) Chapter 3 Microbial Metabolism. 3.1 Multiple Choice Questions Brock Biology of Microorganisms, 15e (Madigan et al.) Chapter 3 Microbial Metabolism 3.1 Multiple Choice Questions 1) The prokaryotic transport system that involves a substrate-binding protein, a membraneintegrated

More information

Cellular Respiration

Cellular Respiration Cellular Respiration Chemical Equation 6 O 2 + C 6 H 12 O 6 6 H 2 O + 6 CO 2 + Page 107 Adenosine Triphosphate Adenosine Diphosphate Background Aerobic= requires oxygen Anaerobic= does not require oxygen

More information

Respiration. Organisms can be classified based on how they obtain energy: Autotrophs

Respiration. Organisms can be classified based on how they obtain energy: Autotrophs Respiration rganisms can be classified based on how they obtain energy: Autotrophs Able to produce their own organic molecules through photosynthesis Heterotrophs Live on organic compounds produced by

More information

Photosynthesis in chloroplasts. Cellular respiration in mitochondria ATP. ATP powers most cellular work

Photosynthesis in chloroplasts. Cellular respiration in mitochondria ATP. ATP powers most cellular work Light energy ECOSYSTEM CO + H O Photosynthesis in chloroplasts Cellular respiration in mitochondria Organic molecules + O powers most cellular work Heat energy 1 becomes oxidized (loses electron) becomes

More information

Cellular Respiration Stage 2 & 3. Glycolysis is only the start. Cellular respiration. Oxidation of Pyruvate Krebs Cycle.

Cellular Respiration Stage 2 & 3. Glycolysis is only the start. Cellular respiration. Oxidation of Pyruvate Krebs Cycle. Cellular Respiration Stage 2 & 3 Oxidation of Pyruvate Krebs Cycle AP 2006-2007 Biology Glycolysis is only the start Glycolysis glucose pyruvate 6C 2x 3C Pyruvate has more energy to yield 3 more C to strip

More information

9/10/2012. The electron transfer system in the inner membrane of mitochondria in plants

9/10/2012. The electron transfer system in the inner membrane of mitochondria in plants LECT 6. RESPIRATION COMPETENCIES Students, after mastering the materials of Plant Physiology course, should be able to: 1. To explain the process of respiration (the oxidation of substrates particularly

More information

Chapter 9 Part A Lecture Notes: Metabolism Generation of Energy Metabolism is fundamental

Chapter 9 Part A Lecture Notes: Metabolism Generation of Energy Metabolism is fundamental Chapter 9 Part A Lecture Notes: Metabolism Generation of Energy Metabolism is fundamental I. Introduction Metabolism is the total of all chemical reactions in the cell A. Catabolism = breakdown of complex

More information

6/28/2016. Growth Media and Metabolism. Complex Media. Defined Media. Made from complex and rich ingredients

6/28/2016. Growth Media and Metabolism. Complex Media. Defined Media. Made from complex and rich ingredients Growth Media and Metabolism Complex Media Made from complex and rich ingredients Ex. Soya protein extracts Milk protein extracts Blood products Tomato juice, etc. Exact chemical composition unknown Can

More information

14 BACTERIAL METABOLISM

14 BACTERIAL METABOLISM 14 BACTERIAL METABOLISM 14.1. ENERGY-GENERATING METABOLISM The term metabolism refers to the sum of the biochemical reactions required for energy generation and the use of energy to synthesize cell material

More information

WHY IS THIS IMPORTANT?

WHY IS THIS IMPORTANT? CHAPTER 3 ESSENTIALS OF METABOLISM WHY IS THIS IMPORTANT? It is important to have a basic understanding of metabolism because it governs the survival and growth of microorganisms The growth of microorganisms

More information

Chapter 5. Microbial Metabolism

Chapter 5. Microbial Metabolism Chapter 5 Microbial Metabolism Metabolism Collection of controlled biochemical reactions that take place within a microbe Ultimate function of metabolism is to reproduce the organism Metabolic Processes

More information

Ch 9: Cellular Respiration

Ch 9: Cellular Respiration Ch 9: Cellular Respiration Cellular Respiration An overview Exergonic reactions and catabolic pathway Energy stored in bonds of food molecules is transferred to ATP Cellular respiration provides the energy

More information

Electron transport chain chapter 6 (page 73) BCH 340 lecture 6

Electron transport chain chapter 6 (page 73) BCH 340 lecture 6 Electron transport chain chapter 6 (page 73) BCH 340 lecture 6 The Metabolic Pathway of Cellular Respiration All of the reactions involved in cellular respiration can be grouped into three main stages

More information

ANAEROBIC DIGESTION FUNDAMENTALS I. Dr. CRISTINA CAVINATO LECTURE 1

ANAEROBIC DIGESTION FUNDAMENTALS I. Dr. CRISTINA CAVINATO LECTURE 1 ANAEROBIC DIGESTION FUNDAMENTALS I Dr. CRISTINA CAVINATO LECTURE 1 Summer School on Biogas Technology Renewable Energy Production and Environmental Benefit, 12-17 August 2013 0 Jan Baptist Van Helmont

More information

BACTERIAL GROWTH. FYBSc.

BACTERIAL GROWTH. FYBSc. BACTERIAL GROWTH FYBSc. Bacterial growth Binary fission Generation time Phases of growth 4-2 Binary fission 1. Prokaryote cells grow by increasing in cell number (as opposed to increasing in size). 2.

More information

Photosynthesis in chloroplasts CO2 + H2O. Cellular respiration in mitochondria ATP. powers most cellular work. Heat energy

Photosynthesis in chloroplasts CO2 + H2O. Cellular respiration in mitochondria ATP. powers most cellular work. Heat energy Figure 9-01 LE 9-2 Light energy ECOSYSTEM Photosynthesis in chloroplasts CO2 + H2O Cellular respiration in mitochondria Organic + O molecules 2 powers most cellular work Heat energy LE 9-UN161a becomes

More information

TCA CYCLE (Citric Acid Cycle)

TCA CYCLE (Citric Acid Cycle) TCA CYCLE (Citric Acid Cycle) TCA CYCLE The Citric Acid Cycle is also known as: Kreb s cycle Sir Hans Krebs Nobel prize, 1953 TCA (tricarboxylic acid) cycle The citric acid cycle requires aerobic conditions!!!!

More information

Biology Chapter-7 Cellular Respiration

Biology Chapter-7 Cellular Respiration Biology-1406 Chapter-7 Cellular Respiration Energy is stored in Chemicals Catabolism- the breaking down of complex molecules, such as glucose, to release their stored energy. Catabolism may or may not

More information

BY: RASAQ NURUDEEN OLAJIDE

BY: RASAQ NURUDEEN OLAJIDE BY: RASAQ NURUDEEN OLAJIDE LECTURE CONTENT INTRODUCTION CITRIC ACID CYCLE (T.C.A) PRODUCTION OF ACETYL CoA REACTIONS OF THE CITIRC ACID CYCLE THE AMPHIBOLIC NATURE OF THE T.C.A CYCLE THE GLYOXYLATE CYCLE

More information

2/4/17. Cellular Metabolism. Metabolism. Cellular Metabolism. Consists of all of the chemical reactions that take place in a cell.

2/4/17. Cellular Metabolism. Metabolism. Cellular Metabolism. Consists of all of the chemical reactions that take place in a cell. Metabolism Cellular Metabolism Consists of all of the chemical reactions that take place in a cell. Can be reactions that break things down. (Catabolism) Or reactions that build things up. (Anabolism)

More information

Cellular Respiration- -conversion of stored energy in glucose to usable energy for the cell -energy in cells is stored in the form of ATP

Cellular Respiration- -conversion of stored energy in glucose to usable energy for the cell -energy in cells is stored in the form of ATP Cellular Respiration Notes Chapter 7 How Cells Make ATP Energy Releasing Pathways Cellular Respiration- -conversion of stored energy in glucose to usable energy for the cell -energy in cells is stored

More information

Cellular Metabolism. Biol 105 Lecture 6 Read Chapter 3 (pages 63 69)

Cellular Metabolism. Biol 105 Lecture 6 Read Chapter 3 (pages 63 69) Cellular Metabolism Biol 105 Lecture 6 Read Chapter 3 (pages 63 69) Metabolism Consists of all of the chemical reactions that take place in a cell Metabolism Animation Breaking Down Glucose For Energy

More information

Metabolism. Learning objectives are to gain an appreciation of: Part II: Respiration

Metabolism. Learning objectives are to gain an appreciation of: Part II: Respiration Metabolism Part I: Fermentations ti Part II: Respiration Learning objectives are to gain an appreciation of: Catabolism and anabolism ATP Generation and energy conservation Fermentation 1 Importance of

More information

Cell Respiration - 1

Cell Respiration - 1 Cell Respiration - 1 All cells must do work to stay alive and maintain their cellular environment. The energy needed for cell work comes from the bonds of ATP. Cells obtain their ATP by oxidizing organic

More information

Reading Assignments. A. Energy and Energy Conversions. Lecture Series 9 Cellular Pathways That Harvest Chemical Energy. gasoline) or elevated mass.

Reading Assignments. A. Energy and Energy Conversions. Lecture Series 9 Cellular Pathways That Harvest Chemical Energy. gasoline) or elevated mass. Lecture Series 9 Cellular Pathways That Harvest Chemical Energy Reading Assignments Review Chapter 3 Energy, Catalysis, & Biosynthesis Read Chapter 13 How Cells obtain Energy from Food Read Chapter 14

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) What is the term for metabolic pathways that release stored energy by breaking down complex

More information

Cellular Metabolism 6/20/2015. Metabolism. Summary of Cellular Respiration. Consists of all the chemical reactions that take place in a cell!

Cellular Metabolism 6/20/2015. Metabolism. Summary of Cellular Respiration. Consists of all the chemical reactions that take place in a cell! Cellular Metabolism Biology 105 Lecture 6 Chapter 3 (pages 56-61) Metabolism Consists of all the chemical reactions that take place in a cell! Cellular metabolism: Aerobic cellular respiration requires

More information

Chapter 9: Cellular Respiration: Harvesting Chemical Energy

Chapter 9: Cellular Respiration: Harvesting Chemical Energy AP Biology Reading Guide Name: Date: Period Chapter 9: Cellular Respiration: Harvesting Chemical Energy Overview: Before getting involved with the details of cellular respiration and photosynthesis, take

More information