Unit 7 ~ Learning Guide

Size: px
Start display at page:

Download "Unit 7 ~ Learning Guide"

Transcription

1 Unit 7 ~ Learning Guide Name: INSTRUCTIONS Complete the following notes and questions as you work through the related lessons. You are required to have this package completed BEFORE you write your unit test. Do your best and ask questions about anything that you don't understand BEFORE you write the unit test. U7L1 NOTES: INTRODUCTION (web notes and video) YOU SHOULD WATCH THE ENZYME LAB AND THE MODULE EXAM VIDEO BEFORE PROCEEDING ANY FURTHER! Definitions: 1. Metabolism - 2. Enzymes - (speeds up certain chemical reactions). a. Apoenzyme - - It's shape accounts for an enzymes ability to run only a single type of reaction. b. Coenzyme - - can donate or accept atoms to or from a reaction. - Our body cannot often make coenzymes, so we need them in our diet. E.g., 3. Substrate -. Page 1 of 15

2 4. Activation Energy - Many reactions will not occur unless is added to start the reaction off. Thyroxin Example: A piece of wood needs an input of energy to start it burning. This input of energy is called the or energy of activation. The, located in the neck, accumulates in order to produce. Thyroxin is a that is secreted into the by cells of the thyroid. It attaches to a on the surfaces of our body cells where it governs the, thus having an overall impact on. Thyroxin does not have a target organ; it stimulates most of the cells of the body to metabolize at a faster rate. The number of respiratory enzymes increases, as does oxygen uptake. Thyroxin also helps. Thyroglobulin is the storage form of. Iodine is required for Thyroglobulin to be made. No iodine, the thyroid gland will increase activity as a mechanism to produce more thyroxin. Unfortunately. Simple Goiter: A simple goiter occurs when of the body through sufficient hormone production. The thyroid gland compensates by enlarging, which usually overcomes mild deficiencies of thyroid hormone. Page 2 of 15

3 Exothalmic goiter: is characterized by excessive production of thyroid hormone. are characterized by an enlarged thyroid gland and protrusion of the eyeballs. (Be sure you know where thyroxin is made, how it affects the cells in the body, and how it affects metabolism) U7L1 PRACTICE: INTRODUCTION 1. Create a web connecting the terms below. Please show how the terms are connected (5 marks). o Metabolism o Enzyme o Substrate o Coenzyme o Activation energy a. Example web for the terms: mitochondria, energy, vesicles, Golgi bodies, nucleus Page 3 of 15

4 b. Now your turn for: metabolism, enzyme, substrate, apoenzyme, coenzyme and activation energy 2. Thyroxin is an important example of a hormone in our body: a. Where is thyroxin made? (1 mark) b. What is its function? (1 mark) c. What is the effect of too little thyroxin? (1 mark) d. What is the effect of too much thyroxin? (1 mark) Page 4 of 15

5 U7L2 NOTES: ENZYMES (web notes and video) Lock and Key Theory of Enzyme Action A. In order for a reaction to occur, the reactants (substrates) must be brought. B. The bond to the on the enzyme, and are brought close together. Sometimes the active site changes shape to bring the substrates together. C. The reaction occurs and the are released. The enzyme goes back to its normal tertiary configuration (shape). According to this analogy, an enzyme acts like a by combining with a specific substrate and " " the substrate for further activity of the cell. This is a useful analogy because the key ( ) must have the correct to fit the lock (substrate). After the lock has been opened ( ) the key (enzyme) is free and unchanged so that it may be in the same manner. The portion of the enzyme that is involved in the reaction is called the. YOU SHOULD WATCH THE ENZYME STRUCTURE VIDEO, THE LOCK AND KEY VIDEO, AND THE SUMMARY VIDEO BEFORE PROCEEDING ANY FURTHER! Page 5 of 15

6 Metabolic Pathway Note: Metabolic Pathways are very complex and multi-stepped with intermediate products that are then use as the reactant for the next step. W = beginning substrate X, Y = intermediate products/reactants Z = final product Number = Enzymes Factors Affecting Enzyme Activity A. Heavy Metals: Such as Pb +2 (lead) or Hg +2 (mercury) can bond with parts of enzymes and cause them to change shape ( them). This bonding is called. The enzyme is inactive - This is explained by a process in which the inhibitor fits into a place (site) on the enzyme, which is different from the active site. When this happens, the folding of the enzyme changes a little bit, and the in a way, which makes it a less effective catalyst. The enzyme can no longer bond to its substrate so there is no chemical reaction. B. Competitive Inhibition: Some molecules are shaped like a substrate and compete with the for the enzyme's active site. A competitive inhibitor fits into the enzyme's but doesn't react with anything there. This prevents the correct. Example: Cyanide is an electron transport inhibitor Since some of the enzymes get bonded to the "wrong" substrate, the of "correct" production is reduced. Sometimes these molecules only bond temporarily with the, but sometimes they bond permanently (for the life of the enzyme) rendering the enzyme useless. Page 6 of 15

7 If too many important enzymes are inactivated, the organism may. C. Temperature: Warm temp to around 40 o C speed up reactions High Temp enzymes and cause reactions to stop If we increase the of the solution the enzyme is operating in, we will typically see an increase in the reaction rate until a point is reached at which the enzyme. This is a result of breaking hydrophobic bonds as the increase in temperature causes the enzyme's structure to " " around. The enzymes active site changes shape so that it can no longer bond to its substrate and as a result there is no chemical reaction. D. ph: Any other ph affects tertiary structure (shape of the active site) of the enzyme and slows down reactions. Too much of a change the enzyme so it can no longer bond to its substrate and stops the reaction. To the right are examples of various enzymes showing their optimum ph levels: Page 7 of 15

8 E. Substrate Concentration:. If we do a series of experiments arranged so the concentration of the enzyme is always the same, but the substrate (reactant) concentration is increased from one experiment to the next, we find that in the the rate increases as we increase substrate concentration. However as the experiments involve higher and higher substrate concentrations, we find that we. More substrate doesn't increase the rate any more. At this point, we say that the enzyme is (it can't handle any more). To increase the rate again, we'd need more. F. Enzyme Concentration -. What happens if we change the concentration of an enzyme? More catalyst means a faster, so the reaction rate increases. (Reaction rate is basically "how much substrate reacts in a particular amount of time, usually a ). Page 8 of 15

9 U7L2 PRACTICE: ENZYMES 1. Complete the following table by giving the name for the enzyme that acts on each substrate listed. (3 marks). Substrate Enzyme Maltose Peptides Nucleic Acids Neutral Lipids Acetylcholine Starch 2. Chemical reactions in cells occur at lower temperatures because enzymes the activation energy for the reaction. (1 mark) 3. Label the diagram with the following terms: enzyme, substrates, co-enzyme, enzyme-substrate complex, product, and activation site. (6 marks) Page 9 of 15

10 4. The on an enzyme is the region where the substrate fits with the proper geometry for a reaction to occur. This fit between the enzyme and substrate is called the model. (2 marks) 5. Explain the lock and key model of enzyme action. Why does denaturation of the enzyme prevent it from functioning properly? (2 marks) 6. Compare and contrast competitive versus non-competitive inhibition. (2 marks) 7. List two environmental factors that can change the shape of an enzyme. (2 marks) Page 10 of 15

11 8. Label the vertical and horizontal axes in the following diagrams. (6 marks) a. b. c. PLEASE REMEMBER: YOU MUST PERFORM AND SUBMIT THE ENZYME LAB BEFORE THIS UNIT IS COMPLETE! REFER TO THE UNIT 7 DROP-DOWN MENU TO ACCESS THE LAB GUIDE AND LAB. ~ END OF BIOLOGY 12 UNIT 7 LEARNING GUIDE ~ Page 11 of 15

12 UNIT 7 ANSWER KEY U7L1 PRACTICE: INTRODUCTION 1. Create a web connecting the terms below. Please show how the terms are connected (5 marks). o Metabolism o Enzyme o Substrate o Coenzyme o Activation energy Answers will vary. One possible example Page 12 of 15

13 2. Thyroxin is an important example of a hormone in our body: a. Where is thyroxin made? (1 mark) = thyroid b. What is its function? (1 mark) = regulate oxygen consumption and therefore, overall rate of metabolism c. What is the effect of too little thyroxin? (1 mark) = hypothyroidism slower metabolism, lethargic, weight gain, enlarged thyroid d. What is the effect of too much thyroxin? (1 mark) = hyperthyroidism faster metabolism, "nervous energy", weight loss, bulging eyes, enlarged thyroid U7L2 PRACTICE: ENZYMES 1. Complete the following table by giving the name for the enzyme that acts on each substrate listed. (3 marks). Substrate Enzyme Maltose Peptides Nucleic Acids Neutral Lipids Acetylcholine Starch maltase peptidases nucleases lipases acetylcholinesterase amylases 2. Chemical reactions in cells occur at lower temperatures because enzymes the activation energy for the reaction. (1 mark) Page 13 of 15

14 3. Label the diagram with the following terms: enzyme, substrates, co-enzyme, enzyme-substrate complex, product, and activation site. (6 marks) activation site co-enzyme substrates enzyme-substrate complex product enzyme 4. The on an enzyme is the region where the substrate fits with the proper geometry for a reaction to occur. This fit between the enzyme and substrate is called the model. (2 marks) 5. Explain the lock and key model of enzyme action. Why does denaturation of the enzyme prevent it from functioning properly? (2 marks) = the three dimensional shape of the enzyme's activation site is complimentary and specific to the three dimensional shape(s) of its substrate(s) = when an enzyme is denatured its three-dimensional shape is altered, typically such that it no longer compliments its substrate(s) three-dimensional shape(s), and thus, it can no longer bind to the substrate(s) to lower the reaction's activation energy and speed up (catalyze) the reaction. 6. Compare and contrast competitive versus non-competitive inhibition. (2 marks) = competitive inhibition is when a substance, other than the substrate itself, competes with and binds to the active site of the substrate's enzyme, when the competitive inhibitor binds to the enzyme's active site the substrate can no longer do so and thus, the enzyme cannot effectively catalyze the reaction and the reaction rate slows down (common regulatory mechanism often involving a negative feedback loop) = non-competitive inhibition is when a substance, other than the substrate itself, binds to an alternate site (allosteric site as opposed to the active site) on the substrate's enzyme, when the non-competitive inhibitor binds to the enzyme's allosteric site it alters the enzyme's three dimensional structure including its active site such that the substrate can no longer bind to the enzyme and thus, the enzyme cannot effectively Page 14 of 15

15 catalyze the reaction and the reaction rate slows down (another common regulatory mechanism often involving a negative feedback loop) 7. List two environmental factors that can change the shape of an enzyme. (2 marks) = change in ph (addition of either H + or OH - ions to the solution surrounding the enzyme as it tends to interfere with hydrogen bonds that influence the enzyme's three dimensional shape) = increase in temperature (tend to disrupt bonds influencing the enzyme's three dimensional shape) 8. Label the vertical and horizontal axes in the following diagrams. (6 marks) a. b. Reaction Rate (variable units) Temperature C Reaction Rate (variable units) Subtrate Concentration (variable units) c. Reaction Rate (variable units) ph Page 15 of 15

BACKGROUND INFORMATION:

BACKGROUND INFORMATION: BIOLOGY 12 ENZYMES NAME: BACKGROUND INFORMATION: Energy: is defined as the ability to do or bring about change. A living organism must constantly perform work in order to maintain its organization, to

More information

Enzymes. Ch 3: Macromolecules

Enzymes. Ch 3: Macromolecules Enzymes Ch 3: Macromolecules Living things use different chemical reactions to get the energy needed for life Chemical Reactions Reactants = substance that is changed Products = new substance that forms

More information

Human Biochemistry. Enzymes

Human Biochemistry. Enzymes Human Biochemistry Enzymes Characteristics of Enzymes Enzymes are proteins which catalyze biological chemical reactions In enzymatic reactions, the molecules at the beginning of the process are called

More information

Enzymes Topic 3.6 & 7.6 SPEED UP CHEMICAL REACTIONS!!!!!!!

Enzymes Topic 3.6 & 7.6 SPEED UP CHEMICAL REACTIONS!!!!!!! Enzymes Topic 3.6 & 7.6 SPEED UP CHEMICAL REACTIONS!!!!!!! Key Words Enzyme Substrate Product Active Site Catalyst Activation Energy Denature Enzyme-Substrate Complex Lock & Key model Induced fit model

More information

Chapter 5 Metabolism: Energy and Enzymes

Chapter 5 Metabolism: Energy and Enzymes Biology 12 Name: Cell Biology Per: Date: Chapter 5 Metabolism: Energy and Enzymes Complete using BC Biology 12, pages 154-175 Diagnostic Questions (mark using the answer key on page 533) 1. B 2. B 3. C

More information

Do Now #1. Name: Enzymes & ph. 1. Enzymes, hormones and cell receptors are examples of which type of macromolecule?

Do Now #1. Name: Enzymes & ph. 1. Enzymes, hormones and cell receptors are examples of which type of macromolecule? Name: Do Now #1 Enzymes & ph 1. Enzymes, hormones and cell receptors are examples of which type of macromolecule? 2. What do you think enzymes do for the body? Chemical reactions with enzymes are used

More information

DNA and Protein Synthesis Practice

DNA and Protein Synthesis Practice Biology 12 DNA and Protein Synthesis Practice Name: 1. DNA is often called the "code of life". Actually it contains the code for a) the sequence of amino acids in a protein b) the sequence of base pairs

More information

CHAPTER 2- ENZYMES PROTEINS B. AMINO ACID- 10/4/2016

CHAPTER 2- ENZYMES PROTEINS B. AMINO ACID- 10/4/2016 CHAPTER 2- ENZYMES BIOL. 1 AB KENNEDY PROTEINS A. DEFINITION- LARGE MACROMOLECULES MADE OF CARBON, HYDROGEN, NITROGEN, OXYGEN, AND SULFUR THEIR PRIMARY BUILDING BLOCK IS THE AMINO ACID THEY FUNCTION AS

More information

Notes 2-4. Chemical Reactions and Enzymes

Notes 2-4. Chemical Reactions and Enzymes Notes 2-4 Chemical Reactions and Enzymes Chemical Reaction: A process that changes one set of chemicals into another set of chemicals Reactants: Elements entered into the reaction Products: Elements or

More information

Enzymes. Enzyme Structure. How do enzymes work?

Enzymes. Enzyme Structure. How do enzymes work? Page 1 of 6 Enzymes Enzymes are biological catalysts. There are about 40,000 different enzymes in human cells, each controlling a different chemical reaction. They increase the rate of reactions by a factor

More information

Name: Date: Block: Biology 12

Name: Date: Block: Biology 12 Name: Date: Block: Biology 12 Provincial Exam Review: Cell Processes and Applications January 2003 Use the following diagram to answer questions 1 and 2. 1. Which labelled organelle produces most of the

More information

Enzyme Action. Intermediate 2 Biology Unit 1: Living Cells

Enzyme Action. Intermediate 2 Biology Unit 1: Living Cells Enzyme Action Intermediate 2 Biology Unit 1: Living Cells Learning Objectives Describe 2 ways in which chemical reactions can be speeded up. Name the products of the breakdown of hydrogen peroxide. State

More information

AP Biology. Metabolism & Enzymes

AP Biology. Metabolism & Enzymes Metabolism & Enzymes From food webs to the life of a cell energy energy energy Flow of energy through life Life is built on chemical reactions transforming energy from one form to another organic molecules

More information

Chapter 6. Metabolism & Enzymes. AP Biology

Chapter 6. Metabolism & Enzymes. AP Biology Chapter 6. Metabolism & Enzymes Flow of energy through life Life is built on chemical reactions Chemical reactions of life Metabolism forming bonds between molecules dehydration synthesis anabolic reactions

More information

Enzymes. Biology Gr10. Complete the concept map showing the characteristics of enzymes. They Act as. They Are. Examples are. They cause.

Enzymes. Biology Gr10. Complete the concept map showing the characteristics of enzymes. They Act as. They Are. Examples are. They cause. Name: Class: Date: Grade 10 Science Related Reading/Biology Enzymes Biology Gr10 Complete the concept map showing the characteristics of enzymes. They Are They Act as They cause Examples are Affected by

More information

GRU3L1 Metabolism & Enzymes. AP Biology

GRU3L1 Metabolism & Enzymes. AP Biology GRU3L1 Metabolism & Enzymes From food webs to the life of a cell energy energy energy Flow of energy through life Life is built on chemical reactions u transforming energy from one form to organic molecules

More information

Chapter 8.4, 8.5. Enzymes. AP Biology

Chapter 8.4, 8.5. Enzymes. AP Biology Chapter 8.4, 8.5 Enzymes Activation energy Breaking down large molecules requires an initial input of energy activation energy large biomolecules are stable must absorb energy to break bonds cellulose

More information

Organic molecules are the molecules in living things There are four types of organic (carbon-based) molecules: Carbohydrates Lipids (fats) Proteins

Organic molecules are the molecules in living things There are four types of organic (carbon-based) molecules: Carbohydrates Lipids (fats) Proteins Organic molecules are the molecules in living things There are four types of organic (carbon-based) molecules: Carbohydrates Lipids (fats) Proteins Nucleic Acids Protein Muscles are made of proteins Enzymes

More information

Examples. Chapter 8. Metabolism & Enzymes. Flow of energy through life. Examples. Chemical reactions of life. Chemical reactions & energy

Examples. Chapter 8. Metabolism & Enzymes. Flow of energy through life. Examples. Chemical reactions of life. Chemical reactions & energy WH Examples dehydration synthesis Chapter 8 Metabolism & Enzymes + H 2 O hydrolysis + H 2 O Flow of energy through life Life is built on chemical reactions Examples dehydration synthesis hydrolysis 2005-2006

More information

Enzymes. Ms. Paxson. From food webs to the life of a cell. Enzymes. Metabolism. Flow of energy through life. Examples. Examples

Enzymes. Ms. Paxson. From food webs to the life of a cell. Enzymes. Metabolism. Flow of energy through life. Examples. Examples From food webs to the life of a cell energy energy energy Flow of energy through life Life is built on chemical reactions sun transforming energy from one form to another solar energy ATP & organic molecules

More information

Chapter 6. Flow of energy through life. Chemical reactions of life. Examples. Examples. Chemical reactions & energy 9/7/2012. Enzymes & Metabolism

Chapter 6. Flow of energy through life. Chemical reactions of life. Examples. Examples. Chemical reactions & energy 9/7/2012. Enzymes & Metabolism Flow of energy through life Chapter 6 Life is built on chemical reactions Enzymes & Metabolism Chemical reactions of life Examples Metabolism Forming bonds between molecules Dehydration synthesis Anabolic

More information

Name: Date: AP Biology LAB : FACTORS INFLUENCING ENZYME ACTIVITY

Name: Date: AP Biology LAB : FACTORS INFLUENCING ENZYME ACTIVITY LAB : FACTORS INFLUENCING ENZYME ACTIVITY Background Enzymes are biological catalysts capable of speeding up chemical reactions by lowering activation energy. One benefit of enzyme catalysts is that the

More information

Section 2.1: Enzymes and Digestion

Section 2.1: Enzymes and Digestion Section 2.1: Enzymes and Digestion Glands produce enzymes that are used to break down large molecules into smaller ones that are ready for abortion. The digestive system provides an interface between the

More information

Chapter 9: Digestion Review Assignment

Chapter 9: Digestion Review Assignment _ Date: Mark: /45 Chapter 9: Digestion Review Assignment 45 Multiple Choice = 45 Marks Identify the choice that best completes the statement or answers the question. 1. Which of the following roles do

More information

Metabolism & Enzymes. From food webs to the life of a cell. Flow of energy through life. Life is built on chemical reactions

Metabolism & Enzymes. From food webs to the life of a cell. Flow of energy through life. Life is built on chemical reactions Metabolism & Enzymes 2007-2008 From food webs to the life of a cell energy energy energy Flow of energy through life Life is built on chemical reactions transforming energy from one form to another organic

More information

increase rate of reaction without being consumed reduce activation energy don t change free energy ( G) released or required

increase rate of reaction without being consumed reduce activation energy don t change free energy ( G) released or required Enzymes Enzymes Biological catalysts proteins (& RNA) facilitate chemical reactions increase rate of reaction without being consumed reduce activation energy don t change free energy ( G) released or required

More information

AP BIOLOGY Enzyme Catalysis

AP BIOLOGY Enzyme Catalysis AP BIOLOGY Enzyme Catalysis Introduction In general, enzymes are proteins produced by living cells; they act as catalysts in biochemical reactions. A catalyst affects the rate of a chemical reaction. One

More information

c. Reaction will drive Reaction in a reaction. d. Which statement (A or B) has more energy in products than reactants?

c. Reaction will drive Reaction in a reaction. d. Which statement (A or B) has more energy in products than reactants? Energy and Enzymes (32 questions) 1. Chemical reactions involve a. Formation of chemical bonds b. Breakage of chemical bonds c. Both formation and breakage of chemical bonds d. Neither formation and breakage

More information

Chapter 5- Enzymes. State Standard Standard 1.b.

Chapter 5- Enzymes. State Standard Standard 1.b. Chapter 5- Enzymes State Standard Standard 1.b. Enzymes Speed Up Chemical Reactions Most of the essential chemical reactions in cells must occur quickly and precisely for the cell to survive For a chemical

More information

1) DNA unzips - hydrogen bonds between base pairs are broken by special enzymes.

1) DNA unzips - hydrogen bonds between base pairs are broken by special enzymes. Biology 12 Cell Cycle To divide, a cell must complete several important tasks: it must grow, during which it performs protein synthesis (G1 phase) replicate its genetic material /DNA (S phase), and physically

More information

Essential Biology 3.2 Carbohydrates, Lipids, Proteins. 1. Define organic molecule.

Essential Biology 3.2 Carbohydrates, Lipids, Proteins. 1. Define organic molecule. 1. Define organic molecule. An organic molecule is a molecule that contains carbon and is found in living things. There are many organic molecules in living things. The same (or very similar) molecules

More information

Slide 1. Slide 2. Slide 3. Chapter 5- Enzymes. State Standard. Enzymes Speed Up Chemical Reactions. Standard 1.b.

Slide 1. Slide 2. Slide 3. Chapter 5- Enzymes. State Standard. Enzymes Speed Up Chemical Reactions. Standard 1.b. Slide 1 Chapter 5- Enzymes Slide 2 State Standard Standard 1.b. Slide 3 Enzymes Speed Up Chemical Reactions Most of the essential chemical reactions in cells must occur quickly and precisely for the cell

More information

Proteins. Big Idea 4: Biological Systems Interact

Proteins. Big Idea 4: Biological Systems Interact Proteins Big Idea 4: Biological Systems Interact Essential Knowledge Essential knowledge 4.B.1: Interactions between molecules affect their structure and function. a. Change in the structure of a molecular

More information

Terminology-Amino Acids

Terminology-Amino Acids Enzymes 1 2 Terminology-Amino Acids Primary Structure: is a polypeptide (large number of aminoacid residues bonded together in a chain) chain of amino acids linked with peptide bonds. Secondary Structure-

More information

6.5 Enzymes. Enzyme Active Site and Substrate Specificity

6.5 Enzymes. Enzyme Active Site and Substrate Specificity 180 Chapter 6 Metabolism 6.5 Enzymes By the end of this section, you will be able to: Describe the role of enzymes in metabolic pathways Explain how enzymes function as molecular catalysts Discuss enzyme

More information

9. At about 0 C., most enzymes are (1.) inactive (2.) active (3.) destroyed (4.) replicated

9. At about 0 C., most enzymes are (1.) inactive (2.) active (3.) destroyed (4.) replicated Study Guide 1. Which of the following enzymes would digest a fat? (1.) sucrase (2.) fatase (3.) protease (4.) lipase 2. At high temperatures, the rate of enzyme action decreases because the increased heat

More information

Review of Energetics Intro

Review of Energetics Intro Review of Energetics Intro Learning Check The First Law of Thermodynamics states that energy can be Created Destroyed Converted All of the above Learning Check The second law of thermodynamics essentially

More information

BIOLOGICAL MOLECULES REVIEW-UNIT 1 1. The factor being tested in an experiment is the A. data. B. variable. C. conclusion. D. observation. 2.

BIOLOGICAL MOLECULES REVIEW-UNIT 1 1. The factor being tested in an experiment is the A. data. B. variable. C. conclusion. D. observation. 2. BIOLOGICAL MOLECULES REVIEW-UNIT 1 1. The factor being tested in an experiment is the A. data. B. variable. C. conclusion. D. observation. 2. A possible explanation for an event that occurs in nature is

More information

Macromolcules, Enzymes, & Cells Intro

Macromolcules, Enzymes, & Cells Intro Name: Date: 1. The distortion (change in shape) of enzyme molecules which occurs at high temperatures is known as 5. A characteristic shared by all enzymes, hormones, and antibodies is that their function

More information

Unit 2: Cellular Chemistry, Structure, and Physiology Module 2: Cellular Chemistry

Unit 2: Cellular Chemistry, Structure, and Physiology Module 2: Cellular Chemistry Unit 2: Cellular Chemistry, Structure, and Physiology Module 2: Cellular Chemistry NC Essential Standard: 1.2.1 Explain how cells use buffers to regulate cell ph 4.1.1 Compare the structure and functions

More information

Organic Compounds. Biology-CP Mrs. Bradbury

Organic Compounds. Biology-CP Mrs. Bradbury Organic Compounds Biology-CP Mrs. Bradbury Carbon Chemistry The compounds that form the cells and tissues of the body are produced from similar compounds in the foods you eat. Common to most foods and

More information

Unit 1: Biochemistry

Unit 1: Biochemistry Name: Date: Carbohydrates, lipids, proteins, and enzymes 1. All living things contain which element? A. helium B. sodium C. copper D. carbon 4. Which of the following elements is best able to combine with

More information

Unit 7 Part I: Introductions to Biochemistry

Unit 7 Part I: Introductions to Biochemistry Unit 7 Part I: Introductions to Biochemistry Chemical Reactions, Enzymes and ATP 19 March 2014 Averett 1 Reaction Graphs Every chemical reaction involves bond breaking and bond forming. In order for bonds

More information

Chemistry 107 Exam 4 Study Guide

Chemistry 107 Exam 4 Study Guide Chemistry 107 Exam 4 Study Guide Chapter 10 10.1 Recognize that enzyme catalyze reactions by lowering activation energies. Know the definition of a catalyst. Differentiate between absolute, relative and

More information

Biology 12. Biochemistry. Water - a polar molecule Water (H 2 O) is held together by covalent bonds.

Biology 12. Biochemistry. Water - a polar molecule Water (H 2 O) is held together by covalent bonds. Biology 12 Biochemistry Water - a polar molecule Water (H 2 O) is held together by covalent bonds. Electrons in these bonds spend more time circulating around the larger Oxygen atom than the smaller Hydrogen

More information

UNIT #3: Enzymes. What is an enzyme? How do enzymes work?

UNIT #3: Enzymes. What is an enzyme? How do enzymes work? UNIT #3: Enzymes What is an enzyme? How does an enzyme work? How is an enzyme structured? What are some factors that affect enzyma8c reac8ons? How are enzymes controlled in the body? What is an enzyme?

More information

Cell Compounds and Biological Molecules. Biology 12 Unit 2 Cell Compounds and Biological Molecules Inquiry into Life pages 20-44

Cell Compounds and Biological Molecules. Biology 12 Unit 2 Cell Compounds and Biological Molecules Inquiry into Life pages 20-44 Cell Compounds and Biological Molecules Biology 12 Unit 2 Cell Compounds and Biological Molecules Inquiry into Life pages 20-44 Basic Chemistry Matter anything that has mass and volume Element comprises

More information

Amylase: a sample enzyme

Amylase: a sample enzyme Amylase: a sample enzyme Objectives: After completion of this laboratory exercise you will be able to: 1. Explain the importance of enzymes in biology. 2. Explain the basic properties of an enzyme as a

More information

At the end of this lesson, you should be able to:

At the end of this lesson, you should be able to: Digestion Learning Objectives At the end of this lesson, you should be able to: Enzymes Explain enzyme action in terms of the lock and key hypothesis Explain the effects of temperature and ph on the rate

More information

Review of Biochemistry

Review of Biochemistry Review of Biochemistry Chemical bond Functional Groups Amino Acid Protein Structure and Function Proteins are polymers of amino acids. Each amino acids in a protein contains a amino group, - NH 2,

More information

Life s molecular diversity is based on the. properties of carbon. Chain Ring Branching chain

Life s molecular diversity is based on the. properties of carbon. Chain Ring Branching chain Carbon Compounds Life s molecular diversity is based on the properties of carbon Chain Ring Branching chain The Chemistry of Carbon : carbon based Carbon can make 4 covalent bonds The foundation of organic

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Practice Quiz 1 AP Bio Sept 2016 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The element present in all organic molecules is A) hydrogen.

More information

Bridging task for 2016 entry. AS/A Level Biology. Why do I need to complete a bridging task?

Bridging task for 2016 entry. AS/A Level Biology. Why do I need to complete a bridging task? Bridging task for 2016 entry AS/A Level Biology Why do I need to complete a bridging task? The task serves two purposes. Firstly, it allows you to carry out a little bit of preparation before starting

More information

CHEMISTRY OF LIFE 05 FEBRUARY 2014

CHEMISTRY OF LIFE 05 FEBRUARY 2014 CHEMISTRY OF LIFE 05 FEBRUARY 2014 In this lesson we will: Lesson Description Discuss inorganic compounds and their importance Discuss organic compounds and their biological importance. Summary Inorganic

More information

EXERCISE 5. Enzymes H amylase + starch + amylase-starch complex maltose+ amylase.

EXERCISE 5. Enzymes H amylase + starch + amylase-starch complex maltose+ amylase. EXERCISE 5 Enzymes LEARNING OBJECTIVES Demonstrate enzyme activity by the hydrolysis of starch by amylase. Determine the effect of different temperatures on the rate of starch hydrolysis. Determine the

More information

Name # Class Regents Review: Characteristics of Life and Biochemistry

Name # Class Regents Review: Characteristics of Life and Biochemistry Name # Class Regents Review: Characteristics of Life and Biochemistry 6. Some processes that occur in a cell are listed below. A. utilize energy B. detect changes in the environment C. rearrange and synthesize

More information

Enzymes: What s in your spit? Teacher Version

Enzymes: What s in your spit? Teacher Version Enzymes: What s in your spit? Teacher Version In this lab students will investigate a few of the different enzymes from our body. You will learn how these enzymes work and how their activity is dependent

More information

The chemistry of life

The chemistry of life The chemistry of life All living organisms are comprised of organic molecules. Organic molecules contain CARBON and HYDROGEN which is not true of inorganic molecules. Carbon is central to life on Earth

More information

Unit 2 - Characteristics of Living Things

Unit 2 - Characteristics of Living Things Living Environment Answer Key to Practice Exam- Parts A and B-1 1. A fully functioning enzyme molecule is arranged in a complex three-dimensional shape. This shape determines the A) specific type of molecule

More information

Biological Molecules B Lipids, Proteins and Enzymes. Triglycerides. Glycerol

Biological Molecules B Lipids, Proteins and Enzymes. Triglycerides. Glycerol Glycerol www.biologymicro.wordpress.com Biological Molecules B Lipids, Proteins and Enzymes Lipids - Lipids are fats/oils and are present in all cells- they have different properties for different functions

More information

Part 1: Energy and Metabolism

Part 1: Energy and Metabolism Part 1: Energy and Metabolism Life is highly organized rganisms need free energy to survive, grow, and reproduce In each system, the arrow is pointing in the direction of spontaneous change. Why? 1 2 More

More information

Biochemistry Macromolecules and Enzymes. Unit 02

Biochemistry Macromolecules and Enzymes. Unit 02 Biochemistry Macromolecules and Enzymes Unit 02 Organic Compounds Compounds that contain CARBON are called organic. What is Carbon? Carbon has 4 electrons in outer shell. Carbon can form covalent bonds

More information

GRADE 10A: Biology 3 Enzyme action. UNIT 10AB.3 6 hours. About this unit. Resources. Previous learning. Key vocabulary and technical terms

GRADE 10A: Biology 3 Enzyme action. UNIT 10AB.3 6 hours. About this unit. Resources. Previous learning. Key vocabulary and technical terms GRADE 10A: Biology 3 Enzyme action UNIT 10AB.3 6 hours About this unit This unit is the third of eight units on biology for Grade 10 advanced. The unit is designed to guide your planning and teaching of

More information

Cell structure and function flash cards

Cell structure and function flash cards Process Cell structure and function flash cards involved in aerobic respiration releasing ATP / energy has a double membrane folded into cristae (to make large SA) mostly occurs in mitochondria; needing

More information

Enzymes - Exercise 3 - Rockville

Enzymes - Exercise 3 - Rockville Enzymes - Exercise 3 - Rockville Objectives -Understand the function of an enzyme. -Know what the substrate, enzyme, and the product of the reaction for this lab. -Understand how at various environments

More information

I. ROLE OF CARBON IN ORGANISMS:

I. ROLE OF CARBON IN ORGANISMS: Name: Period: Date: I. ROLE OF CARBON IN ORGANISMS: = compounds that contain carbon Ex: Carbohydrates, lipids, proteins = compounds that DO NOT contain carbon Ex: Vitamins, minerals, water Carbon forms

More information

AP Biology Protein Structure and Enzymes

AP Biology Protein Structure and Enzymes AP Biology Protein Structure and Enzymes Connection to the Nitrogen-cycle Amino acids (protein) Nucleic acids (RNA and DNA) ATP 78% 1. Assimilation of nitrate by photosynthetic eukaryotes 2. Nitrogen fixation

More information

Lab Activity 30. Digestive Enzymes. Portland Community College BI 233

Lab Activity 30. Digestive Enzymes. Portland Community College BI 233 Lab Activity 30 Digestive Enzymes Portland Community College BI 233 Cellular Reactions All molecular bonds have energy barriers that prevent spontaneous breakdown Enzymes lowering these activation energy

More information

Biomolecules. Unit 3

Biomolecules. Unit 3 Biomolecules Unit 3 Atoms Elements Compounds Periodic Table What are biomolecules? Monomers vs Polymers Carbohydrates Lipids Proteins Nucleic Acids Minerals Vitamins Enzymes Triglycerides Chemical Reactions

More information

Different types of proteins. The structure and properties of amino acids. Formation of peptide bonds.

Different types of proteins. The structure and properties of amino acids. Formation of peptide bonds. Introduction to proteins and amino acids Different types of proteins. The structure and properties of amino acids. Formation of peptide bonds. Introduction We tend to think of protein as a mass noun: a

More information

Unit II Written Response Set-Up

Unit II Written Response Set-Up Unit II Written Response Set-Up On the next blank page in your notebook, put the title Unit II Written Responses If your title page is the front of a page, skip the back of the page and the front of the

More information

Unit 2 ~ Learning Guide

Unit 2 ~ Learning Guide Unit 2 ~ Learning Guide Name: INSTRUCTIONS Complete the following notes and questions as you work through the related lessons. You are required to have this package completed BEFORE you write your unit

More information

Enzymes: The Catalysts of Life

Enzymes: The Catalysts of Life Chapter 6 Enzymes: The Catalysts of Life Lectures by Kathleen Fitzpatrick Simon Fraser University Activation Energy and the Metastable State Many thermodynamically feasible reactions in a cell that could

More information

Biology Chapter 2 Review

Biology Chapter 2 Review Biology Chapter 2 Review Vocabulary: Define the following words on a separate piece of paper. Element Compound Ion Ionic Bond Covalent Bond Molecule Hydrogen Bon Cohesion Adhesion Solution Solute Solvent

More information

The building blocks of life.

The building blocks of life. The building blocks of life. All the functions of the cell are based on chemical reactions. the building blocks of organisms BIOMOLECULE MONOMER POLYMER carbohydrate monosaccharide polysaccharide lipid

More information

Enzymes. Cell Biology. Monday, November 02, 2015 Mrs Wrightson

Enzymes. Cell Biology. Monday, November 02, 2015 Mrs Wrightson Enzymes Cell Biology 1 Enzymes 2 Recap Enzymes are specific: They only act with one substrate. Watch Me Type of Reaction Substrate Enzyme Product Degradation Starch Amylase Maltose Degradation Protein

More information

Chemical and Physical Processes of Digestion

Chemical and Physical Processes of Digestion M57_MARI0000_00_SE_EX08.qxd 8/22/11 3:08 PM Page 394 8 E X E R C I S E Chemical and Physical Processes of Digestion Advance Preparation/Comments 1. Suggest to the students that they become familiar with

More information

Work in groups of 3 to 4 students (enough materials for 5 groups total)

Work in groups of 3 to 4 students (enough materials for 5 groups total) Chemical and Physical Processes of Digestion Exercise 39A / 39 (begins page 597 in 9 th &10 th eds, page 595 in 11 th edition, page 599 in 12 th edition) Lab 7 Objectives Read lab Exercise 39A / 39 Do

More information

/ The following functional group is a. Aldehyde c. Carboxyl b. Ketone d. Amino

/ The following functional group is a. Aldehyde c. Carboxyl b. Ketone d. Amino Section A: Multiple Choice Select the answer that best answers the following questions. Please write your selected choice on the line provided, in addition to circling the answer. /25 1. The following

More information

2.3: Carbon-Based Molecules Notes

2.3: Carbon-Based Molecules Notes 2.3: Carbon-Based Molecules Notes Carbon-based molecules are the of life. Bonding Properties of Carbon Carbon forms bonds with up to other atoms, including other carbon atoms. QUESTION: What types of elements

More information

Microbial Metabolism (Chapter 5) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Eastern Campus

Microbial Metabolism (Chapter 5) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Eastern Campus Microbial Metabolism (Chapter 5) Lecture Materials for Amy Warenda Czura, Ph.D. Suffolk County Community College Eastern Campus Primary Source for figures and content: Tortora, G.J. Microbiology An Introduction

More information

fossum/files/2012/01/10 Enzymes.pdf

fossum/files/2012/01/10 Enzymes.pdf http://www.laney.edu/wp/cheli fossum/files/2012/01/10 Enzymes.pdf Enzyme Catalysis Enzymes are proteins that act as catalysts for biological reactions. Enzymes, like all catalysts, speed up reactions without

More information

Questions on Digestion

Questions on Digestion Name: Questions on Digestion Directions: The following questions are taken from previous IB Final Papers on Topic 6.1 (Digestion). Answer all questions. This will serve as a study guide for the next quiz.

More information

Enzymes Biological Catalysts Review

Enzymes Biological Catalysts Review Enzymes Biological Catalysts Review Catalyst a substance that speeds up a reaction but is not actually a part of the reaction nor changes because of the reaction Catalysis the process of speeding a chemical

More information

Carbohydrates. Mark Scheme. Save My Exams! The Home of Revision. Exam Board 3.1 Biological Molecules Carbohydrates. Page 1.

Carbohydrates. Mark Scheme. Save My Exams! The Home of Revision. Exam Board 3.1 Biological Molecules Carbohydrates. Page 1. Carbohydrates Mark Scheme Level Subject Exam Board Module Topic Booklet A Level Biology AQA 3.1 Biological Molecules 3.1. Carbohydrates Mark Scheme Time Allowed: 59 minutes Score: /4 Percentage: /100 Grade

More information

Assignment #1: Biological Molecules & the Chemistry of Life

Assignment #1: Biological Molecules & the Chemistry of Life Assignment #1: Biological Molecules & the Chemistry of Life A. Important Inorganic Molecules Water 1. Explain why water is considered a polar molecule. The partial negative charge of the oxygen and the

More information

Will s Pre-Test. (4) A collection of cells that work together to perform a function is termed a(n): a) Organelle b) Organ c) Cell d) Tissue e) Prison

Will s Pre-Test. (4) A collection of cells that work together to perform a function is termed a(n): a) Organelle b) Organ c) Cell d) Tissue e) Prison Will s Pre-Test This is a representative of Exam I that you will take Tuesday September 18, 2007. The actual exam will be 50 multiple choice questions. (1) The basic structural and functional unit of the

More information

Organic Molecules. 1. The structural formulas shown represent certain organic compounds found in living cells.

Organic Molecules. 1. The structural formulas shown represent certain organic compounds found in living cells. Name: ate: 1. The structural formulas shown represent certain organic compounds found in living cells. 1. (1) () (3) Which formula represents a monosaccharide? (4) (5). 1.. 3. 5. Which formula represents

More information

1. I can explain the structure of ATP and how it is used to store energy.

1. I can explain the structure of ATP and how it is used to store energy. 1. I can explain the structure of ATP and how it is used to store energy. ATP is the primary energy molecule for the cell. It is produced in the mitochondria during cellular respiration, which breaks down

More information

2.2 Properties of Water

2.2 Properties of Water 2.2 Properties of Water I. Water s unique properties allow life to exist on Earth. A. Life depends on hydrogen bonds in water. B. Water is a polar molecule. 1. Polar molecules have slightly charged regions

More information

Enzyme Activity Lecture. Every reaction has energy requirement. The minimum amount of energy required is termed activation energy.

Enzyme Activity Lecture. Every reaction has energy requirement. The minimum amount of energy required is termed activation energy. Enzyme Activity Lecture Every reaction has energy requirement. The minimum amount of energy required is termed activation energy. Living organisms have optimum temperature requirement so elevating the

More information

STATION 1 SCIENTIFIC INVESTIGATION VOCABULARY 2015 FALL BENCHMARK BIOLOGY

STATION 1 SCIENTIFIC INVESTIGATION VOCABULARY 2015 FALL BENCHMARK BIOLOGY STATION 1 SCIENTIFIC INVESTIGATION VOCABULARY 2015 FALL BENCHMARK BIOLOGY VOCABULARY TERM Observation Inference Quantitative Qualitative Hypothesis Independent variable Dependent variable Experimental

More information

Biochemistry. Chapter 6

Biochemistry. Chapter 6 Biochemistry Chapter 6 Game Plan for Today. - Collect your papers - Hand back quests - Go over Amoeba Sister Chart - Biochem Notes - Video Carbohydrate Lab Food Label Lab! Testing For Carbohydrates Benedict's

More information

The Cell and Cellular transport

The Cell and Cellular transport Cell theory (1838): The Cell 1. All organisms are composed of one or more cells, and the life processes of metabolism and heredity occur within these cells. 2. Cells are the smallest living things, the

More information

Defense Antibodies, interferons produced in response to infection Coordination and growth (signaling) Hormones (e.g. insulin, growth hormone) Communic

Defense Antibodies, interferons produced in response to infection Coordination and growth (signaling) Hormones (e.g. insulin, growth hormone) Communic Proteins Chapter 3 An Introduction to Organic Compounds Most varied of the biomolecules Also called polypeptides Make up more than half the dry weight of cells Categorized by function Lecture 3: Proteins

More information

Enzymes in digestion. Feature Catalyst Enzyme. Function. Rate of reaction. Range of reactions (specificity) Structure. Required temperatures

Enzymes in digestion. Feature Catalyst Enzyme. Function. Rate of reaction. Range of reactions (specificity) Structure. Required temperatures Task 1 Use the information sheets to fill in the table. Feature Catalyst Enzyme Function Rate of reaction Range of reactions (specificity) Structure Required temperatures How the reaction occurs www.teachitscience.co.uk

More information

1. Most organisms are active in a limited temperature range

1. Most organisms are active in a limited temperature range 1. Most organisms are active in a limited temperature range Identify the role of enzymes in metabolism, describe their chemical composition and use a simple model to describe their specificity on substrates

More information

Enzymes. Enzymes accelerate chemical reactions as the engine accelerates this drag race.

Enzymes. Enzymes accelerate chemical reactions as the engine accelerates this drag race. Chapter 30 Enzymes Enzymes accelerate chemical reactions as the engine accelerates this drag race. Introduction to General, Organic, and Biochemistry, 10e John Wiley & Sons, Inc Morris Hein, Scott Pattison,

More information

Simulate enzymatic actions. Explain enzymatic specificity. Investigate two types of enzyme inhibitors used in regulating enzymatic activity.

Simulate enzymatic actions. Explain enzymatic specificity. Investigate two types of enzyme inhibitors used in regulating enzymatic activity. Name: Enzymes in Action Objectives: You will use the model pieces in the kit to: Simulate enzymatic actions. Explain enzymatic specificity. Investigate two types of enzyme inhibitors used in regulating

More information

Competitive Inhibitor

Competitive Inhibitor is a substance that reduces the activity of an enzyme by entering the active site in place of the substrate whose structure it mimics. Competitive Inhibitor Identify the following molecule: Polysaccharide

More information