We are going to talk about two classifications of proteins: fibrous & globular.

Size: px
Start display at page:

Download "We are going to talk about two classifications of proteins: fibrous & globular."

Transcription

1 Slide # 13 (fibrous proteins) : We are going to talk about two classifications of proteins: fibrous & globular. *fibrous proteins: (dense fibers) *Their structures are mainly formed of the secondary structure (either a-helices or b-pleated sheets). * They are designed in such a way that fits their functions; they are tough, hard and strong in order to have a structural or supportive role. * They are insoluble in water, because most of amino acids are engaged in bonds making the protein very tight. * Examples: 1- Keratin: it is found in wool, hair, nails, and any place that demands a structural role. Formed of a-helices. 2-collagen : it is the major component of the connective tissue. 3- fibroin : the main component of silk. It is formed of b-sheets. Slide # 14 ( globular proteins) : *they are spherical in shape. *unlike fibrous proteins; they are soluble since they have two regions; hydrophobic one inside, and hydrophilic one outside. *they are found in fluids ( extracellular matrix, intracellular matrix, blood.) *transport proteins are globular ones. *they all have tertiary structure. structure) Slide # 15 : ( 3 *recall that in secondary structure, the bonds are formed between the backbones. On the other hand; in tertiary structure, all the atoms ( from the backbone or the side chain) are involved in forming the bonds. * Tertiary structure gives the final fold of the protein. So, it is a complete protein that is formed of only one polypeptide chain (single protein). If there is more than one polypeptide, it will be a quaternary structure. *single proteins are divided into simple & conjugated. 1- simple proteins : they are made of amino acid units only. They are active after translation and ready to act their roles. 2-conjugated proteins: they are composed of simple proteins combined with a non-proteinous substance. After translation process, they aren't active. There must be another substances ( not amino acids) that added to protein (conjugate it) in order to make it function.

2 *myoglobin is an example of conjugated proteins; that it can't make its function as a storage for oxygen till a chemical substance (heme) is added to it. * insulin is a simple protein. Its sequence of amino acids has 3 disulfide bonds) which formed between cysteins. *some proteins are conjugated with transition metals such as Fe and Cu. Slide# 16 : It is a graph shows different kinds of interactions or forces that stabilize protein structure. Slide # 17 ( 3 and 4 structures): *how could we know the final form of a protein whether it is secondary or tertiary? Actually, it is very hard to distinct between these 2 structures. -almost proteins are secondary structures, but we assume that the final form is tertiary structure. So, as a rule: "all proteins have tertiary structures" *do all proteins have quaternary structures? Of course not. *quaternary structures can be either simple or conjugated. *hemoglobin is a conjugated protein that must have heme groups in order to be active. *quaternary structure is the association of polypeptides. If they are 2 we call it dimer, if 3 we call it trimer and so on. It could have 30 polypeptides! Slides # 18 and #19 ( determination of 3 structure ): There are two ways to determin the tertiary structure of a protein : 1-X-ray crystallography : *the protein must be pure in order to make a crystal. *how to make a crystal? We take one drop of the pure protein which is preserved inside a buffer >> we put this drop on a sheet ( make the drop facing down) >> water will start vaporization >> when it is totally evaporated the protein becomes crystallized>> we get a crystal>> we exposure the crystal to beam of X-rays. * ( the next paragraph explains the exact Technique, it is a copy-paste from google, but it is exactly what the doctor have said, but in a different way ) * "A beam of X-rays strikes the crystal and causes the beam of light to spread into many specific directions. From the angles and intensities of these diffracted beams, a crystallographer can produce a three-dimensional picture of the density of electrons within the crystal. From this electron density, the mean positions of the atoms in the crystal can be determined, as well as their chemical bonds, their disorder and various other information".

3 2-nuclear magnetic resonance (NMR): *the protein is exposed to a magnetic field >> the electrons vibrate. This table shows the differences between these 2 methods: X-ray crystallography 3-D More accurate since its results show the 3-D structure of proteins. Protein is static since it is in crystal form. This is a disadvantage because the protein in nature is dynamic. Some proteins exist in more than 1 conformation. by this method, we can't know these conformations. Nuclear magnetic resonance 2-D Less accurate Protein samples are dynamic (in aqueous solution). So, it is more valuable. *to get real results, we use the two techniques together. *both X-ray and NMR results processed by computerized Fourier series. Slide # 20 ( complex protein structures) : *posttranslational : means ( after translation). *proteins can bind to lipids/ carbohydrates/ phosphate after translation process (posttranslational). *blood groups : ( A, B, AB, O ) *phosphoproteins : phosphate groups bind to amino acids that have an oxygen in their structures. *** please refer to slides because I didn't write all information which are written in the slides. Slide # 21 ( chemical properties of proteins): 1-protein hydrolysis: *recall that amino acids undergo dehydration reaction to make peptide bonds by removal of water. *hydrolysis is the reverse reaction that involves addition of water in order to break down protein. *it requires special enzymes that can hydrolysis proteins. 2-protein danaturation: *it is the loss of 3D structure of proteins. In other words, it is the loss of the active conformation of protein without any change in the sequence of amino acids.

4 *the protein which is denaturated loses its function. *solubility decreases. For example; eggs become hard by heating. * >50 C the protein loses its final form ( becomes hard material). *mechanical agitation : it is shaking of proteins. For example; we make a cream by shaking egg whites. **any protein we digest, it is not absorbed in the stomach as a protein since the stomach acid can't break proteins. So, it must be broken by enzymes to give a single or dipeptides. *denaturation precedes enzyme work. *detergents : they have a hydrophobic side and hydrophilic side that can attach protein and denature it by changing its 3D structure. *organic compounds ( alcohols) : their OH groups bind to bacterial proteins and denature them. (Alcohols are used in hospitals and put on hands in order to denature bacterial proteins). *most denaturation is irreversible, but there are some which are reversible. Slide # 21 ( protein folding & prediction): *bioinformatics : is the application of computer science and information technology to the field of biology and medicine. *nowadays, we can predict the tertiary structure of a protein. *there are databases about ( the structure, domain etc) on some websites for all known proteins. -you have to enter the protein sequence you need to know and search databases of known structures that are homologous to yours. If they are homologous to each other by 25% or more, you can predict the 3D structure. ( please refer to the slide and look at the chart) Slide # 22 : ( hydrophobic interactions & chaperons) *the red color (inside) indicates the hydrophobic side. *the green color (outside) indicates the hydrophilic side. (you can see these colors if you check the soft copy of slides) **proteins can fold spontaneously by themselves or by the help of other proteins ( chaperons). *hsp 70 : Heat shock proteins. *if a problem happens during folding, it leads to some diseases.

5 Slide #23 : ( structure & diseases) *in the past, they thought that mad-cow disease was due to a virus. But now, it is known that the cause is the prion which is a mis-folded protein, and it causes deterioration in the brain. *it can carry the disease to humans. ( in humans, it is called Creutzfeldt-Jakob desiease) **Alzheimer's disease: causes dementia (loss of memory in adults). I'm really sorry for mistakes

Sheet #5 Dr. Mamoun Ahram 8/7/2014

Sheet #5 Dr. Mamoun Ahram 8/7/2014 P a g e 1 Protein Structure Quick revision - Levels of protein structure: primary, secondary, tertiary & quaternary. - Primary structure is the sequence of amino acids residues. It determines the other

More information

Nafith Abu Tarboush DDS, MSc, PhD

Nafith Abu Tarboush DDS, MSc, PhD Nafith Abu Tarboush DDS, MSc, PhD natarboush@ju.edu.jo www.facebook.com/natarboush Protein conformation Many conformations are possible for proteins due to flexibility of amino acids linked by peptide

More information

Protein Structure and Function

Protein Structure and Function Protein Structure and Function Protein Structure Classification of Proteins Based on Components Simple proteins - Proteins containing only polypeptides Conjugated proteins - Proteins containing nonpolypeptide

More information

4. THE THREE-DIMENSIONAL STRUCTURE OF PROTEINS

4. THE THREE-DIMENSIONAL STRUCTURE OF PROTEINS 4. THE THREE-DIMENSIONAL STRUCTURE OF PROTEINS 4.1 Proteins Structures and Function Levels of Structure in Proteins Native conformation - Biological activity - Random structure: no obvious regular repeating

More information

H C. C α. Proteins perform a vast array of biological function including: Side chain

H C. C α. Proteins perform a vast array of biological function including: Side chain Topics The topics: basic concepts of molecular biology elements on Python overview of the field biological databases and database searching sequence alignments phylogenetic trees microarray data analysis

More information

Ch5: Macromolecules. Proteins

Ch5: Macromolecules. Proteins Ch5: Macromolecules Proteins Essential Knowledge 4.A.1 The subcomponents of biological molecules and their sequence determine the properties of that molecule A. Structure and function of polymers are derived

More information

Structure of proteins

Structure of proteins Structure of proteins Presented by Dr. Mohammad Saadeh The requirements for the Pharmaceutical Biochemistry I Philadelphia University Faculty of pharmacy Structure of proteins The 20 a.a commonly found

More information

Biological Molecules B Lipids, Proteins and Enzymes. Triglycerides. Glycerol

Biological Molecules B Lipids, Proteins and Enzymes. Triglycerides. Glycerol Glycerol www.biologymicro.wordpress.com Biological Molecules B Lipids, Proteins and Enzymes Lipids - Lipids are fats/oils and are present in all cells- they have different properties for different functions

More information

Organic Molecules: Proteins

Organic Molecules: Proteins Organic Molecules: Proteins Proteins Most structurally & functionally diverse group Function: involved in almost everything enzymes (pepsin, DNA polymerase) structure (keratin, collagen) carriers & transport

More information

Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Concept 5.4: Proteins have many structures, resulting in a wide range of functions Proteins account for more than 50% of the dry mass of most cells Protein functions include structural support, storage,

More information

Proteins. Dr. Basima Sadiq Jaff. /3 rd class of pharmacy. PhD. Clinical Biochemistry

Proteins. Dr. Basima Sadiq Jaff. /3 rd class of pharmacy. PhD. Clinical Biochemistry Proteins /3 rd class of pharmacy Dr. Basima Sadiq Jaff PhD. Clinical Biochemistry a Greek word that means of first importance. It is a very important class of food molecules that provide organisms not

More information

Chemistry 20 Chapter 14 Proteins

Chemistry 20 Chapter 14 Proteins Chapter 14 Proteins Proteins: all proteins in humans are polymers made up from 20 different amino acids. Proteins provide structure in membranes, build cartilage, muscles, hair, nails, and connective tissue

More information

Understand how protein is formed by amino acids

Understand how protein is formed by amino acids Identify between fibrous and globular proteins Understand how protein is formed by amino acids Describe the structure of proteins using specific examples Functions of proteins Fibrous proteins Globular

More information

Lesson 2. Biological Molecules. Introduction to Life Processes - SCI 102 1

Lesson 2. Biological Molecules. Introduction to Life Processes - SCI 102 1 Lesson 2 Biological Molecules Introduction to Life Processes - SCI 102 1 Carbon in Biological Molecules Organic molecules contain carbon (C) and hydrogen (H) Example: glucose (C 6 H 12 O 6 ) Inorganic

More information

Defense Antibodies, interferons produced in response to infection Coordination and growth (signaling) Hormones (e.g. insulin, growth hormone) Communic

Defense Antibodies, interferons produced in response to infection Coordination and growth (signaling) Hormones (e.g. insulin, growth hormone) Communic Proteins Chapter 3 An Introduction to Organic Compounds Most varied of the biomolecules Also called polypeptides Make up more than half the dry weight of cells Categorized by function Lecture 3: Proteins

More information

Lecture Series 2 Macromolecules: Their Structure and Function

Lecture Series 2 Macromolecules: Their Structure and Function Lecture Series 2 Macromolecules: Their Structure and Function Reading Assignments Read Chapter 4 (Protein structure & Function) Biological Substances found in Living Tissues The big four in terms of macromolecules

More information

The building blocks of life.

The building blocks of life. The building blocks of life. All the functions of the cell are based on chemical reactions. the building blocks of organisms BIOMOLECULE MONOMER POLYMER carbohydrate monosaccharide polysaccharide lipid

More information

Essential Biology 3.2 Carbohydrates, Lipids, Proteins. 1. Define organic molecule.

Essential Biology 3.2 Carbohydrates, Lipids, Proteins. 1. Define organic molecule. 1. Define organic molecule. An organic molecule is a molecule that contains carbon and is found in living things. There are many organic molecules in living things. The same (or very similar) molecules

More information

Protein Classification based upon Biological functions

Protein Classification based upon Biological functions PROTEINS (a) The light produced by fireflies is the result of a reaction involving the protein luciferin and ATP, catalyzed by the enzyme luciferase. (b) Erythrocytes contain large amounts of the oxygen-transporting

More information

! Proteins are involved functionally in almost everything: " Receptor Proteins - Respond to external stimuli. " Storage Proteins - Storing amino acids

! Proteins are involved functionally in almost everything:  Receptor Proteins - Respond to external stimuli.  Storage Proteins - Storing amino acids Proteins Most structurally & functionally diverse group! Proteins are involved functionally in almost everything: Proteins Multi-purpose molecules 2007-2008 Enzymatic proteins - Speed up chemical reactions!

More information

What are the molecules of life?

What are the molecules of life? Molecules of Life What are the molecules of life? Organic Compounds Complex Carbohydrates Lipids Proteins Nucleic Acids Organic Compounds Carbon- hydrogen based molecules From Structure to Function Ø Carbon

More information

Chemistry of Carbon. All living things rely on one particular type of molecule: carbon

Chemistry of Carbon. All living things rely on one particular type of molecule: carbon Ach Chemistry of Carbon All living things rely on one particular type of molecule: carbon Carbon atom with an outer shell of four electrons can form covalent bonds with four atoms. In organic molecules,

More information

2.1.1 Biological Molecules

2.1.1 Biological Molecules 2.1.1 Biological Molecules Relevant Past Paper Questions Paper Question Specification point(s) tested 2013 January 4 parts c and d p r 2013 January 6 except part c j k m n o 2012 June 1 part ci d e f g

More information

The Structure and Function of Large Biological Molecules Part 4: Proteins Chapter 5

The Structure and Function of Large Biological Molecules Part 4: Proteins Chapter 5 Key Concepts: The Structure and Function of Large Biological Molecules Part 4: Proteins Chapter 5 Proteins include a diversity of structures, resulting in a wide range of functions Proteins Enzymatic s

More information

BIOCHEMISTRY. How Are Macromolecules Formed? Dehydration Synthesis or condensation reaction Polymers formed by combining monomers and removing water.

BIOCHEMISTRY. How Are Macromolecules Formed? Dehydration Synthesis or condensation reaction Polymers formed by combining monomers and removing water. BIOCHEMISTRY Organic compounds Compounds that contain carbon are called organic. Inorganic compounds do not contain carbon. Carbon has 4 electrons in outer shell. Carbon can form covalent bonds with as

More information

Biochemistry 15 Doctor /7/2012

Biochemistry 15 Doctor /7/2012 Heme The Heme is a chemical structure that diffracts by light to give a red color. This chemical structure is introduced to more than one protein. So, a protein containing this heme will appear red in

More information

BIOB111 - Tutorial activity for Session 14

BIOB111 - Tutorial activity for Session 14 BIOB111 - Tutorial activity for Session 14 General topics for week 7 Session 14 Amino acids and proteins Students review the concepts learnt and answer the selected questions from the textbook. General

More information

Macromolecules. Note: If you have not taken Chemistry 11 (or if you ve forgotten some of it), read the Chemistry Review Notes on your own.

Macromolecules. Note: If you have not taken Chemistry 11 (or if you ve forgotten some of it), read the Chemistry Review Notes on your own. Macromolecules Note: If you have not taken Chemistry 11 (or if you ve forgotten some of it), read the Chemistry Review Notes on your own. Macromolecules are giant molecules made up of thousands or hundreds

More information

Organic Compounds. Compounds that contain CARBON are called organic. Macromolecules are large organic molecules.

Organic Compounds. Compounds that contain CARBON are called organic. Macromolecules are large organic molecules. Macromolecules 1 Organic Compounds Compounds that contain CARBON are called organic. Macromolecules are large organic molecules. 2 Carbon (C) Carbon has 4 electrons in outer shell. Carbon can form covalent

More information

Proteins. These are polymers of 20 common amino acids linked in various sequences. Proteins differ in molecular mass, molecular structure and shape

Proteins. These are polymers of 20 common amino acids linked in various sequences. Proteins differ in molecular mass, molecular structure and shape Proteins These are polymers of 20 common amino acids linked in various sequences. Proteins differ in molecular mass, molecular structure and shape Characteristics if protein Amino acids are linked by covalent

More information

Protein structure. Dr. Mamoun Ahram Summer semester,

Protein structure. Dr. Mamoun Ahram Summer semester, Protein structure Dr. Mamoun Ahram Summer semester, 2017-2018 Overview of proteins Proteins have different structures and some have repeating inner structures, other do not. A protein may have gazillion

More information

Macromolecules. Polymer Overview: The 4 major classes of macromolecules also called are: 1) 2) 3) 4)

Macromolecules. Polymer Overview: The 4 major classes of macromolecules also called are: 1) 2) 3) 4) Macromolecules Polymer Overview: The 4 major classes of macromolecules also called are: 1) 2) 3) 4) Q: Which of the above are polymers? (put a star by them). Polymer literally means. Polymers are long

More information

Types of macromolecules. Proteins. Amino acids 9/15/2010. Carbohydrates. Lipids. Proteins. Nucleic acids

Types of macromolecules. Proteins. Amino acids 9/15/2010. Carbohydrates. Lipids. Proteins. Nucleic acids Types of macromolecules Carbohydrates Lipids Proteins Nucleic acids Proteins Chief building blocks of life 1000s of proteins Lots of different functions, but all built the same way & from the same raw

More information

Biology: Life on Earth Chapter 3 Molecules of life

Biology: Life on Earth Chapter 3 Molecules of life Biology: Life on Earth Chapter 3 Molecules of life Chapter 3 Outline 3.1 Why Is Carbon So Important in Biological Molecules? p. 38 3.2 How Are Organic Molecules Synthesized? p. 38 3.3 What Are Carbohydrates?

More information

Biomolecules. Biomolecules. Carbohydrates. Biol 219 Lec 3 Fall Polysaccharides. Function: Glucose storage Fig. 2.2

Biomolecules. Biomolecules. Carbohydrates. Biol 219 Lec 3 Fall Polysaccharides. Function: Glucose storage Fig. 2.2 Biomolecules Biomolecules Monomers Polymers Carbohydrates monosaccharides polysaccharides fatty acids triglycerides Proteins amino acids polypeptides Nucleic Acids nucleotides DNA, RNA Carbohydrates Carbohydrates

More information

WHY IS THIS IMPORTANT?

WHY IS THIS IMPORTANT? CHAPTER 2 FUNDAMENTAL CHEMISTRY FOR MICROBIOLOGY WHY IS THIS IMPORTANT? An understanding of chemistry is essential to understand cellular structure and function, which are paramount for your understanding

More information

Macromolecules. copyright cmassengale

Macromolecules. copyright cmassengale Macromolecules 1 Organic Compounds Compounds that contain CARBON are called organic. Macromolecules are large organic molecules. 2 Carbon (C) Carbon has 4 electrons in outer shell. Carbon can form covalent

More information

Practice Questions for Biochemistry Test A. 1 B. 2 C. 3 D. 4

Practice Questions for Biochemistry Test A. 1 B. 2 C. 3 D. 4 Practice Questions for Biochemistry Test 1. The quaternary structure of a protein is determined by: A. interactions between distant amino acids of the same polypeptide. B.interactions between close amino

More information

Organic Compounds. Compounds that contain CARBON are called organic. Macromolecules are large organic molecules.

Organic Compounds. Compounds that contain CARBON are called organic. Macromolecules are large organic molecules. Macromolecules Organic Compounds Compounds that contain CARBON are called organic. Macromolecules are large organic molecules. Carbon (C) Carbon has 4 electrons in outer shell. Carbon can form covalent

More information

OPTION GROUP: BIOLOGICAL MOLECULES 3 PROTEINS WORKBOOK. Tyrone R.L. John, Chartered Biologist

OPTION GROUP: BIOLOGICAL MOLECULES 3 PROTEINS WORKBOOK. Tyrone R.L. John, Chartered Biologist NAME: OPTION GROUP: BIOLOGICAL MOLECULES 3 PROTEINS WORKBOOK Tyrone R.L. John, Chartered Biologist 1 Tyrone R.L. John, Chartered Biologist 2 Instructions REVISION CHECKLIST AND ASSESSMENT OBJECTIVES Regular

More information

Enzymes and Metabolism

Enzymes and Metabolism PowerPoint Lecture Slides prepared by Vince Austin, University of Kentucky Enzymes and Metabolism Human Anatomy & Physiology, Sixth Edition Elaine N. Marieb 1 Protein Macromolecules composed of combinations

More information

Bio 12 Chapter 2 Test Review

Bio 12 Chapter 2 Test Review Bio 12 Chapter 2 Test Review 1.Know the difference between ionic and covalent bonds In order to complete outer shells in electrons bonds can be Ionic; one atom donates or receives electrons Covalent; atoms

More information

Proteins. (b) Protein Structure and Conformational Change

Proteins. (b) Protein Structure and Conformational Change Proteins (b) Protein Structure and Conformational Change Protein Structure and Conformational Change Proteins contain the elements carbon (C), hydrogen (H), oxygen (O2) and nitrogen (N2) Some may also

More information

Proteins and their structure

Proteins and their structure Proteins and their structure Proteins are the most abundant biological macromolecules, occurring in all cells and all parts of cells. Proteins also occur in great variety; thousands of different kinds,

More information

Lecture 5. Secondary Structure of Proteins. "-Pleated Sheet. !-Helix. Examples of Protein Structures

Lecture 5. Secondary Structure of Proteins. -Pleated Sheet. !-Helix. Examples of Protein Structures econdary tructure of Proteins Lecture 5 Proteins- tructure and Properties Chapter 21 ections 7-11! There are two main aspects of 2 o structure!the type of fold or bend in the protein chain!the types of

More information

3150:112 SAMPLE TEST 2. Print out a copy Answer the questions on your own. Check the answers at GOBC Ans.pdf. Good Luck!

3150:112 SAMPLE TEST 2. Print out a copy Answer the questions on your own. Check the answers at GOBC Ans.pdf. Good Luck! SAMPLE TEST 2 3150:112 Print out a copy Answer the questions on your own. Check the answers at GOBC Ans.pdf. Good Luck! QUESTIONS 1-3 REFER TO TE FOLLOWING: A. C 2 O O B. C 2 O O O C 2 O C. O C 2 O 1.

More information

Proteins. Bởi: OpenStaxCollege

Proteins. Bởi: OpenStaxCollege Proteins Bởi: OpenStaxCollege Proteins are one of the most abundant organic molecules in living systems and have the most diverse range of functions of all macromolecules. Proteins may be structural, regulatory,

More information

BCH Graduate Survey of Biochemistry

BCH Graduate Survey of Biochemistry BCH 5045 Graduate Survey of Biochemistry Instructor: Charles Guy Producer: Ron Thomas Director: Glen Graham Lecture 10 Slide sets available at: http://hort.ifas.ufl.edu/teach/guyweb/bch5045/index.html

More information

Paper No. 01. Paper Title: Food Chemistry. Module-16: Protein Structure & Denaturation

Paper No. 01. Paper Title: Food Chemistry. Module-16: Protein Structure & Denaturation Paper No. 01 Paper Title: Food Chemistry Module-16: Protein Structure & Denaturation The order of amino acids in a protein molecule is genetically determined. This primary sequence of amino acids must

More information

The Building blocks of life. Macromolecules

The Building blocks of life. Macromolecules The Building blocks of life Macromolecules 1 copyright cmassengale 2 Organic Compounds Compounds that contain CARBON are called organic. Macromolecules are large organic molecules. 3 LIFE ON EARTH IS CARBON-BASED

More information

Water Carbon Macromolecules

Water Carbon Macromolecules Water Carbon Macromolecules I. CHEMISTRY: THE BASIS FOR LIFE Hydrogen bond Hydrogen bonds happen mainly between water molecules. The electrons between hydrogen and the other atoms are shared unequally

More information

The Structure and Function of Macromolecules (Chapter Five)

The Structure and Function of Macromolecules (Chapter Five) 1 Most Macromolecules are Polymers The Structure and Function of Macromolecules (Chapter Five) POLYMER PRINCIPLES The four main classes of macromolecules are carbohydrates, lipids, proteins and nucleic

More information

Lecture Series 2 Macromolecules: Their Structure and Function

Lecture Series 2 Macromolecules: Their Structure and Function Lecture Series 2 Macromolecules: Their Structure and Function Reading Assignments Read Chapter 4 (Protein structure & Function) Biological Substances found in Living Tissues The big four in terms of macromolecules

More information

Chapter 5 Structure and Function Of Large Biomolecules

Chapter 5 Structure and Function Of Large Biomolecules Formation of Macromolecules Monomers Polymers Macromolecules Smaller larger Chapter 5 Structure and Function Of Large Biomolecules monomer: single unit dimer: two monomers polymer: three or more monomers

More information

Lecture Series 2 Macromolecules: Their Structure and Function

Lecture Series 2 Macromolecules: Their Structure and Function Lecture Series 2 Macromolecules: Their Structure and Function Reading Assignments Read Chapter 4 (Protein structure & Function) Biological Substances found in Living Tissues The big four in terms of macromolecules

More information

Chemistry B11 Chapters 16 Proteins and Enzymes

Chemistry B11 Chapters 16 Proteins and Enzymes Chapters 16 Proteins and Enzymes Proteins: all proteins in humans are polymers made up from 20 different amino acids. Proteins provide structure in membranes, build cartilage, muscles, hair, nails, and

More information

Biological Molecules. Carbohydrates, Proteins, Lipids, and Nucleic Acids

Biological Molecules. Carbohydrates, Proteins, Lipids, and Nucleic Acids Biological Molecules Carbohydrates, Proteins, Lipids, and Nucleic Acids Organic Molecules Always contain Carbon (C) and Hydrogen (H) Carbon is missing four electrons Capable of forming 4 covalent bonds

More information

Biological Molecules Ch 2: Chemistry Comes to Life

Biological Molecules Ch 2: Chemistry Comes to Life Outline Biological Molecules Ch 2: Chemistry Comes to Life Biol 105 Lecture 3 Reading Chapter 2 (pages 31 39) Biological Molecules Carbohydrates Lipids Amino acids and Proteins Nucleotides and Nucleic

More information

AP BIOLOGY: READING ASSIGNMENT FOR CHAPTER 5

AP BIOLOGY: READING ASSIGNMENT FOR CHAPTER 5 1) Complete the following table: Class Monomer Functions Carbohydrates 1. 3. Lipids 1. 3. Proteins 1. 3. 4. 5. 6. Nucleic Acids 1. 2) Circle the atoms of these two glucose molecules that will be removed

More information

Water: 1. The bond between water molecules is a(n) a. ionic bond b. covalent bond c. polar covalent bond d. hydrogen bond

Water: 1. The bond between water molecules is a(n) a. ionic bond b. covalent bond c. polar covalent bond d. hydrogen bond Biology 12 - Biochemistry Practice Exam KEY Water: 1. The bond between water molecules is a(n) a. ionic bond b. covalent bond c. polar covalent bond d. hydrogen bond 2. The water properties: good solvent,

More information

Chapter 2: Biochemistry

Chapter 2: Biochemistry Chapter 2: Biochemistry Biochemistry Biochemistry is the study of chemical makeup and reactions of living matter All chemicals in the body are either organic & inorganic Organic compounds contain carbon

More information

The three important structural features of proteins:

The three important structural features of proteins: The three important structural features of proteins: a. Primary (1 o ) The amino acid sequence (coded by genes) b. Secondary (2 o ) The interaction of amino acids that are close together or far apart in

More information

Biology 2E- Zimmer Protein structure- amino acid kit

Biology 2E- Zimmer Protein structure- amino acid kit Biology 2E- Zimmer Protein structure- amino acid kit Name: This activity will use a physical model to investigate protein shape and develop key concepts that govern how proteins fold into their final three-dimensional

More information

Lesson 5 Proteins Levels of Protein Structure

Lesson 5 Proteins Levels of Protein Structure Lesson 5 Proteins Levels of Protein Structure Primary 1º Structure The primary structure is simply the sequence of amino acids in a protein. Chains of amino acids are written from the amino terminus (N-terminus)

More information

Biology 12. Biochemistry. Water - a polar molecule Water (H 2 O) is held together by covalent bonds.

Biology 12. Biochemistry. Water - a polar molecule Water (H 2 O) is held together by covalent bonds. Biology 12 Biochemistry Water - a polar molecule Water (H 2 O) is held together by covalent bonds. Electrons in these bonds spend more time circulating around the larger Oxygen atom than the smaller Hydrogen

More information

A. Lipids: Water-Insoluble Molecules

A. Lipids: Water-Insoluble Molecules Biological Substances found in Living Tissues Lecture Series 3 Macromolecules: Their Structure and Function A. Lipids: Water-Insoluble Lipids can form large biological molecules, but these aggregations

More information

Protein Structure Danilo V. Rogayan Jr.

Protein Structure Danilo V. Rogayan Jr. Protein Structure Danilo V. Rogayan Jr. RMTU San Marcelino Outline I Categories of Proteins Fibrous proteins Globular proteins II Protein Denaturation & Renaturation III Functions of Proteins IV Journal

More information

Peptides. The two amino acids are joined through a dehydration reaction.

Peptides. The two amino acids are joined through a dehydration reaction. Peptides Peptides The two amino acids are joined through a dehydration reaction. Peptides The Peptide Bond The peptide bond is usually drawn as a single bond, but actually has considerable double bond

More information

BIO 311C Spring Lecture 15 Friday 26 Feb. 1

BIO 311C Spring Lecture 15 Friday 26 Feb. 1 BIO 311C Spring 2010 Lecture 15 Friday 26 Feb. 1 Illustration of a Polypeptide amino acids peptide bonds Review Polypeptide (chain) See textbook, Fig 5.21, p. 82 for a more clear illustration Folding and

More information

Macromolecules (Learning Objectives)

Macromolecules (Learning Objectives) Macromolecules (Learning Objectives) Recognize the role of water in synthesis and breakdown of polymers Name &recognize the monomer and the chemical bond that holds the polymeric structure of all biomolecules

More information

Chapter 5: The Structure and Function of Large Biological Molecules

Chapter 5: The Structure and Function of Large Biological Molecules Name Period Concept 5.1 Macromolecules are polymers, built from monomers 1. The large molecules of all living things fall into just four main classes. Name them. 2. Circle the three classes that are called

More information

Q1: Circle the best correct answer: (15 marks)

Q1: Circle the best correct answer: (15 marks) Q1: Circle the best correct answer: (15 marks) 1. Which one of the following incorrectly pairs an amino acid with a valid chemical characteristic a. Glycine, is chiral b. Tyrosine and tryptophan; at neutral

More information

Biochemistry Macromolecules and Enzymes. Unit 02

Biochemistry Macromolecules and Enzymes. Unit 02 Biochemistry Macromolecules and Enzymes Unit 02 Organic Compounds Compounds that contain CARBON are called organic. What is Carbon? Carbon has 4 electrons in outer shell. Carbon can form covalent bonds

More information

Honors Biology Chapter 3: Macromolecules PPT Notes

Honors Biology Chapter 3: Macromolecules PPT Notes Honors Biology Chapter 3: Macromolecules PPT Notes 3.1 I can explain why carbon is unparalleled in its ability to form large, diverse molecules. Diverse molecules found in cells are composed of carbon

More information

The Structure and Function of Macromolecules

The Structure and Function of Macromolecules The Structure and Function of Macromolecules Macromolecules are polymers Polymer long molecule consisting of many similar building blocks. Monomer the small building block molecules. Carbohydrates, proteins

More information

6/15/2015. Biological Molecules. Outline. Organic Compounds. Organic Compounds - definition Functional Groups Biological Molecules. What is organic?

6/15/2015. Biological Molecules. Outline. Organic Compounds. Organic Compounds - definition Functional Groups Biological Molecules. What is organic? Biological Molecules Biology 105 Lecture 3 Reading: Chapter 2 (pages 29 39) Outline Organic Compounds - definition Functional Groups Biological Molecules Carbohydrates Lipids Amino Acids and Proteins Nucleotides

More information

Structure and Function of Macromolecules Chapter 5 Macromolecules Macromolecules Multiple Units Synthesis of Dimers and Polymers

Structure and Function of Macromolecules Chapter 5 Macromolecules Macromolecules Multiple Units Synthesis of Dimers and Polymers Structure and Function of Macromolecules Chapter 5 Macromolecules Giant molecules weighing over 100,000 daltons Emergent properties not found in component parts Macromolecules Multiple Units meris = one

More information

The building blocks of life.

The building blocks of life. The building blocks of life. The 4 Major Organic Biomolecules The large molecules (biomolecules OR polymers) are formed when smaller building blocks (monomers) bond covalently. via anabolism Small molecules

More information

All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds:

All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds: Biochemistry Organic Chemistry All living things are mostly composed of 4 elements: H, O, N, C honk Compounds are broken down into 2 general categories: Inorganic Compounds: Do not contain carbon Organic

More information

Chapter 5 The Structure and Function of Macromolecules

Chapter 5 The Structure and Function of Macromolecules Chapter 5 The Structure and Function of Macromolecules Title: Sep 3 4:37 PM (1 of 65) macromolecules = smaller organic molecules that are joined together to make larger molecules four major classes: proteins

More information

Chapter 2 pt 2. Atoms, Molecules, and Life. Gregory Ahearn. John Crocker. Including the lecture Materials of

Chapter 2 pt 2. Atoms, Molecules, and Life. Gregory Ahearn. John Crocker. Including the lecture Materials of Chapter 2 pt 2 Atoms, Molecules, and Life Including the lecture Materials of Gregory Ahearn University of North Florida with amendments and additions by John Crocker Copyright 2009 Pearson Education, Inc..

More information

Biochemistry by Mary K. Campbell & Shawn O. Farrell

Biochemistry by Mary K. Campbell & Shawn O. Farrell 4 Biochemistry by Mary K. Campbell & Shawn O. Farrell 4-1 4 The ThreeDimensional Structure of Proteins 4-2 4 Learning Objectives 1. How does the Structure of Proteins Determine Their Function? 2. What

More information

SRTUCTURE OF PROTEINS DR. A. TARAB DEPT. OF BIOCHEMISTRY HKMU

SRTUCTURE OF PROTEINS DR. A. TARAB DEPT. OF BIOCHEMISTRY HKMU SRTUCTURE OF PROTEINS DR. A. TARAB DEPT. OF BIOCHEMISTRY HKMU I. OVERVIEW The twenty amino acids commonly found in proteins are joined together by peptide bonds The linear sequence of the linked amino

More information

OPTION GROUP: BIOLOGICAL MOLECULES 3 PROTEINS WORKBOOK. Tyrone R.L. John, Chartered Biologist

OPTION GROUP: BIOLOGICAL MOLECULES 3 PROTEINS WORKBOOK. Tyrone R.L. John, Chartered Biologist NAME: OPTION GROUP: BIOLOGICAL MOLECULES 3 PROTEINS WORKBOOK Tyrone R.L. John, Chartered Biologist 1 Tyrone R.L. John, Chartered Biologist 2 Instructions REVISION CHECKLIST AND ASSESSMENT OBJECTIVES Regular

More information

The Structure and Func.on of Macromolecules Proteins GRU1L6

The Structure and Func.on of Macromolecules Proteins GRU1L6 The Structure and Func.on of Macromolecules Proteins GRU1L6 Proteins Proteins Most structurally & functionally diverse group Function: involved in almost everything enzymes (pepsin, DNA polymerase) structure

More information

130327SCH4U_biochem April 09, 2013

130327SCH4U_biochem April 09, 2013 Option B: B1.1 ENERGY Human Biochemistry If more energy is taken in from food than is used up, weight gain will follow. Similarly if more energy is used than we supply our body with, weight loss will occur.

More information

Amino Acids and Proteins Hamad Ali Yaseen, PhD MLS Department, FAHS, HSC, KU Biochemistry 210 Chapter 22

Amino Acids and Proteins Hamad Ali Yaseen, PhD MLS Department, FAHS, HSC, KU Biochemistry 210 Chapter 22 Amino Acids and Proteins Hamad Ali Yaseen, PhD MLS Department, FAHS, HSC, KU Hamad.ali@hsc.edu.kw Biochemistry 210 Chapter 22 Importance of Proteins Main catalysts in biochemistry: enzymes (involved in

More information

Macromolecules. 3. There are several levels of protein structure, the most complex of which is A) primary B) secondary C) tertiary D) quaternary

Macromolecules. 3. There are several levels of protein structure, the most complex of which is A) primary B) secondary C) tertiary D) quaternary Macromolecules 1. If you remove all of the functional groups from an organic molecule so that it has only carbon and hydrogen atoms, the molecule become a molecule. A) carbohydrate B) carbonyl C) carboxyl

More information

Proteins. Proteins. Proteins. Proteins. Effect of different R groups: Nonpolar amino acids. Amino acids H C OH H R. Multipurpose molecules.

Proteins. Proteins. Proteins. Proteins. Effect of different R groups: Nonpolar amino acids. Amino acids H C OH H R. Multipurpose molecules. Multipurpose molecules 2008-2009 Most structurally & functionally diverse group Function: involved in almost everything enzymes (pepsin, DNA polymerase) structure (keratin, collagen) carriers & transport

More information

Biology Chapter 5. Biological macromolecules

Biology Chapter 5. Biological macromolecules Biology Chapter 5 Biological macromolecules Small molecules (like water and NaCl) have certain properties that arise from the bonds which hold atoms together in a particular arrangement. Many of the molecules

More information

Most life processes are a series of chemical reactions influenced by environmental and genetic factors.

Most life processes are a series of chemical reactions influenced by environmental and genetic factors. Biochemistry II Most life processes are a series of chemical reactions influenced by environmental and genetic factors. Metabolism the sum of all biochemical processes 2 Metabolic Processes Anabolism-

More information

CHAPTER 3. Carbon & the Molecular Diversity of Life

CHAPTER 3. Carbon & the Molecular Diversity of Life CHAPTER 3 Carbon & the Molecular Diversity of Life Carbon: The Organic Element Compounds that are synthesized by cells and contain carbon are organic So what is inorganic? Why are carbon compounds so prevalent?

More information

INTRODUCTION TO ORGANIC COMPOUNDS. Copyright 2009 Pearson Education, Inc.

INTRODUCTION TO ORGANIC COMPOUNDS. Copyright 2009 Pearson Education, Inc. INTRODUCTION TO ORGANIC COMPOUNDS 3.1 I can explain why carbon is unparalleled in its ability to form large, diverse molecules. Diverse molecules found in cells are composed of carbon bonded to other elements

More information

Details of Organic Chem! Date. Carbon & The Molecular Diversity of Life & The Structure & Function of Macromolecules

Details of Organic Chem! Date. Carbon & The Molecular Diversity of Life & The Structure & Function of Macromolecules Details of Organic Chem! Date Carbon & The Molecular Diversity of Life & The Structure & Function of Macromolecules Functional Groups, I Attachments that replace one or more of the hydrogens bonded to

More information

A. Structure and Function 1. Carbon a. Forms four (4) covalent bonds linked together in chains or rings Forms skeleton of basic biochemicals b.

A. Structure and Function 1. Carbon a. Forms four (4) covalent bonds linked together in chains or rings Forms skeleton of basic biochemicals b. Biochemistry 2 A. Structure and Function 1. arbon a. Forms four (4) covalent bonds linked together in chains or rings Forms skeleton of basic biochemicals b. in three dimensions (3D) Diagrams in 2D may

More information

Biology Kevin Dees. Biology Chapter 5. Biological macromolecules

Biology Kevin Dees. Biology Chapter 5. Biological macromolecules Biology Chapter 5 Biological macromolecules Small molecules (like water and NaCl) have certain properties that arise from the bonds which hold atoms together in a particular arrangement. Many of the molecules

More information

Organic Molecules. Contain C

Organic Molecules. Contain C Contain C Organic Molecules Can form 4 strong covalent bonds Ergo can form many complex, stable molecules Chemistry of life is complex, and requires complex molecules However, several kinds of molecules

More information

UNIT 2 Amino acids and Proteins

UNIT 2 Amino acids and Proteins UNIT 2 Amino acids and Proteins Significance of Proteins 1. Keep the cells and tissues growing, renewing and mending 2. Take part in some kinds of important physiological activities 3. Oxidation and supply

More information

Macro molecule = is all the reactions that take place in cells, the sum of all chemical reactions that occur within a living organism Anabolism:

Macro molecule = is all the reactions that take place in cells, the sum of all chemical reactions that occur within a living organism Anabolism: Macromolecule Macro molecule = molecule that is built up from smaller units The smaller single subunits that make up macromolecules are known as Joining two or more single units together form a M is all

More information

Course Content

Course Content Biology Induction Course Content AS Biology A-Level Biology AS Practical Work Career options Degree options Research Based IS Task Due date: 1 st lesson back after the summer holidays 1. Compare and contrast

More information