Modulation of Cutaneous Cold Receptor Function by Electrolytes, Hormones and Thermal Adaptation

Size: px
Start display at page:

Download "Modulation of Cutaneous Cold Receptor Function by Electrolytes, Hormones and Thermal Adaptation"

Transcription

1 Physiol. Res. 41: 71-75, 1992 Modulation of Cutaneous Cold Receptor Function by Electrolytes, Hormones and Thermal Adaptation K. SCHAFFER, H. A. BRAUN Institut für Physiologie der Universität, D-3550 Marburg, FRG Received November 11, 1991 Summary The response properties of feline cold receptors were analyzed under control conditions, during conditions of altered external calcium concentrations and during application of menthol, catecholamines and ouabain. Afferent activity was extracellularly recorded from cold fibres of an isolated preparation of the tongue. Reduced calcium levels (0.5 mm) generally enhanced and elevated calcium levels (5.0 mm) suppressed cold fibre activity. The effects of menthol (105 M) on cold receptors were qualitatively similar to those of reduced calcium. Application of adrenaline and noradrenaline (10-6 M) were predominantly inhibiting. In cold receptors, the mean discharge rate is determined by the frequency of an oscillating receptor process and the probability of each cycle of this process to initiate afferent impulses. All measures mainly affected the probability of impulse generation rather than the oscillation frequency. Application of ouabain (1(F6 M) resulted in excitatory responses, caused by an increase of both probability of impulse generation and frequency of the oscillating receptor process. It is concluded that cold receptor function is based on a specific combination of common neuronal elements rather than on specific sensory processes. Key words Cold receptor function - Calcium - Menthol - Catecholamines - Ouabain Introduction Temperature receptors convert patterns of heat energy into afferent neuronal signals. Information from these receptors is processed into conscious temperature sensations and into thermoregulatory responses. Relatively little is known about the cellular processes which are involved in the transduction of temperature signals. However, by analysis of the temporal pattern of afferent discharge under various experimental conditions, in cold receptors some of the underlying sensory processes could be identified. There is evidence that a temperature- and calcium-sensitive receptor potential oscillation generates the afferent action potentials (Braun et al. 1980, Schafer et al. 1982); the calcium channel involved seems to be of the low-voltage activated type (Schafer et al. 1991). An electrogenic sodium pump has been discussed as the primary temperature sensing element (Schäfer and Braun 1990). These processes are implicated in the cellular function of a variety of neurones, and can be interfered with by several compounds (Bean 1989, Glynn 1984). Therefore it might be speculated that cold receptor function under certain conditions might be subjected to physiological modulation. To what extent the changes of receptor function during long-term thermal adaptation (Hensel and Schäfer 1982) are also related to such mechanisms has so far not been discussed. We therefore studied the potency of various substances known to affect the function of calcium channels and of electrogenic sodium pumps to modify cold receptor response properties. To prevent

2 72 Schäfer, Braun Vol. 41 interference by regulatory measures of the organism, cold receptors of a perfused isolated organ preparation were investigated. Methods range; below 15 C calcium was ineffective or the effect was even inversed (Fig. 1). There was a linear inverse relationship between the mean discharge rate and the logarithm of the Adult cats were initially anaesthetized with intraperitoneal sodium pentobarbital (35 mg/kg). If necessary, supplemental doses were given during the experiment. Isolated preparations of the tongue were prepared and perfused as previously described in detail (Schäfer 1987). In some experiments, the calcium concentration was changed from 1.53 mm (control) to 0.5 and 5.0 mm, respectively. Menthol, catecholamines and ouabain were applied by addition to the perfusing medium. For the method of recording and stimulation, see Schäfer (1987). Data were stored on magnetic tape and analysed off-line with a microcomputer system, using a program developed for analysis of neuroneal burst discharges (Hirsch et al. 1990). Note that the mean discharge rate is determined by the frequency of the receptor potential oscillation and by the probability of each cycle to generate afferent impulses (Braun et al. 1980). The parameters are the oscillation frequency (burst frequency) and the number of impulses initiated during each cycle. Results During the experiments, 115 cold receptors were identified and their thermal responses recorded. All receptors showed the periodic discharge pattern consisting of repetitive activity at higher and grouped discharges (bursts) at lower temperatures, which had been analyzed in detail in several previous investigations (Braun et al. 1980, Schäfer et al. 1982). In addition to control conditions, the receptors were studied at elevated or lowered external calcium concentrations (n = 22), during perfusion with 10 to 50 /xm menthol (n = 8), during perfusion with 10"6 M adrenaline or noradrenaline (n = 60), and during perfusion with 10-6 M ouabain (n = 25). With the exception of ouabain, the effects of these compounds were fully reversible. Generally, 5 mm calcium depressed and 0.5 mm stimulated cold receptor activity compared to control conditions. The effect was temperature-dependent, since calcium was more effective in the upper temperature Fig. 1 Modulation of lingual cold receptor activity by various compounds at constant temperatures. Isolated perfused tongue preparation. Circles represent control conditions; triangles and squares test conditions. From top to bottom, effect of altered external calcium concentration (control, 1.53 mm; triangles, 0.5 mm; squares, 5.0 mm); effect of 10"^ M menthol; effect of 10~^ M adrenaline,

3 1992 Modulation of Cold Receptor Function 73 and effect of 10"6 M ouabain calcium concentration at static temperatures between 25 and 35 C. The changes of afferent activity were based on specific changes of the cyclic discharge pattern. The frequency of the periodic pattern, which increases with raising static temperatures, remained almost unaffected, except for temperatures above 35 C; at 35 and 40 C, reductions of the calcium concentration increased the oscillation frequency. On the other hand, the probability of impulse generation, which can be determined as the number of impulses generated during each cycle of the periodic receptor process, increased throughout the whole temperature range during perfusion with reduced external calcium. Thus the changes of mean discharge rate were primarily caused by a modulation of the number of impulses induced during each cycle of the cold receptor potential oscillation. There is good evidence that a lowvoltage activated calcium conductance is involved in the signal transduction of cold receptors (Schafer et al. 1991). It has reecently been demonstrated that menthol interferes quite specifically with calcium channel currents (Swandulla et al. 1986, 1987). Perfusing the isolated tongue preparation with solutions containing 10 to 50 /xm menthol stimulated cold receptor activity; the effect was similar to that induced by reducing external calcium (Fig. 1). During menthol application, the mean discharge rate maintained a new steady-state value which was dose-dependent. Again the changes of mean activity were based on changes of the periodic discharge pattern, which were similar to those observed during low calcium conditions: the stimulating effect of menthol was mainly caused by an increase of the probability of impulse generation. The effects of adrenaline on cold receptor activity were less homogeneous than those of calcium and menthol, but were predominantly inhibiting (Fig. 1). During perfusion with 10 6 M adrenaline, the discharge rate was reduced in 18 experiments and slightly stimulated in 11 experiments, when compared to control conditions. During perfusion of the isolated preparation with 10"6 M noradrenaline, an inhibiting effect was observed in 15 experiments and a slightly stimulating effect in 7 experiments. Similar results were obtained during infusion experiments with adrenaline and noradrenaline on whole animals. In most cases, the inhibiting effect was based on a reduced probability of impulse generation, i.e. the number of impulses per oscillation period was decreased. Thus, adrenaline modulated the same parameters of the periodic discharge pattern as calcium and menthol, but with an opposite sign. During perfusion of the isolated organ preparation with 10'7 to 10'6 M ouabain, a maintained new steady-state level of activity was not achieved. After a lag of several minutes the mean activity began to increase and continued to do so, until a peak value was reached (Fig. 1). The cold receptor then fell silent and commonly remained inhibited, but in several receptors these driven discharges appeared repeatedly, and even at various adapting temperatures. The responses to ouabain were based on an initial increased probability of impulse generation, whereas the oscillation frequency remained remarkably unaffected. Within a few seconds, the oscillation frequency then attained a peak value of considerable magnitude, which was associated with a concomitant sharp decline of the firing probability, i.e. the number of impulses per oscillation period was reduced from relatively high values (8-16) to one or less. Finally, the oscillation frequency gradually fell to low values until activity ceased completely. Discussion Although discharge pattern analysis and isolated organ preparation have been proved to be very useful tools in the study of cold receptor function, one has to admit that our present knowledge about the underlying cellular processes is still rather limited. However, studies employing these tools have enabled us to identify at least two basic processes of signal transduction, an electrogcnic sodium pump as the primary thermal sensor (Schafer and Braun 1990), and an oscillator which is controlled by a lowvoltage activated calcium channel (Schafer ct al. 1991). Interference with the conductance of this channel obviously displaces the receptor potential. Both mechanisms contribute to the cellular function of a variety of excitable cells (Bean 1989, Glynn 1984) and the findings on cold receptors have strengthened the earlier idea that the temperature sensitivity of cold receptors is not an unique property of these cells but might rather be based on mechanisms

4 74 Schäfer, Braun Vol. 41 common to most excitable cells (Carpenter 1981). If signal transduction in fact is a function of a specific combination of "standard" neuroneal elements, then it must be considered that these elements will retain their general properties, including the possibility that they might be susceptible to endogeneous modulation. Fig. 2 Dependence of cold receptor activity on external calcium concentration. Top diagram, cold receptor activity at 25 C (triangles) and 30 C (circles). Arrows indicate elevation of external calcium concentration by 0.1 mm. Bottom diagram, decrease of cold receptor activity by a 0.1 mm increase of external calcium. Open symbols, control (1.53 mm); closed symbols, elevated calcium (1.63 mm). Crosses indicate shift of temperature signal ( C and 0.97 C, respectively). The data indicate that an electrogenic sodium pump is present in cold receptors, determining mainly the probability of impulse generation. These pumps are normally active below their maximum capacity and are controlled by the intracellular sodium concentration; physiological variations of the extracellular potassium concentration are of little effect (Rossier et al. 1987). Neuroneal sodium pumps are stimulated by catecholamines (Rossier et al. 1987); the resulting hyperpolarization inhibits cellular electrical activity. It might be speculated that this mechanism is responsible for the suppression of cold receptor activity during application of adrenaline and noradrenaline; it is unlikely that the effect is mediated by calcium channels since catecholamines commonly inhibit conductance through these channels (Marchetti et al. 1986). The high sensitivity of cold receptors to the external calcium concentration is remarkable, and it is tempting to assume that it might be of functional significance. Increases of 0.1 mm of plasma ionized calcium have been observed to occur during physical work (Greenleaf et al. 1979), and a calciumdependent additional factor has been suggested to affect thermoregulation during exercise (Greenleaf 1979). Due to the flat slope of the mean activity-temperature relation of cold receptors at relevant physiological temperatures, small variations of external calcium produce relative large shifts of the temperature signal; our data (Fig. 2) indicate a positive shift of almost 1 C at 30 C skin temperature (1.8 C at 25 C). The marked sensitivity of cold receptor function to calcium is confirmed by the effect of menthol application. Whereas peak calcium currents of sensory neurones are reduced to a halfmaximum value by 3xl(H M menthol (Swandulla et al. 1987), cold receptor activity is considerably enhanced by even 10"5 M. Several findings suggest that the effect is the result of a specific interaction of menthol with calcium channels (Swandulla et al. 1986, 1987), and the molecular requirements for the thermal effect (Watson et al. 1978) indicate a specific ligandreceptor interaction. If such modulatory mechanisms in fact are operative under certain conditions in temperature receptors, then quite possibly it must be assumed that their effects are small and difficult to be detected. Moreover, the nature of the mechanisms implies that the

5 1992 Modulation of Cold Receptor Function 75 effects are rather short- than long-termed, so that only temporal adjustments of sensory function are to be expected. Generally, the demonstration of such processes being present and operative gives no evidence that they are involved in ordinary regulatory activity; they may be viewed as merely representing various states of environmental noise. At present it is not meaningful to relate the complex changes of cold receptor response properties during long-term thermal adaptation (Hensel and Schäfer 1982) to these mechanisms. Acknowledgements The research was supported by the Deutsche Forschungsgemeinschaft. References BEAN P.B.: Classes of calcium channels in vertebrate cells. Ann. Rev. Physiol. 51: ,1989. BRAUN H.A., BADE H., HENSEL H.: Static and dynamic discharge patterns of bursting cold fibres related to hypothetical receptor mechanisms. Pflügers Arch. 386: 1-9,1980. CARPENTER D.O.: Ionic and metabolic bases of neuroneal thermosensitivity. Fed. Proc. 40: , GLYNN I.M.: The electrogenic sodium pump. In: Electrogenic Transport: Fundamental Principles And Physiological Implications. M.P. BLAUSTEIN, M LIEBERMAN (eds), Raven Press, New York, 1984, pp GREENLEAF J.E.: Hyperthermia and exercise. In: International Review of Physiology, Environmental Physiology III, Vol. 20. D. ROBERTSHAW (ed), University Park Press, Baltimore, 1979, pp GREENLEAF J.E., BEAUMONT W. VAN, BROCK P.J., MORSE J.T., MANGSETH G.R.: Plasma volume and electrolyte shifts with heavy exercise in sitting and supine positions. Am. J. Physiol. 236: R , HENSEL H., SCHÄFER K.: Static and dynamic activity of cold receptors in cats after long-term exposure to various temperatures. Pflügers Arch. 392: , HIRSCH M.C., WISSING H., BRAUN H.A.: Computer analysis of neuroneal spike trains with special regard to impulse groups. Pflügers Arch. 415: R89, MARCHETTI C., CARBONE E., LUX H.D.: Effects of dopamine and noradrenaline on Ca channels of cultured sensory and sympathetic neurones of the chick. Pflügers Arch. 406: , ROSSIER B.C., GEERING K., KRAEHENBUHL J.P.: Regulation of the sodium pump: how and why? Trends Biochem. Sei. 12: , SCHÄFER K.: A quantitative study of the dependence of feline cold receptor activity on the calcium concentration. Pflügers Arch. 409: , SCHÄFER, K., BRAUN, HA.: Modulation of periodic cold receptor activity by ouabain. Pflügers Arch. 417: 91-99, SCHÄFER K., BRAUN HA., HENSEL H. Static and dynamic activity of cold receptors at various calcium levels. /. Neurophysiol. 47: , SCHÄFER K., BRAUN HA., REMPE L.: Discharge pattern analysis suggests existence of a low-threshold calcium channel in cold receptors. Experientia 47: 47-50, SWANDULIA D., CARBONE E., SCHÄFER K., LUX H.D.: Effect of menthol on two types of Ca currents in cultured sensory neurones of vertebrates. Pflügers Arch. 409: 52-59, SWANDULLA D., SCHÄFER K., LUX H.D.: Calcium channel current inactivation is selectively modulated by menthol. Neurosci. Lett. 68: 23-28, WATSON H.R., HEMS R., ROWSELL D.G., SPRING D.J.: New components with the menthol cooling effect. J. Soc. Cosmet. Chem. 29: , Reprint Requests K. Schäfer, Zentrum der Physiologie, Klinikum der Universität, Theodor-Stem-Kai 7, D-6000 Frankfurt 70, FRG

Intro. Comp. NeuroSci. Ch. 9 October 4, The threshold and channel memory

Intro. Comp. NeuroSci. Ch. 9 October 4, The threshold and channel memory 9.7.4 The threshold and channel memory The action potential has a threshold. In figure the area around threshold is expanded (rectangle). A current injection that does not reach the threshold does not

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi: 1.138/nature588 SUPPLEMENTARY INFORMATION Supplemental Information Sensory neuron sodium channel Na v 1.8 is essential for pain at cold temperatures Katharina Zimmermann*, Andreas Leffler*, Alexandru

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling Neurons, Synapses, and Signaling The Neuron is the functional unit of the nervous system. Neurons are composed of a cell body, which contains the nucleus and organelles; Dendrites which are extensions

More information

NEURONS Chapter Neurons: specialized cells of the nervous system 2. Nerves: bundles of neuron axons 3. Nervous systems

NEURONS Chapter Neurons: specialized cells of the nervous system 2. Nerves: bundles of neuron axons 3. Nervous systems NEURONS Chapter 12 Figure 12.1 Neuronal and hormonal signaling both convey information over long distances 1. Nervous system A. nervous tissue B. conducts electrical impulses C. rapid communication 2.

More information

Fast Calcium Currents in Cut Skeletal Muscle Fibres of the Frogs Rana temporaria and Xenopus laevis

Fast Calcium Currents in Cut Skeletal Muscle Fibres of the Frogs Rana temporaria and Xenopus laevis Gen. Physiol. Biophys. (1988), 7, 651-656 65! Short communication Fast Calcium Currents in Cut Skeletal Muscle Fibres of the Frogs Rana temporaria and Xenopus laevis M. HENČĽK, D. ZACHAROVÁ and J. ZACHAR

More information

Effects of chlorobutanol on primary and secondary endings of isolated cat muscle spindles

Effects of chlorobutanol on primary and secondary endings of isolated cat muscle spindles Ž. Brain Research 854 2000 106 121 www.elsevier.comrlocaterbres Research report Effects of chlorobutanol on primary and secondary endings of isolated cat muscle spindles M. Fischer ) ( ) Department of

More information

Nerve. (2) Duration of the stimulus A certain period can give response. The Strength - Duration Curve

Nerve. (2) Duration of the stimulus A certain period can give response. The Strength - Duration Curve Nerve Neuron (nerve cell) is the structural unit of nervous system. Nerve is formed of large numbers of nerve fibers. Types of nerve fibers Myelinated nerve fibers Covered by myelin sheath interrupted

More information

BIOLOGY 12 NERVOUS SYSTEM PRACTICE

BIOLOGY 12 NERVOUS SYSTEM PRACTICE 1 Name: BIOLOGY 12 NERVOUS SYSTEM PRACTICE Date: 1) Identify structures X, Y and Z and give one function of each. 2) Which processes are involved in the movement of molecule Y from point X to point Z?

More information

The Pain Pathway. dorsal root ganglion. primary afferent nociceptor. TRP: Transient Receptor Potential

The Pain Pathway. dorsal root ganglion. primary afferent nociceptor. TRP: Transient Receptor Potential Presented by Issel Anne L. Lim 1 st Year PhD Candidate Biomedical Engineering Johns Hopkins University 580.427/580.633 Ca Signals in Biological Systems Outline The Pain Pathway TRP: Transient Receptor

More information

POSTSYNAPTIC INHIBITION OF CRAYFISH TONIC FLEXOR MOTOR NEURONES BY ESCAPE COMMANDS

POSTSYNAPTIC INHIBITION OF CRAYFISH TONIC FLEXOR MOTOR NEURONES BY ESCAPE COMMANDS J. exp. Biol. (1980), 85, 343-347 343 With a figures Printed in Great Britain POSTSYNAPTIC INHIBITION OF CRAYFISH TONIC FLEXOR MOTOR NEURONES BY ESCAPE COMMANDS BY J. Y. KUWADA, G. HAGIWARA AND J. J. WINE

More information

Basics of Computational Neuroscience: Neurons and Synapses to Networks

Basics of Computational Neuroscience: Neurons and Synapses to Networks Basics of Computational Neuroscience: Neurons and Synapses to Networks Bruce Graham Mathematics School of Natural Sciences University of Stirling Scotland, U.K. Useful Book Authors: David Sterratt, Bruce

More information

Guided Reading Activities

Guided Reading Activities Name Period Chapter 28: Nervous Systems Guided Reading Activities Big idea: Nervous system structure and function Answer the following questions as you read modules 28.1 28.2: 1. Your taste receptors for

More information

Theme 2: Cellular mechanisms in the Cochlear Nucleus

Theme 2: Cellular mechanisms in the Cochlear Nucleus Theme 2: Cellular mechanisms in the Cochlear Nucleus The Cochlear Nucleus (CN) presents a unique opportunity for quantitatively studying input-output transformations by neurons because it gives rise to

More information

Introduction. Chapter The Perceptual Process

Introduction. Chapter The Perceptual Process Chapter 1 Introduction Most of us take for granted our ability to perceive the external world. However, this is no simple deed at all. Imagine being given a task of designing a machine that can perceive,

More information

What do you notice? Edited from

What do you notice? Edited from What do you notice? Edited from https://www.youtube.com/watch?v=ffayobzdtc8&t=83s How can a one brain region increase the likelihood of eliciting a spike in another brain region? Communication through

More information

Thursday, January 22, Nerve impulse

Thursday, January 22, Nerve impulse Nerve impulse Transmembrane Potential caused by ions moving through cell membrane at different rates Two main ions of concern Na + - Sodium K + - potassium Cell membrane not freely permeable therefore

More information

Neurophysiology of Nerve Impulses

Neurophysiology of Nerve Impulses M52_MARI0000_00_SE_EX03.qxd 8/22/11 2:47 PM Page 358 3 E X E R C I S E Neurophysiology of Nerve Impulses Advance Preparation/Comments Consider doing a short introductory presentation with the following

More information

(Received 10 April 1956)

(Received 10 April 1956) 446 J. Physiol. (I956) I33, 446-455 A COMPARISON OF FLEXOR AND EXTENSOR REFLEXES OF MUSCULAR ORIGIN BY M. G. F. FUORTES AND D. H. HUBEL From the Department ofneurophysiology, Walter Reed Army Institute

More information

Omar Sami. Muhammad Abid. Muhammad khatatbeh

Omar Sami. Muhammad Abid. Muhammad khatatbeh 10 Omar Sami Muhammad Abid Muhammad khatatbeh Let s shock the world In this lecture we are going to cover topics said in previous lectures and then start with the nerve cells (neurons) and the synapses

More information

THERMOREGULATION AND SET POINT. BPK 422: Physiological Basis of Temperature Regulation By: Edwin Leung () & Lily Gan () Fall 2015 December 2, 2015

THERMOREGULATION AND SET POINT. BPK 422: Physiological Basis of Temperature Regulation By: Edwin Leung () & Lily Gan () Fall 2015 December 2, 2015 THERMOREGULATION AND SET POINT BPK 422: Physiological Basis of Temperature Regulation By: Edwin Leung () & Lily Gan () Fall 2015 December 2, 2015 SUPPORTING POINT HYPOTHESIS Core temperatures are defended

More information

Questions. Question 1!

Questions. Question 1! Questions Question 1 In a laboratory, scientists often study neurons in isolation, outside of a living creature, in a dish. In this setting, one can have a good deal of control over the local ionic environment

More information

Relation across the Receptor.afferent in a Tonic Electroreceptor of Marine Catfish

Relation across the Receptor.afferent in a Tonic Electroreceptor of Marine Catfish No. 6] Proc. Japan Acad., 51 (1975) 485 102. Input. output Synapses Relation across the Receptor.afferent in a Tonic Electroreceptor of Marine Catfish By Shun-ichi UMEKITA, Yoshiko SUGAWARA, and Shosaku

More information

SYNAPTIC COMMUNICATION

SYNAPTIC COMMUNICATION BASICS OF NEUROBIOLOGY SYNAPTIC COMMUNICATION ZSOLT LIPOSITS 1 NERVE ENDINGS II. Interneuronal communication 2 INTERNEURONAL COMMUNICATION I. ELECTRONIC SYNAPSE GAP JUNCTION II. CHEMICAL SYNAPSE SYNAPSES

More information

Neurophysiology scripts. Slide 2

Neurophysiology scripts. Slide 2 Neurophysiology scripts Slide 2 Nervous system and Endocrine system both maintain homeostasis in the body. Nervous system by nerve impulse and Endocrine system by hormones. Since the nerve impulse is an

More information

Neuroscience 201A Problem Set #1, 27 September 2016

Neuroscience 201A Problem Set #1, 27 September 2016 Neuroscience 201A Problem Set #1, 27 September 2016 1. The figure above was obtained from a paper on calcium channels expressed by dentate granule cells. The whole-cell Ca 2+ currents in (A) were measured

More information

3) Most of the organelles in a neuron are located in the A) dendritic region. B) axon hillock. C) axon. D) cell body. E) axon terminals.

3) Most of the organelles in a neuron are located in the A) dendritic region. B) axon hillock. C) axon. D) cell body. E) axon terminals. Chapter 48 Neurons, Synapses, and Signaling Multiple-Choice Questions 1) A simple nervous system A) must include chemical senses, mechanoreception, and vision. B) includes a minimum of 12 ganglia. C) has

More information

Quantal Analysis Problems

Quantal Analysis Problems Quantal Analysis Problems 1. Imagine you had performed an experiment on a muscle preparation from a Drosophila larva. In this experiment, intracellular recordings were made from an identified muscle fibre,

More information

BY KENJIRO YAMANA AND YOSHIHIRO TOH* Department of Biology, Faculty of Science, Kyushu University, Fukuoka 812, Japan. Accepted 27 May 1987 SUMMARY

BY KENJIRO YAMANA AND YOSHIHIRO TOH* Department of Biology, Faculty of Science, Kyushu University, Fukuoka 812, Japan. Accepted 27 May 1987 SUMMARY J. exp. Biol. 131, 205-213 (1987) 205 Printed in Great Bntain The Company of Biologists Limited 1987 INTRACELLULAR RECORDING FROM RECEPTOR CELLS OF THE TEMPORAL ORGAN OF THE JAPANESE HOUSE CENTIPEDE, THEREUONEMA

More information

Chapter 2: Cellular Mechanisms and Cognition

Chapter 2: Cellular Mechanisms and Cognition Chapter 2: Cellular Mechanisms and Cognition MULTIPLE CHOICE 1. Two principles about neurons were defined by Ramón y Cajal. The principle of connectional specificity states that, whereas the principle

More information

211MDS Pain theories

211MDS Pain theories 211MDS Pain theories Definition In 1986, the International Association for the Study of Pain (IASP) defined pain as a sensory and emotional experience associated with real or potential injuries, or described

More information

Study Guide Answer Key Nervous System

Study Guide Answer Key Nervous System Biology 12 Human Biology Textbook: BC Biology 12 Study Guide Answer Key Nervous System 1. Draw a neuron, label 3 parts and give the function of those parts. Dendrite: carry signals to the cell body Cell

More information

The Role of Mitral Cells in State Dependent Olfactory Responses. Trygve Bakken & Gunnar Poplawski

The Role of Mitral Cells in State Dependent Olfactory Responses. Trygve Bakken & Gunnar Poplawski The Role of Mitral Cells in State Dependent Olfactory Responses Trygve akken & Gunnar Poplawski GGN 260 Neurodynamics Winter 2008 bstract Many behavioral studies have shown a reduced responsiveness to

More information

Effects of adrenaline on nerve terminals in the superior cervical ganglion of the rabbit

Effects of adrenaline on nerve terminals in the superior cervical ganglion of the rabbit Br. J. Pharmac. (1971), 41, 331-338. Effects of adrenaline on nerve terminals in the superior cervical ganglion of the rabbit D. D. CHRIST AND S. NISHI Neurophysiology Laboratory, Department of Pharmacology,

More information

Chapter 7 Nerve Cells and Electrical Signaling

Chapter 7 Nerve Cells and Electrical Signaling Chapter 7 Nerve Cells and Electrical Signaling 7.1. Overview of the Nervous System (Figure 7.1) 7.2. Cells of the Nervous System o Neurons are excitable cells which can generate action potentials o 90%

More information

J. Physiol. (I956) I33,

J. Physiol. (I956) I33, 232 J. Physiol. (I956) I33, 232-242 A STUDY OF THE EFFECT OF THE PATTERN OF ELECTRICAL STIMULATION OF THE AORTIC NERVE ON THE REFLEX DEPRESSOR RESPONSES By W. W. DOUGLAS, J. M. RITCHIE AND W. SCHAUMANN*

More information

What it Takes to be a Pain

What it Takes to be a Pain What it Takes to be a Pain Pain Pathways and the Neurophysiology of pain Dennis S. Pacl, MD, FACP, FAChPM Austin Palliative Care/ Hospice Austin A Definition of Pain complex constellation of unpleasant

More information

Introduction to Neurobiology

Introduction to Neurobiology Biology 240 General Zoology Introduction to Neurobiology Nervous System functions: communication of information via nerve signals integration and processing of information control of physiological and

More information

Portions from Chapter 6 CHAPTER 7. The Nervous System: Neurons and Synapses. Chapter 7 Outline. and Supporting Cells

Portions from Chapter 6 CHAPTER 7. The Nervous System: Neurons and Synapses. Chapter 7 Outline. and Supporting Cells CHAPTER 7 The Nervous System: Neurons and Synapses Chapter 7 Outline Neurons and Supporting Cells Activity in Axons The Synapse Acetylcholine as a Neurotransmitter Monoamines as Neurotransmitters Other

More information

Synaptic plasticityhippocampus. Neur 8790 Topics in Neuroscience: Neuroplasticity. Outline. Synaptic plasticity hypothesis

Synaptic plasticityhippocampus. Neur 8790 Topics in Neuroscience: Neuroplasticity. Outline. Synaptic plasticity hypothesis Synaptic plasticityhippocampus Neur 8790 Topics in Neuroscience: Neuroplasticity Outline Synaptic plasticity hypothesis Long term potentiation in the hippocampus How it s measured What it looks like Mechanisms

More information

Changes in Extracellular Ionic Composition q

Changes in Extracellular Ionic Composition q Changes in Extracellular Ionic Composition q JL Stringer, Baylor College of Medicine, Houston, TX, United States Ó 2017 Elsevier Inc. All rights reserved. Introduction 1 Background 1 Methods 2 Recent Results

More information

Chapter 45: Synapses Transmission of Nerve Impulses Between Neurons. Chad Smurthwaite & Jordan Shellmire

Chapter 45: Synapses Transmission of Nerve Impulses Between Neurons. Chad Smurthwaite & Jordan Shellmire Chapter 45: Synapses Transmission of Nerve Impulses Between Neurons Chad Smurthwaite & Jordan Shellmire The Chemical Synapse The most common type of synapse used for signal transmission in the central

More information

LIGHT AND HIGH POTASSIUM CAUSE SIMILAR PHASE SHIFTS OF THE APLYSIA EYE CIRCADIAN RHYTHM.

LIGHT AND HIGH POTASSIUM CAUSE SIMILAR PHASE SHIFTS OF THE APLYSIA EYE CIRCADIAN RHYTHM. J. exp. Biol. (1981), 94. 345~349 345 With 3 figures ferina nted in Great Britain LIGHT AND HIGH POTASSIUM CAUSE SIMILAR PHASE SHIFTS OF THE APLYSIA EYE CIRCADIAN RHYTHM. BY JON W. JACKLET AND DAVID P.

More information

susceptibility of either the axons in the dorsal and ventral roots, or the intramedullary

susceptibility of either the axons in the dorsal and ventral roots, or the intramedullary 213 J. Physiol. (31958) I40, 2I3-2I9 THE SITE OF ACTION OF PROCAINE ON THE ISOLATED SPINAL CORD OF THE FROG BY M. HARMEL AND J. L. MALCOLM From the Department of Physiology, State University of New York,

More information

marked secretion ofcatecholamines and a subsequent inhibition ofsecretion although the basal secretion shows an initial rise.

marked secretion ofcatecholamines and a subsequent inhibition ofsecretion although the basal secretion shows an initial rise. J. Physiol. (1969), 2, pp. 797-85 797 With 7 text-ftgurem Printed in Great Britain SODIUM IONS AND THE SECRETION OF CATECHOLAMINES By P. BANKS, ROSEMARY BIGGINS, R. BISHOP, B. CHRISTIAN AND N. CURRIE From

More information

STRUCTURAL ELEMENTS OF THE NERVOUS SYSTEM

STRUCTURAL ELEMENTS OF THE NERVOUS SYSTEM STRUCTURAL ELEMENTS OF THE NERVOUS SYSTEM STRUCTURE AND MAINTENANCE OF NEURONS (a) (b) Dendrites Cell body Initial segment collateral terminals (a) Diagrammatic representation of a neuron. The break in

More information

Synaptic Integration

Synaptic Integration Synaptic Integration 3 rd January, 2017 Touqeer Ahmed PhD Atta-ur-Rahman School of Applied Biosciences National University of Sciences and Technology Excitatory Synaptic Actions Excitatory Synaptic Action

More information

H. An electrical signal travel down the dendrite.

H. An electrical signal travel down the dendrite. Nervous System Group Activity Objectives: To be able to describe the nervous system structure and function To understand how neurons communicate using both electrical and chemical signals To know how the

More information

Electrophysiology. General Neurophysiology. Action Potentials

Electrophysiology. General Neurophysiology. Action Potentials 5 Electrophysiology Cochlear implants should aim to reproduce the coding of sound in the auditory system as closely as possible, for best sound perception. The cochlear implant is in part the result of

More information

Neurons, Synapses and Signaling. Chapter 48

Neurons, Synapses and Signaling. Chapter 48 Neurons, Synapses and Signaling Chapter 48 Warm Up Exercise What types of cells can receive a nerve signal? Nervous Organization Neurons- nerve cells. Brain- organized into clusters of neurons, called

More information

Seizure: the clinical manifestation of an abnormal and excessive excitation and synchronization of a population of cortical

Seizure: the clinical manifestation of an abnormal and excessive excitation and synchronization of a population of cortical Are There Sharing Mechanisms of Epilepsy, Migraine and Neuropathic Pain? Chin-Wei Huang, MD, PhD Department of Neurology, NCKUH Basic mechanisms underlying seizures and epilepsy Seizure: the clinical manifestation

More information

All questions below pertain to mandatory material: all slides, and mandatory homework (if any).

All questions below pertain to mandatory material: all slides, and mandatory homework (if any). ECOL 182 Spring 2008 Dr. Ferriere s lectures Lecture 6: Nervous system and brain Quiz Book reference: LIFE-The Science of Biology, 8 th Edition. http://bcs.whfreeman.com/thelifewire8e/ All questions below

More information

Pain Pathways. Dr Sameer Gupta Consultant in Anaesthesia and Pain Management, NGH

Pain Pathways. Dr Sameer Gupta Consultant in Anaesthesia and Pain Management, NGH Pain Pathways Dr Sameer Gupta Consultant in Anaesthesia and Pain Management, NGH Objective To give you a simplistic and basic concepts of pain pathways to help understand the complex issue of pain Pain

More information

J. Physiol. (I957) I36,

J. Physiol. (I957) I36, 569 J. Physiol. (I957) I36, 569-584 THE EFFECT OF CHANGES IN SODIUM CHLORIDE CONCENTRATION ON THE SMOOTH MUSCLE OF THE GUINEA-PIG'S TAENIA COLI By MOLLIE E. HOLMAN* From the Department of Pharmacology,

More information

Neurons. Pyramidal neurons in mouse cerebral cortex expressing green fluorescent protein. The red staining indicates GABAergic interneurons.

Neurons. Pyramidal neurons in mouse cerebral cortex expressing green fluorescent protein. The red staining indicates GABAergic interneurons. Neurons Pyramidal neurons in mouse cerebral cortex expressing green fluorescent protein. The red staining indicates GABAergic interneurons. MBL, Woods Hole R Cheung MSc Bioelectronics: PGEE11106 1 Neuron

More information

Cardiac muscle is different from other types of muscle in that cardiac muscle

Cardiac muscle is different from other types of muscle in that cardiac muscle 6 E X E R C I S E Cardiovascular Physiology O B J E C T I V E S 1. To define autorhythmicity, sinoatrial node, pacemaker cells, and vagus nerves 2. To understand the effects of the sympathetic and parasympathetic

More information

The Nervous System. Nervous System Functions 1. gather sensory input 2. integration- process and interpret sensory input 3. cause motor output

The Nervous System. Nervous System Functions 1. gather sensory input 2. integration- process and interpret sensory input 3. cause motor output The Nervous System Nervous System Functions 1. gather sensory input 2. integration- process and interpret sensory input 3. cause motor output The Nervous System 2 Parts of the Nervous System 1. central

More information

STEIN IN-TERM EXAM -- BIOLOGY FEBRUARY 16, PAGE

STEIN IN-TERM EXAM -- BIOLOGY FEBRUARY 16, PAGE STEIN IN-TERM EXAM -- BIOLOGY 3058 -- FEBRUARY 16, 2017 -- PAGE 1 of 9 There are 25 questions in this Biology 3058 exam. All questions are "A, B, C, D, E, F, G, H" questions worth one point each. There

More information

Chapter 4 Neuronal Physiology

Chapter 4 Neuronal Physiology Chapter 4 Neuronal Physiology V edit. Pg. 99-131 VI edit. Pg. 85-113 VII edit. Pg. 87-113 Input Zone Dendrites and Cell body Nucleus Trigger Zone Axon hillock Conducting Zone Axon (may be from 1mm to more

More information

THE NERVOUS SYSTEM. Homeostasis Strand

THE NERVOUS SYSTEM. Homeostasis Strand THE NERVOUS SYSTEM Homeostasis Strand Introduction In general, a nervous system has three overlapping functions : 1. Sensory input conduction of signals from sensory receptors to integration centres 2.

More information

The action potential travels down both branches because each branch is a typical axon with voltage dependent Na + and K+ channels.

The action potential travels down both branches because each branch is a typical axon with voltage dependent Na + and K+ channels. BIO 360 - MIDTERM FALL 2018 This is an open book, open notes exam. PLEASE WRITE YOUR NAME ON EACH SHEET. Read each question carefully and answer as well as you can. Point values are shown at the beginning

More information

APs & Synapses. Review & outline. Thought experiment. Inside. Outside

APs & Synapses. Review & outline. Thought experiment. Inside. Outside Review & outline APs & Synapses Chapters 2 & 3 Cells of the nervous system The blood brain barrier Membrane potential (at rest = -70mV) Sodium potassium pump Concentration Electrical Action potentials

More information

Synfire chains with conductance-based neurons: internal timing and coordination with timed input

Synfire chains with conductance-based neurons: internal timing and coordination with timed input Neurocomputing 5 (5) 9 5 www.elsevier.com/locate/neucom Synfire chains with conductance-based neurons: internal timing and coordination with timed input Friedrich T. Sommer a,, Thomas Wennekers b a Redwood

More information

Nervous Tissue and Neurophysiology

Nervous Tissue and Neurophysiology Nervous Tissue and Neurophysiology Objectives Describe the two major divisions of the nervous system and their characteristics. Identify the structures/functions of a typical neuron. Describe the location

More information

Biology Animal Physiology Fall Midterm 1

Biology Animal Physiology Fall Midterm 1 Name: Biology 449 - Animal Physiology Fall 2010 Fill in your scantron form as follows: Midterm 1 Write and bubble in your name in the upper left (last name first). Sign your form on the upper right. By

More information

A STUDY OF THE ROLE OF BRAIN CATECHOLAMINES IN DRUG INDUCED TREMOR

A STUDY OF THE ROLE OF BRAIN CATECHOLAMINES IN DRUG INDUCED TREMOR Br. J. Pharmac. Chemother. (1967), 3, 349-353. A STUDY OF THE ROLE OF BRAIN CATECHOLAMINES IN DRUG INDUCED TREMOR BY S. L. AGARWAL AND D. BOSE From the Department of Pharmacology, M.G.M. Medical College,

More information

EE 791 Lecture 2 Jan 19, 2015

EE 791 Lecture 2 Jan 19, 2015 EE 791 Lecture 2 Jan 19, 2015 Action Potential Conduction And Neural Organization EE 791-Lecture 2 1 Core-conductor model: In the core-conductor model we approximate an axon or a segment of a dendrite

More information

Firing Pattern Formation by Transient Calcium Current in Model Motoneuron

Firing Pattern Formation by Transient Calcium Current in Model Motoneuron Nonlinear Analysis: Modelling and Control, Vilnius, IMI, 2000, No 5 Lithuanian Association of Nonlinear Analysts, 2000 Firing Pattern Formation by Transient Calcium Current in Model Motoneuron N. Svirskienė,

More information

The Brain & Homeostasis. The Brain & Technology. CAT, PET, and MRI Scans

The Brain & Homeostasis. The Brain & Technology. CAT, PET, and MRI Scans The Brain & Homeostasis Today, scientists have a lot of information about what happens in the different parts of the brain; however they are still trying to understand how the brain functions. We know

More information

2) Put these in order: I repolarization II- depolarization of action potential III- rest IV- depolarization to threshold

2) Put these in order: I repolarization II- depolarization of action potential III- rest IV- depolarization to threshold 1) During an action potential, a membrane cannot depolarize above: a) The equilibrium potential of sodium b) The equilibrium potential of potassium c) Zero d) The threshold value e) There is no limit.

More information

ANATOMY AND PHYSIOLOGY OF NEURONS. AP Biology Chapter 48

ANATOMY AND PHYSIOLOGY OF NEURONS. AP Biology Chapter 48 ANATOMY AND PHYSIOLOGY OF NEURONS AP Biology Chapter 48 Objectives Describe the different types of neurons Describe the structure and function of dendrites, axons, a synapse, types of ion channels, and

More information

Chapter 2. The Cellular and Molecular Basis of Cognition Cognitive Neuroscience: The Biology of the Mind, 2 nd Ed.,

Chapter 2. The Cellular and Molecular Basis of Cognition Cognitive Neuroscience: The Biology of the Mind, 2 nd Ed., Chapter 2. The Cellular and Molecular Basis of Cognition Cognitive Neuroscience: The Biology of the Mind, 2 nd Ed., M. S. Gazzaniga, R. B. Ivry, and G. R. Mangun, Norton, 2002. Summarized by B.-W. Ku,

More information

Chapter 2. The Cellular and Molecular Basis of Cognition

Chapter 2. The Cellular and Molecular Basis of Cognition Chapter 2. The Cellular and Molecular Basis of Cognition Cognitive Neuroscience: The Biology of the Mind, 2 nd Ed., M. S. Gazzaniga,, R. B. Ivry,, and G. R. Mangun,, Norton, 2002. Summarized by B.-W. Ku,

More information

PSY 215 Lecture 3 (1/19/2011) (Synapses & Neurotransmitters) Dr. Achtman PSY 215

PSY 215 Lecture 3 (1/19/2011) (Synapses & Neurotransmitters) Dr. Achtman PSY 215 Corrections: None needed. PSY 215 Lecture 3 Topic: Synapses & Neurotransmitters Chapters 2 & 3, pages 40-57 Lecture Notes: SYNAPSES & NEUROTRANSMITTERS, CHAPTER 3 Action Potential (above diagram found

More information

Communication within a Neuron

Communication within a Neuron Neuronal Communication, Ph.D. Communication within a Neuron Measuring Electrical Potentials of Axons The Membrane Potential The Action Potential Conduction of the Action Potential 1 The withdrawal reflex

More information

Memory Systems II How Stored: Engram and LTP. Reading: BCP Chapter 25

Memory Systems II How Stored: Engram and LTP. Reading: BCP Chapter 25 Memory Systems II How Stored: Engram and LTP Reading: BCP Chapter 25 Memory Systems Learning is the acquisition of new knowledge or skills. Memory is the retention of learned information. Many different

More information

Primary Functions. Monitor changes. Integrate input. Initiate a response. External / internal. Process, interpret, make decisions, store information

Primary Functions. Monitor changes. Integrate input. Initiate a response. External / internal. Process, interpret, make decisions, store information NERVOUS SYSTEM Monitor changes External / internal Integrate input Primary Functions Process, interpret, make decisions, store information Initiate a response E.g., movement, hormone release, stimulate/inhibit

More information

Ch. 45 Continues (Have You Read Ch. 45 yet?) u Central Nervous System Synapses - Synaptic functions of neurons - Information transmission via nerve

Ch. 45 Continues (Have You Read Ch. 45 yet?) u Central Nervous System Synapses - Synaptic functions of neurons - Information transmission via nerve Ch. 45 Continues (Have You Read Ch. 45 yet?) u Central Nervous System Synapses - Synaptic functions of neurons - Information transmission via nerve impulses - Impulse may be blocked in its transmission

More information

J. Physiol. (I957) I35, (Received 20 July 1956) The interpretation ofthe experimental results ofthe preceding paper (Matthews

J. Physiol. (I957) I35, (Received 20 July 1956) The interpretation ofthe experimental results ofthe preceding paper (Matthews 263 J. Physiol. (I957) I35, 263-269 THE RELATIVE SENSITIVITY OF MUSCLE NERVE FIBRES TO PROCAINE BY PETER B. C. MATTHEWS AND GEOFFREY RUSHWORTH From the Laboratory of Physiology, University of Oxford (Received

More information

hyperpolarization (4-6 mv). The effect of isoprenaline, but not that of hyperpolarization of 4-8 mv.

hyperpolarization (4-6 mv). The effect of isoprenaline, but not that of hyperpolarization of 4-8 mv. J. Physiol. (1974), 239, pp. 647-656 647 With 4 text-figures Printed in Great Britain THE EFFECT OF GLUCAGON ON THE LIVER CELL MEMBRANE POTENTIAL BY 0. H. PETERSEN From the Institute of Medical Physiology

More information

suggesting that the release of noradrenaline from sympathetic fibres was dependent on the concentration of Ca2+ outside the fibre.

suggesting that the release of noradrenaline from sympathetic fibres was dependent on the concentration of Ca2+ outside the fibre. 214 J. Phy8iol. (1965), 181, pp. 214-223 With 4 text-figurem Printed in Great Britain THE RELEASE OF NORADRENALINE FROM SYMPATHETIC FIBRES IN RELATION TO CALCIUM CONCENTRATION BY J. H. BURN AND W. R. GIBBONS

More information

THE ACTION OF ANTISYMPATHOMIMETIC DRUGS ON THE URINARY EXCRETION OF ADRENALINE AND NORADRENALINE

THE ACTION OF ANTISYMPATHOMIMETIC DRUGS ON THE URINARY EXCRETION OF ADRENALINE AND NORADRENALINE Brit. J. Pharmacol. (1959), 14, 380. THE ACTION OF ANTISYMPATHOMIMETIC DRUGS ON THE URINARY EXCRETION OF ADRENALINE AND NORADRENALINE BY B. G. BENFEY, G. LEDOUX, AND M. SEGAL From the Department ofpharmacology,

More information

Chapter Nervous Systems

Chapter Nervous Systems The Nervous System Chapter Nervous Systems Which animals have nervous systems? (Which do not) What are the basic components of a NS? What kind of fish performs brain operations? What differentiates one

More information

... [1] (b) Fig. 1.1 is an electron micrograph of the junction between two neurones.

... [1] (b) Fig. 1.1 is an electron micrograph of the junction between two neurones. 1 (a) The cells of the body need to communicate with one another. State the name given to this process of communication.... [1] (b) Fig. 1.1 is an electron micrograph of the junction between two neurones.

More information

Na + K + pump. The beauty of the Na + K + pump. Cotransport. The setup Cotransport the result. Found along the plasma membrane of all cells.

Na + K + pump. The beauty of the Na + K + pump. Cotransport. The setup Cotransport the result. Found along the plasma membrane of all cells. The beauty of the Na + K + pump Na + K + pump Found along the plasma membrane of all cells. Establishes gradients, controls osmotic effects, allows for cotransport Nerve cells have a Na + K + pump and

More information

Introduction. Circulation

Introduction. Circulation Introduction Circulation 1- Systemic (general) circulation 2- Pulmonary circulation carries oxygenated blood to all parts of the body carries deoxygenated blood to the lungs From Lt. ventricle aorta From

More information

Nervous System Review

Nervous System Review Nervous System Review Name: Block: 1. Which processes are involved in the movement of molecule Y from point X to point Z? A. exocytosis and diffusion B. endocytosis and diffusion C. exocytosis and facilitated

More information

Water immersion modulates sensory and motor cortical excitability

Water immersion modulates sensory and motor cortical excitability Water immersion modulates sensory and motor cortical excitability Daisuke Sato, PhD Department of Health and Sports Niigata University of Health and Welfare Topics Neurophysiological changes during water

More information

CHAPTER 44: Neurons and Nervous Systems

CHAPTER 44: Neurons and Nervous Systems CHAPTER 44: Neurons and Nervous Systems 1. What are the three different types of neurons and what are their functions? a. b. c. 2. Label and list the function of each part of the neuron. 3. How does the

More information

Unit VIII Problem 7 Pharmacology: Principles of Management of Seizure Disorders

Unit VIII Problem 7 Pharmacology: Principles of Management of Seizure Disorders Unit VIII Problem 7 Pharmacology: Principles of Management of Seizure Disorders - Terminologies: Anti-convulsants: they are used to control convulsions seen in certain types of epilepsy. Convulsions may

More information

D) around, bypassing B) toward

D) around, bypassing B) toward Nervous System Practice Questions 1. Which of the following are the parts of neurons? A) brain, spinal cord, and vertebral column B) dendrite, axon, and cell body C) sensory and motor D) cortex, medulla

More information

Synaptic transmission

Synaptic transmission Outline Synaptic transmission Sompol Tapechum M.D., Ph.D. Department of Physiology Faculty of Medicine Siriraj Hospital, Bangkok, Thailand. sisth@mahidol.ac.th 2 Structure of synapse Modes of synaptic

More information

Division Ave. High School AP Biology. cell body. signal direction

Division Ave. High School AP Biology. cell body. signal direction signal direction Nervous system cells Neuron a nerve cell dendrites myelin sheath axon cell body dendrite cell body axon Structure fits function many entry points for signal one path out transmits signal

More information

SUPPLEMENTARY INFORMATION. Supplementary Figure 1

SUPPLEMENTARY INFORMATION. Supplementary Figure 1 SUPPLEMENTARY INFORMATION Supplementary Figure 1 The supralinear events evoked in CA3 pyramidal cells fulfill the criteria for NMDA spikes, exhibiting a threshold, sensitivity to NMDAR blockade, and all-or-none

More information

Prolonged Synaptic Integration in Perirhinal Cortical Neurons

Prolonged Synaptic Integration in Perirhinal Cortical Neurons RAPID COMMUNICATION Prolonged Synaptic Integration in Perirhinal Cortical Neurons JOHN M. BEGGS, 1 JAMES R. MOYER, JR., 1 JOHN P. MCGANN, 2 AND THOMAS H. BROWN 1 3 1 Department of Psychology, 2 Interdepartmental

More information

Chapter 11 Guided Reading: Cell Communication

Chapter 11 Guided Reading: Cell Communication Name Chapter 11 Guided Reading: Cell Communication The special challenge in Chapter 11 is not that the material is so difficult, but that most of the material will be completely new to you. Cell communication

More information

Chapter 11 Introduction to the Nervous System and Nervous Tissue Chapter Outline

Chapter 11 Introduction to the Nervous System and Nervous Tissue Chapter Outline Chapter 11 Introduction to the Nervous System and Nervous Tissue Chapter Outline Module 11.1 Overview of the Nervous System (Figures 11.1-11.3) A. The nervous system controls our perception and experience

More information

3.E.2 Continued. This is the essential knowledge statement from the curriculum framework. Detect---process--- response

3.E.2 Continued. This is the essential knowledge statement from the curriculum framework. Detect---process--- response Nervous System: Part III What Happens at a Synapse? 3.E. Continued Animals have nervous systems that detect external and internal signals, transmit and integrate information, and produce responses. This

More information

By the end of this lecture the students will be able to:

By the end of this lecture the students will be able to: UNIT VII: PAIN Objectives: By the end of this lecture the students will be able to: Review the concept of somatosensory pathway. Describe the function of Nociceptors in response to pain information. Describe

More information

LECTURE STRUCTURE ASC171 NERVOUS SYSTEM PART 1: BACKGROUND 26/07/2015. Module 5

LECTURE STRUCTURE ASC171 NERVOUS SYSTEM PART 1: BACKGROUND 26/07/2015. Module 5 LECTURE STRUCTURE PART 1: Background / Introduction PART 2: Structure of the NS, how it operates PART 3: CNS PART 4: PNS Why did the action potential cross the synaptic junction? To get to the other side

More information

STEIN IN-TERM EXAM -- BIOLOGY FEBRUARY 18, PAGE

STEIN IN-TERM EXAM -- BIOLOGY FEBRUARY 18, PAGE STEIN IN-TERM EXAM -- BIOLOGY 3058 -- FEBRUARY 18, 2016 -- PAGE 1 of 8 There are 25 questions in this Biology 3058 exam. All questions are "A, B, C, D, E, F, G, H" questions worth one point each. There

More information