Neurophysiology of Nerve Impulses

Size: px
Start display at page:

Download "Neurophysiology of Nerve Impulses"

Transcription

1 M52_MARI0000_00_SE_EX03.qxd 8/22/11 2:47 PM Page E X E R C I S E Neurophysiology of Nerve Impulses Advance Preparation/Comments Consider doing a short introductory presentation with the following elements: Explain how the resting membrane potential is established and maintained. Clearly distinguish between graded potentials and action potentials. Explain the importance of threshold and why an action potential is considered all or none. Describe the relationship between stimulus strength and action potential frequency. Explain the factors that affect conduction velocity. Answers to Questions/Experimental Data Pre-lab Quiz in the Lab Manual 1. Conductivity 2. a. depolarization 3. b. K 4. absolute refractory period 5. a. gastrocnemius and sciatic Activity 1: The Resting Membrane Potential (pp. PEx-36 PEx-39) Predict Question 1: If the extracellular K + concentration is increased, the resting membrane will become less negative. Chart 1: Resting Membrane Potential Extracellular fluid (ECF) Microelectrode position Voltage (mv) Control Cell body, extracellular 0 Control Cell body, intracellular 70 Control Axon, extracellular 0 Control Axon, intracellular 70 High K + Axon, intracellular 40 High K + Axon, extracellular 0 High K + Cell body, extracellular 0 High K + Cell body, intracellular 40 Low Na + Cell body, intracellular 72 Low Na + Cell body, extracellular 0 Low Na + Axon, extracellular 0 Low Na + Axon, intracellular

2 M52_MARI0000_00_SE_EX03.qxd 8/22/11 2:47 PM Page The resting membrane potential is the same because the permeability of the ions is the same in both locations. 2. If the sodium-potassium pump is blocked, sodium will flow in, depolarizing the membrane. 3. The resting membrane potential would become more negative because there would be more negative anions inside the cell. Activity 2: Receptor Potential (pp. PEx-39 PEx-41) Predict Question 1: The moderate intensity pressure modality will induce a receptor potential of the largest amplitude. Predict Question 2: The moderate intensity chemical modality will induce a receptor potential of the largest amplitude. Chart 2: Receptor Potential Receptor potential (mv) Stimulus modality Pacinian (lamellar) corpuscle Olfactory receptor Free nerve ending None Pressure Low Moderate High Chemical Low Moderate High Heat Low Moderate High Light Low Moderate High Graded receptor potentials can be depolarizing or hyperpolarizing. Since graded receptor potentials can be hyperpolarizing, they can make it more difficult to induce an action potential. 2. Membrane hyperpolarization is when the membrane becomes more negative than the resting potential. 3. The adequate stimulus for sensory receptors in the ear is a moderate intensity pressure stimulus. Intense pressure could inappropriately activate the sensory receptors in the ear. Activity 3: The Action Potential: Threshold (pp. PEx-41 PEx-42) Predict Question 1: The action potential will not change when the stimulus voltage is increased. 359

3 M52_MARI0000_00_SE_EX03.qxd 8/22/11 2:47 PM Page 360 Chart 3: Threshold Stimulus voltage (mv) Peak value at R1 (µv) Peak value at R2 (µv) Action potential No Yes Yes Yes Yes 1. Each region of the neuron contains distinct membrane proteins that provide the basis for the threshold differences. 2. The action potential is regenerated by the influx of sodium which establishes local currents that depolarize adjacent sections of the membrane to threshold. The action potential must be regenerated at adjacent sections of the membrane. 3. The action potential is not graded. It is all or none, so the peak value of the action potential doesnít change. Activity 4: The Action Potential: Importance of Voltage-Gated Na Channels (pp. PEx-42 PEx-44) Predict Question 1: If you apply TTX between recording electrodes R1 and R2, TTX will block the response at R2 but have no effect at R1. Predict Question 2: If you apply lidocaine between recording electrodes R1 and R2, lidocaine will block the response at R2 but have no effect at R1. Chart 4: Effects of Tetrodotoxin and Lidocaine Peak value of response (µv) Condition Stimulus voltage (mv) Electrodes 2 sec 4 sec 6 sec 8 sec 10 sec Control 30 R Control 30 R TTX 30 R TTX 30 R Lidocaine 30 R Lidocaine 30 R The sodium channels are voltage-gated sodium channels. Closure of the inactivation gate is a delayed response to the initial depolarization to threshold which closes the inactivation gate about 1 msec after sodium channels open. 2. Careful preparation of the pufferfish requires removal of the toxic portions that contain tetrodotoxin. The poison is most concentrated in the liver, ovaries and skin of the fish. 3. Calcium channels could possibly substitute for sodium channels to provide an influx of cation. Activity 5: The Action Potential: Measuring Its Absolute and Relative Refractory Periods (pp. PEx-44 PEx-45) Predict Question 1: If you further decrease the interval between the stimuli, the threshold for the second action potential will be higher (requiring a larger depolarization). 360

4 M52_MARI0000_00_SE_EX03.qxd 8/22/11 2:48 PM Page 361 Chart 5: Absolute and Relative Refractory Periods Interval between stimuli (msec) Stimulus voltage (mv) Second action potential? Yes Yes No No Yes No No No Yes Yes Yes No 1. A refractory period is when the membrane is less excitable. When local currents develop, the action potential must move forward because the previous section is in the absolute refractory period. 2. A long absolute refractory period ensures that the muscle contracts fully. 3. The benefit of a relative refractory period in an axon of a sensory neuron is that it is easier to modify the intensity of the sensation by altering the frequency of stimulation. Activity 6: The Action Potential: Coding for Stimulus Intensity (pp. PEx-46 PEx-47) Predict Question 1: Increased stimulus intensity will increase the frequency of action potentials. Chart 6: Frequency of Action Potentials Stimulus voltage (mv) Stimulus duration (msec) ISI (msec) Action potential frequency (Hz) * 10* * 16.6* * 33.3* * The data in these columns are populated by student calculations. 1. The action potential frequency would be increased in the hot water when compared to the warm water. 2. The two determinants that are being overcome are the frequency of stimulation required to overcome the relative refractory period, and the greater than threshold stimulus required during the relative refractory period. 3. Two ways to overcome the relative refractory period are to increase the stimulus frequency and the strength of the stimulus. Pharmacologically, this would require timed release of the medication in bursts of increasing amounts. 361

5 M52_MARI0000_00_SE_EX03.qxd 8/22/11 2:48 PM Page 362 Activity 7: The Action Potential: Conduction Velocity (pp. PEx-47 PEx-49) Predict Question 1: The conduction velocity in the B fiber will be slower because the B fiber has a smaller diameter and less myelination. Predict Question 2: The conduction velocity in the C fiber will be slower because the C fiber has a smaller diameter and less myelination. Chart 7: Conduction Velocity Axon type Myelination Stimulus voltage (mv) Distance from R1 to R2 (m) Time between action potentials at R1 and R2 (msec) (sec) Conduction velocity (m/sec) A fiber Heavy * 50* B fiber Light * 10* C fiber None * 1* * The data in these columns are populated by student calculations. 1. The conduction velocity is dependent upon both myelination and the diameter of the axon. The large diameter of the squid axon contributes to its fast reaction. 2. The sharp immediate pain is probably carried by an A fiber with large diameter and heavy myelination. The slower dull pain is probably carried by a C fiber with small diameter and no myelination. 3. The mixture of axon types contributes to the variety of responses generated. Specifically, the rate with which a response is made can vary. Activity 8: Chemical Synaptic Transmission and Neurotransmitter Release (pp. PEx-49 PEx-50) Predict Question 1: There will be no neurotransmitter release if the extracellular calcium is removed. Predict Question 2: When low amounts of calcium are added back to the extracellular solution, neurotransmitter release will increase a small amount. Predict Question 3: There will be less neurotransmitter released when magnesium is added. 1. It is unlikely that sodium could substitute for calcium since the addition of magnesium blocked the calcium channels. 2. Botulinum toxin blocks the release of acetylcholine from the axon terminal. It is used in cosmetic procedures because it results in paralysis of the muscles that are contracting and causing the wrinkles. Activity 9: The Action Potential: Putting It All Together (pp. PEx-50 PEx-52) Predict Question 1: When you apply a very weak stimulus to the sensory receptor, small, depolarizing response will occur at R1, and no responses will occur at R2, R3, and R4. Predict Question 2: When you apply a moderate stimulus to the sensory receptor, a larger, depolarizing response will occur at R1, and an action potential will be generated at R2 and maybe at R4. Predict Question 3: When you apply a strong stimulus to the sensory receptor, a large, depolarizing response will occur at R1 and R3, and action potentials will occur at R2 and R4. 362

6 M52_MARI0000_00_SE_EX03.qxd 8/22/11 2:48 PM Page 363 Chart 9: Putting It All Together Peak value of response (mv) Stimulus Sensory neuron Interneuron Receptor Axon Axon terminal Receptor Axon None Weak Moderate Strong All action potentials are all or none. Threshold must be met, but once it is met, all action potentials are the same. 2. If the axons were unmyelinated, the peak value of the action potential wouldn t change. 363

7 M52_MARI0000_00_SE_EX03.qxd 8/22/11 2:48 PM Page R E V I E W S H E E T EXERCISE Neurophysiology of Nerve Impulses NAME LAB TIME/DATE A C T I V I T Y 1 The Resting Membrane Potential 1. Explain why increasing extracellular K reduces the net diffusion of K out of the neuron through the K leak channels. Increasing the extracellular potassium reduces the steepness of the concentration gradient and so less potassium diffuses out of the neuron. 2. Explain why increasing extracellular K causes the membrane potential to change to a less negative value. How well did the results compare with your prediction? The membrane potential became less negative because less potassium diffused out. If more potassium stays in, it is more positive or less negative. 3. Explain why a change in extracellular Na did not alter the membrane potential in the resting neuron. There are less leakage sodium channels that leakage potassium channels, and more of the potassium channels are open. 4. Discuss the relative permeability of the membrane to Na and K in a resting neuron. The resting neuron is (4 5) times more permeable to potassium because of the increased number of leakage channels. 5. Discuss how a change in Na or K conductance would affect the resting membrane potential. A change in the potassium conductance would have a greater effect on the resting membrane potential than a change in sodium would. A C T I V I T Y 2 Receptor Potential 1. Sensory neurons have a resting potential based on the efflux of potassium ions (as demonstrated in Activity 1). What passive channels are likely found in the membrane of the olfactory receptor, in the membrane of the Pacinian corpuscle, and in the membrane of the free nerve ending? The efflux of potassium ions is maintained by passive potassium channels. 2. What is meant by the term graded potential? Graded potentials are brief, localized changes in the membrane potential that can be either depolarizing or hyperpolarizing. 3. Identify which of the stimulus modalities induced the largest amplitude receptor potential in the Pacinian corpuscle. How well did the results compare with your prediction? The moderate intensity pressure modality induced a receptor potential of the largest amplitude in the Pacinian corpuscle. 364

8 M52_MARI0000_00_SE_EX03.qxd 8/22/11 2:48 PM Page Identify which of the stimulus modalities induced the largest-amplitude receptor potential in the olfactory receptors. How well did the results compare with your prediction? The moderate intensity chemical modality induced a receptor potential of the largest amplitude in the olfactory receptor. 5. The olfactory receptor also contains a membrane protein that recognizes isoamyl acetate and, via several other molecules, transduces the odor stimulus into a receptor potential. Does the Pacinian corpuscle likely have this isoamyl acetate receptor protein? Does the free nerve ending likely have this isoamyl acetate receptor protein? The Pacinian corpuscle and the free nerve ending are not likely to have the isoamyl acetate receptor because they did not respond to chemical stimuli. 6. What type of sensory neuron would likely respond to a green light? Photosensory neurons would respond to green light. A C T I V I T Y 3 The Action Potential: Threshold 1. Define the term threshold as it applies to an action potential. Threshold is the voltage that must be reached in order to generate an action potential. 2. What change in membrane potential (depolarization or hyperpolarization) triggers an action potential? A depolarization in the membrane potential results in an action potential. The membrane potential must become less negative to generate an action potential. 3. How did the action potential at R1 (or R2) change as you increased the stimulus voltage above the threshold voltage? How well did the results compare with your prediction? The action potential didn t change as the stimulus voltage increased. This is because once threshold is met, the event is all or none, not graded. 4. An action potential is an all-or-nothing event. Explain what is meant by this phrase. This means that once threshold is met an action potential occurs. If the stimulus is too small an action potential does not occur. 5. What part of a neuron was investigated in this activity? The trigger zone was investigated. This is where the axon hillock and the initial segment come together. A C T I V I T Y 4 The Action Potential: Importance of Voltage-Gated Na Channels 1. What does TTX do to voltage-gated Na channels? TTX blocks the diffusion of sodium through the voltage-gated sodium channels. 2. What does lidocaine do to voltage-gated Na channels? How does the effect of lidocaine differ from the effect of TTX? Lidocaine blocks the diffusion of sodium through the voltage-gated sodium channels. 3. A nerve is a bundle of axons, and some nerves are less sensitive to lidocaine. If a nerve, rather than an axon, had been used in the lidocaine experiment, the responses recorded at R1 and R2 would be the sum of all the action potentials (called 365

9 M52_MARI0000_00_SE_EX03.qxd 8/22/11 2:48 PM Page 366 a compound action potential). Would the response at R2 after lidocaine application necessarily be zero? Why or why not? With a compound action potential, the results would not necessarily be zero because some axons could remain unaffected. 4. Why are fewer action potentials recorded at R2 when TTX is applied between R1 and R2? How well did the results compare with your prediction? TTX blocked the sodium channels, preventing the propagation of the action potential from R1 to R2. 5. Why are fewer action potentials recorded at R2 when lidocaine is applied between R1 and R2? How well did the results compare with your prediction? Lidocaine blocked the sodium channels, preventing the propagation of the action potential from R1 to R2. 6. Pain-sensitive neurons (called nociceptors) conduct action potentials from the skin or teeth to sites in the brain involved in pain perception. Where should a dentist inject the lidocaine to block pain perception? Lidocaine should be applied to the receptors to prevent the generation of an action potential that would lead to the perception of pain. A C T I V I T Y 5 The Action Potential: Measuring Its Absolute and Relative Refractory Periods 1. Define inactivation as it applies to a voltage-gated sodium channel. Voltage-gated sodium channels are inactivated when they no longer allow sodium to diffuse through. 2. Define the absolute refractory period. The absolute refractory period is the time in which no action potential can be generated regardless of the strength of the stimulus. 3. How did the threshold for the second action potential change as you further decreased the interval between the stimuli? How well did the results compare with your prediction? The threshold for the second action potential increased as the interval between the stimuli decreased as predicted. 4. Why is it harder to generate a second action potential during the relative refractory period? A greater stimulus is required because voltage gated potassium channels that oppose depolarization are open during this time. A C T I V I T Y 6 The Action Potential: Coding for Stimulus Intensity 1. Why are multiple action potentials generated in response to a long stimulus that is above threshold? The longer stimuli allow time for recovery and the above threshold allows the action potential to occur after the relative refractory period. 2. Why does the frequency of action potentials increase when the stimulus intensity increases? How well did the results compare with your prediction? Action potential can occur more frequently if there is a constant source of stimulation as long as the relative refractory period is reached. 3. How does threshold change during the relative refractory period? The threshold that must be achieved is higher than the original stimulus intensity during the relative refractory period. 366 Review Sheet 3

10 M52_MARI0000_00_SE_EX03.qxd 8/22/11 2:48 PM Page What is the relationship between the interspike interval and the frequency of action potentials? The frequency of the action potentials is the reciprocal of the interspike interval with a conversion from milliseconds to seconds. A C T I V I T Y 7 The Action Potential: Conduction Velocity 1. How did the conduction velocity in the B fiber compare with that in the A fiber? How well did the results compare with your prediction? The velocity of the B fiber was slower because it had a smaller diameter and less myelinated. 2. How did the conduction velocity in the C fiber compare with that in the B fiber? How well did the results compare with your prediction? The conduction velocity of the C fiber was slower because it has no myelination and a smaller diameter. 3. What is the effect of axon diameter on conduction velocity? The larger the axon diameter, the greater the conduction velocity. 4. What is the effect of the amount of myelination on conduction velocity? The greater the myelination, the greater the conduction velocity. 5. Why did the time between the stimulation and the action potential at R1 differ for each axon? The time between the stimulation and the action potential at R1 differed for each axon because the diameter and the degree of myelination varied. 6. Why did you need to change the timescale on the oscilloscope for each axon? This is necessary in order to see the action potentials. The velocity changes so when it get very slow you need a longer time scale. A C T I V I T Y 8 Chemical Synaptic Transmission and Neurotransmitter Release 1. When the stimulus intensity is increased, what changes: the number of synaptic vesicles released or the amount of neurotransmitter per vesicle? The number of synaptic vesicles released increases when the stimulus intensity increases. 2. What happened to the amount of neurotransmitter release when you switched from the control extracellular fluid to the extracellular fluid with no Ca 2? How well did the results compare with your prediction? Without calcium present, no neurotransmitter was released because the exocytosis of the synaptic vesicles is dependent upon calcium. 3. What happened to the amount of neurotransmitter release when you switched from the extracellular fluid with no Ca 2 to the extracellular fluid with low Ca 2? How well did the results compare with your prediction? When a small amount of calcium is added back, a small amount of synaptic vesicles are released. 4. How did neurotransmitter release in the Mg 2+ extracellular fluid compare to that in the control extracellular fluid? How well did the result compare with your prediction? The neurotransmitter release was less when magnesium was added. 5. How does Mg 2 block the effect of extracellular calcium on neurotransmitter release? When magnesium is added to the extracellular fluid it blocks the calcium channels and inhibits the release of neurotransmitter. 367

11 M52_MARI0000_00_SE_EX03.qxd 8/22/11 2:48 PM Page 368 A C T I V I T Y 9 The Action Potential: Putting It All Together 1. Why is the resting membrane potential the same value in both the sensory neuron and the interneuron? The resting membrane potential is the same value because this is the typical resting membrane potential regardless of the type of neuron. 2. Describe what happened when you applied a very weak stimulus to the sensory receptor. How well did the results compare with your prediction? When you applied a very weak stimulus to the sensory receptor, a small, depolarizing response occurred at R1, and no responses occurred at R2, R3, and R4. 3. Describe what happened when you applied a moderate stimulus to the sensory receptor. How well did the results compare with your prediction? When you applied a moderate stimulus to the sensory receptor, a larger, depolarizing response occurred at R1, and an action potential was generated at R2 and at R4. 4. Identify the type of membrane potential (graded receptor potential or action potential) that occurred at R1, R2, R3, and R4 when you applied a moderate stimulus. (View the response to the stimulus.) Action potentials occurred at R2 and R4 and graded receptor potentials occurred at R1 and R3. 5. Describe what happened when you applied a strong stimulus to the sensory receptor. How well did the results compare with your prediction? When you applied a strong stimulus to the sensory receptor, a large, depolarizing response occurred at R1 and R3, and action potentials occurred at R2 and R4. 368

Introduction to Neurobiology

Introduction to Neurobiology Biology 240 General Zoology Introduction to Neurobiology Nervous System functions: communication of information via nerve signals integration and processing of information control of physiological and

More information

NEURONS Chapter Neurons: specialized cells of the nervous system 2. Nerves: bundles of neuron axons 3. Nervous systems

NEURONS Chapter Neurons: specialized cells of the nervous system 2. Nerves: bundles of neuron axons 3. Nervous systems NEURONS Chapter 12 Figure 12.1 Neuronal and hormonal signaling both convey information over long distances 1. Nervous system A. nervous tissue B. conducts electrical impulses C. rapid communication 2.

More information

Chapter 7 Nerve Cells and Electrical Signaling

Chapter 7 Nerve Cells and Electrical Signaling Chapter 7 Nerve Cells and Electrical Signaling 7.1. Overview of the Nervous System (Figure 7.1) 7.2. Cells of the Nervous System o Neurons are excitable cells which can generate action potentials o 90%

More information

Thursday, January 22, Nerve impulse

Thursday, January 22, Nerve impulse Nerve impulse Transmembrane Potential caused by ions moving through cell membrane at different rates Two main ions of concern Na + - Sodium K + - potassium Cell membrane not freely permeable therefore

More information

Ameen Alsaras. Ameen Alsaras. Mohd.Khatatbeh

Ameen Alsaras. Ameen Alsaras. Mohd.Khatatbeh 9 Ameen Alsaras Ameen Alsaras Mohd.Khatatbeh Nerve Cells (Neurons) *Remember: The neural cell consists of: 1-Cell body 2-Dendrites 3-Axon which ends as axon terminals. The conduction of impulse through

More information

STRUCTURAL ELEMENTS OF THE NERVOUS SYSTEM

STRUCTURAL ELEMENTS OF THE NERVOUS SYSTEM STRUCTURAL ELEMENTS OF THE NERVOUS SYSTEM STRUCTURE AND MAINTENANCE OF NEURONS (a) (b) Dendrites Cell body Initial segment collateral terminals (a) Diagrammatic representation of a neuron. The break in

More information

Omar Sami. Muhammad Abid. Muhammad khatatbeh

Omar Sami. Muhammad Abid. Muhammad khatatbeh 10 Omar Sami Muhammad Abid Muhammad khatatbeh Let s shock the world In this lecture we are going to cover topics said in previous lectures and then start with the nerve cells (neurons) and the synapses

More information

Chapter 4 Neuronal Physiology

Chapter 4 Neuronal Physiology Chapter 4 Neuronal Physiology V edit. Pg. 99-131 VI edit. Pg. 85-113 VII edit. Pg. 87-113 Input Zone Dendrites and Cell body Nucleus Trigger Zone Axon hillock Conducting Zone Axon (may be from 1mm to more

More information

Neurons. Pyramidal neurons in mouse cerebral cortex expressing green fluorescent protein. The red staining indicates GABAergic interneurons.

Neurons. Pyramidal neurons in mouse cerebral cortex expressing green fluorescent protein. The red staining indicates GABAergic interneurons. Neurons Pyramidal neurons in mouse cerebral cortex expressing green fluorescent protein. The red staining indicates GABAergic interneurons. MBL, Woods Hole R Cheung MSc Bioelectronics: PGEE11106 1 Neuron

More information

Physiology of the nerve

Physiology of the nerve Physiology of the nerve Objectives Transmembrane potential Action potential Relative and absolute refractory period The all-or-none law Hoorweg Weiss curve Du Bois Reymond principle Types of nerve fibres

More information

3) Most of the organelles in a neuron are located in the A) dendritic region. B) axon hillock. C) axon. D) cell body. E) axon terminals.

3) Most of the organelles in a neuron are located in the A) dendritic region. B) axon hillock. C) axon. D) cell body. E) axon terminals. Chapter 48 Neurons, Synapses, and Signaling Multiple-Choice Questions 1) A simple nervous system A) must include chemical senses, mechanoreception, and vision. B) includes a minimum of 12 ganglia. C) has

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling Neurons, Synapses, and Signaling The Neuron is the functional unit of the nervous system. Neurons are composed of a cell body, which contains the nucleus and organelles; Dendrites which are extensions

More information

Nerve. (2) Duration of the stimulus A certain period can give response. The Strength - Duration Curve

Nerve. (2) Duration of the stimulus A certain period can give response. The Strength - Duration Curve Nerve Neuron (nerve cell) is the structural unit of nervous system. Nerve is formed of large numbers of nerve fibers. Types of nerve fibers Myelinated nerve fibers Covered by myelin sheath interrupted

More information

The nervous system is responsible for most of the functions that characterize

The nervous system is responsible for most of the functions that characterize 3 E X E R C I S E Neurophysiology of Nerve Impulses O B J E C T I V E S 1. To define the following: irritability, conductivity, resting membrane potential, polarized, sodium-potassium pump, threshold stimulus,

More information

What is Anatomy and Physiology?

What is Anatomy and Physiology? Introduction BI 212 BI 213 BI 211 Ecosystems Organs / organ systems Cells Organelles Communities Tissues Molecules Populations Organisms Campbell et al. Figure 1.4 Introduction What is Anatomy and Physiology?

More information

H. An electrical signal travel down the dendrite.

H. An electrical signal travel down the dendrite. Nervous System Group Activity Objectives: To be able to describe the nervous system structure and function To understand how neurons communicate using both electrical and chemical signals To know how the

More information

Portions from Chapter 6 CHAPTER 7. The Nervous System: Neurons and Synapses. Chapter 7 Outline. and Supporting Cells

Portions from Chapter 6 CHAPTER 7. The Nervous System: Neurons and Synapses. Chapter 7 Outline. and Supporting Cells CHAPTER 7 The Nervous System: Neurons and Synapses Chapter 7 Outline Neurons and Supporting Cells Activity in Axons The Synapse Acetylcholine as a Neurotransmitter Monoamines as Neurotransmitters Other

More information

Chapter 11 Introduction to the Nervous System and Nervous Tissue Chapter Outline

Chapter 11 Introduction to the Nervous System and Nervous Tissue Chapter Outline Chapter 11 Introduction to the Nervous System and Nervous Tissue Chapter Outline Module 11.1 Overview of the Nervous System (Figures 11.1-11.3) A. The nervous system controls our perception and experience

More information

10.1: Introduction. Cell types in neural tissue: Neurons Neuroglial cells (also known as neuroglia, glia, and glial cells) Dendrites.

10.1: Introduction. Cell types in neural tissue: Neurons Neuroglial cells (also known as neuroglia, glia, and glial cells) Dendrites. 10.1: Introduction Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Cell types in neural tissue: Neurons Neuroglial cells (also known as neuroglia, glia, and glial

More information

Na + K + pump. The beauty of the Na + K + pump. Cotransport. The setup Cotransport the result. Found along the plasma membrane of all cells.

Na + K + pump. The beauty of the Na + K + pump. Cotransport. The setup Cotransport the result. Found along the plasma membrane of all cells. The beauty of the Na + K + pump Na + K + pump Found along the plasma membrane of all cells. Establishes gradients, controls osmotic effects, allows for cotransport Nerve cells have a Na + K + pump and

More information

Outline. Neuron Structure. Week 4 - Nervous System. The Nervous System: Neurons and Synapses

Outline. Neuron Structure. Week 4 - Nervous System. The Nervous System: Neurons and Synapses Outline Week 4 - The Nervous System: Neurons and Synapses Neurons Neuron structures Types of neurons Electrical activity of neurons Depolarization, repolarization, hyperpolarization Synapses Release of

More information

35-2 The Nervous System Slide 1 of 38

35-2 The Nervous System Slide 1 of 38 1 of 38 35-2 The Nervous System The nervous system controls and coordinates functions throughout the body and responds to internal and external stimuli. 2 of 38 Neurons Neurons The messages carried by

More information

Neurophysiology. Corresponding textbook pages: ,

Neurophysiology. Corresponding textbook pages: , Neurophysiology Corresponding textbook pages: 436-440, 442-455 Organization Helps maintain homeostasis in the body Nervous system and endocrine system Nervous system is faster due to nerve impulses 1 Fig.

More information

ANATOMY AND PHYSIOLOGY OF NEURONS. AP Biology Chapter 48

ANATOMY AND PHYSIOLOGY OF NEURONS. AP Biology Chapter 48 ANATOMY AND PHYSIOLOGY OF NEURONS AP Biology Chapter 48 Objectives Describe the different types of neurons Describe the structure and function of dendrites, axons, a synapse, types of ion channels, and

More information

Nervous System. Nervous system cells. Transmission of a signal 2/27/2015. Neuron

Nervous System. Nervous system cells. Transmission of a signal 2/27/2015. Neuron Nervous System 2007-2008 signal direction Neuron a nerve cell Nervous system cells dendrites axon cell body Structure fits function many entry points for signal one path out transmits signal signal direction

More information

CHAPTER 44: Neurons and Nervous Systems

CHAPTER 44: Neurons and Nervous Systems CHAPTER 44: Neurons and Nervous Systems 1. What are the three different types of neurons and what are their functions? a. b. c. 2. Label and list the function of each part of the neuron. 3. How does the

More information

Questions. Question 1!

Questions. Question 1! Questions Question 1 In a laboratory, scientists often study neurons in isolation, outside of a living creature, in a dish. In this setting, one can have a good deal of control over the local ionic environment

More information

Nervous System. Master controlling and communicating system of the body. Secrete chemicals called neurotransmitters

Nervous System. Master controlling and communicating system of the body. Secrete chemicals called neurotransmitters Nervous System Master controlling and communicating system of the body Interacts with the endocrine system to control and coordinate the body s responses to changes in its environment, as well as growth,

More information

Division Ave. High School AP Biology. cell body. signal direction

Division Ave. High School AP Biology. cell body. signal direction signal direction Nervous system cells Neuron a nerve cell dendrites myelin sheath axon cell body dendrite cell body axon Structure fits function many entry points for signal one path out transmits signal

More information

Applied Neuroscience. Conclusion of Science Honors Program Spring 2017

Applied Neuroscience. Conclusion of Science Honors Program Spring 2017 Applied Neuroscience Conclusion of Science Honors Program Spring 2017 Review Circle whichever is greater, A or B. If A = B, circle both: I. A. permeability of a neuronal membrane to Na + during the rise

More information

EE 791 Lecture 2 Jan 19, 2015

EE 791 Lecture 2 Jan 19, 2015 EE 791 Lecture 2 Jan 19, 2015 Action Potential Conduction And Neural Organization EE 791-Lecture 2 1 Core-conductor model: In the core-conductor model we approximate an axon or a segment of a dendrite

More information

Chapter 7. Objectives

Chapter 7. Objectives Chapter 7 The Nervous System: Structure and Control of Movement Objectives Discuss the general organization of the nervous system Describe the structure & function of a nerve Draw and label the pathways

More information

The Nervous System. Nervous System Functions 1. gather sensory input 2. integration- process and interpret sensory input 3. cause motor output

The Nervous System. Nervous System Functions 1. gather sensory input 2. integration- process and interpret sensory input 3. cause motor output The Nervous System Nervous System Functions 1. gather sensory input 2. integration- process and interpret sensory input 3. cause motor output The Nervous System 2 Parts of the Nervous System 1. central

More information

Electrical Properties of Neurons. Steven McLoon Department of Neuroscience University of Minnesota

Electrical Properties of Neurons. Steven McLoon Department of Neuroscience University of Minnesota Electrical Properties of Neurons Steven McLoon Department of Neuroscience University of Minnesota 1 Neuronal Communication Neurons communicate with other cells, often over long distances. The electrical

More information

The action potential travels down both branches because each branch is a typical axon with voltage dependent Na + and K+ channels.

The action potential travels down both branches because each branch is a typical axon with voltage dependent Na + and K+ channels. BIO 360 - MIDTERM FALL 2018 This is an open book, open notes exam. PLEASE WRITE YOUR NAME ON EACH SHEET. Read each question carefully and answer as well as you can. Point values are shown at the beginning

More information

Chapter 11: Functional Organization of Nervous Tissue

Chapter 11: Functional Organization of Nervous Tissue Chapter 11: Functional Organization of Nervous Tissue I. Functions of the Nervous System A. List and describe the five major nervous system functions: 1. 2. 3. 4. 5. II. Divisions of the Nervous System

More information

BI 232: Human Anatomy & Physiology

BI 232: Human Anatomy & Physiology BI 232: Human Anatomy & Physiology Roster Business Course Introduction and Syllabus Notecard Name E-mail Why you are taking the course Something interesting you did over break Lecture Tips Use the Study

More information

MOLECULAR AND CELLULAR NEUROSCIENCE

MOLECULAR AND CELLULAR NEUROSCIENCE MOLECULAR AND CELLULAR NEUROSCIENCE BMP-218 November 4, 2014 DIVISIONS OF THE NERVOUS SYSTEM The nervous system is composed of two primary divisions: 1. CNS - Central Nervous System (Brain + Spinal Cord)

More information

Communication within a Neuron

Communication within a Neuron Neuronal Communication, Ph.D. Communication within a Neuron Measuring Electrical Potentials of Axons The Membrane Potential The Action Potential Conduction of the Action Potential 1 The withdrawal reflex

More information

Chapter 7. The Nervous System: Structure and Control of Movement

Chapter 7. The Nervous System: Structure and Control of Movement Chapter 7 The Nervous System: Structure and Control of Movement Objectives Discuss the general organization of the nervous system Describe the structure & function of a nerve Draw and label the pathways

More information

211MDS Pain theories

211MDS Pain theories 211MDS Pain theories Definition In 1986, the International Association for the Study of Pain (IASP) defined pain as a sensory and emotional experience associated with real or potential injuries, or described

More information

9/28/2016. Neuron. Multipolar Neuron. Astrocytes Exchange Materials With Neurons. Glia or Glial Cells ( supporting cells of the nervous system)

9/28/2016. Neuron. Multipolar Neuron. Astrocytes Exchange Materials With Neurons. Glia or Glial Cells ( supporting cells of the nervous system) Neuron Multipolar Neuron https://www.youtube.com/watch?v=lw-psbnu5xago to :38 Glia or Glial Cells ( supporting cells of the nervous system) 10X more numerous than neurons but one-tenth the size make up

More information

Test Bank for Human Physiology: From Cells to Systems 8th Edition by Sherwood

Test Bank for Human Physiology: From Cells to Systems 8th Edition by Sherwood Test Bank for Human Physiology: From Cells to Systems 8th Edition by Sherwood Link download full: https://digitalcontentmarket.org/download/test-bankfor-human-physiology-from-cells-to-systems-8thedition-by-sherwood

More information

Chapter 2: Cellular Mechanisms and Cognition

Chapter 2: Cellular Mechanisms and Cognition Chapter 2: Cellular Mechanisms and Cognition MULTIPLE CHOICE 1. Two principles about neurons were defined by Ramón y Cajal. The principle of connectional specificity states that, whereas the principle

More information

Functions of the Nervous System. Fundamentals of the Nervous System & Nervous Tissue

Functions of the Nervous System. Fundamentals of the Nervous System & Nervous Tissue Fundamentals of the Nervous System & Nervous Tissue Overview Structure cell types & structures Neurophysiology membrane potential Synapse, neurotransmitters & receptors Functions of the Nervous System

More information

Neurophysiology scripts. Slide 2

Neurophysiology scripts. Slide 2 Neurophysiology scripts Slide 2 Nervous system and Endocrine system both maintain homeostasis in the body. Nervous system by nerve impulse and Endocrine system by hormones. Since the nerve impulse is an

More information

PSY 215 Lecture 3 (1/19/2011) (Synapses & Neurotransmitters) Dr. Achtman PSY 215

PSY 215 Lecture 3 (1/19/2011) (Synapses & Neurotransmitters) Dr. Achtman PSY 215 Corrections: None needed. PSY 215 Lecture 3 Topic: Synapses & Neurotransmitters Chapters 2 & 3, pages 40-57 Lecture Notes: SYNAPSES & NEUROTRANSMITTERS, CHAPTER 3 Action Potential (above diagram found

More information

Animal Physiology Study Guide

Animal Physiology Study Guide Animal Physiology Study Guide 1. Which of the following are an example of passive transport? 2. Which active transport? 3. How can you tell? 1. Which of the following are an example of passive transport?

More information

Version A. AP* Biology: Nervous System. Questions 1 and 2. Name: Period

Version A. AP* Biology: Nervous System. Questions 1 and 2. Name: Period Name: Period Version A AP* Biology: Nervous System Directions: Each of the questions or incomplete statements below is followed by four suggested answers or completions. Select the one that is best in

More information

AP Biology Unit 6. The Nervous System

AP Biology Unit 6. The Nervous System AP Biology Unit 6 The Nervous System Branches of the Nervous System There are 2 main branches of the nervous system Central Nervous System Brain Spinal Cord Peripheral Nervous System All nerves leading

More information

The Nervous System -The master controlling and communicating system of the body

The Nervous System -The master controlling and communicating system of the body The Nervous System -The master controlling and communicating system of the body Functions: -Sensory input -Integration -Motor output Organization of the Nervous System Central nervous system (CNS) -Brain

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling Chapter 48 Neurons, Synapses, and Signaling PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

The Nervous System AP Biology

The Nervous System AP Biology The Nervous System 2005-2006 Neuron (nerve cell) signal direction dendrites cell body Structure fits function, it have many entry points for signal one path out transmits signal Nodes of Ranvier axon signal

More information

Ion Channels Graphics are used with permission of: adam.com (http://www.adam.com/) Benjamin Cummings Publishing Co (http://www.awl.

Ion Channels Graphics are used with permission of: adam.com (http://www.adam.com/) Benjamin Cummings Publishing Co (http://www.awl. Ion Channels Graphics are used with permission of: adam.com (http://www.adam.com/) Benjamin Cummings Publishing Co (http://www.awl.com/bc) ** There are a number of ion channels introducted in this topic

More information

Neurons, Synapses and Signaling. Chapter 48

Neurons, Synapses and Signaling. Chapter 48 Neurons, Synapses and Signaling Chapter 48 Warm Up Exercise What types of cells can receive a nerve signal? Nervous Organization Neurons- nerve cells. Brain- organized into clusters of neurons, called

More information

Cell Membrane and Transport

Cell Membrane and Transport Cell Membrane and Transport 29/06/2015 11:08 AM Describe the Characteristics of the phospholipid Bilayer. The Phospholipid bilayer is made up of a double layer of membrane lipids that have a hydrophobic

More information

BIOLOGY 2050 LECTURE NOTES ANATOMY & PHYSIOLOGY I (A. IMHOLTZ) FUNDAMENTALS OF THE NERVOUS SYSTEM AND NERVOUS TISSUE P1 OF 5

BIOLOGY 2050 LECTURE NOTES ANATOMY & PHYSIOLOGY I (A. IMHOLTZ) FUNDAMENTALS OF THE NERVOUS SYSTEM AND NERVOUS TISSUE P1 OF 5 P1 OF 5 The nervous system controls/coordinates the activities of cells, tissues, & organs. The endocrine system also plays a role in control/coordination. The nervous system is more dominant. Its mechanisms

More information

Chapter Nervous Systems

Chapter Nervous Systems The Nervous System Chapter Nervous Systems Which animals have nervous systems? (Which do not) What are the basic components of a NS? What kind of fish performs brain operations? What differentiates one

More information

2/27/2019. Functions of the Nervous System. Nervous Tissue and Neuron Function. Fundamentals Of The Nervous System And Nervous Tissue

2/27/2019. Functions of the Nervous System. Nervous Tissue and Neuron Function. Fundamentals Of The Nervous System And Nervous Tissue Nervous Tissue and Neuron Function Fundamentals Of The Nervous System And Nervous Tissue Learn and Understand 1. Like muscle cells, neurons use membrane polarity upset (AP) as a signal therefore keeping

More information

Ion Channels Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com)

Ion Channels Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com) Ion Channels Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com) Page 1. Introduction At synapses, ions move across cell membranes through

More information

Branches of the Nervous System

Branches of the Nervous System The Nervous System Branches of the Nervous System There are 2 main branches of the nervous system Central Nervous System Brain Spinal Cord Peripheral Nervous System All nerves leading to rest of body Anatomy

More information

D) around, bypassing B) toward

D) around, bypassing B) toward Nervous System Practice Questions 1. Which of the following are the parts of neurons? A) brain, spinal cord, and vertebral column B) dendrite, axon, and cell body C) sensory and motor D) cortex, medulla

More information

Membrane Structure, Resting membrane potential, Action potential. Biophysics seminar

Membrane Structure, Resting membrane potential, Action potential. Biophysics seminar Membrane Structure, Resting membrane potential, Action potential Biophysics seminar 09.09.2013. Membrane structure Biological membranes consists of lipids and proteins to bind with non-covalent bond. Phospholipids

More information

You can follow the path of the neural signal. The sensory neurons detect a stimulus in your finger and send that information to the CNS.

You can follow the path of the neural signal. The sensory neurons detect a stimulus in your finger and send that information to the CNS. 1 Nervous system maintains coordination through the use of electrical and chemical processes. There are three aspects: sensory, motor, and integrative, which we will discuss throughout the system. The

More information

Nervous Tissue and Neurophysiology

Nervous Tissue and Neurophysiology Nervous Tissue and Neurophysiology Objectives Describe the two major divisions of the nervous system and their characteristics. Identify the structures/functions of a typical neuron. Describe the location

More information

Properties of Nerve Fibres. Dr. Ayisha Qureshi Professor MBBS, MPhil

Properties of Nerve Fibres. Dr. Ayisha Qureshi Professor MBBS, MPhil Properties of Nerve Fibres Dr. Ayisha Qureshi Professor MBBS, MPhil 1. PROPAGATION OF AN ACTION POTENTIAL Does the action potential become weak (decremental) as it travels down the nerve fiber? Does the

More information

Chapter 37&38. Nervous Systems. EQ: How do animals sense and respond to the world around them?

Chapter 37&38. Nervous Systems. EQ: How do animals sense and respond to the world around them? Chapter 37&38 Nervous Systems EQ: How do animals sense and respond to the world around them? The Nervous System Function? sense the internal and external environment, coordinate actions, transmit response

More information

Neuroscience: Exploring the Brain, 3e. Chapter 4: The action potential

Neuroscience: Exploring the Brain, 3e. Chapter 4: The action potential Neuroscience: Exploring the Brain, 3e Chapter 4: The action potential Introduction Action Potential in the Nervous System Conveys information over long distances Action potential Initiated in the axon

More information

Chapter 11: Nervous System and Nervous Tissue

Chapter 11: Nervous System and Nervous Tissue Chapter 11: Nervous System and Nervous Tissue I. Functions and divisions of the nervous system A. Sensory input: monitor changes in internal and external environment B. Integrations: make decisions about

More information

PMT. Explain the importance of reflex actions (3) Page 1 of 19

PMT. Explain the importance of reflex actions (3) Page 1 of 19 Q1. When a finger accidentally touches a hot object, a reflex action occurs. The biceps muscle contracts, causing the arm to be flexed and the finger is pulled away. The diagram shows the arrangement of

More information

5-Nervous system II: Physiology of Neurons

5-Nervous system II: Physiology of Neurons 5-Nervous system II: Physiology of Neurons AXON ION GRADIENTS ACTION POTENTIAL (axon conduction) GRADED POTENTIAL (cell-cell communication at synapse) SYNAPSE STRUCTURE & FUNCTION NEURAL INTEGRATION CNS

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling Overview: Lines of Communication Chapter 8 Neurons, Synapses, and Signaling Fig. 8- The cone snail kills prey with venom that disables neurons Neurons are nerve s that transfer information within the body

More information

Functions of the Nervous System

Functions of the Nervous System The Nervous System Functions of the Nervous System 1. Control center for all body activities 2. Responds and adapts to changes that occur both inside and outside the body (Ex: pain, temperature, pregnancy)

More information

NEURAL TISSUE (NEUROPHYSIOLOGY) PART I (A): NEURONS & NEUROGLIA

NEURAL TISSUE (NEUROPHYSIOLOGY) PART I (A): NEURONS & NEUROGLIA PART I (A): NEURONS & NEUROGLIA Neural Tissue Contains 2 kinds of cells: neurons: cells that send and receive signals neuroglia (glial cells): cells that support and protect neurons Neuron Types Sensory

More information

The Brain & Homeostasis. The Brain & Technology. CAT, PET, and MRI Scans

The Brain & Homeostasis. The Brain & Technology. CAT, PET, and MRI Scans The Brain & Homeostasis Today, scientists have a lot of information about what happens in the different parts of the brain; however they are still trying to understand how the brain functions. We know

More information

Endocrine System Nervous System

Endocrine System Nervous System Cells Endocrine System Nervous System Tissues Controls Organs Nervous System vs Endocrine System Electrical signals (graded potentials and action potentials) and chemical signals (neurotransmitters) Fast

More information

Endocrine System Nervous System

Endocrine System Nervous System Cells Endocrine System Nervous System Tissues Controls Organs Nervous System vs Endocrine System Electrical signals (graded potentials and action potentials) and chemical signals (neurotransmitters) Fast

More information

Axon Nerve impulse. Axoplasm Receptor. Axomembrane Stimuli. Schwann cell Effector. Myelin Cell body

Axon Nerve impulse. Axoplasm Receptor. Axomembrane Stimuli. Schwann cell Effector. Myelin Cell body Nervous System Review 1. Explain a reflex arc. 2. Know the structure, function and location of a sensory neuron, interneuron, and motor neuron 3. What is (a) Neuron Axon Nerve impulse Axoplasm Receptor

More information

THE NERVOUS SYSTEM. Neurons & Impulses

THE NERVOUS SYSTEM. Neurons & Impulses THE NERVOUS SYSTEM Neurons & Impulses Organization of the Nervous System: Two Major Portions: The central nervous system (CNS) and the peripheral nervous system (PNS). CNS = Brain/Spinal Cord PNS = Nerves-provide

More information

Ion Channels (Part 2)

Ion Channels (Part 2) Ion Channels (Part 2) Graphics are used with permission of : adam.com (http://www.adam.com/) Benjamin/Cummings Publishing Co (http://www.awl.com/bc) -57- Quiz Question #2: Ion Channels This question asks

More information

Chapter 2. The Cellular and Molecular Basis of Cognition Cognitive Neuroscience: The Biology of the Mind, 2 nd Ed.,

Chapter 2. The Cellular and Molecular Basis of Cognition Cognitive Neuroscience: The Biology of the Mind, 2 nd Ed., Chapter 2. The Cellular and Molecular Basis of Cognition Cognitive Neuroscience: The Biology of the Mind, 2 nd Ed., M. S. Gazzaniga, R. B. Ivry, and G. R. Mangun, Norton, 2002. Summarized by B.-W. Ku,

More information

Overview of Neurons. Psychology 470. Introduction to Chemical Additions. Neurons2. Axons and Related Structures. Structures

Overview of Neurons. Psychology 470. Introduction to Chemical Additions. Neurons2. Axons and Related Structures. Structures Soma Collateral Overview of Neurons Psychology 470 Axon Hillock Teleodendria Introduction to Chemical Additions Steven E. Meier, Ph.D. Node of Ranvier Listen to the audio lecture while viewing these slides

More information

Synapses. Excitatory synapses

Synapses. Excitatory synapses Synapses Sensory cells located at the periphery of the body, initiate and conduct signals to the brain and provide various sensory inputs such as vision, hearing, posture, and so on. Providing information

More information

BIONB/BME/ECE 4910 Neuronal Simulation Assignments 1, Spring 2013

BIONB/BME/ECE 4910 Neuronal Simulation Assignments 1, Spring 2013 BIONB/BME/ECE 4910 Neuronal Simulation Assignments 1, Spring 2013 Tutorial Assignment Page Due Date Week 1/Assignment 1: Introduction to NIA 1 January 28 The Membrane Tutorial 9 Week 2/Assignment 2: Passive

More information

Nervous System. 2. Receives information from the environment from CNS to organs and glands. 1. Relays messages, processes info, analyzes data

Nervous System. 2. Receives information from the environment from CNS to organs and glands. 1. Relays messages, processes info, analyzes data Nervous System 1. Relays messages, processes info, analyzes data 2. Receives information from the environment from CNS to organs and glands 3. Transmits impulses from CNS to muscles and glands 4. Transmits

More information

Functions of Nervous System Neuron Structure

Functions of Nervous System Neuron Structure Chapter 10 Nervous System I Divisions of the Nervous System Cell Types of Neural Tissue neurons neuroglial cells Central Nervous System brain spinal cord Peripheral Nervous System nerves cranial nerves

More information

1. Name the two major divisions of the nervous system and list the organs within each. Central Nervous System Peripheral Nervous System

1. Name the two major divisions of the nervous system and list the organs within each. Central Nervous System Peripheral Nervous System CHAPTER 10: NERVOUS SYSTEM I OBJECTIVES 1. Name the two major divisions of the nervous system and list the organs within each. Central Nervous System Peripheral Nervous System Brain Spinal Cord Cranial

More information

راما ندى أسامة الخضر. Faisal Muhammad

راما ندى أسامة الخضر. Faisal Muhammad 22 راما ندى أسامة الخضر Faisal Muhammad Revision Last time we started talking about sensory receptors, we defined them and talked about the mechanism of their reaction. Now we will talk about sensory receptors,

More information

Chapter 45 Neurons and Nervous Systems

Chapter 45 Neurons and Nervous Systems Nervous System Cells Neuron a cell Chapter 45 Neurons and Nervous Systems signal direction dendrites cell body Structure fits function many entry points for signal one path out axon signal direction transmits

More information

Nervous System Review

Nervous System Review Nervous System Review Name: Block: 1. Which processes are involved in the movement of molecule Y from point X to point Z? A. exocytosis and diffusion B. endocytosis and diffusion C. exocytosis and facilitated

More information

Neurons Chapter 7 2/19/2016. Learning Objectives. Cells of the Nervous System. Cells of the Nervous System. Cells of the Nervous System

Neurons Chapter 7 2/19/2016. Learning Objectives. Cells of the Nervous System. Cells of the Nervous System. Cells of the Nervous System Learning Objectives Neurons Chapter 7 Identify and describe the functions of the two main divisions of the nervous system. Differentiate between a neuron and neuroglial cells in terms of structure and

More information

BIOLOGY 12 NERVOUS SYSTEM PRACTICE

BIOLOGY 12 NERVOUS SYSTEM PRACTICE 1 Name: BIOLOGY 12 NERVOUS SYSTEM PRACTICE Date: 1) Identify structures X, Y and Z and give one function of each. 2) Which processes are involved in the movement of molecule Y from point X to point Z?

More information

The Nervous System 12/11/2015

The Nervous System 12/11/2015 The Nervous System Biology 12 Unit 3: Homeostasis December 11, 2015 The nervous system is an elaborate communication system that contains more than 100 billion nerve cells in the brain alone There are

More information

BIOL Week 6. Nervous System. Transmission at Synapses

BIOL Week 6. Nervous System. Transmission at Synapses Collin County Community College BIOL 2401 Week 6 Nervous System 1 Transmission at Synapses Synapses are the site of communication between 2 or more neurons. It mediates the transfer of information and

More information

Chapter 44 Neurons and Nervous Systems

Chapter 44 Neurons and Nervous Systems Nervous System Cells Neuron a cell Chapter 44 Neurons and Nervous Systems signal direction dendrites cell body Structure fits function many entry points for signal one path out transmits signal signal

More information

PARTS central nervous system brain and spinal cord nerve bundle of neurons wrapped in connective tissue

PARTS central nervous system brain and spinal cord nerve bundle of neurons wrapped in connective tissue NEUROPHYSIOLOGY Electrical Properties of Nerve cells (neurons) Electro physiology of neurons lie in Membrane Physiology Model organisms is Squid Giant Axon (SGA) diversity of Nervous systems NERVOUS SYSTEM

More information

Unit Three. I. General Functions of the Nervous System. I. General Functions of the Nervous System

Unit Three. I. General Functions of the Nervous System. I. General Functions of the Nervous System 10 Refer to the following URLs. It is a good idea to print them and bring them to class. Be sure to study these along with your book. http://www.sirinet.net/~jgjohnso/nervous.html http://faculty.washington.edu/chudler/ap.html

More information

6.5 Nerves, Hormones and Homeostasis

6.5 Nerves, Hormones and Homeostasis 6.5 Nerves, Hormones and Homeostasis IB Biology SL Part 1 - Nerves Outcomes Part 1 6.5.1State that the nervous system consists of the central nervous system (CNS) and peripheral nerves, and is composed

More information

Chapter 3 subtitles Action potentials

Chapter 3 subtitles Action potentials CELLULAR NEUROPHYSIOLOGY CONSTANCE HAMMOND Chapter 3 subtitles Action potentials Introduction (3:15) This third chapter explains the calcium current triggered by the arrival of the action potential in

More information

Summarized by B.-W. Ku, E. S. Lee, and B.-T. Zhang Biointelligence Laboratory, Seoul National University.

Summarized by B.-W. Ku, E. S. Lee, and B.-T. Zhang Biointelligence Laboratory, Seoul National University. Chapter 2. The Cellular l and Molecular Basis of Cognition Cognitive Neuroscience: The Biology of the Mind, 3 rd Ed., M. S. Gazzaniga, R. B. Ivry, and G. R. Mangun, Norton, 2008. Summarized by B.-W. Ku,

More information