The Global HIV Vaccine

Size: px
Start display at page:

Download "The Global HIV Vaccine"

Transcription

1 Policy Forum Antibody-Based HIV-1 Vaccines: Recent Developments and Future Directions A summary report from a Global HIV Vaccine Enterprise Working Group David Montefiori *, Quentin Sattentau, Jorge Flores, José Esparza, John Mascola on behalf of a Working Group convened by the Global HIV Vaccine Enterprise The Global HIV Vaccine Enterprise convened a two-day workshop in May of 2007 to discuss humoral immune responses to HIV and approaches to design vaccines that induce viral neutralizing and other potentially protective antibody responses. The goals of this workshop were to identify key scientific issues, gaps, and opportunities that have emerged since the Enterprise Strategic Plan was first published in 2005 [1], and to make recommendations that Enterprise stakeholders can use to plan new activities. Most effective viral vaccines work, at least in part, by generating antibodies that inactivate or neutralize the invading virus, and the existing data strongly suggest that an optimally effective HIV-1 vaccine should elicit potent antiviral neutralizing antibodies. However, unlike acute viral pathogens, HIV-1 chronically replicates in the host and evades the antibody response. This immune evasion, along with the large genetic variation among HIV-1 strains worldwide, has posed major obstacles to vaccine development. Current HIV vaccine candidates do not elicit neutralizing antibodies against most circulating virus strains, and thus the induction of a protective antibody response remains a major priority for HIV-1 vaccine development. For an antibody-based HIV-1 vaccine, progress in vaccine design is generally gauged by in vitro assays that measure the ability of vaccine-induced antibodies to neutralize a broad spectrum of viral isolates representing the major genetic subtypes (clades) of HIV- 1 [2]. Although it is not known what magnitude and breadth of The Policy Forum allows health policy makers around the world to discuss challenges and opportunities for improving health care in their societies. neutralization will predict protection in vaccine recipients, it is clear that current vaccine immunogens elicit antibodies that neutralize only a minority of circulating isolates. Thus, much progress needs to be made in this area. Also, though virus neutralization is considered a critical benchmark for a vaccine, this may not be the only benchmark for predicting success with antibody-based HIV-1 vaccine immunogens. The main targets for neutralizing antibodies to HIV-1 are the surface gp120 and trans-membrane gp41 envelope glycoproteins (Env) that mediate receptor and coreceptor binding and the subsequent membrane fusion events that allow the virus to gain entry into cells [3]. Antibodies neutralize the virus by binding these viral spikes and blocking virus entry into susceptible cells, such as CD4 + T cells [4,5]. In order to chronically replicate in the host, the virus exploits several mechanisms to shield itself against antibody recognition, including a dense outer coating of sugar molecules (N-linked glycans) and the strategic positioning of cysteine cysteine loop structures on the gp120 molecule [6 8]. These shielding mechanisms, although highly effective, have vulnerabilities imposed by fitness constraints. Information on the precise location and molecular structure of these vulnerable regions could be valuable for the rational design of improved vaccine immunogens. Participants in the workshop identified four areas that, if given proper attention, could provide key information that would bring the field closer to an effective antibody-based HIV-1 vaccine: (1) structure-assisted immunogen design, (2) role of Fc receptors and complement, (3) assay standardization and validation, and (4) immunoregulation of B cell responses. Structure-Assisted Immunogen Design Clinical studies have demonstrated that immunization with the gp120 surface unit of the HIV-1 envelope protein does not lead to the induction of potent or broadly reactive neutralizing antibodies. In order to develop better immunogens, it is likely that we will need a more detailed understanding of the atomic level structure of epitopes on the native envelope glycoprotein. Data on the X-ray crystal structure of liganded and unliganded partial gp120 molecules have provided valuable information about the atomic level interaction of gp120 and neutralizing Funding: Participation in the workshop was funded by the Global HIV Vaccine Enterprise. The authors received no additional funding for this article. Competing interests: The authors have declared that no competing interests exist. Citation: Montefiori D, Sattentau Q, Flores J, Esparza J, Mascola J, et al. (2007) Antibody-based HIV-1 vaccines: Recent developments and future directions. PLoS Med 4(12): e348. doi: /journal. pmed Copyright: 2007 Montefiori et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abbreviations: FcR, Fc receptor; MAb, monoclonal antibody; PBMC, peripheral blood mononuclear cells; SHIV, chimeric simian-human immunodeficiency virus; SIV, simian immunodeficiency virus David Montefiori is at Duke University Medical Center, Durham, North Carolina, United States of America. Quentin Sattentau is at University of Oxford, Oxford, United Kingdom. Jorge Flores is at the Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America. José Esparza is at the Bill & Melinda Gates Foundation, Seattle, Washington, United States of America. John Mascola is at the Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America. * To whom correspondence should be addressed. monte@duke.edu PLoS Medicine December 2007 Volume 4 Issue 12 e348

2 antibodies [9 12]. The recent atomic level resolution of monoclonal antibody (MAb) b12 bound to the CD4 receptor binding site of the gp120 molecule provides new insights into how successful neutralizing antibodies access functionally conserved regions of the Env glycoprotein [13]. Crystal structures of complete monomeric gp120 and gp120 gp41 trimer complexes in their native unliganded form need to be elucidated, as these are the natural targets for neutralizing antibodies. This information is needed for multiple genetic subtypes of the virus and for transmitted strains of the virus. Coupled with this effort should be a program to make necessary improvements in electron tomography technology to gain a higher resolution of native Env spikes as they exist on virus particles [14 16]. An improved understanding of the structural basis of antibody binding to the HIV-1 Env glycoprotein will likely form the foundation for a rational program of novel vaccine design. Ongoing efforts to stabilize gp120 into more immunogenic forms or to scaffold conserved neutralization epitopes into foreign proteins may lead to more promising antibody responses. Induction of an effective neutralizing antibody response will require that a vaccine deliver to the naïve B cell repertoire epitopes that are both immunogenic (i.e., possess favorable properties for B cell inductive pathways) and antigenic (i.e., available for high affinity antibody binding on functional Env spikes). Viral epitopes that are conserved among most viral strains are more likely to generate cross-reactive antibodies. In this regard, researchers have focused on a small number of human MAbs, from clade B HIV-1-infected individuals, that possess broadly cross-reactive neutralizing activity [17,18]. The cognate viral epitopes for these MAbs have been well characterized and are being evaluated as vaccine immunogens. However, for reasons that are not completely understood, these conserved viral epitopes have either been poorly immunogenic or have elicited antibodies of restricted reactivity. Improvements are being sought by introducing specific structural alterations [19,20] and by targeting autoreactive B cell pathways [21]. These and other efforts to improve the immunogenicity of conserved neutralization epitopes should remain a high priority. Workshop participants recognized the need to expand efforts to identify and characterize new MAbs, with special attention to MAbs from non-clade B HIV-1 infections. New technologies are now available that might afford an advantage for identifying novel antibody specificities that were previously undetected [22,23]. In addition to this focus on MAbs, sera from selected HIV-1- infected individuals that can broadly neutralize HIV-1 isolates should be studied in detail. New assays allow more precise mapping of the polyclonal antibody response in these sera to better understand the epitopes targeted [5,24 26]. Such studies may reveal novel antibody specificities and their associated viral epitopes that could be useful for immunogen design. While there has been considerable interest in conserved epitopes, less attention has been paid to more variable epitopes that might be useful if administered in the form of a polyvalent vaccine. Of particular interest are the epitopes that drive the autologous neutralizing antibody response in infected individuals. These epitopes may be quite variable, but recent evidence suggests that there are constraints on the extent of variation the virus can tolerate in these regions [27,28]. Detailed molecular and immunologic studies of the autologous neutralization response would enhance our understanding of viral determinants that are vulnerable to antibody attack. Similarly, it is possible that combinations of antibodies will have desirable additive or synergistic effects on virus neutralization [29 32]. An example is seen in how soluble CD4 binding rearranges the structure of gp120 to expose the highly conserved coreceptor binding domain, which allows antibody binding and virus neutralization to occur [33,34]. Such effects of antibodies might be discovered by applying high throughput screening methods to the plethora of existing MAbs as well as new MAbs that become available in the future. Role of Fc Receptors and Complement Recent findings have generated renewed interest in so-called nonneutralizing antibodies that are unable to directly inhibit free virus entry into target cells, but nonetheless exhibit antiviral activity mediated by the Fc region of the antibody molecule. These antibody effector mechanisms include complement binding and viral lysis, phagocytosis of antibody-coated virions, and antibody-dependent cellular cytotoxicity [35 38]. Recent studies have suggested examples of Fc-dependent antiviral effects of HIV- 1-positive serum in cases where there was little or no detectable activity in conventional neutralization assays [39,40]. In addition, passive transfer studies in a relevant monkey model suggest that Fc receptor (FcR) binding capacity of a protective antibody makes a substantial contribution to the antibody-mediated protection [41]. Antibody effector functions that mediate complement activation and FcR engagement on macrophages, dendritic cells, natural killer cells, and other cell types need to be evaluated to determine their relevance to HIV-1 vaccines. Assays that measure these antiviral antibodies should be standardized and used to assess biologic relevance in passive protection experiments in animal models using antibodies that exhibit the different effector functions in vitro. Assay Standardization and Validation In order to adequately monitor neutralization breadth and potency and to compare and prioritize immunogens, assays are needed that are sensitive, quantitative, high throughput, and have correlative value. Substantial improvements have been made in the past several years in assay technology and in available reference reagents. Thus, cumbersome and expensive assays using peripheral blood mononuclear cells (PBMC) and uncloned viruses are being replaced with assays that utilize molecularly cloned Env-pseudotyped viruses and genetically engineered target cells lines [2,42 45]. This new technology affords greater sensitivity, reproducibility, high throughput, and cost-effectiveness compared to PBMC assays, and as a result, it has been responsible for an explosion of new data. Steps are being taken by the Collaboration for AIDS Vaccine Discovery to transfer this new PLoS Medicine December 2007 Volume 4 Issue 12 e348

3 technology to multiple laboratories around the world and to implement a validated proficiency testing program to assure inter-laboratory equivalency in assay performance. Recently, several cases were identified where neutralization was considerably more potent or only detected in the older PBMC assay compared to the newer assay technology [43,46,47]. This raises important questions about current plans to employ a single assay for routine use, and it points to the need for a better understanding of the mechanisms of neutralization. Thus, it may be necessary to use more than one assay to assure that all neutralizing antibodies are detected. There is a need to standardize and compare neutralizing antibody assays and to decide which assay or combination of assays should be used for standardized assessments of vaccine-elicited neutralizing antibody responses. A major priority is to strengthen the standardization of the PBMC assay, given that it is the only assay that has been at least partially validated in passive antibody experiments in animal challenge models. Important decisions need to be made about the types of antibodies and assays that have greatest relevance to HIV-1 vaccines. Validation experiments in animals models are needed to determine the potential correlative value of new assay technologies that rely on the use of genetically engineered cells lines and Envpseudotyped viruses. Ideally, this would be done by employing several different assays to study the antibody response in a clinical efficacy trial in which the vaccine was at least partially protective. Because no such vaccine is currently available for HIV-1, studies in animal models are the next best choice. In this regard, two animal models are widely used for HIV vaccine development: simian immunodeficiency virus (SIV) and chimeric simian-human immunodeficiency virus (SHIV) infection in monkeys [48]. Quantitative passive transfer experiments in either model with antibodies that exhibit different effector functions could be used to address the biological relevance of in vitro assays. Unfortunately, very few SHIVs are currently available and, among these, most are derived from a single genetic subtype (clade B) and exhibit properties that may not be well suited to assay validation [49]. The creation of new and better SHIVs from non-clade B viruses would facilitate assay standardization as well as vaccine challenge models. Immunoregulation of B Cell Responses This workshop identified several critical gaps in the current understanding of B cell regulatory pathways that impede a more rational development of an effective antibody-based HIV- 1 vaccine. For example, broadly neutralizing antibodies in patient serum bind epitopes that are present on monomeric gp120 [25], yet this is a poor immunogen for neutralizing antibody induction in vaccine recipients. Moreover, as mentioned above, viral epitopes for the known broadly neutralizing MAbs appear to be poorly immunogenic in infected individuals and as vaccine candidates. Insights into the immunoregulation of some of these latter epitopes (e.g., epitopes defined by MAbs 2F5 and 4E10) was provided by recent studies in which the MAbs were discovered to bind one or more self antigens [50,51], raising the possibility that these antibody specificities are subjected to negative regulation mechanisms, such as receptor editing or deletion. Thus, Env as an immunogen may bypass key steps in the B cell inductive pathway, or may actively induce negative production or downregulation of production of some broadly neutralizing antibodies [52 54]. The receptor ligand interactions and intracellular signaling pathways that govern the production of antibodyproducing plasma cells and the persistence of plasma and memory B cells are poorly understood. Additional information on the mechanisms responsible for B cell migration, selection, and differentiation within and between specialized anatomical sites, particularly within lymphoid follicles, might be used to target suitable Env epitopes to appropriate B cell inductive pathways. An example would be to provide necessary signals to generate long-lived and high affinity memory in the marginal zone B cell compartment. Another example would be to discover ways to modify germinal center formation, positive and negative selection, and B cell differentiation to drive long-lived high affinity antibody responses against key epitopes that tend to be poorly immunogenic. In parallel to these efforts, genetic studies at the population level could provide critical information on the most promising paths to follow. In particular, the recent completion of the International HapMap Project now permits whole genome associated studies to be conducted with a minimum number of single nucleotide polymorphism tags [55,56]. This powerful new technology could be used to identify genes that are associated with the wide variation in neutralizing antibody responses in HIV-1-infected individuals and in vaccine recipients. A critical question to ask is whether the potent neutralizing antibody response in a small subset of infected individuals is due to unique viral epitopes or to host genetic polymorphisms. Current evidence suggests that both might make a substantial contribution in the context of combined epitope and allelic representations [28,47,57]. To date most studies of the humoral responses in HIV infections have investigated immunoglobulins, the final product of B cell responses. Relatively few studies have examined B cell immunopathogenesis. A number of basic questions are still unanswered (e.g., extent and reason for perturbation of B cell subset changes, including memory B cells and plasma cells, in peripheral blood and tissues). Questions also remain about other potential functional contributions of B cells to HIV infections (e.g., role as antigen-presenting cells). In vivo studies should be performed in the nonhuman primate animal model to determine the emergence of pathologic events in the B cell compartment, in particular in lymphatic and gastrointestinal tissues of naïve and vaccinated animals that are challenged with pathogenic SIV or SHIV. These investigations should be done in parallel to detailed analyses of the magnitude and function of HIV-specific immunoglobulin responses determined in plasma and tissue secretions, and of HIV-specific B cells on a single cell basis. The establishment of a research consortium to study fundamental B cell biology as it relates to HIV-1 vaccines is recommended. This program should be structured in a way that asks PLoS Medicine December 2007 Volume 4 Issue 12 e348

4 key scientific questions about B cell regulatory pathways that modulate Env immunogenicity. Studies could address B cell receptor ligand interactions and intracellular signaling pathways that govern the production of antibodyproducing plasma cells, the persistence of plasma and memory B cells, the mechanism of action of adjuvants, and host genetic associations with immune responses. Acknowledgements We thank Paul Pelphs for serving as rapporteur of the workshop. Author contributions. DM, QS, and JM organized the Enterprise workshop with the collaboration of JF and JE, and all of them contributed to writing the paper. Participants in the workshop contributed with formal presentations, discussions, and editing of the paper. The other members of the Enterprise Working Group were: James Bradac, Donald S. Burke, Emily Carrow, Robert Carter, Andrea Cerutti, Raphaelle El Habib, Donald N. Forthal, Barton F. Haynes, Gunilla Karlsson Hedestam, Peter Kwong, Christiane Moog, Victoria R. Polonis, Helen Quill, Gabriella Scarlatti, Jörn Schmitz, George M. Shaw, Sriram Subramaniam, Gerald Voss, Drew Weisman, and Richard Wyatt. References 1. Coordinating Committee of the Global HIV/ AIDS Vaccine Enterprise (2005) The Global HIV/AIDS Vaccine Enterprise: Scientific strategic plan. PLoS Med 2: e25. doi: / journal.pmed Mascola JR, D Souza P, Gilbert P, Hahn B, Haigwood NL, et al. (2005) Recommendations for the design and use of standard virus panels to assess neutralizing antibody responses elicited by candidate human immunodeficiency virus type 1 vaccines. J Virol 79: Wyatt R, Sodroski J (1998) The HIV-1 envelope glycoproteins: Fusogens, antigens, and immunogens. Science 280: Crooks ET, Moore PL, Richman D, Robinson J, Crooks JA, et al. (2005) Characterizing anti- HIV monoclonal antibodies and immune sera by defining the mechanism of neutralization. Hum Antibodies 14: Moore PL, Crooks ET, Porter L, Porter L, Zhu P, et al. (2006) The nature of non-functional envelope proteins on the surface of human immunodeficiency virus type 1. J Virol 80: Wei X, Decker JM, Wang S, Hui H, Kappes JC, et al. (2003) Antibody neutralization and escape by HIV-1. Nature 422: Bou-Habib DC, Roderiquez G, Oravecz, T, Berman, PW, Lusso P, et al. (1994) Cryptic nature of envelope V3 region epitopes protects primary monocytotropic human immunodeficiency virus type 1 from antibody neutralization. J Virol 68: Cao J, Sullivan N, Desjardin E, Parolin C, Robinson J, et al. (1997) Replication and neutralization of human immunodeficiency virus type 1 lacking the V1 and V2 variable loops of the gp120 envelope glycoprotein. J Virol 71: Kwong PD, Wyatt R, Robinson J, Sweet RW, Sodroski J, et al. (1998) Structure of an HIVgp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393: Kwong PD, Wyatt R, Majeed S, Robinson J, Sweet RW, et al. (2000) Structures of HIV-1 gp120 envelope glycoproteins from laboratoryadapted and primary isolates. Struct Fold Des 8: Chen B, Vogan EM, Gong H, Skehel JJ, Wiley DC, et al. (2005) Structure of an unliganded simian immunodeficiency virus gp120 core. Nature 433: Huang C-C, Tang M, Zhang MY, Majeed S, Montabana E, et al. (2005) Structure of a V3- containing HIV-1 gp120 core. Science 310: Zhou T, Xu L, Dey B, Hessell AJ, Van Ryk D, et al. (2007) Structural definition of a conserved neutralization epitope on HIV-1 gp120. Nature 445: Zhu P, Liu J, Bess J Jr, Chertova E, Lifson JD, et al. (2006) Distribution and three-dimensional structure of AIDS virus envelope spikes. Nature 441: Zanetti G, Briggs JAG, Grünewald K, Sattentau QJ, Fuller SD (2006) Cryo-electron tomographic structure of an immunodeficiency virus envelope complex in situ. PLoS Pathog 2: e83. doi: /journal.ppat Sougrat R, Bartesaghi A, Lifson JD, Bennett AE, Bess JW, et al. (2007) Electron tomography of the contact between T cells and SIV/HIV-1: Implications for viral entry. PLoS Pathog 3: e63. doi: /journal.ppat Pantophlet R, Burton DR (2006) GP120: Target for neutralizing HIV-1 antibodies. Annu Rev Immunol 24: Haynes BF, Montefiori DC (2006) Aiming to induce broadly reactive neutralizing antibody responses with HIV-1 vaccine candidates. Expert Rev Vaccines 5: Phogat S, Wyatt R (2007) Rational modifications of HIV-1 envelope glycoproteins for immunogen design. Cur Pharm Design 13: Burton DR, Desrosiers RC, Doms RW, Koff WC, Kwong PD, et al. (2004) HIV vaccine design and the neutralizing antibody problem. Nat Med 5: Haynes BF, Moody MA, Verkoczy L, Kelsoe G, Munir SM (2005) Antibody polyspecificity and neutralization of HIV-1: A hypothesis. Hum Antibodies 14: Bowley DR, Labrijn AF, Zwick MB, Burton DR (2007) Antigen selection from an HIV-1 immune antibody library displayed on yeast yields many novel antibodies compared to selection from the same library displayed on phage. Protein Eng Design Selection 20: Traggiai E, Becker S, Subbarao, K, Kolesnikova L, Uematsu Y, et al. (2004) An efficient method to make human monoclonal antibodies from memory B cells: Potent neutralization of SARS coronavirus. Nat Med 10: Yuste E, Sanford HB, Carmody J, Bixby J, Little S, et al. (2006) Simian immunodeficiency virus engrafted with human immunodeficiency virus type 1 (HIV-1)-specific epitopes: Replication, neutralization, and survey of HIV-1-positive sera. J Virol 80: Li Y, Migueles S, Welcher B, Svehla K, Phogart A, et al. (2007) Broad HIV-1 neutralization mediated by CD4 binding site antibodies. Nat Med 13: Dhillon AK, Donners H, Pantophlet R, Johnson WE, Decker JM, et al. (2007) Dissecting the neutralizing antibody specificities of broadly neutralizing sera from human immunodeficiency virus type 1-infected donors. J Virol 81: Deeks SG, Schweighardt B, Wrin T, Galovich J, Hoh R, et al. (2006) Neutralizing antibody responses against autologous and heterologous viruses in acute versus chronic human immunodeficiency virus (HIV) infection: Evidence for a constraint on the ability of HIV to completely evade neutralizing antibody responses. J Virol 80: Draenert R, Allen TM, Liu Y, Wrin T, Chappey C, et al. (2006) Constraints on HIV-1 evolution and immunodominance revealed in monozygotic adult twins infected with the same virus. J Exp Med 203: Montefiori DC, Graham BS, Zhou JT, Zhou JY, Bucco R, et al. (1993) V3-specific neutralizing antibodies in sera from HIV-1 gp160-immunized volunteers block virus fusion and act synergistically with human monoclonal antibody to the conformation-dependent CD4 binding region of gp120. J Clin Invest 92: Thali M, Furman C, Wahren B, Posner M, Ho DD, et al. (1992) Cooperativity of neutralizing antibodies directed against the V3 and CD4 binding regions of the human immunodeficiency virus gp120 envelope glycoproteins. J Acquired Immune Defic Syndr 5: Tilley SA, Honnen WJ, Racho ME, Chou T-C, Pinter A (1992) Synergistic neutralization of HIV-1 by human monoclonal antibodies against the V3 loop and the CD4-binding site of gp120. AIDS Res Hum Retroviruses 8: Li A, Katinger H, Posner MR, Cavacini L, Zolla-Pazner S, et al. (1998) Synergistic neutralization of simian-human immunodeficiency virus SHIV-vpu+ by triple and quaduple combinations of human monoclonal antibodies and high-titer antihuman immunodeficiency virus type 1 immunoglobulins. J Virol 72: Sullivan N, Sun Y, Sattentau Q, Thali M, Wu D, et al. (1998) CD4-induced conformational changes in the human immunodeficiency virus type 1 gp120 glycoprotein: consequences for virus entry and neutralization. J Virol 72: Decker J, Bibollet-Ruche F, Wei X, Wang S, Levy DN, et al. (2005) Antigenic conservation and immunogenicity of the HIV coreceptor binding site. J Exp Med 201: Forthal DN, Landucci G, Stefano-Cole K, Marthas M, Becerra JC, et al. (2006) Rhesus macaque polyclonal and monoclonal antibodies inhibit simian immunodeficiency virus in the presence of human or autologous rhesus effector cells. J Virol 80: Gomez-Roman VR, Patterson LJ, Venson D, Liewehr D, Aldrich K, et al. (2005) Vaccine-elicited antibodies mediate antibodydependent cellular cytotoxicity correlated with significantly reduced acute viremia in rhesus macaques challenged with SIV. J Immunol 174: Aasa-Chapman MMI, Holuigue S, Aubin K, Wong M, Jones NA, et al. (2005) Detection of antibody-dependent complementmediated inactivation of both autologous and heterologous virus in primary human immunodeficiency virus type 1 infection. J Virol 79: Huber M, Fischer M, Misselwitz B, Manrique A, Kuster H, et al. (2006) Complement lysis activity in autologous plasma is associated with lower viral loads during the acute phase of HIV- 1 infection. PLoS Med 3: e441. doi: / journal.pmed Holl V, Peressin M, Schmidt S, Decoville T, Zolla-Pasner S, et al. (2006) Efficient inhibition of HIV-1 replication in human immature monocyte-derived dendritic cells by purified anti-hiv-1 IgG without induction of maturation. Blood 107: Holl V, Peressin M, Decoville T, Schmidt S, Zolla-Pazner S, et al. (2006) Nonneutralizing antibodies are able to inhibit human immunodeficiency virus type l replication in macrophages and immature dendritic cells. J Virol 80: Hessell AJ, Hangartner L, Hunter M, Havenith CEG, Beurskens FJ, et al. (2007) Fc receptor PLoS Medicine December 2007 Volume 4 Issue 12 e348

5 but not complement binding is important in antibody protection against HIV. Nature 449: Li M, Salazar-Gonzalez JF, Derdeyn CA, Morris L, Williamson C, et al. (2006) Genetic and neutralization properties of subtype C human immunodeficiency virus type 1 molecular env clones from acute and early heterosexually acquired infections in Southern Africa. J Virol 80: Binley J, Wrin T, Korber B, Zwick M, Wang M, et al. (2004) Comprehensive cross-subtype neutralization analysis of a panel of anti-human immunodeficiency virus type 1 monoclonal antibodies. J Virol 78: Li M, Gao F, Mascola JR, Stamatatos L, Polonis VR, et al. (2005) Human immunodeficiency virus type 1 env clones from acute and early subtype B infections for standardized assessments of vaccine-elicited neutralizing antibodies. J Virol 79: Richman DD, Wrin T, Little SJ, Petropoulos CJ (2003) Rapid evolution of the neutralizing antibody response to HIV type 1 infection. Proc Natl Acad Sci U S A 100: Brown BK, Karasavvas N, Beck Z, Matyas GR, Birx DL, et al. (2007) Monoclonal antibodies to phosphatidylinositol phosphate neutralize human immunodeficiency virus type 1: Role of phosphate-binding substrates. J Virol 81: Choudhry V, Zhang M-Y, Sidrov IA, Bouma P, Cham F, et al. (2007) Cross-reactive HIV-1 neutralizing monoclonal antibodies selected by screening of an immune human phage library against an envelope glycoprotein (gp140) isolate from a patient (R2) with broadly HIV-1 neutralizing antibodies. Virology 363: Hu S-L (2005) Non-human primate models for AIDS vaccine research. Curr Drug Targets 5: Feinberg MB, Moore JP (2002) AIDS vaccine models: Challenging challenge viruses. Nat Med 8: Haynes B, Fleming J, St. Clair E, Katinger H, Steigler G, et al. (20050 Cardiolipin polyspecific autoreactivity in two broadly neutralizing HIV-1 antibodies. Science 308: Alam SM, McAdams M, Boren D, Rak M, Scearce RM, et al. (2007) The role of antibody polyspecificity and lipid reactivity in binding of broadly neutralizing anti-hiv-1 envelope human monoclonal antibodies 2F5 and 4E10 to glycoprotein 41 membrane proximal envelope epitopes. J Immunol 178: Fernando K, Hu H, Ni H, Hoxie JA, Weissman D (2007) Vaccine-delivered HIV envelope inhibits CD4 + T-cell activation, a mechanism for poor HIV vaccine responses. Blood 109: He B, Qiao X, Kalsse PJ, Chiu A, Chadburn A, et al. (2006) HIV-1 envelope triggers polyclonal Ig class switch recombination through CD4- independent mechanism involving BAFF and C-type lectin receptors. J Immunol 176: Binley JM, Klasse PJ, Cao Y, Jones I, Markowitz M, et al. (1997) Differential regulation of the antibody response to gag and Env proteins of human immunodeficiency virus type 1. J Virol 71: Conrad DF, Jakobsson M, Coop G, Wen X, Wall JD, et al. (2006) A worldwide survey of haplotype variation and linkage disequilibrium in the human genome. Nat Genet 38: de Bakker PIW, Burtt NP, Graham RR, Guiducci C, Yelensky R, et al. (2006) Transferability of tag SNPs in genetic association studies in multiple populations. Nat Genet 38: Zhang PF, Cham F, Dong M, Choudhary A, Bouma P, et al. (2007) Extensively crossreactive anti-hiv-1 neutralizing antibodies induced by gp140 immunization. Proc Natl Acad Sci U S A 104: PLoS Medicine December 2007 Volume 4 Issue 12 e348

EMERGING ISSUES IN THE HUMORAL IMMUNE RESPONSE TO HIV. (Summary of the recommendations from an Enterprise Working Group)

EMERGING ISSUES IN THE HUMORAL IMMUNE RESPONSE TO HIV. (Summary of the recommendations from an Enterprise Working Group) AIDS Vaccine 07, Seattle, August 20-23, 2007 EMERGING ISSUES IN THE HUMORAL IMMUNE RESPONSE TO HIV (Summary of the recommendations from an Enterprise Working Group) The Working Group Reston, Virginia,

More information

HIV Anti-HIV Neutralizing Antibodies

HIV Anti-HIV Neutralizing Antibodies ,**/ The Japanese Society for AIDS Research The Journal of AIDS Research : HIV HIV Anti-HIV Neutralizing Antibodies * Junji SHIBATA and Shuzo MATSUSHITA * Division of Clinical Retrovirology and Infectious

More information

From Antibody to Vaccine a Tale of Structural Biology and Epitope Scaffolds

From Antibody to Vaccine a Tale of Structural Biology and Epitope Scaffolds Dale and Betty Bumpers Vaccine Research Center National Institute of Allergy and Infectious Diseases National Institutes of Health Department of Health and Human Services From Antibody to Vaccine a Tale

More information

Recombinant Baculovirus Derived HIV-1 Virus-Like Particles Elicit Potent Neutralizing Antibody Responses

Recombinant Baculovirus Derived HIV-1 Virus-Like Particles Elicit Potent Neutralizing Antibody Responses Recombinant Baculovirus Derived HIV-1 Virus-Like Particles Elicit Potent Neutralizing Antibody Responses Weimin Liu University of Alabama at Birmingham Introduction and Rationale Virus-like particles (VLPs)

More information

Challenges in Designing HIV Env Immunogens for Developing a Vaccine

Challenges in Designing HIV Env Immunogens for Developing a Vaccine b514_chapter-13.qxd 12/4/2007 3:39 PM Page 327 Chapter 13 Challenges in Designing HIV Env Immunogens for Developing a Vaccine Indresh K. Srivastava* and R. Holland Cheng Summary HIV continues to be a major

More information

2005 LANDES BIOSCIENCE. DO NOT DISTRIBUTE.

2005 LANDES BIOSCIENCE. DO NOT DISTRIBUTE. [Human Vaccines 1:2, 45-60; March/April 2005]; 2005 Landes Bioscience Review Role of Neutralizing Antibodies in Protective Immunity Against HIV Indresh K. Srivastava* Jeffrey B. Ulmer Susan W. Barnett

More information

Immunogens and Antigen Processing: Report from a Global HIV Vaccine Enterprise Working Group

Immunogens and Antigen Processing: Report from a Global HIV Vaccine Enterprise Working Group report Immunogens and Antigen Processing: Report from a Global HIV Vaccine Enterprise Working Group John Mascola, C Richter King & Ralph Steinman on behalf of a Working Group convened by the Global HIV

More information

GOVX-B11: A Clade B HIV Vaccine for the Developed World

GOVX-B11: A Clade B HIV Vaccine for the Developed World GeoVax Labs, Inc. 19 Lake Park Drive Suite 3 Atlanta, GA 3 (678) 384-72 GOVX-B11: A Clade B HIV Vaccine for the Developed World Executive summary: GOVX-B11 is a Clade B HIV vaccine targeted for use in

More information

Antibody Dependent Cellular Cytotxic activity: Past and Future. Guido Ferrari, M.D. Duke University Medical Center

Antibody Dependent Cellular Cytotxic activity: Past and Future. Guido Ferrari, M.D. Duke University Medical Center Antibody Dependent Cellular Cytotxic activity: Past and Future Guido Ferrari, M.D. Duke University Medical Center Mechanism of Antibody Dependent Cellular Cytotoxicity (ADCC) ADCC Effector Cells (NK, monocytes/macrophages,

More information

Available online at Minireview

Available online at   Minireview Available online at www.sciencedirect.com Virology 375 (2008) 315 320 www.elsevier.com/locate/yviro Minireview Recent advances in the characterization of HIV-1 neutralization assays for standardized evaluation

More information

Generation of Robust Antibody Responses to HIV-1 MPER Antigens in Mice Reconstituted with Cultured B cells

Generation of Robust Antibody Responses to HIV-1 MPER Antigens in Mice Reconstituted with Cultured B cells Generation of Robust Antibody Responses to HIV-1 MPER Antigens in Mice Reconstituted with Cultured B cells T. Matt Holl 1, Masayuki Kuraoka 1, Dongmei Liao 1, Laurent Verkoczy 2, M. Anthony Moody 2, Munir

More information

Adaptive Immunity: Humoral Immune Responses

Adaptive Immunity: Humoral Immune Responses MICR2209 Adaptive Immunity: Humoral Immune Responses Dr Allison Imrie 1 Synopsis: In this lecture we will review the different mechanisms which constitute the humoral immune response, and examine the antibody

More information

On an individual level. Time since infection. NEJM, April HIV-1 evolution in response to immune selection pressures

On an individual level. Time since infection. NEJM, April HIV-1 evolution in response to immune selection pressures HIV-1 evolution in response to immune selection pressures BISC 441 guest lecture Zabrina Brumme, Ph.D. Assistant Professor, Faculty of Health Sciences Simon Fraser University http://www3.niaid.nih.gov/topics/hivaids/understanding/biology/structure.htm

More information

Third line of Defense

Third line of Defense Chapter 15 Specific Immunity and Immunization Topics -3 rd of Defense - B cells - T cells - Specific Immunities Third line of Defense Specific immunity is a complex interaction of immune cells (leukocytes)

More information

Lynn Morris. "Plan B"- bnabs for HIV prevention

Lynn Morris. Plan B- bnabs for HIV prevention "Plan B"- bnabs for HIV prevention Lynn Morris National Institute for Communicable Diseases, a division of the National Health Laboratory Service (NHLS) of South Africa, University of the Witwatersrand,

More information

NK mediated Antibody Dependent Cellular Cytotoxicity in HIV infections

NK mediated Antibody Dependent Cellular Cytotoxicity in HIV infections NK mediated Antibody Dependent Cellular Cytotoxicity in HIV infections Amy Chung Dr. Ivan Stratov Prof. Stephen Kent ADCC process consists of Target cell QuickTime and a TIFF (Uncompressed) FcγR decompressor

More information

Novel Vaccine Products for Planned Phase I Immunogenicity Studies in Infants

Novel Vaccine Products for Planned Phase I Immunogenicity Studies in Infants Office of AIDS Research Novel Vaccine Products for Planned Phase I Immunogenicity Studies in Infants L. Jean Patterson, PhD Office of AIDS Research, NIH February 7, 2017 Office of AIDS Research OAR Responsibilities

More information

RAISON D ETRE OF THE IMMUNE SYSTEM:

RAISON D ETRE OF THE IMMUNE SYSTEM: RAISON D ETRE OF THE IMMUNE SYSTEM: To Distinguish Self from Non-Self Thereby Protecting Us From Our Hostile Environment. Innate Immunity Acquired Immunity Innate immunity: (Antigen nonspecific) defense

More information

The Adaptive Immune Response. B-cells

The Adaptive Immune Response. B-cells The Adaptive Immune Response B-cells The innate immune system provides immediate protection. The adaptive response takes time to develop and is antigen specific. Activation of B and T lymphocytes Naive

More information

Principles of Adaptive Immunity

Principles of Adaptive Immunity Principles of Adaptive Immunity Chapter 3 Parham Hans de Haard 17 th of May 2010 Agenda Recognition molecules of adaptive immune system Features adaptive immune system Immunoglobulins and T-cell receptors

More information

HIV and Challenges of Vaccine Development

HIV and Challenges of Vaccine Development Dale and Betty Bumpers Vaccine Research Center National Institute of Allergy and Infectious Diseases National Institutes of Health HIV and Challenges of Vaccine Development Richard A. Koup, MD INTEREST

More information

A Path to an HIV Vaccine: GSID Consortium Activities. Faruk Sinangil, PhD 4th Annual CAVD Meeting Miami, FL December 1-4, 2009

A Path to an HIV Vaccine: GSID Consortium Activities. Faruk Sinangil, PhD 4th Annual CAVD Meeting Miami, FL December 1-4, 2009 A Path to an HIV Vaccine: GSID Consortium Activities Faruk Sinangil, PhD 4th Annual CAVD Meeting Miami, FL December 1-4, 2009 Project Goals Acquire and disseminate information that will contribute to the

More information

What is the place of the monoclonal antibodies in the clinic?

What is the place of the monoclonal antibodies in the clinic? What is the place of the monoclonal antibodies in the clinic? Dr Julià Blanco 2018/04/26 DISCLOSURE AlbaJuna Therapeutics, S.L. ANTIBODIES IN HIV INFECTION. ANTIVIRAL (NEUTRALIZING) ACTIVITY env THE BROADLY

More information

RAISON D ETRE OF THE IMMUNE SYSTEM:

RAISON D ETRE OF THE IMMUNE SYSTEM: RAISON D ETRE OF THE IMMUNE SYSTEM: To Distinguish Self from Non-Self Thereby Protecting Us From Our Hostile Environment. Innate Immunity Adaptive Immunity Innate immunity: (Antigen - nonspecific) defense

More information

The challenge of an HIV vaccine from the antibody perspective. Dennis Burton The Scripps Research Institute

The challenge of an HIV vaccine from the antibody perspective. Dennis Burton The Scripps Research Institute The challenge of an HIV vaccine from the antibody perspective Dennis Burton The Scripps Research Institute AIDS Pandemic Nov 2005 North America 1.2 million [650 000 1.8 million] Caribbean 300 000 [200

More information

The Rational Design of an AIDS Vaccine

The Rational Design of an AIDS Vaccine Leading Edge Essay The Rational Design of an AIDS Vaccine Daniel C. Douek, 1 Peter D. Kwong, 1 and Gary J. Nabel 1, * 1 Vaccine Research Center, NIAID, National Institutes of Health, Room 4502, Building

More information

Isolation of a Broadly Neutralizing Antibody with Low Somatic Mutation from a Chronically Infected HIV-1 Patient

Isolation of a Broadly Neutralizing Antibody with Low Somatic Mutation from a Chronically Infected HIV-1 Patient Isolation of a Broadly Neutralizing Antibody with Low Somatic Mutation from a Chronically Infected HIV-1 Patient Amanda Fabra García, Carolina Beltrán Pavez, Alberto Merino Mansilla, Cristina Xufré, Isabel

More information

Neutralizing Antibody Responses in Acute Human Immunodeficiency Virus Type 1 Subtype C Infection

Neutralizing Antibody Responses in Acute Human Immunodeficiency Virus Type 1 Subtype C Infection JOURNAL OF VIROLOGY, June 2007, p. 6187 6196 Vol. 81, No. 12 0022-538X/07/$08.00 0 doi:10.1128/jvi.00239-07 Copyright 2007, American Society for Microbiology. All Rights Reserved. Neutralizing Antibody

More information

Crystal structure of the neutralizing antibody HK20 in complex with its gp41 antigen

Crystal structure of the neutralizing antibody HK20 in complex with its gp41 antigen Crystal structure of the neutralizing antibody HK20 in complex with its gp41 antigen David Lutje Hulsik Unit for Virus Host Cell Interaction UMI 3265 University Joseph Fourier-EMBL-CNRS, Grenoble Env catalyzed

More information

Third line of Defense. Topic 8 Specific Immunity (adaptive) (18) 3 rd Line = Prophylaxis via Immunization!

Third line of Defense. Topic 8 Specific Immunity (adaptive) (18) 3 rd Line = Prophylaxis via Immunization! Topic 8 Specific Immunity (adaptive) (18) Topics - 3 rd Line of Defense - B cells - T cells - Specific Immunities 1 3 rd Line = Prophylaxis via Immunization! (a) A painting of Edward Jenner depicts a cow

More information

Nonsynonymous Amino Acid Mutations in gp120 Binding Sites are Related to Progression of HIV-1

Nonsynonymous Amino Acid Mutations in gp120 Binding Sites are Related to Progression of HIV-1 Nonsynonymous Amino Acid Mutations in gp120 Binding Sites are Related to Progression of HIV-1 Matthew Allegretti and Anindita Varshneya BIOL 368: Bioinformatics Laboratory Loyola Marymount University November

More information

The Humoral Response to HIV-1: New Insights, Renewed Focus

The Humoral Response to HIV-1: New Insights, Renewed Focus SUPPLEMENT ARTICLE The Humoral Response to HIV-1: New Insights, Renewed Focus Galit Alter 1 and M. Anthony Moody 2 1 Ragon Institute of MGH, Massachusetts Institute of Technology and Harvard University;

More information

Min Levine, Ph. D. Influenza Division US Centers for Disease Control and Prevention. June 18, 2015 NIBSC

Min Levine, Ph. D. Influenza Division US Centers for Disease Control and Prevention. June 18, 2015 NIBSC Workshop on Immunoassay Standardization for Universal Flu Vaccines Min Levine, Ph. D. Influenza Division US Centers for Disease Control and Prevention June 18, 2015 NIBSC 1 Multiple Immune Mechanisms Contribute

More information

Dissecting the Neutralizing Antibody Specificities of Broadly Neutralizing Sera from Human Immunodeficiency Virus Type 1-Infected Donors

Dissecting the Neutralizing Antibody Specificities of Broadly Neutralizing Sera from Human Immunodeficiency Virus Type 1-Infected Donors JOURNAL OF VIROLOGY, June 2007, p. 6548 6562 Vol. 81, No. 12 0022-538X/07/$08.00 0 doi:10.1128/jvi.02749-06 Copyright 2007, American Society for Microbiology. All Rights Reserved. Dissecting the Neutralizing

More information

7/14/2014. Multiple immune effector mechanisms contribute to protection influenza. What is a correlate of protection?

7/14/2014. Multiple immune effector mechanisms contribute to protection influenza. What is a correlate of protection? What is a correlate of protection? Immunological Assessment of Influenza Vaccines and Correlates of Protection Jacqueline Katz Influenza Division Centers for Disease Control and Prevention Defined immune

More information

A VACCINE FOR HIV BIOE 301 LECTURE 10 MITALI BANERJEE HAART

A VACCINE FOR HIV BIOE 301 LECTURE 10 MITALI BANERJEE HAART BIOE 301 LECTURE 10 MITALI BANERJEE A VACCINE FOR HIV HIV HAART Visit wikipedia.org and learn the mechanism of action of the five classes of antiretroviral drugs. (1) Reverse transcriptase inhibitors (RTIs)

More information

HVTN P5 Vaccine Trials

HVTN P5 Vaccine Trials HVTN P5 Vaccine Trials Erica Andersen-Nissen, PhD Director, Cape Town HVTN Immunology Laboratory Considerations for a Pan-African HIV Vaccine Development Agenda Kigali, Rwanda 16-17 March 2015 HVTN Mission

More information

Medical Virology Immunology. Dr. Sameer Naji, MB, BCh, PhD (UK) Head of Basic Medical Sciences Dept. Faculty of Medicine The Hashemite University

Medical Virology Immunology. Dr. Sameer Naji, MB, BCh, PhD (UK) Head of Basic Medical Sciences Dept. Faculty of Medicine The Hashemite University Medical Virology Immunology Dr. Sameer Naji, MB, BCh, PhD (UK) Head of Basic Medical Sciences Dept. Faculty of Medicine The Hashemite University Human blood cells Phases of immune responses Microbe Naïve

More information

Virus Panels for Assessing Vaccine-Elicited Neutralizing Antibodies

Virus Panels for Assessing Vaccine-Elicited Neutralizing Antibodies Virus Panels for Assessing Vaccine-Elicited Neutralizing Antibodies Michael Seaman, Ph.D. Center for Virology and Vaccine Research Beth Israel Deaconess Medical Center Harvard Medical School J. Virol.

More information

University of Cape Town

University of Cape Town Neutralizing Antibody Responses in HIV-1 Dual Infection: Lessons for Vaccine Design Daniel James Sheward Supervisor: Carolyn Williamson Co- supervisor: Zenda Woodman Dissertation submitted to the Faculty

More information

NIAID Vaccine Research Center: A Mission to Prevent HIV Infection

NIAID Vaccine Research Center: A Mission to Prevent HIV Infection NIAID Vaccine Research Center: A Mission to Prevent HIV Infection AIDS Vaccine Awareness Day 20 year anniversary May 18, 2017 Barney S. Graham, MD, PhD Deputy Director Origins of the VRC 1997 1998

More information

Current Strategies in HIV-1 Vaccine Development Using Replication-Defective Adenovirus as a Case Study

Current Strategies in HIV-1 Vaccine Development Using Replication-Defective Adenovirus as a Case Study Note: I have added some clarifying comments to the slides -- please click on Comments under View to see them. Current Strategies in HIV-1 Vaccine Development Using Replication-Defective Adenovirus as a

More information

Structural Insights into HIV-1 Neutralization by Broadly Neutralizing Antibodies PG9 and PG16

Structural Insights into HIV-1 Neutralization by Broadly Neutralizing Antibodies PG9 and PG16 Structural Insights into HIV-1 Neutralization by Broadly Neutralizing Antibodies PG9 and PG16 Robert Pejchal, Laura M. Walker, Robyn L. Stanfield, Wayne C. Koff, Sanjay K. Phogat, Pascal Poignard, Dennis

More information

HVTN Laboratory Program: Immunogenicity and Research Assays

HVTN Laboratory Program: Immunogenicity and Research Assays HVTN Laboratory Program: Immunogenicity and Research Assays Erica Andersen-Nissen, PhD Director, Cape Town HVTN Immunology Laboratory Considerations for a Pan-African HIV Vaccine Development Agenda Kigali,

More information

Alternate Antibody-Based Therapeutic Strategies To Purge the HIV Cell Reservoir

Alternate Antibody-Based Therapeutic Strategies To Purge the HIV Cell Reservoir Alternate Antibody-Based Therapeutic Strategies To Purge the HIV Cell Reservoir Giuseppe Pantaleo, M.D. Professor of Medicine Head, Division of Immunology and Allergy Executive Director, Swiss Vaccine

More information

Supporting Information

Supporting Information Supporting Information Walker et al. 1.173/pnas.111753118 - JR-CSF 1 3 1 4 1 5 1 6 1 7 1 8 blank beads protein A beads JR-FL - 1 3 1 4 1 5 1 6 1 7 1 8 - MGRM-C26 1 3 1 4 1 5 1 6 1 7 1 8 reciprocal serum

More information

An Exploration to Determine if Fab Molecules are Efficacious in Neutralizing Influenza H1 and H3 Subtypes. Nick Poulton June September 2012

An Exploration to Determine if Fab Molecules are Efficacious in Neutralizing Influenza H1 and H3 Subtypes. Nick Poulton June September 2012 An Exploration to Determine if Fab Molecules are Efficacious in Neutralizing Influenza H1 and H3 Subtypes Nick Poulton June 2012- September 2012 Epidemiology of Influenza Infection Causes between 250,000

More information

HIV Vaccines: Basic Science

HIV Vaccines: Basic Science Dale and Betty Bumpers Vaccine Research Center National Institute of Allergy and Infectious Diseases National Institutes of Health HIV Vaccines: Basic Science Richard A. Koup, MD 6 th INTEREST Workshop

More information

AIDSVaccine2010 Atlanta, Georgia Willy Bogers. NIH HIVRad Grant nr 5P01AI066287

AIDSVaccine2010 Atlanta, Georgia Willy Bogers. NIH HIVRad Grant nr 5P01AI066287 HIV-1 envelope-cd4 receptor complexes elicit broad T- and B- cell immune responses as well as cross-reactive neutralizing antibodies in Rhesus macaques NIH HIVRad Grant nr 5P01AI066287 AIDSVaccine2010

More information

HIV/AIDS: vaccines and alternate strategies for treatment and prevention

HIV/AIDS: vaccines and alternate strategies for treatment and prevention Ann. N.Y. Acad. Sci. ISSN 0077-8923 ANNALS OF THE NEW YORK ACADEMY OF SCIENCES Online Meeting Report HIV/AIDS: vaccines and alternate strategies for treatment and prevention Yegor Voronin 1 and Sanjay

More information

Are we targeting the right HIV determinants?

Are we targeting the right HIV determinants? QuickTime et un décompresseur TIFF (non compressé) sont requis pour visionner cette image. AIDS Vaccine 2009 October 22 nd 2009 - Paris Are we targeting the right HIV determinants? Françoise BARRÉ-SINOUSSI

More information

The Adaptive Immune Responses

The Adaptive Immune Responses The Adaptive Immune Responses The two arms of the immune responses are; 1) the cell mediated, and 2) the humoral responses. In this chapter we will discuss the two responses in detail and we will start

More information

COMPUTATIONAL ANALYSIS OF CONSERVED AND MUTATED AMINO ACIDS IN GP160 PROTEIN OF HIV TYPE-1

COMPUTATIONAL ANALYSIS OF CONSERVED AND MUTATED AMINO ACIDS IN GP160 PROTEIN OF HIV TYPE-1 Journal of Cell and Tissue Research Vol. 10(3) 2359-2364 (2010) ISSN: 0973-0028 (Available online at www.tcrjournals.com) Original Article COMPUTATIONAL ANALYSIS OF CONSERVED AND MUTATED AMINO ACIDS IN

More information

DEBATE ON HIV ENVELOPE AS A T CELL IMMUNOGEN HAS BEEN GAG-GED

DEBATE ON HIV ENVELOPE AS A T CELL IMMUNOGEN HAS BEEN GAG-GED DEBATE ON HIV ENVELOPE AS A T CELL IMMUNOGEN HAS BEEN GAG-GED Viv Peut Kent Laboratory, University of Melbourne, Australia WHY ENVELOPE? Env subject to both humoral and cellular immune responses Perhaps

More information

Antibody-Dependent Cell-Mediated Cytotoxicity in Simian Immunodeficiency Virus-Infected Rhesus Monkeys

Antibody-Dependent Cell-Mediated Cytotoxicity in Simian Immunodeficiency Virus-Infected Rhesus Monkeys JOURNAL OF VIROLOGY, July 2011, p. 6906 6912 Vol. 85, No. 14 0022-538X/11/$12.00 doi:10.1128/jvi.00326-11 Copyright 2011, American Society for Microbiology. All Rights Reserved. Antibody-Dependent Cell-Mediated

More information

Magnitude and Breadth of a Nonprotective Neutralizing Antibody Response in an Efficacy Trial of a Candidate HIV-1 gp120 Vaccine

Magnitude and Breadth of a Nonprotective Neutralizing Antibody Response in an Efficacy Trial of a Candidate HIV-1 gp120 Vaccine MAJOR ARTICLE Magnitude and Breadth of a Nonprotective Neutralizing Antibody Response in an Efficacy Trial of a Candidate HIV-1 gp120 Vaccine Peter Gilbert, 1 Maggie Wang, 1 Terri Wrin, 2 Chris Petropoulos,

More information

CELL BIOLOGY - CLUTCH CH THE IMMUNE SYSTEM.

CELL BIOLOGY - CLUTCH CH THE IMMUNE SYSTEM. !! www.clutchprep.com CONCEPT: OVERVIEW OF HOST DEFENSES The human body contains three lines of against infectious agents (pathogens) 1. Mechanical and chemical boundaries (part of the innate immune system)

More information

Should There be Further Efficacy Testing of T-T cell Based Vaccines that do not Induce Broadly Neutralizing Antibodies?

Should There be Further Efficacy Testing of T-T cell Based Vaccines that do not Induce Broadly Neutralizing Antibodies? Dale and Betty Bumpers Vaccine Research Center National Institute of Allergy and Infectious Diseases National Institutes of Health Department of Health and Human Services Should There be Further Efficacy

More information

Broad and Potent Neutralizing Antibodies from an African Donor Reveal a New HIV-1 Vaccine Target

Broad and Potent Neutralizing Antibodies from an African Donor Reveal a New HIV-1 Vaccine Target Broad and Potent Neutralizing Antibodies from an African Donor Reveal a New HIV-1 Vaccine Target Laura M. Walker, 1 * Sanjay K. Phogat, 2 * Po-Ying Chan-Hui, 3 Denise Wagner, 2 Pham Phung, 4 Julie L. Goss,

More information

Boosts Following Priming with gp120 DNA

Boosts Following Priming with gp120 DNA Neutralizing Antibody Responses Induced with V3-scaffold Protein Boosts Following Priming with gp120 DNA Susan Zolla-Pazner NYU School of Medicine Problems with Whole Env Immunogens Poor induction of Abs

More information

Lecture 11. Immunology and disease: parasite antigenic diversity

Lecture 11. Immunology and disease: parasite antigenic diversity Lecture 11 Immunology and disease: parasite antigenic diversity RNAi interference video and tutorial (you are responsible for this material, so check it out.) http://www.pbs.org/wgbh/nova/sciencenow/3210/02.html

More information

Higher priming doses enhance HIV-specific humoral but not cellular. responses in a randomized, double-blind phase Ib clinical trial of

Higher priming doses enhance HIV-specific humoral but not cellular. responses in a randomized, double-blind phase Ib clinical trial of Higher priming doses enhance HIV-specific humoral but not cellular responses in a randomized, double-blind phase Ib clinical trial of preventive HIV-1 vaccines Pierre-Alexandre Bart a,b, Yunda Huang c,

More information

University of Massachusetts Medical School Michael Vaine University of Massachusetts Medical School

University of Massachusetts Medical School Michael Vaine University of Massachusetts Medical School University of Massachusetts Medical School escholarship@umms GSBS Student Publications Graduate School of Biomedical Sciences 8-23-2008 Improved induction of antibodies against key neutralizing epitopes

More information

How HIV Causes Disease Prof. Bruce D. Walker

How HIV Causes Disease Prof. Bruce D. Walker How HIV Causes Disease Howard Hughes Medical Institute Massachusetts General Hospital Harvard Medical School 1 The global AIDS crisis 60 million infections 20 million deaths 2 3 The screen versions of

More information

Fayth K. Yoshimura, Ph.D. September 7, of 7 HIV - BASIC PROPERTIES

Fayth K. Yoshimura, Ph.D. September 7, of 7 HIV - BASIC PROPERTIES 1 of 7 I. Viral Origin. A. Retrovirus - animal lentiviruses. HIV - BASIC PROPERTIES 1. HIV is a member of the Retrovirus family and more specifically it is a member of the Lentivirus genus of this family.

More information

Spike Trimer RNA. dsdna

Spike Trimer RNA. dsdna Spike Trimer RNA dsdna Spike Trimer RNA Spike trimer subunits xxx gp120: receptor and coreceptor binding xxxxxxx gp41: membrane anchoring and target cell fusion dsdna Spike Trimer HIV gp120 binds to host

More information

Strategies for an HIV vaccine

Strategies for an HIV vaccine Strategies for an HIV vaccine Norman L. Letvin J Clin Invest. 2002;110(1):15-27. https://doi.org/10.1172/jci15985. Perspective The development of an HIV vaccine poses an unprecedented challenge to the

More information

Glycosylation of the ENV Spike of Primate Immunodeficiency Viruses and Antibody Neutralization

Glycosylation of the ENV Spike of Primate Immunodeficiency Viruses and Antibody Neutralization Current HIV Research, 2004, 2, 243-254 243 Glycosylation of the ENV Spike of Primate Immunodeficiency Viruses and Antibody Neutralization Cheryl A. Pikora *1,2 1 Department of Infectious Diseases, Children

More information

Broadly Neutralizing Antibodies for HIV Eradication

Broadly Neutralizing Antibodies for HIV Eradication DOI 10.1007/s11904-016-0299-7 HIV PATHOGENESIS AND TREATMENT (AL LANDAY, SECTION EDITOR) Broadly Neutralizing Antibodies for HIV Eradication Kathryn E. Stephenson 1,2 & Dan H. Barouch 1,2 # The Author(s)

More information

Introduction. Abbas Chapter 10: B Cell Activation and Antibody Production. General Features. General Features. General Features

Introduction. Abbas Chapter 10: B Cell Activation and Antibody Production. General Features. General Features. General Features Introduction Abbas Chapter 10: B Cell Activation and Antibody Production January 25, 2010 Children s Mercy Hospitals and Clinics Humoral immunity is mediated by secreted antibodies (Ab) Ab function to

More information

Adaptive immune responses: T cell-mediated immunity

Adaptive immune responses: T cell-mediated immunity MICR2209 Adaptive immune responses: T cell-mediated immunity Dr Allison Imrie allison.imrie@uwa.edu.au 1 Synopsis: In this lecture we will discuss the T-cell mediated immune response, how it is activated,

More information

We are IntechOpen, the first native scientific publisher of Open Access books. International authors and editors. Our authors are among the TOP 1%

We are IntechOpen, the first native scientific publisher of Open Access books. International authors and editors. Our authors are among the TOP 1% We are IntechOpen, the first native scientific publisher of Open Access books 3,350 108,000 1.7 M Open access books available International authors and editors Downloads Our authors are among the 151 Countries

More information

Modeling Virus- and Antibody-Specific Factors to Predict Human Immunodeficiency Virus Neutralization Efficiency

Modeling Virus- and Antibody-Specific Factors to Predict Human Immunodeficiency Virus Neutralization Efficiency Article Modeling Virus- and Antibody-Specific Factors to Predict Human Immunodeficiency Virus Neutralization Efficiency Hillel Haim, 1,2 Ignacio Salas, 1 Kathleen McGee, 1 Noah Eichelberger, 2 Elizabeth

More information

HIV/AIDS. Biology of HIV. Research Feature. Related Links. See Also

HIV/AIDS. Biology of HIV. Research Feature. Related Links. See Also 6/1/2011 Biology of HIV Biology of HIV HIV belongs to a class of viruses known as retroviruses. Retroviruses are viruses that contain RNA (ribonucleic acid) as their genetic material. After infecting a

More information

Identification of Mutation(s) in. Associated with Neutralization Resistance. Miah Blomquist

Identification of Mutation(s) in. Associated with Neutralization Resistance. Miah Blomquist Identification of Mutation(s) in the HIV 1 gp41 Subunit Associated with Neutralization Resistance Miah Blomquist What is HIV 1? HIV-1 is an epidemic that affects over 34 million people worldwide. HIV-1

More information

Received 9 June 1997/Accepted 7 October 1997

Received 9 June 1997/Accepted 7 October 1997 JOURNAL OF VIROLOGY, Jan. 1998, p. 286 293 Vol. 72, No. 1 0022-538X/98/$04.00 0 Copyright 1998, American Society for Microbiology Antibody-Dependent Cellular Cytotoxicity Directed against Cells Expressing

More information

Regional Clustering of Shared Neutralization Determinants on Primary Isolates of Clade C Human Immunodeficiency Virus Type 1 from South Africa

Regional Clustering of Shared Neutralization Determinants on Primary Isolates of Clade C Human Immunodeficiency Virus Type 1 from South Africa JOURNAL OF VIROLOGY, Mar. 2002, p. 2233 2244 Vol. 76, No. 5 0022-538X/02/$04.00 0 DOI: 10.1128/JVI.76.5.2233 2244.2002 Copyright 2002, American Society for Microbiology. All Rights Reserved. Regional Clustering

More information

Low ds/dn Does Not Correlate With High Variation of Amino Acid Sequences Along the gp120 Protein Structure

Low ds/dn Does Not Correlate With High Variation of Amino Acid Sequences Along the gp120 Protein Structure Low ds/dn Does Not Correlate With High Variation of Amino Acid Sequences Along the gp120 Protein Structure Zach Goldstein & Jordan Detamore BIOL 368: Bioinformatics Laboratory Department of Biology Loyola

More information

There are 2 major lines of defense: Non-specific (Innate Immunity) and. Specific. (Adaptive Immunity) Photo of macrophage cell

There are 2 major lines of defense: Non-specific (Innate Immunity) and. Specific. (Adaptive Immunity) Photo of macrophage cell There are 2 major lines of defense: Non-specific (Innate Immunity) and Specific (Adaptive Immunity) Photo of macrophage cell Development of the Immune System ery pl neu mφ nk CD8 + CTL CD4 + thy TH1 mye

More information

M.Sc. III Semester Biotechnology End Semester Examination, 2013 Model Answer LBTM: 302 Advanced Immunology

M.Sc. III Semester Biotechnology End Semester Examination, 2013 Model Answer LBTM: 302 Advanced Immunology Code : AS-2246 M.Sc. III Semester Biotechnology End Semester Examination, 2013 Model Answer LBTM: 302 Advanced Immunology A. Select one correct option for each of the following questions:- 2X10=10 1. (b)

More information

The Lymphatic System and Body Defenses

The Lymphatic System and Body Defenses PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College The Lymphatic System and Body Defenses 12PART B Adaptive Defense System: Third Line of Defense Immune

More information

Lines of Defense. Immunology, Immune Response, and Immunological Testing. Immunology Terminology

Lines of Defense. Immunology, Immune Response, and Immunological Testing. Immunology Terminology Immunology, Immune Response, and Immunological Testing Lines of Defense If the First and Second lines of defense fail, then the Third line of defense is activated. B and T lymphocytes undergo a selective

More information

Defensive mechanisms include :

Defensive mechanisms include : Acquired Immunity Defensive mechanisms include : 1) Innate immunity (Natural or Non specific) 2) Acquired immunity (Adaptive or Specific) Cell-mediated immunity Humoral immunity Two mechanisms 1) Humoral

More information

HIV 101: Fundamentals of HIV Infection

HIV 101: Fundamentals of HIV Infection HIV 101: Fundamentals of HIV Infection David H. Spach, MD Professor of Medicine University of Washington Seattle, Washington Learning Objectives After attending this presentation, learners will be able

More information

Clone 3 Human Monoclonal Antibody Neutralizing Effect on HIV 2017

Clone 3 Human Monoclonal Antibody Neutralizing Effect on HIV 2017 Science Improving Health Clone 3 Human Monoclonal Antibody Neutralizing Effect on HIV 2017 www.bioclonetics.com Invest at: www.wefunder.com/bioclonetics. Our video: https://youtu.be/spciismitxe Invest

More information

Progress in HIV Vaccine Development Magdalena Sobieszczyk, MD, MPH. Division of Infectious Diseases Columbia University Medical Center

Progress in HIV Vaccine Development Magdalena Sobieszczyk, MD, MPH. Division of Infectious Diseases Columbia University Medical Center Progress in HIV Vaccine Development Magdalena Sobieszczyk, MD, MPH Division of Infectious Diseases Columbia University Medical Center 1 Outline A short history of HIV vaccine design and development Describe

More information

Immunization with Single-Cycle SIV Significantly Reduces Viral Loads After an Intravenous Challenge with SIV mac 239

Immunization with Single-Cycle SIV Significantly Reduces Viral Loads After an Intravenous Challenge with SIV mac 239 Immunization with Single-Cycle SIV Significantly Reduces Viral Loads After an Intravenous Challenge with SIV mac 239 Bin Jia 1, Sharon K. Ng 1, M. Quinn DeGottardi 1, Michael Piatak Jr. 2, Eloísa Yuste

More information

HIV cure: current status and implications for the future

HIV cure: current status and implications for the future HIV cure: current status and implications for the future Carolyn Williamson, PhD Head of Medical Virology, Faculty Health Sciences, University of Cape Town CAPRISA Research Associate, Centre of Excellence

More information

JOURNAL OF VIROLOGY, Feb. 1999, p Vol. 73, No. 2. Copyright 1999, American Society for Microbiology. All Rights Reserved.

JOURNAL OF VIROLOGY, Feb. 1999, p Vol. 73, No. 2. Copyright 1999, American Society for Microbiology. All Rights Reserved. JOURNAL OF VIROLOGY, Feb. 1999, p. 1740 1745 Vol. 73, No. 2 0022-538X/99/$04.00 0 Copyright 1999, American Society for Microbiology. All Rights Reserved. Comparison of the Antibody Repertoire Generated

More information

08/02/59. Tumor Immunotherapy. Development of Tumor Vaccines. Types of Tumor Vaccines. Immunotherapy w/ Cytokine Gene-Transfected Tumor Cells

08/02/59. Tumor Immunotherapy. Development of Tumor Vaccines. Types of Tumor Vaccines. Immunotherapy w/ Cytokine Gene-Transfected Tumor Cells Tumor Immunotherapy Autologous virus Inactivation Inactivated virus Lymphopheresis Culture? Monocyte s Dendritic cells Immunization Autologous vaccine Development of Tumor Vaccines Types of Tumor Vaccines

More information

Biomedical Engineering for Global Health. Lecture 10 HIV/AIDS vaccine development

Biomedical Engineering for Global Health. Lecture 10 HIV/AIDS vaccine development Biomedical Engineering for Global Health Lecture 10 HIV/AIDS vaccine development Review of lecture 9 How do vaccines work? Types ofvaccines: Review of lecture 9 Are vaccines effective? -Edward Jenner s

More information

Professor Andrew McMichael

Professor Andrew McMichael BHIVA AUTUMN CONFERENCE 2011 Including CHIVA Parallel Sessions Professor Andrew McMichael University of Oxford 17 18 November 2011, Queen Elizabeth II Conference Centre, London BHIVA AUTUMN CONFERENCE

More information

Treatment with IL-7 Prevents the Decline of Circulating CD4 + T Cells during the Acute Phase of SIV Infection in Rhesus Macaques

Treatment with IL-7 Prevents the Decline of Circulating CD4 + T Cells during the Acute Phase of SIV Infection in Rhesus Macaques SUPPORTING INFORMATION FOR: Treatment with IL-7 Prevents the Decline of Circulating CD4 + T Cells during the Acute Phase of SIV Infection in Rhesus Macaques Lia Vassena, 1,2 Huiyi Miao, 1 Raffaello Cimbro,

More information

TITLE: Influenza A (H7N9) virus evolution: Which genetic mutations are antigenically important?

TITLE: Influenza A (H7N9) virus evolution: Which genetic mutations are antigenically important? TITLE: Influenza A (H7N9) virus evolution: Which genetic mutations are antigenically important? AUTHORS: Joshua G. Petrie 1, Adam S. Lauring 2,3 AFFILIATIONS: 1 Department of Epidemiology, University of

More information

I. Critical Vocabulary

I. Critical Vocabulary I. Critical Vocabulary A. Immune System: a set of glands, tissues, cells, and dissolved proteins that combine to defend against non-self entities B. Antigen: any non-self chemical that triggers an immune

More information

Received 27 January 2006/Accepted 14 March 2006

Received 27 January 2006/Accepted 14 March 2006 JOURNAL OF VIROLOGY, June 2006, p. 5211 5218 Vol. 80, No. 11 0022-538X/06/$08.00 0 doi:10.1128/jvi.00201-06 Copyright 2006, American Society for Microbiology. All Rights Reserved. Evidence for Potent Autologous

More information

The Human Immunodeficiency Virus Type 1 Envelope Spike of Primary Viruses Can Suppress Antibody Access to Variable Regions

The Human Immunodeficiency Virus Type 1 Envelope Spike of Primary Viruses Can Suppress Antibody Access to Variable Regions JOURNAL OF VIROLOGY, Feb. 2009, p. 1649 1659 Vol. 83, No. 4 0022-538X/09/$08.00 0 doi:10.1128/jvi.02046-08 Copyright 2009, American Society for Microbiology. All Rights Reserved. The Human Immunodeficiency

More information

Chapter 7 Conclusions

Chapter 7 Conclusions VII-1 Chapter 7 Conclusions VII-2 The development of cell-based therapies ranging from well-established practices such as bone marrow transplant to next-generation strategies such as adoptive T-cell therapy

More information

Review Article Antibody-Dependent Cellular Cytotoxicity and NK Cell-Driven Immune Escape in HIV Infection: Implications for HIV Vaccine Development

Review Article Antibody-Dependent Cellular Cytotoxicity and NK Cell-Driven Immune Escape in HIV Infection: Implications for HIV Vaccine Development Hindawi Publishing Corporation Advances in Virology Volume 2012, Article ID 637208, 8 pages doi:10.1155/2012/637208 Review Article Antibody-Dependent Cellular Cytotoxicity and NK Cell-Driven Immune Escape

More information

A global approach to HIV-1 vaccine development

A global approach to HIV-1 vaccine development A global approach to HIV-1 vaccine development The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Published Version Accessed

More information