IMPLICATIONS OF BEHAVIORAL SENSITIVITY

Size: px
Start display at page:

Download "IMPLICATIONS OF BEHAVIORAL SENSITIVITY"

Transcription

1

2 IMPLICATIONS OF BEHAVIORAL SENSITIVITY rod phototransduction - single photons reliably transduced rod! bipolar! AII! amacrine! cone cone! bipolar! ganglion! synaptic transmission - reliable transmission of single photon responses neural coding - absorption of a few photons produces change in optic nerve activity

3 IMPLICATIONS OF BEHAVIORAL SENSITIVITY rod! bipolar! rod cone cone! bipolar! phototransduction - single photons reliably transduced - reproducible responses to each absorbed photon How do you make an accurate single molecule timer? synaptic transmission - reliable transmission of single photon responses AII! amacrine! ganglion! neural coding - absorption of a few photons produces change in optic nerve activity

4 IMPLICATIONS OF BEHAVIORAL SENSITIVITY phototransduction - single photons reliably transduced - reproducible responses to each absorbed photon How do you make an accurate single molecule timer? synaptic transmission - reliable transmission of single photon responses - separation of sparse signal from noise What is optimal readout for array of noisy sensors when tiny fraction active? neural coding - absorption of a few photons produces change in optic nerve activity

5 REPRODUCIBILITY OF ROD RESPONSES TO SINGLE PHOTONS Rh* 2 pa 0 photocurrent flash monitor 0 10 sec 20 30

6 REPRODUCIBILITY OF ROD RESPONSES TO SINGLE PHOTONS 2 pa 0.4 Rh* 2 pa singles photocurrent flash monitor failures 0 10 sec CVarea = standard deviation / mean = 0.34 ± 0.01 (n=30) much less then other signals produced by single molecules! sec

7 EXPECTATION FOR FIRST-ORDER PROCESS if Rhodopsin behaves like typical single molecule Rh* activity Time CV =1

8 MULTIPLE SHUTOFF STEPS COULD DECREASE VARIABILITY Rieke and Baylor, 1998 Field and Rieke, 2002 if Rhodopsin behaves like typical single molecule proposed model for rhodopsin inactivation Rh* activity Rh* activity Time CV =1 Time CV =1/ N

9 MULTIPLE SHUTOFF STEPS COULD DECREASE VARIABILITY Rieke and Baylor, 1998 Field and Rieke, 2002 if Rhodopsin behaves like typical single molecule proposed model for rhodopsin inactivation Rh* activity Rh* activity Time CV =1 Time CV =1/ N phosphorylation via kinase quenching via arrestin R*... R*-P n R i -P n -arrestin Key Prediction: variability should change in graded and systematic manner as # phosphorylation sites decreased

10 FEWER PHOSPHORYLATION SITES = MORE VARIABILITY 0 sites 1 site 2 sites 3 sites 5 sites 6 sites (control) 2 pa 10 s 10 s 10 s 0.5 s 0.5 s 0.5 s increasing # phosphorylation sites decreasing response variability Thuy Doan Tony Azevedo

11 VARIABILITY HAS GRADED AND SYSTEMATIC DEPENDENCE ON # SITES CV area 0.6 n=15 n=16 n=17 predicted 1/!# sites n=20 n=27 n=29 n= Number of phosphorylation sites 2 pa 10 s 10 s 10 s 0.5 s 0.5 s 0.5 s Thuy Doan Tony Azevedo

12 VARIABILITY HAS GRADED AND SYSTEMATIC DEPENDENCE ON # SITES CV area 0.6 n=15 n=16 n=17 predicted 1/!# sites CV area 0.4 n=27 n=20 n=29 n= Number of phosphorylation sites # sites 6 2 pa 10 s 10 s 10 s 0.5 s 0.5 s 0.5 s Thuy Doan Tony Azevedo

13 IMPLICATIONS OF BEHAVIORAL SENSITIVITY phototransduction - single photons reliably transduced - reproducible responses to each absorbed photon How do you make an accurate single molecule timer? synaptic transmission - reliable transmission of single photon responses - separation of sparse signal from noise What is optimal readout for array of noisy sensors when tiny fraction active? neural coding - absorption of a few photons produces change in optic nerve activity

14 CONVERGENCE AND SPARSE SIGNALING IN MAMMALIAN RETINA At visual threshold photons < 0.1% of the rods contribute signals while all rods generate noise Under these conditions averaging is a disaster General problem in nervous system ~0.001 Rh*/rod Petri Ala-Laurila Greg Field A. P. Sampath 200 ms

15 CONVERGENCE AND SPARSE SIGNALING IN MAMMALIAN RETINA keep discard At visual threshold photons < 0.1% of the rods contribute signals while all rods generate noise Under these conditions averaging is a disaster General problem in nervous system ~0.001 Rh*/rod Petri Ala-Laurila Greg Field A. P. Sampath explaining ganglion sensitivity requires that circuit effectively separates signals from noise 200 ms

16 LOOKING FORWARD... How do you make an accurate single molecule timer? rod 2 pa singles rod! bipolar! AII! amacrine! cone cone! bipolar! ganglion! sec failures functional significance: permits photon counting, but... timing information? need tools to explore stimulus space What is optimal readout for array of noisy sensors when tiny fraction active?

17 LOOKING FORWARD... How do you make an accurate single molecule timer? rod What is optimal readout for array of noisy sensors when tiny fraction active? cone rod! bipolar! AII! amacrine! cone! bipolar! ganglion! general theoretical argument: multiple stages time-varying input dependence on sensor signal/noise properties

18 Current lab members Petri Ala-Laurila Juan Angueyra Tony Azevedo Jon Cafaro Will Grimes Michael Rudd Greg Schwartz Past lab members Thuy Doan (Stanford) Felice Dunn (UW) Greg Field (Salk) Cecilia Gold (Penn) Gabe Murphy (Janelia) Philipp Khuc-Trong (Max Planck) Kerry Kim (FHL) A.P. Sampath (USC) Fred Soo (Princeton) Barry Wark (Physion) Collaborators EJ Chichilnisky Valerie Uzzell Peter Detwiler Jeannie Chen Ana Mendez Felice Dunn

Construction of the Visual Image

Construction of the Visual Image Construction of the Visual Image Anne L. van de Ven 8 Sept 2003 BioE 492/592 Sensory Neuroengineering Lecture 3 Visual Perception Light Photoreceptors Interneurons Visual Processing Ganglion Neurons Optic

More information

The Visual System. Organization of cell types Rod and cone photoreceptor systems

The Visual System. Organization of cell types Rod and cone photoreceptor systems The Visual System Basic anatomy of the eye The retina Organization of cell types Rod and cone photoreceptor systems Phototransduction Conversion of energy of light into changes in V m Adaptation and expansion

More information

Dark and light adaptation: a job that is accomplished mainly in the retina

Dark and light adaptation: a job that is accomplished mainly in the retina Dark and light adaptation: a job that is accomplished mainly in the retina Dark adaptation: recovery in darkness (of sensitivity) and photoreceptor pigment. Light adaptation: The ability of the visual

More information

Lecture 3 Vision 2 The Retina

Lecture 3 Vision 2 The Retina Lecture 3 Vision 2 The Retina All lecture material from the following two links: 1) http://hubel.med.harvard.edu/book/bcontex.htm 2) http://www.ib.cnea.gov.ar/~redneu/2013/books/principles%20of%20neural%20science%20%20kandel/gateway.ut.ovid.com/gw2/ovidweb.cgisidnjhkoalgmeho00dbookimagebookdb_7c_2fc~32.htm

More information

Detection Sensitivity and Temporal Resolution of Visual Signals near Absolute Threshold in the Salamander Retina

Detection Sensitivity and Temporal Resolution of Visual Signals near Absolute Threshold in the Salamander Retina 318 The Journal of Neuroscience, January 12, 2005 25(2):318 330 Behavioral/Systems/Cognitive Detection Sensitivity and Temporal Resolution of Visual Signals near Absolute Threshold in the Salamander Retina

More information

Nonlinear Signal Transfer from Mouse Rods to Bipolar Cells and Implications for Visual Sensitivity

Nonlinear Signal Transfer from Mouse Rods to Bipolar Cells and Implications for Visual Sensitivity Neuron, Vol. 35, 1 20, May 30, 2002, Copyright 2002 by Cell Press Nonlinear Signal Transfer from Mouse Rods to Bipolar Cells and Implications for Visual Sensitivity Greg Field and Fred Rieke Department

More information

The Visual System. Retinal Anatomy Dr. Casagrande February 2, Phone: Office: T2302 MCN

The Visual System. Retinal Anatomy Dr. Casagrande February 2, Phone: Office: T2302 MCN The Visual System Retinal Anatomy Dr. Casagrande February 2, 2004 Phone: 343-4538 Email: vivien.casagrande@mcmail.vanderbilt.edu Office: T2302 MCN Reading assignments and Good Web Sites Chapter 2 in Tovée,

More information

Introduction to Physiological Psychology

Introduction to Physiological Psychology Introduction to Physiological Psychology Vision ksweeney@cogsci.ucsd.edu cogsci.ucsd.edu/~ksweeney/psy260.html This class n Sensation vs. Perception n How light is translated into what we see n Structure

More information

Vision Phototransduction of light By. Prof/Faten zakareia Physiology Dept College of Medicine King Saud University

Vision Phototransduction of light By. Prof/Faten zakareia Physiology Dept College of Medicine King Saud University Vision Phototransduction of light By Prof/Faten zakareia Physiology Dept College of Medicine King Saud University Objectives: -List and compare functional properties of rods and cones in scotopic and photopic

More information

PSY 214 Lecture 5 (09/19/2010) (Vision) Dr. Achtman PSY 214. Lecture 5 Topic: Introduction to Vision Chapter 3, pages 55-71

PSY 214 Lecture 5 (09/19/2010) (Vision) Dr. Achtman PSY 214. Lecture 5 Topic: Introduction to Vision Chapter 3, pages 55-71 Corrections: No corrections needed Announcements: After the completion of chapter 4 a movie will be shown First test is October 3, 2011 Dr. Achtman is available during her office hours The test will include

More information

Sensitivity and Adaptation in the Retina

Sensitivity and Adaptation in the Retina Sensitivity and Adaptation in the Retina Visual transduction single photon sensitivity dark current rhodopsin Ca ++ vs cgmp as the messenger amplification Operating range of vision saturation, threshold,

More information

Temporal Contrast Adaptation in Salamander Bipolar Cells

Temporal Contrast Adaptation in Salamander Bipolar Cells The Journal of Neuroscience, December 1, 2001, 21(23):9445 9454 Temporal Contrast Adaptation in Salamander Bipolar Cells Fred Rieke Department of Physiology and Biophysics, University of Washington, Seattle,

More information

Psy393: Cognitive Neuroscience. Prof. Anderson Department of Psychology Week 3

Psy393: Cognitive Neuroscience. Prof. Anderson Department of Psychology Week 3 Psy393: Cognitive Neuroscience Prof. Anderson Department of Psychology Week 3 The Eye: Proof for the existence of God? And then there was light Optics Perception Absorption Eye is receiver not sender Plato

More information

THE VISUAL WORLD! Visual (Electromagnetic) Stimulus

THE VISUAL WORLD! Visual (Electromagnetic) Stimulus THE VISUAL WORLD! Visual (Electromagnetic) Stimulus Perceived color of light is determined by 3 characteristics (properties of electromagnetic energy): 1. Hue: the spectrum (wavelength) of light (color)

More information

The ON and OFF Channels

The ON and OFF Channels The visual and oculomotor systems Peter H. Schiller, year 2006 The ON and OFF Channels Questions: 1. How are the ON and OFF channels created for the cones? 2. How are the ON and OFF channels created for

More information

TEMPORAL PRECISION OF SENSORY RESPONSES Berry and Meister, 1998

TEMPORAL PRECISION OF SENSORY RESPONSES Berry and Meister, 1998 TEMPORAL PRECISION OF SENSORY RESPONSES Berry and Meister, 1998 Today: (1) how can we measure temporal precision? (2) what mechanisms enable/limit precision? A. 0.1 pa WHY SHOULD YOU CARE? average rod

More information

Simulation of the AII amacrine cell of mammalian retina: Functional consequences of electrical coupling and regenerative membrane properties

Simulation of the AII amacrine cell of mammalian retina: Functional consequences of electrical coupling and regenerative membrane properties Visual Neuroscience (1995), 12, 851-860. Printed in the USA. Copyright 1995 Cambridge University Press 0952-5238/95 $11.00 +.10 Simulation of the AII amacrine cell of mammalian retina: Functional consequences

More information

The Optimal Synapse for Sparse, Binary Signals in the Rod Pathway

The Optimal Synapse for Sparse, Binary Signals in the Rod Pathway LETTER Communicated by Fred Rieke The Optimal Synapse for Sparse, Binary Signals in the Rod Pathway Paul T. Clark s99513@sms.ed.ac.uk Mark C. W. van Rossum mvanross@inf.ed.ac.uk Institute for Adaptive

More information

THE VISUAL WORLD! Visual (Electromagnetic) Stimulus

THE VISUAL WORLD! Visual (Electromagnetic) Stimulus THE VISUAL WORLD! Visual (Electromagnetic) Stimulus Perceived color of light is determined by 3 characteristics (properties of electromagnetic energy): 1. : the spectrum (wavelength) of light (color) 2.

More information

Image Formation and Phototransduction. By Dr. Abdelaziz Hussein Lecturer of Physiology

Image Formation and Phototransduction. By Dr. Abdelaziz Hussein Lecturer of Physiology Image Formation and Phototransduction By Dr. Abdelaziz Hussein Lecturer of Physiology Vision Vision is a complex process through which an image of the external environment is formed on the photosensitive

More information

Vision is the most dominant sense, about 70% of all sensory receptors in the body are in the eyes Accessory Structures of the eye : Eyelashes :

Vision is the most dominant sense, about 70% of all sensory receptors in the body are in the eyes Accessory Structures of the eye : Eyelashes : Sight By Jess Kapp Vision is the most dominant sense, about 70% of all sensory receptors in the body are in the eyes Accessory Structures of the eye : Eyelashes : Protect eye from debris and bacteria Eyebrows

More information

Test Bank Chapter 2: The Beginnings of Perception

Test Bank Chapter 2: The Beginnings of Perception Test Bank Chapter 2: The Beginnings of Perception MULTIPLE CHOICE 1. Our perception of the environment depends on a. the properties of the objects in the environment. b. the properties of the electrical

More information

High sensitivity rod photoreceptor input to blue-yellow color opponent pathway in macaque retina

High sensitivity rod photoreceptor input to blue-yellow color opponent pathway in macaque retina High sensitivity rod photoreceptor input to blue-yellow color opponent pathway in macaque retina Greg D. Field 1, Martin Greschner 1, Jeffrey L. Gauthier 1, Carolina Rangel 2, Jonathon Shlens 1,3, Alexander

More information

The Cellular Basis of Electroretinogram (ERG) Signals

The Cellular Basis of Electroretinogram (ERG) Signals The Cellular Basis of Electroretinogram (ERG) Signals Laura J. Frishman, PhD University of Houston October 19, 2015 Cellular origins and mechanisms of generation of the various waves of the ERG Sherry,

More information

CS294-6 (Fall 2004) Recognizing People, Objects and Actions Lecture: January 27, 2004 Human Visual System

CS294-6 (Fall 2004) Recognizing People, Objects and Actions Lecture: January 27, 2004 Human Visual System CS294-6 (Fall 2004) Recognizing People, Objects and Actions Lecture: January 27, 2004 Human Visual System Lecturer: Jitendra Malik Scribe: Ryan White (Slide: layout of the brain) Facts about the brain:

More information

Vision Seeing is in the mind

Vision Seeing is in the mind 1 Vision Seeing is in the mind Stimulus: Light 2 Light Characteristics 1. Wavelength (hue) 2. Intensity (brightness) 3. Saturation (purity) 3 4 Hue (color): dimension of color determined by wavelength

More information

Coding and computation by neural ensembles in the primate retina

Coding and computation by neural ensembles in the primate retina Coding and computation by neural ensembles in the primate retina Liam Paninski Department of Statistics and Center for Theoretical Neuroscience Columbia University http://www.stat.columbia.edu/ liam liam@stat.columbia.edu

More information

9.35 Sensation And Perception

9.35 Sensation And Perception MIT OpenCourseWare http://ocw.mit.edu 9.35 Sensation And Perception Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 9.35 Recitation 1 Eye

More information

Sensory Systems Vision, Audition, Somatosensation, Gustation, & Olfaction

Sensory Systems Vision, Audition, Somatosensation, Gustation, & Olfaction Sensory Systems Vision, Audition, Somatosensation, Gustation, & Olfaction Sarah L. Chollar University of California, Riverside sarah.chollar@gmail.com Sensory Systems How the brain allows us to see, hear,

More information

What do we perceive?

What do we perceive? THE VISUAL SYSTEM Aditi Majumder What do we perceive? Example: Switch off the light in room What we perceive Not only the property of the scene But also that of the visual system Our perception is filtered

More information

In vivo studies of signaling in rod pathways of the mouse using the electroretinogram

In vivo studies of signaling in rod pathways of the mouse using the electroretinogram Vision Research 44 (2004) 3253 3268 www.elsevier.com/locate/visres In vivo studies of signaling in rod pathways of the mouse using the electroretinogram J.G. Robson, H. Maeda, S.M. Saszik, L.J. Frishman

More information

Sensation and Perception. A. Sensation: awareness of simple characteristics B. Perception: making complex interpretations

Sensation and Perception. A. Sensation: awareness of simple characteristics B. Perception: making complex interpretations I. Overview Sensation and Perception A. Sensation: awareness of simple characteristics B. Perception: making complex interpretations C. Top-Down vs Bottom-up Processing D. Psychophysics -- thresholds 1.

More information

THE SPECIAL SENSES. Introduction Vision

THE SPECIAL SENSES. Introduction Vision THE SPECIAL SENSES Introduction Vision RECEPTORS Structures designed to respond to stimuli Variable complexity RECEPTORS: GENERAL PROPERTIES Transducers Receptor Potential Generator Potential RECEPTORS

More information

Test of visual pathway function

Test of visual pathway function The visual system Test of visual pathway function Suppose you have a patient who may have some damage to the visual pathways leading to visual cortex, for example from multiple sclerosis. How could you

More information

2/3/17. Visual System I. I. Eye, color space, adaptation II. Receptive fields and lateral inhibition III. Thalamus and primary visual cortex

2/3/17. Visual System I. I. Eye, color space, adaptation II. Receptive fields and lateral inhibition III. Thalamus and primary visual cortex 1 Visual System I I. Eye, color space, adaptation II. Receptive fields and lateral inhibition III. Thalamus and primary visual cortex 2 1 2/3/17 Window of the Soul 3 Information Flow: From Photoreceptors

More information

SENSES: VISION. Chapter 5: Sensation AP Psychology Fall 2014

SENSES: VISION. Chapter 5: Sensation AP Psychology Fall 2014 SENSES: VISION Chapter 5: Sensation AP Psychology Fall 2014 Sensation versus Perception Top-Down Processing (Perception) Cerebral cortex/ Association Areas Expectations Experiences Memories Schemas Anticipation

More information

Special Senses. Mechanoreception Electroreception Chemoreception Others

Special Senses. Mechanoreception Electroreception Chemoreception Others Special Senses Mechanoreception Electroreception Chemoreception Others Recall our receptor types Chemically regulated: Respond to particular chemicals Voltage regulated: respond to changing membrane potential

More information

Eye physiology and phototransduction. Zoran Đogaš

Eye physiology and phototransduction. Zoran Đogaš Eye physiology and phototransduction Zoran Đogaš Eye geometry Nervus opticus Pupillary reflex and accommodation Clinical Sy Myopia Hypermetropia Photoreceptors ROD CONE Photoreceptors The photoreceptor

More information

Senses are transducers. Change one form of energy into another Light, sound, pressure, etc. into What?

Senses are transducers. Change one form of energy into another Light, sound, pressure, etc. into What? 1 Vision 2 TRANSDUCTION Senses are transducers Change one form of energy into another Light, sound, pressure, etc. into What? Action potentials! Sensory codes Frequency code encodes information about intensity

More information

FIRST MIDTERM EXAM October 18, 2011 BILD2

FIRST MIDTERM EXAM October 18, 2011 BILD2 FIRST MIDTERM EXAM October 18, 2011 BILD2 WRITE YOUR NAME ON ALL 6 PAGES. ANSWER ALL 10 QUESTIONS (100 POINTS). CONFINE YOUR ANSWERS TO THE SPACE ALLOWED. If you would like to write on the back of the

More information

Neuroscience - Problem Drill 13: The Eye and Visual Processing

Neuroscience - Problem Drill 13: The Eye and Visual Processing Neuroscience - Problem Drill 13: The Eye and Visual Processing Question No. 1 of 10 needed, (3) Pick the answer, and (4) Review the core concept tutorial as needed. 1. Which of the following statements

More information

Origin of Reproducibility in the Responses of Retinal Rods to Single Photons

Origin of Reproducibility in the Responses of Retinal Rods to Single Photons 1836 Biophysical Journal Volume 75 October 1998 1836 1857 Origin of Reproducibility in the Responses of Retinal Rods to Single Photons F. Rieke* # and D. A. Baylor # *Department of Physiology and Biophysics,

More information

Introduction to Full Field ERGs

Introduction to Full Field ERGs Introduction to Full Field ERGs ISCEV Full Field ERG Standard (Recording protocols and their physiological basis) Laura J. Frishman, PhD University of Houston October 17, 2016 Cellular origins and mechanisms

More information

postsynaptic), and each plasma membrane has a hemichannel, sometimes called a connexon)

postsynaptic), and each plasma membrane has a hemichannel, sometimes called a connexon) The Retina The retina is the part of the CNS that sends visual information from the eye to the brain. It very efficient at capturing and relaying as much visual information as possible, under a great range

More information

eye as a camera Kandel, Schwartz & Jessel (KSJ), Fig 27-3

eye as a camera Kandel, Schwartz & Jessel (KSJ), Fig 27-3 eye as a camera Kandel, Schwartz & Jessel (KSJ), Fig 27-3 retinal specialization fovea: highest density of photoreceptors, aimed at where you are looking -> highest acuity optic disk: cell-free area, where

More information

Parallel pathways in the retina

Parallel pathways in the retina Retinal origins of parallel pathways in the primate visual system Wednesday, September 23, 2015 Sherry, 2002 1 Parallel pathways in the retina Several different images of the outside world are sent simultaneously

More information

Image Processing in the Human Visual System, a Quick Overview

Image Processing in the Human Visual System, a Quick Overview Image Processing in the Human Visual System, a Quick Overview By Orazio Gallo, April 24th, 2008 The Visual System Our most advanced perception system: The optic nerve has 106 fibers, more than all the

More information

Sense system. Introduction The visual system Hearing. Introduction to sensory mechanisms

Sense system. Introduction The visual system Hearing. Introduction to sensory mechanisms Sense system Introduction The visual system Hearing Introduction to sensory mechanisms Sensory receptors & sense organs Sensory neurons & Receptor cells Adequate stimulus threshold Transduction Receptor

More information

Eye Smarter than Scientists Believed: Neural Computations in Circuits of the Retina

Eye Smarter than Scientists Believed: Neural Computations in Circuits of the Retina Eye Smarter than Scientists Believed: Neural Computations in Circuits of the Retina Tim Gollisch 1,2 and Markus Meister 3, * 1 Max Planck Institute of Neurobiology, Visual Coding Group, Am Klopferspitz

More information

Prof. Greg Francis 7/31/15

Prof. Greg Francis 7/31/15 s PSY 200 Greg Francis Lecture 06 How do you recognize your grandmother? Action potential With enough excitatory input, a cell produces an action potential that sends a signal down its axon to other cells

More information

Will s Pre-Test for Exam IV

Will s Pre-Test for Exam IV Will s Pre-Test for Exam IV 1) The brain and spinal cord comprise the. (a) autonomic nervous system (b) peripheral nervous system (c) central nervous system (d) efferent nervous system (e) afferent nervous

More information

A biophysically realistic Model of the Retina

A biophysically realistic Model of the Retina A biophysically realistic Model of the Retina Melissa Louey Piotr Sokół Department of Mechanical Engineering Social and Psychological Sciences The University of Melbourne University College Utrecht Melbourne,

More information

Vision. Vision. Vision. Chem Lecture 10 Signal Transduction & Sensory Systems Part 6. Rod cells. E = hν = hc λ

Vision. Vision. Vision. Chem Lecture 10 Signal Transduction & Sensory Systems Part 6. Rod cells. E = hν = hc λ Chem 452 - Lecture 10 Signal Transduction & Sensory Systems Part 6 Question of the Day: Who has better color vision, a human or a mantis shrimp? involves the transduction of light energy to an nerve signal.

More information

Chapter 4: Sensation and Perception The McGraw-Hill Companies, Inc.

Chapter 4: Sensation and Perception The McGraw-Hill Companies, Inc. Chapter 4: Sensation and Perception Sensation and Perception Sensation The process by which our sense organs receive information from the environment Perception The sorting out, interpretation, analysis,

More information

Distinct expressions of contrast gain control in parallel synaptic pathways converging on a retinal ganglion cell

Distinct expressions of contrast gain control in parallel synaptic pathways converging on a retinal ganglion cell J Physiol 586.22 (28) pp 5487 552 5487 Distinct expressions of contrast gain control in parallel synaptic pathways converging on a retinal ganglion cell Deborah Langrill Beaudoin, Michael B. Manookin,2

More information

Visual Physiology. Perception and Attention. Graham Hole. Problems confronting the visual system: Solutions: The primary visual pathways: The eye:

Visual Physiology. Perception and Attention. Graham Hole. Problems confronting the visual system: Solutions: The primary visual pathways: The eye: Problems confronting the visual system: Visual Physiology image contains a huge amount of information which must be processed quickly. image is dim, blurry and distorted. Light levels vary enormously.

More information

ASSUMPTION OF COGNITIVE UNIFORMITY

ASSUMPTION OF COGNITIVE UNIFORMITY The Human Brain cerebral hemispheres: two most important divisions of the brain, separated by the longitudinal fissure corpus callosum: a large bundle of axons that constitutes the major connection between

More information

September 9, 2013: The layout of the visual system, the retina and the lateral geniculate nucleus

September 9, 2013: The layout of the visual system, the retina and the lateral geniculate nucleus September 9, 2013: The layout of the visual system, the retina and the lateral geniculate nucleus 1 Basic Wiring of the Visual System 2 The world seen by the two eyes Seen by both eyes Seen by both eyes

More information

Functional circuitry of visual adaptation in the retina

Functional circuitry of visual adaptation in the retina J Physiol 586.18 (28) pp 4377 4384 4377 SYMPOSIUM REPORT Functional circuitry of visual adaptation in the retina Jonathan B. Demb Department of Ophthalmology & Visual Sciences and Department of Molecular,

More information

From last week: The body is a complex electrical machine. Basic Electrophysiology, the Electroretinogram ( ERG ) and the Electrooculogram ( EOG )

From last week: The body is a complex electrical machine. Basic Electrophysiology, the Electroretinogram ( ERG ) and the Electrooculogram ( EOG ) From last week: Differential Amplification This diagram shows a low frequency signal from the patient that differs between the two inputs and is therefore amplified, with an interfering high frequency

More information

EE 791 Lecture 2 Jan 19, 2015

EE 791 Lecture 2 Jan 19, 2015 EE 791 Lecture 2 Jan 19, 2015 Action Potential Conduction And Neural Organization EE 791-Lecture 2 1 Core-conductor model: In the core-conductor model we approximate an axon or a segment of a dendrite

More information

Lighta part of the spectrum of Electromagnetic Energy. (the part that s visible to us!)

Lighta part of the spectrum of Electromagnetic Energy. (the part that s visible to us!) Introduction to Physiological Psychology Vision ksweeney@cogsci.ucsd.edu cogsci.ucsd.edu/~ /~ksweeney/psy260.html Lighta part of the spectrum of Electromagnetic Energy (the part that s visible to us!)

More information

Physiology Unit 2 SENSORY PHYSIOLOGY

Physiology Unit 2 SENSORY PHYSIOLOGY Physiology Unit 2 SENSORY PHYSIOLOGY In Physiology Today Sensory System Sensory information Conscious sensations Unconscious sensations Sensory processing Transferring stimulus energy into a graded potential

More information

Reliability and Significance of Measurements of a-wave Latency in Rats

Reliability and Significance of Measurements of a-wave Latency in Rats Reliability and Significance of Measurements of a-wave Latency in Rats Eriko Fujiwara*, Hui Qiu, Mu Liu, Byron L. Lam, J.-M. Parel, G. Inana and D. I. Hamasaki *Department of Ophthalmology, Fukuoka University

More information

Visual Thinking for Design Colin Ware

Visual Thinking for Design Colin Ware Visual Thinking for Design Colin Ware How much do we see? We do not have the entire visual world in conscious awareness We apprehend only a tiny fraction of information in our surrounding Just the right

More information

Neural circuits PSY 310 Greg Francis. Lecture 05. Rods and cones

Neural circuits PSY 310 Greg Francis. Lecture 05. Rods and cones Neural circuits PSY 310 Greg Francis Lecture 05 Why do you need bright light to read? Rods and cones Photoreceptors are not evenly distributed across the retina 1 Rods and cones Cones are most dense in

More information

Annette Sims, MD, Ophthalmologist next Tuesday! Hooray!!

Annette Sims, MD, Ophthalmologist next Tuesday! Hooray!! BI 358 Lecture 18 Annette Sims, MD, Ophthalmologist next Tuesday! Hooray!! I. Announcements Quiz 5 returned at end of lecture. Eye Dissection & Vision lab next Tuesday > Lecture by Dr. Sims! Final Quiz

More information

Slow Na Inactivation and Variance Adaptation in Salamander Retinal Ganglion Cells

Slow Na Inactivation and Variance Adaptation in Salamander Retinal Ganglion Cells 1506 The Journal of Neuroscience, February 15, 2003 23(4):1506 1516 Slow Na Inactivation and Variance Adaptation in Salamander Retinal Ganglion Cells Kerry J. Kim and Fred Rieke Department of Physiology

More information

Annette Sims, MD, Ophthalmologist next Tuesday! Hooray!!

Annette Sims, MD, Ophthalmologist next Tuesday! Hooray!! BI 358 Lecture 18 Annette Sims, MD, Ophthalmologist next Tuesday! Hooray!! I. Announcements Quiz 5 returned at end of lecture. Eye Dissection & Vision lab next Tuesday > Lecture by Dr. Sims! Final Quiz

More information

Outline 2/19/2013. Please see me after class: Sarah Pagliero Ryan Paul Demetrius Prowell-Reed Ashley Rehm Giovanni Reynel Patricia Rochin

Outline 2/19/2013. Please see me after class: Sarah Pagliero Ryan Paul Demetrius Prowell-Reed Ashley Rehm Giovanni Reynel Patricia Rochin Outline 2/19/2013 PSYC 120 General Psychology Spring 2013 Lecture 8: Sensation and Perception 1 Dr. Bart Moore bamoore@napavalley.edu Office hours Tuesdays 11:00-1:00 How we sense and perceive the world

More information

Vision and Audition. This section concerns the anatomy of two important sensory systems, the visual and the auditory systems.

Vision and Audition. This section concerns the anatomy of two important sensory systems, the visual and the auditory systems. Vision and Audition Vision and Audition This section concerns the anatomy of two important sensory systems, the visual and the auditory systems. The description of the organization of each begins with

More information

Sensation and Perception. Chapter 6

Sensation and Perception. Chapter 6 Sensation and Perception Chapter 6 1 Sensation & Perception How do we construct our representations of the external world? Text To represent the world, we must detect physical energy (a stimulus) from

More information

Sensation & Perception The Visual System. Subjectivity of Perception. Sensation vs. Perception 1/9/11

Sensation & Perception The Visual System. Subjectivity of Perception. Sensation vs. Perception 1/9/11 Sensation & Perception The Visual System Subjectivity of Perception We do not perceive the world directly Perception depends on brain stimulation Distinction between sensation and perception Sensation

More information

Vision I. Steven McLoon Department of Neuroscience University of Minnesota

Vision I. Steven McLoon Department of Neuroscience University of Minnesota Vision I Steven McLoon Department of Neuroscience University of Minnesota 1 Eye Cornea Sclera Conjunctiva 2 Eye The conjunctiva lines the inner surface of the eyelids and outer surface of the sclera. 3

More information

(Received 14 December 1976) in turtle eyecups by injecting rectangular current pulses into a single

(Received 14 December 1976) in turtle eyecups by injecting rectangular current pulses into a single J. Physiol. (1977), 271, pp. 425-448 425 With 11 text-figures Printed in G(reat Britain KINETICS OF SYNPTIC TRNSFER FROM RECEPTORS TO GNGLION CELLS IN TURTLE RETIN BY D.. BYLOR ND R. FETTIPLCE* From the

More information

Neuroanatomy, Text and Atlas (J. H. Martin), 3 rd Edition Chapter 7, The Visual System, pp ,

Neuroanatomy, Text and Atlas (J. H. Martin), 3 rd Edition Chapter 7, The Visual System, pp , Normal CNS, Special Senses, Head and Neck TOPIC: FACULTY: LECTURE: READING: RETINA and CENTRAL VISUAL PATHWAYS P. Hitchcock, Ph.D. Department Cell and Developmental Biology Kellogg Eye Center Friday, 20

More information

Light Adaptation in Salamander L-Cone Photoreceptors

Light Adaptation in Salamander L-Cone Photoreceptors The Journal of Neuroscience, February 6, 2008 28(6):1331 1342 1331 Cellular/Molecular Light Adaptation in Salamander L-Cone Photoreceptors Frederick S. Soo, Peter B. Detwiler, and Fred Rieke Department

More information

Basic Electrophysiology, the Electroretinogram (ERG) and the Electrooculogram (EOG) - Signal origins, recording methods and clinical applications

Basic Electrophysiology, the Electroretinogram (ERG) and the Electrooculogram (EOG) - Signal origins, recording methods and clinical applications Basic Electrophysiology, the Electroretinogram (ERG) and the Electrooculogram (EOG) - Signal origins, recording methods and clinical applications The body is a complex machine consisting of the central

More information

Rhodopsin kinase and arrestin binding control the decay of photoactivated rhodopsin and dark adaptation of mouse rods

Rhodopsin kinase and arrestin binding control the decay of photoactivated rhodopsin and dark adaptation of mouse rods Research Article Rhodopsin kinase and arrestin binding control the decay of photoactivated rhodopsin and dark adaptation of mouse rods Rikard Frederiksen, 1 * Soile Nymark, 2 * Alexander V. Kolesnikov,

More information

Ganglion Cells Blind Spot Cornea Pupil Visual Area of the Bipolar Cells Thalamus Rods and Cones Lens Visual cortex of the occipital lobe

Ganglion Cells Blind Spot Cornea Pupil Visual Area of the Bipolar Cells Thalamus Rods and Cones Lens Visual cortex of the occipital lobe How We See How We See Cornea Ganglion Cells whose axons form the optic nerve Blind Spot the exit point at the back of the retina Pupil which is controlled by the iris Bipolar Cells Visual Area of the Thalamus

More information

Questions Addressed Through Study of Behavioral Mechanisms (Proximate Causes)

Questions Addressed Through Study of Behavioral Mechanisms (Proximate Causes) Jan 28: Neural Mechanisms--intro Questions Addressed Through Study of Behavioral Mechanisms (Proximate Causes) Control of behavior in response to stimuli in environment Diversity of behavior: explain the

More information

Mr. Silimperi Council Rock High School South Chapter 5 Sensation Sensation II

Mr. Silimperi Council Rock High School South Chapter 5 Sensation Sensation II Mr. Silimperi Council Rock High School South AP Psychology Name: Date: Chapter 5 Sensation Sensation II Psychophysics study of the relationship between physical characteristics of stimuli and our psychological

More information

Cell Communication. Cell Communication. Communication between cells requires: ligand: the signaling molecule

Cell Communication. Cell Communication. Communication between cells requires: ligand: the signaling molecule Cell Communication Cell Communication Communication between cells requires: ligand: the signaling molecule receptor protein: the molecule to which the ligand binds (may be on the plasma membrane or within

More information

PSY380: VISION SCIENCE

PSY380: VISION SCIENCE PSY380: VISION SCIENCE 1) Questions: - Who are you and why are you here? (Why vision?) - What is visual perception? - What is the function of visual perception? 2) The syllabus & instructor 3) Lecture

More information

7. Sharp perception or vision 8. The process of transferring genetic material from one cell to another by a plasmid or bacteriophage

7. Sharp perception or vision 8. The process of transferring genetic material from one cell to another by a plasmid or bacteriophage 1. A particular shade of a given color 2. How many wave peaks pass a certain point per given time 3. Process in which the sense organs' receptor cells are stimulated and relay initial information to higher

More information

COGS 101A: Sensation and Perception

COGS 101A: Sensation and Perception COGS 101A: Sensation and Perception 1 Virginia R. de Sa Department of Cognitive Science UCSD Lecture 5: LGN and V1: Magno and Parvo streams Chapter 3 Course Information 2 Class web page: http://cogsci.ucsd.edu/

More information

COURSE: OPTO 328 Physiology of Vision I

COURSE: OPTO 328 Physiology of Vision I COURSE: OPTO 328 Physiology of Vision I UNITS: 2 + 0 = 2. TUTOR: Dr. Ali A Abusharha RECOMMENDED TEXTS: 1) Visual Perception by Cornsweet. 2) Physiology of the Eye by Hugh Davson. 3) OPTOMETRY by Keith

More information

COGS 101A: Sensation and Perception

COGS 101A: Sensation and Perception COGS 101A: Sensation and Perception 1 Virginia R. de Sa Department of Cognitive Science UCSD Lecture 4: Coding Concepts Chapter 2 Course Information 2 Class web page: http://cogsci.ucsd.edu/ desa/101a/index.html

More information

Vision Research 58 (2012) Contents lists available at SciVerse ScienceDirect. Vision Research. journal homepage:

Vision Research 58 (2012) Contents lists available at SciVerse ScienceDirect. Vision Research. journal homepage: Vision Research 58 (212) 51 58 Contents lists available at SciVerse ScienceDirect Vision Research journal homepage: www.elsevier.com/locate/visres The effect of mean luminance change and grating pedestals

More information

Applied Neuroscience. Conclusion of Science Honors Program Spring 2017

Applied Neuroscience. Conclusion of Science Honors Program Spring 2017 Applied Neuroscience Conclusion of Science Honors Program Spring 2017 Review Circle whichever is greater, A or B. If A = B, circle both: I. A. permeability of a neuronal membrane to Na + during the rise

More information

THE VISUAL SYSTEM: EYE TO CORTEX

THE VISUAL SYSTEM: EYE TO CORTEX THE VISUAL SYSTEM: EYE TO CORTEX o o o 1. The Eyes o Structure 2. The Retina o Cone & Rod Vision 3. Visual Transduction by Rhodopsin o 4. From Retina to Primary Visual Cortex o 5. Color Blindness o 6.

More information

Carlson (7e) PowerPoint Lecture Outline Chapter 6: Vision

Carlson (7e) PowerPoint Lecture Outline Chapter 6: Vision Carlson (7e) PowerPoint Lecture Outline Chapter 6: Vision This multimedia product and its contents are protected under copyright law. The following are prohibited by law: any public performance or display,

More information

Visual Information Processing in the Primate Brain

Visual Information Processing in the Primate Brain In: Handbook of Psychology, Vol. 3: Biological Psychology, 2003 (Gallagher, M. & Nelson, RJ, eds) pp. 139-185; New York: John Wyley & Sons, Inc. CHAPTER 6 Visual Information Processing in the Primate Brain

More information

Unit 4 REVIEW. Name: Date:

Unit 4 REVIEW. Name: Date: Name: Date: 1. Kinesthesis refers to the A) process of organizing and interpreting sensory information. B) diminished sensitivity to an unchanging stimulus. C) quivering eye movements that enable the retina

More information

Algorithms in Nature. Pruning in neural networks

Algorithms in Nature. Pruning in neural networks Algorithms in Nature Pruning in neural networks Neural network development 1. Efficient signal propagation [e.g. information processing & integration] 2. Robust to noise and failures [e.g. cell or synapse

More information

Lecture 22: A little Neurobiology

Lecture 22: A little Neurobiology BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 22: A little Neurobiology http://compbio.uchsc.edu/hunter/bio5099 Larry.Hunter@uchsc.edu Nervous system development Part of the ectoderm

More information

How we study the brain: a survey of methods used in neuroscience

How we study the brain: a survey of methods used in neuroscience How we study the brain: a survey of methods used in neuroscience Preparing living neurons for recording Large identifiable neurons in a leech Rohon-Beard neurons in a frog spinal cord Living slice of a

More information

bandpass filter. by injected current and decreased when the membrane was depolarized. The i.p.s.p.s

bandpass filter. by injected current and decreased when the membrane was depolarized. The i.p.s.p.s J. Phyaiol. (1979), 288, pp. 107-127 107 With 15 text-figure. Printed in Great Britain SYNAPTIC DRIVE AND IMPULSE GENERATION IN GANGLION CELLS OF TURTLE RETINA BY D. A. BAYLOR AND R. FETTIPLACE* From the

More information

The Journal of Physiology

The Journal of Physiology J Physiol 595.22 (217) pp 6979 6991 6979 Asymmetry between ON and OFF α ganglion cells of mouse retina: integration of signal and noise from synaptic inputs Michael A. Freed Department of Neuroscience,

More information

Review Sheet: Sensation and Perception (6-8%) Sensation. Date Period. 1) sensation. 2) perception. 3) bottom-up processing. 4) top-down processing

Review Sheet: Sensation and Perception (6-8%) Sensation. Date Period. 1) sensation. 2) perception. 3) bottom-up processing. 4) top-down processing Name Ms. Gabriel/Mr. McManus Date Period AP Psychology Review Sheet: Sensation and Perception (6-8%) Sensation 1) sensation 2) perception 3) bottom-up processing 4) top-down processing Thresholds 5) psychophysics

More information