ROLE OF CANCER STEM CELLS IN BREAST CANCER Sahil Nagpal 1 and Navkiran Kaur* 1 Student, B.Sc (Hons) Medical Biotechnology and *Assistant Professor,

Size: px
Start display at page:

Download "ROLE OF CANCER STEM CELLS IN BREAST CANCER Sahil Nagpal 1 and Navkiran Kaur* 1 Student, B.Sc (Hons) Medical Biotechnology and *Assistant Professor,"

Transcription

1 INTRODUCTION ROLE OF CANCER STEM CELLS IN BREAST CANCER Sahil Nagpal 1 and Navkiran Kaur* 1 Student, B.Sc (Hons) Medical Biotechnology and *Assistant Professor, Amity Institute of Biotechnology, Amity University, Noida navkirank@amity.edu Two major models of tumor cell initiation have been proposed, namely, the stochastic model, in which each cell contains a low but similar probability to acquire the accidental genetic mutations resulting in the capacity of proliferation and survival and the stem cell model, in which tumor initiation is driven by cancer stem cells (CSC). The term stem cell is referred to undifferentiated cells that have two basic properties: the capacity to self-renew and the capacity to generate daughter cells that can differentiate in different cell lineages. Normal adult stem cells have relatively long telomeres compared to more differentiated somatic cells, they are usually quiescent or proliferate more slowly than their differentiated progeny, and they have increased longevity; for this reason, they are exposed to more damaging agents than more differentiated cells over time. Thus, they accumulate mutations that are then transmitted to the rapidly proliferating progeny. The stem cell origin of cancer hypothesis considers that stem cells or other differentiated cells that have acquired self-renewal ability tend to accumulate genetic or epigenetic alterations and evade the strict control of their microenvironment and these cancer stem cells (CSCs) could be responsible for the malignant transformation and the progression of the disease. The CSCs are a population of cells that are more tumourigenic than the bulk tumor population and can be defined mainly through the expression of unique properties, such as specific detoxification enzyme systems, molecular surface markers, and embryonic signaling pathways [1]. The main hallmarks of CSCs are their properties of self-renewal, their ability to generate tumors from very few cells, their slow cell division rate, their ability to give rise to phenotypically diverse progeny, and their selective resistance to radio- and chemotherapy [2]. MAMMARY GLAND AND MAMMARY STEM CELLS (MaSCs) The human mammary gland is a compound tubuloalveolar gland. Within each breast is a mammary gland, which is a modified sudoriferous or sweat gland, that produces milk. A mammary gland consists of lobes separated by a variable amount of adipose tissue. Each lobe is made up of smaller lobules which are composed of milk-secreting glands, termed alveoli, embedded in connective tissue.the mammary epithelium is composed of two lineages of epithelial cells: luminal cells (that differentiates into alveolar and ductal cells) and myoepithelial cells. A small number of ductal basally positioned small undifferentiated cells (also called electron-lucent cells when observed by electron microscopy) represent the normal mammary stem cells. These normal mammary stem cells provide the capacity for extensive cellular expansion associated with pregnancy and also generate differentiated cells that support lactation [3]. The origin of mammary gland based in stem cells has been demonstrated in several experiments that show how one single stem cell can generate the entire mammary gland. The primitive breast stem cells are estrogen receptor negative. These cells generate progenitor cells that finally differentiate into luminal and myoepithelial lineages which are defined by specific sets of markers. CHARACTERIZATION OF MAMMARY STEM CELLS An exact identification of a human mammary epithelial stem cell has yet to be solidified, but many groups have identified putative mammary epithelial progenitor cells. Technical challenges have arisen due to the complex nature of the hormonal requirements for MaSC differentiation and also for a suitable environment to support growth. Work with human breast stem cells builds on the foundations of experiments investigating the murine population. Kuperwasser et al., has reported that in the development of a humanized murine fat pad representing the human breast stroma injected with a mixture of irradiated and nonirradiated human mammary epithelial cells allow for the successful engraftment of the stromal cells and for the creation of a humanized environment [4]. More recently, a new model has been described by Eirew et al., where fibroblast and putative mammary stem cells are engrafted in a collagen plug under the murine kidney capsule. The outgrowths observed recapitulate the hierarchal nature of the normal human mammary gland [5]. Through the use of these assays, CD49f hi EpCAM has been established as the fraction containing the human breast stem cell population. To complement these cell surface markers, a functional marker, aldehyde dehydrogenase 1A1 (ALDH+) (Fig. 1) has been established as a functional marker for mammary stem cells among others [6]. Page 37

2 Fig. 1 The Aldefluor assay The Aldefluor assay is a fluorometric assay that detects the enzymatic activity of aldehyde dehydrogenase 1 (ALDH1) (StemCell Technologies, Vancouver, BC, Canada). Cells are incubated with the intrinsically fluorescent ALDH substrate, BODIPYaminoacetaldehyde (BAAA). BAAA is a neutral molecule and enters the cell through passive diffusion, where it is then converted into BAA by ALDH and is unable to leave the cell due to its negative charge. The active removal of BAA by ATP Binding Cassettes is quenched through the use of the assay buffer and through incubation of cells between 2 and 8 C. The resulting fluorescence of the cells is then assessed by flow cytometry, providing single cell analysis of ALDH activity. As a negative control, the activity of ALDH is quenched by the addition of diethylaminobenzaldehyde (DEAB), and the fluorescence of these cells is assessed by flow cytometry. The population observed the DEAB sample is used to create the gate for the ALDH+ cells, whereby cells are only included if they demonstrate higher levels of fluorescence compared to the DEAB sample. Adapted from StemCell Technologies. BREAST CANCER AND CANCER STEM CELLS (CSCS) Breast cancer may originate from either the glands or the ducts of the breast and is termed lobular or ductal carcinoma respectively. When the cancer extends beyond it s immediate surroundings, it is known as invasive cancer. Cancer that has not crossed beyond the involved lobule or tubule is called in-situ carcinoma. Types of breast cancers include ductal carcinoma in situ, lobular carcinoma in situ, invasive ductal carcinoma and invasive lobular carcinoma. Less common types of breast cancers include inflammatory breast cancer, triplenegative breast cancer, paget disease of the nipple, phyllodes tumor and angiosarcoma. The cancer stem cell hypothesis proposes a different model based on a hierarchical organization [7]. According to this hypothesis, a neoplasia originates from the malignant transformation of an adult stem cell through the deregulation of the normally tightly regulated self-renewal program [8]. This model holds that a breast carcinoma may contain genetically and morphologically diverse populations of cells, including primitive stem cells, luminal or basal progenitor cells (also called sometimes transient amplifying cells), and terminally differentiated cells Perhaps, a neoplasia arises from a tumorigenic CSCs rather than from the much larger population of neoplastic progenitor cells. This means that mutations in one stem cell could be transmitted to descendant cells, which can then launch new clonal successions. Conversely, mutation then strikes the genomes of transit-amplifying cells cannot be transmitted further, because these cells only have a limited replicative ability. Therefore, the CSCs represent a minority of the neoplastic cells in tumor masses, while the progenitor and differentiated neoplastic cells represent the majority of the bulk of the tumour. Most cancer cells have only limited proliferative potential, but CSCs have self-renewal capacity that could drive the tumorigenesis process. Page 38

3 In human breast cancer, different reports try to prove how the stem cells are targets for malignant transformation, by the demonstration of mutational changes in genes or in pathways essential for the self-renewal process. BRCA1 gene (Breast Cancer tumor suppressor gene 1), implicated in inherited breast cancer, plays an important role in stem cell self-renewal and in differentiation of a progenitor cell. Because of the BRCA1 gene function in DNA repair and in maintaining chromosome stability, researchers have proposed that the loss of BRCA1 function may produce genetically unstable stem or progenitor cells that serve as prime target for further carcinogenic events [9]. It was proposed that breast carcinogenesis may be initiated by epigenetic changes such as silencing of p16 INK4a. Since p16 INK4a is known to be a downstream target of the polycomb gene BMI1 which regulates stem cell selfrenewal [10]. STEM CELL NICHES Stem cell niches are defined as locations in a tissue which specifically can support the existence of somatic stem cells. These niches contain stromal cells, fibroblasts, and immune cells and these cells maintain the growth and allow repopulation of stem cells in case of depletion of the stem cell compartment. Recently the mesenchymal stem cells (MSC) have been implicated in the breast CSCs niches. This heterogeneous and multipotent subset of mesenchymal stroma cells have fibroblast-like morphology, form colonies that can differentiate into adypocytes, osteocytes, and chondrocytes; are important in the control of niches through its recruitment from bone-marrow to this niches by the signals of IL-6 and IL-8 and its receptors in the stem cells (CXCL7, CXCR1, respectively). The interaction between MSC and CSC has been demonstrated both in vitro and in in vivo mouse models. The cytokine network involving CSC and the microenvironment stimulates self-renewal of breast CSC and accelerates the growth of human breast cancer, and has focused the attention of investigators to target this novel pathway [11]. It is possible that tumour therapy that disrupts the stem cell niche through ablation of the surrounding differentiated cells could lead to the subsequent death of the cancer stem cells. Alternatively, tumour therapy that depletes stem cells, but does not eradicate the stem cell niche, could lead to repopulation of the stem cell niche with additional cancer stem cells. IDENTIFICATION OF CANCER STEM CELLS Advances in cell culture approaches have been important in identifying and studying mammary stem cells. In order to validate the method selected as an appropriate technique to isolate CSC, it is crucial to use assays that can assess the stem cell properties of its self-renewal and its differentiation. Xenograft The xenograft model is based on the orthotopic injection of human cancer cells into the humanized cleared fat pad of immunodeficient mice. It can initiate and maintain the tumor growth upon serial passages. It is presently the most robust model for demonstrating stem cell properties. In addition to self-renewal, CSC also retain the ability to differentiate, albeit abnormally, also generating non-self-renewing cell population that constitutes the bulk of the tumor [12]. In Vitro assays The study of mammary stem cells in vitro has been based upon work identifying neural stem cells through a cell culture assay known as the neurosphere assay, which makes use of serumfree medium supplemented with epidermal growth factor and basic fibroblast growth factor [13, 14]. Application of the neurosphere assay culture conditions has been used to identify undifferentiated human mammary stem cells grown in culture [15] known as mammospheres. Tumorosphere-initiating cells have stem cell properties including the ability to survive and grow in suspension in serum-free conditions. In contrast, more differentiated tumor cells are anchorage-dependent and undergo anoikis in these conditions [16]. The tumorosphere culture has also been used in different studies to screen for drugs capable of targeting the cancer stem cell populations. Side Population Technique This method is useful to identify stem cell population in breast cancer cell lines. This method is based on the overexpression of transmembrane transporters, such as the adenosine triphosphate (ATP)-binding cassettes molecule ABCG2/BCRP1 in stem cells. These molecules actively exclude vital dyes such as Hoechst or Rhodamine 123, a property not found in differentiated cells that retain the dye [17]. Page 39

4 MARKERS USED TO IDENTIFY CSCS Selectable markers are either found on the cell surface or confer functional properties that are characteristics of normal stem cells that have extended to malignant stem cell populations. The current definition of a breast CSC is CD44 + CD24 - and/or ALDH +. THE ROLE OF CSCS IN METASTASIS Metastatic cascade consists of a series of processes that move tumor cells from the primary tumor to distant location. Various factors are involved in intravasation, extravasation, and survival in bloodstream and in the target organ. The induction of epithelial-to-mesenchymal transition in breast cancer cells results in the acquisition of stem-cell properties, including the ability to form mammospheres, resistance to apoptotic signals, facilitates the blood intravasation, and generation of circulating tumor cells. Different studies show that a significant proportion of circulating tumor cells shows stem cell phenotype, such as expression of NOTCH1, ALDH1, and are typically triple negative (estrogen and progesterone receptor-negative and HER2- negative) [20]. The most common site of breast cancer metastasis is the bone, but metastatic lesions are also found in the lymph nodes, liver, lungs, and brain. Interestingly, both HA and osteopontin, common ligands for CD44, are expressed in the bone and other common sites of breast cancer metastasis [21], suggesting a possible adhesive interaction for circulating tumor cell arrest. Experimentally, CD44 has been shown to mediate the attachment of metastatic breast cancer cells to human bone marrow endothelial cells [22]. Additionally, breast cancer cell lines exhibit different levels of C-X-C chemokine receptor type 4 (CXCR4), which appears to correlate with CSC proportions and the tendency to metastasize [19, 23]. BREAST CSCS AND THERAPY RESISTANCE Recent studies have indicated that breast CSCs and other CSCs are more resistant to radiation and chemotherapy as compared to cancer cells. A study in human leukemia revealed that CSCs are often quiescent, and remain in the G0 phase, conferring resistance to many chemotherapy agents as they often target actively replicating cells [24]. Possible mechanisms for this include the expression of cell surface pumps, including ABCG2/BCRP1, capable of expelling chemotherapeutic drugs [25]. Additionally, the presence and activity of ALDH allows CSCs to metabolize cytotoxics such as cyclophosphamide [19]. Other factors potentially prolonging the lifespan of CSCs include the increased expression of anti-apoptotic molecules such as BCL2 and surviving [26, 27]. Furthermore, the radiotherapy resistance of CSCs may be due to the decreased levels of pro-oxidants in the CD44+CD24 population or through Wnt/bcatenin pathway signaling [28]. New therapeutics aimed at eliminating cancer stem cells could also be achieved through a variety of methods: THERAPEUTIC STRATEGIES TO TARGET CSCS Reactive oxygen species (ROS), critical mediators of ionizing radiation-induced cell killing, are shown to be present at lower levels in some subsets of the CSC population in breast cancer. Lower ROS levels in CSCs are associated with an increased expression of free radical scavenging systems predisposing CSCs to develop less DNA damage and preferential sparing after irradiation. Pharmacological depletion of ROS scavengers in CSCs significantly decreases their clonogenicity and results in radiosensitization [29]. New therapeutics aimed at eliminating cancer stem cells could also be achieved through a variety of methods: targeting the self-renewal signaling pathways critical for cancer stem cells, targeting the ABC drug transporters that cancer stem cells use to evade chemotherapy, or inducing the immune system to eliminate the cancer stem cells through various immunotherapeutic interventions REFERENCES 1. Alison, M.; Islam, S. & Wright, N. (2010). Stem cells in cancer: instigators and propagators? Journal of Cell Science, 123, 14, pp Reya, T.; Morrison, S.J.; Clarke, M.F. & Weissman, I.L. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414, pp Stingl J, Eirew P, Ricketson I, et al. (2006) Purification and unique properties of mammary epithelial stem cells. Nature 439: Kuperwasser C, Chavarria T, Wu M, Magrane G, Gray JW, Carey L, Richardson A, Weinberg RA (2004) Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci USA 101 (14): doi: /pnas [pii] 5. Eirew P, Stingl J, Raouf A, Turashvili G, Aparicio S, Emerman JT, Eaves CJ (2008) A method for quantifying normal human mammary epithelial stem cells with in vivo regenerative ability. Nat Med 14 (12): doi:nm.1791 [pii] /nm Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S, Schott A, Hayes D, Birnbaum D, Wicha MS, Dontu G (2007) Aldh1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell stem cell 1 (5): Page 40

5 7. 7.Wicha MS, Liu S, Dontu G (2006). Cancer stem cells: an old idea a paradigm shift. Cancer Res 66: Cobaleda C, Cruz JJ, González-Sarmiento R, Sánchez-García I, Pérez-Losada J (2008). The Emerging Picture of Human Breast Cancer: as a Stem Cell-based Disease. Stem Cell Rev 4: Liu S, Ginestier C, Charafe-Jauffret E, et al. (2008) BRCA1 regulates human mammary stem/ progenitor cell fate. Proc Natl Acad Sci USA 105: Holst CR, Nuovo GJ, Esteller M, et al. (2003) Methylation of p16(ink4a) promoters occurs in vivo in histologically normal human mammary epithelia. Cancer Res 63: Liu S, GinestierC, Ou SJ, Clouthier SG, Patel S, et al. (2011) Breast Cancer Stem Cells Are Regulated by Mesenchymal Stem Cells through Cytokine Networks. Cancer Res 7 (2): Polyak K (2007). Breast cancer stem cells: a case of mistaken identity?. Stem Cell Rev 3 (2): Reynolds BA, Weiss S: Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 1992, 255: Rietze RL, Reynolds BA: Neural stem cell isolation and characterization. 15. Methods Enzymol 2006, 419: Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, Wicha MS: In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 2003, 17: Ponti D, Costa A, Zaffaroni N, et al. (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65: Kim M, Turnquist H, Jackson J, et al. (2002) The multidrug resistance transporter ABCG2 (breast cancer resistance protein 1) effluxes Hoechst and is overexpressed in hematopoietic stem cells. Clin Cancer Res 8: Croker AK, Goodale D, Chu J, Postenka C, Hedley BD, Hess DA, Allan AL (2009) High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability. J Cell Mol Med 13 (8B): Moreb JS (2008) Aldehyde dehydrogenase as a marker for stem cells. Curr Stem Cell Res Ther 3 (4): Mego M, Mani SA and Cristofanilli M. (2010) Molecular mechanisms of metastasis in breast cancer clinical applications. Nat Rev Clin Oncol 7: Brown LF, Berse B, Van de Water L, Papadopoulos-Sergiou A, Perruzzi CA, Manseau EJ, Dvorak HF, Senger DR (1992) Expression and distribution of osteopontin in human tissues: Widespread association with luminal epithelial surfaces. Mol Biol Cell 3 (10): Draffin JE, McFarlane S, Hill A, Johnston PG, Waugh DJ (2004) Cd44 potentiates the adherence of metastatic prostate and breast cancer cells to bone marrow endothelial cells. Cancer Res 64 (16): doi: / can /16/5702 [pii] Dewan MZ, Ahmed S, Iwasaki Y, Ohba K, Toi M, Yamamoto N (2006) Stromal cell-derived factor-1 and cxcr4 receptor interaction in tumor growth and metastasis of breast cancer. Biomed Pharmacother 60 (6): doi:s (06) [pii] /j.biopha Ishikawa F, Yoshida S, Saito Y, Hijikata A, Kitamura H, Tanaka S, Nakamura R, Tanaka T, Tomiyama H, Saito N, Fukata M, Miyamoto T, Lyons B, Ohshima K, Uchida N, Taniguchi S, Ohara O, Akashi K, Harada M, Shultz LD (2007) Chemotherapy-resistant human aml stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol 25 (11): doi:nbt1350 [pii] /nbt Engelmann K, Shen H, Finn OJ (2008) Mcf7 side population cells with characteristics of cancer stem/progenitor cells express the tumor antigen muc1. Cancer Res 68 (7): doi:68/7/2419 [pii] / CAN Lee CW, Simin K, Liu Q, Plescia J, Guha M, Khan A, Hsieh CC, Altieri DC (2008) A functional notch-survivin gene signature in basal breast cancer. Breast Cancer Res 10 (6):R97. doi:bcr2200 [pii] /bcr Madjd Z, Mehrjerdi AZ, Sharifi AM, Molanaei S, Shahzadi SZ, Asadi-Lari M (2009) Cd44+ cancer cells express higher levels of the anti-apoptotic protein bcl-2 in breast tumours. Cancer Immun 9:4. doi: [pii] Dave B, Chang J (2009) Treatment resistance in stem cells and breast cancer. J Mammary Gland Biol Neoplasia 14 (1): doi: /s Woodward WA, Chen MS, Behbod F, Alfaro MP, Buchholz TA, Rosen JM (2007) Wnt/betacatenin mediates radiation resistance of mouse mammary progenitor cells. Proc Natl Acad Sci USA 104 (2): doi: [pii] /pnas Diehn, M., Cho, R.W., Lobo, N.A., Kalisky, T., Dorie, M.J., Kulp, A.N., Qian, D., Lam, J.S., Ailles, L.E., Wong, M., Joshua, B., Kaplan, M.J., Wapnir, I., Dirbas, F.M., Somlo, G., Garberoglio, C., Paz, B., Shen, J., Lau, S.K., Quake, S.R., Brown, J.M., Weissman, I.L., and Clarke, M.F. (2009). Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458(7239): Page 41

TUMOR INITIATING CELLS: THE STEM CELL THEORY OF CANCER

TUMOR INITIATING CELLS: THE STEM CELL THEORY OF CANCER Pr John DE VOS Département d Ingénierie Cellulaire et Tissulaire INSERM 1183 - IRMB Hôpital St Eloi - CHU de Montpellier john.devos@inserm.fr @_jdevos_ TUMOR INITIATING CELLS: THE STEM CELL THEORY OF CANCER

More information

Oncolytic Virotherapy: Targeting Cancer Stem Cells

Oncolytic Virotherapy: Targeting Cancer Stem Cells Oncolytic Virotherapy: Targeting Cancer Stem Cells Cancer Stem Cells (CSCs) or Cancer Initiating Cells (CICs) A consensus of five defining criteria has been established to affirm the existence of CICs:

More information

PRODUCTS FOR CANCER RESEARCH

PRODUCTS FOR CANCER RESEARCH PRODUCTS FOR CANCER RESEARCH TABLE OF CONTENTS 3 4 6 10 11 12 Introduction ALDEFLUOR A Powerful Tool to Study Cancer Stem Cells Culture Media for Cancer Research Culture Media Products for Breast Cancer

More information

Cancer Stem Cells & Glioblastoma

Cancer Stem Cells & Glioblastoma Cancer Stem Cells & Glioblastoma JP Hugnot «Brain plasticity, Neural stem cells and Glial tumors» INSERM U1051-UM2 Institut des Neurosciences de Montpellier Montpellier 1-Stem cells and Brain Stem Cells

More information

Breast cancer stem cells: implications for therapy of breast cancer

Breast cancer stem cells: implications for therapy of breast cancer Breast cancer stem cells: implications for therapy of breast cancer Author Morrison, Brian, Schmidt, Chris, Lakhani, Sunil, Reynolds, Brent, Lopez, Alejandro Published 2008 Journal Title Breast Cancer

More information

CD34+ Cells: A Comparison of Stem and Progenitor Cells in Cord Blood, Peripheral Blood, and the Bone Marrow

CD34+ Cells: A Comparison of Stem and Progenitor Cells in Cord Blood, Peripheral Blood, and the Bone Marrow White Paper September 2016 CD34+ Cells: A Comparison of Stem and Progenitor Cells in Cord Blood, Peripheral Blood, and the Bone Marrow Lily C. Trajman, PhD Introduction: Hematopoietic Stem Cells (HSCs)

More information

CELL BIOLOGY - CLUTCH CH CANCER.

CELL BIOLOGY - CLUTCH CH CANCER. !! www.clutchprep.com CONCEPT: OVERVIEW OF CANCER Cancer is a disease which is primarily caused from misregulated cell division, which form There are two types of tumors - Benign tumors remain confined

More information

Effective activity of cytokine-induced killer cells against autologous metastatic melanoma including cells with stemness features

Effective activity of cytokine-induced killer cells against autologous metastatic melanoma including cells with stemness features Effective activity of cytokine-induced killer cells against autologous metastatic melanoma including cells with stemness features Loretta Gammaitoni, Lidia Giraudo, Valeria Leuci, et al. Clin Cancer Res

More information

CONTRACTING ORGANIZATION: University of Michigan Ann Arbor, MI

CONTRACTING ORGANIZATION: University of Michigan Ann Arbor, MI AD Award Number: W81XWH-04-1-0471 TITLE: Chemo Resistance of Breast Cancer Stem Cells PRINCIPAL INVESTIGATOR: Max S. Wicha, M.D. CONTRACTING ORGANIZATION: University of Michigan Ann Arbor, MI 48109-1274

More information

Neoplasia part I. Dr. Mohsen Dashti. Clinical Medicine & Pathology nd Lecture

Neoplasia part I. Dr. Mohsen Dashti. Clinical Medicine & Pathology nd Lecture Neoplasia part I By Dr. Mohsen Dashti Clinical Medicine & Pathology 316 2 nd Lecture Lecture outline Review of structure & function. Basic definitions. Classification of neoplasms. Morphologic features.

More information

Characteristics of Cancer Stem Cells (CSCs)

Characteristics of Cancer Stem Cells (CSCs) GENReports: Market & Tech Analysis Characteristics of Cancer Stem Cells (CSCs) > Enal Razvi, Ph.D. Biotechnology Analyst, Managing Director Select Biosciences, Inc. enal@selectbio.us! Topic,IntroducEon,and,Scope!

More information

Review Article The Controversial Clinicobiological Role of Breast Cancer Stem Cells

Review Article The Controversial Clinicobiological Role of Breast Cancer Stem Cells Journal of Oncology Volume 2008, Article ID 492643, 12 pages doi:10.1155/2008/492643 Review Article The Controversial Clinicobiological Role of Breast Cancer Stem Cells Claudia Casarsa, 1 Saro Oriana,

More information

Contents 1 The Windows of Susceptibility to Breast Cancer 2 The So Called Pre-Neoplastic Lesions and Carcinoma In Situ

Contents 1 The Windows of Susceptibility to Breast Cancer 2 The So Called Pre-Neoplastic Lesions and Carcinoma In Situ Contents 1 The Windows of Susceptibility to Breast Cancer... 1 1.1 Introduction... 1 1.2 Risk Factor and Etiological Agents... 2 1.3 The Concept of the Windows of Susceptibility to Carcinogenesis... 5

More information

CONTRACTING ORGANIZATION: The Walter & Eliza Hall Institute Melbourne 3050 Australia

CONTRACTING ORGANIZATION: The Walter & Eliza Hall Institute Melbourne 3050 Australia AD Award Number: W81XWH-05-1-0506 TITLE: Breast Stem Cell Markers and Tumor Stem Cells in BRCA1, BRCA2 and Non- BRCA 1/2 Women PRINCIPAL INVESTIGATOR: Geoffrey J Lindeman, Ph.D. Jane E Visvade, Ph.D. Joseph

More information

Basement membrane in lobule.

Basement membrane in lobule. Bahram Memar, MD Basement membrane in lobule. Normal lobule-luteal phase Normal lobule-follicular phase Lactating breast Greater than 95% are adenocarcinomas in situ carcinomas and invasive carcinomas.

More information

Meeting Report. From December 8 to 11, 2012 at Atlanta, GA, U.S.A

Meeting Report. From December 8 to 11, 2012 at Atlanta, GA, U.S.A Meeting Report Affiliation Department of Transfusion Medicine and Cell Therapy Name Hisayuki Yao Name of the meeting Period and venue Type of your presentation Title of your presentation The 54 th Annual

More information

LESSON 3.2 WORKBOOK. How do normal cells become cancer cells? Workbook Lesson 3.2

LESSON 3.2 WORKBOOK. How do normal cells become cancer cells? Workbook Lesson 3.2 For a complete list of defined terms, see the Glossary. Transformation the process by which a cell acquires characteristics of a tumor cell. LESSON 3.2 WORKBOOK How do normal cells become cancer cells?

More information

Biochemistry of Carcinogenesis. Lecture # 35 Alexander N. Koval

Biochemistry of Carcinogenesis. Lecture # 35 Alexander N. Koval Biochemistry of Carcinogenesis Lecture # 35 Alexander N. Koval What is Cancer? The term "cancer" refers to a group of diseases in which cells grow and spread unrestrained throughout the body. It is difficult

More information

Correlations of ALDH1 expression with molecular subtypes and ABCG2 in breast cancer

Correlations of ALDH1 expression with molecular subtypes and ABCG2 in breast cancer Original Article Correlations of ALDH1 expression with molecular subtypes and ABCG2 in breast cancer Xiaokai Bi, Chengyi Wu, Mingli Han, Jianying Cai Department of Endocrine and Breast Surgery, the First

More information

Hematopoiesis. - Process of generation of mature blood cells. - Daily turnover of blood cells (70 kg human)

Hematopoiesis. - Process of generation of mature blood cells. - Daily turnover of blood cells (70 kg human) Hematopoiesis - Process of generation of mature blood cells - Daily turnover of blood cells (70 kg human) 1,000,000,000,000 total cells 200,000,000,000 red blood cells 70,000,000,000 neutrophils Hematopoiesis

More information

Maram Abdaljaleel, MD Dermatopathologist and Neuropathologist University of Jordan, School of Medicine

Maram Abdaljaleel, MD Dermatopathologist and Neuropathologist University of Jordan, School of Medicine Maram Abdaljaleel, MD Dermatopathologist and Neuropathologist University of Jordan, School of Medicine The most common non-skin malignancy of women 2 nd most common cause of cancer deaths in women, following

More information

Metastatic breast cancer stem cells

Metastatic breast cancer stem cells Metastatic breast cancer stem cells Christophe GINESTIER, PhD Centre de Recherche en Cancérologie de Marseille Laboratoire d Oncologie Moléculaire Breast Stem Cell Group U168/Inserm/Institut Paoli-Calmettes

More information

Evidence for a Hierarchy within Breast Cancer Stem Cells: Relevance to Metastasis and Therapy

Evidence for a Hierarchy within Breast Cancer Stem Cells: Relevance to Metastasis and Therapy University of Miami Scholarly Repository Open Access Dissertations Electronic Theses and Dissertations 2012-07-30 Evidence for a Hierarchy within Breast Cancer Stem Cells: Relevance to Metastasis and Therapy

More information

Head and neck cancer is a common malignancy

Head and neck cancer is a common malignancy ORIGINAL ARTICLE SINGLE-MARKER IDENTIFICATION OF HEAD AND NECK SQUAMOUS CELL CARCINOMA CANCER STEM CELLS WITH ALDEHYDE DEHYDROGENASE Matthew R. Clay, BSc, 1 Mark Tabor, MD, 2 John Henry Owen, BSc, 3 Thomas

More information

The Hallmarks of Cancer

The Hallmarks of Cancer The Hallmarks of Cancer Theresa L. Hodin, Ph.D. Clinical Research Services Theresa.Hodin@RoswellPark.org Hippocrates Cancer surgery, circa 1689 Cancer Surgery Today 1971: Nixon declares War on Cancer

More information

September 20, Submitted electronically to: Cc: To Whom It May Concern:

September 20, Submitted electronically to: Cc: To Whom It May Concern: History Study (NOT-HL-12-147), p. 1 September 20, 2012 Re: Request for Information (RFI): Building a National Resource to Study Myelodysplastic Syndromes (MDS) The MDS Cohort Natural History Study (NOT-HL-12-147).

More information

TGFβ/BMP/Smad signaling pathway

TGFβ/BMP/Smad signaling pathway TGFβ/BMP/Smad signaling pathway Dr. Jean Jacques Lebrun Professor of Medicine, McGill University Health Center, Cancer Research Program Associate Dean, Graduate & Postdoctoral Studies McGill University

More information

Aberrant cell Growth. Younas Masih New Life College of Nursing Karachi. 3/4/2016 Younas Masih ( NLCON)

Aberrant cell Growth. Younas Masih New Life College of Nursing Karachi. 3/4/2016 Younas Masih ( NLCON) Aberrant cell Growth Younas Masih New Life College of Nursing Karachi 1 Objectives By the end of this session the learners will be able to, Define the characteristics of the normal cell Describe the characteristics

More information

let-7 Regulates Self Renewal and Tumorigenicity of Breast Cancer Cells

let-7 Regulates Self Renewal and Tumorigenicity of Breast Cancer Cells let-7 Regulates Self Renewal and Tumorigenicity of Breast Cancer Cells Fengyan Yu, 1,2 Herui Yao, 1 Pengcheng Zhu, 2 Xiaoqin Zhang, 1 Qiuhui Pan, 1 Chang Gong, 1 Yijun Huang, 3 Xiaoqu Hu, 1 Fengxi Su,

More information

609G: Concepts of Cancer Genetics and Treatments (3 credits)

609G: Concepts of Cancer Genetics and Treatments (3 credits) Master of Chemical and Life Sciences Program College of Computer, Mathematical, and Natural Sciences 609G: Concepts of Cancer Genetics and Treatments (3 credits) Text books: Principles of Cancer Genetics,

More information

Haematopoietic stem cells

Haematopoietic stem cells Haematopoietic stem cells Neil P. Rodrigues, DPhil NIH Centre for Biomedical Research Excellence in Stem Cell Biology Boston University School of Medicine neil.rodrigues@imm.ox.ac.uk Haematopoiesis: An

More information

Convergent and Divergent Mechanisms in Aging and Cancer

Convergent and Divergent Mechanisms in Aging and Cancer Convergent and Divergent Mechanisms in Aging and Cancer Mariana S. De Lorenzo, PhD Department of Cell Biology & Molecular Medicine delorems@umdnj.edu LEARNING OBJECTIVES 1. To identify convergent and divergent

More information

THE ROLE OF SPY1 IN BREAST CANCER STEM/PROGENITOR POPULATIONS: IMPLICATIONS FOR BREAST CANCER TREATMENT

THE ROLE OF SPY1 IN BREAST CANCER STEM/PROGENITOR POPULATIONS: IMPLICATIONS FOR BREAST CANCER TREATMENT University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations 2014 THE ROLE OF SPY1 IN BREAST CANCER STEM/PROGENITOR POPULATIONS: IMPLICATIONS FOR BREAST CANCER TREATMENT Nicole LeAnne

More information

Mousa. Israa Ayed. Abdullah AlZibdeh. 0 P a g e

Mousa. Israa Ayed. Abdullah AlZibdeh. 0 P a g e 1 Mousa Israa Ayed Abdullah AlZibdeh 0 P a g e Breast pathology The basic histological units of the breast are called lobules, which are composed of glandular epithelial cells (luminal cells) resting on

More information

Getting to the root of Cancer

Getting to the root of Cancer Cancer Stem Cells: Getting to the root of Cancer Dominique Bonnet, Ph.D Senior Group Leader, Haematopoietic Stem Cell Laboratory Cancer Research UK, London Research Institute Venice, Sept 2009 Overview

More information

Stem cells and Cancer. John Glod. December 2, 2009

Stem cells and Cancer. John Glod. December 2, 2009 Stem cells and Cancer John Glod Lehigh University Lehigh University December 2, 2009 The Tumor Microenvironment Littlepage et al Cancer Cell 2005 Cancer Stem Cells A small group of cells within the larger

More information

Material and Methods. Flow Cytometry Analyses:

Material and Methods. Flow Cytometry Analyses: Material and Methods Flow Cytometry Analyses: Immunostaining of breast cancer cells for HER2 was performed by incubating cells with anti- HER2/neu APC (Biosciences, Cat# 340554), anti-her2/neu PE (Biosciences,

More information

Therapeutic implications of cancer stem cells. Cédric Blanpain, MD, PhD Laboratory of stem cells and cancer WELBIO, Université Libre de Bruxelles

Therapeutic implications of cancer stem cells. Cédric Blanpain, MD, PhD Laboratory of stem cells and cancer WELBIO, Université Libre de Bruxelles Therapeutic implications of cancer stem cells Cédric Blanpain, MD, PhD Laboratory of stem cells and cancer WELBIO, Université Libre de Bruxelles Stem cell properties Differentiation Self-renewal Tumor

More information

PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland

PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland AD Award Number: W81XWH-09-1-0129 TITLE: Targeting Ovarian Carcinoma Stem Cells PRINCIPAL INVESTIGATOR: Richard Jones, M.D. CONTRACTING ORGANIZATION: Johns Hopkins University Baltimore, MD 21205 REPORT

More information

Stem Cells. Induced Stem Cells

Stem Cells. Induced Stem Cells Induced Stem Cells Stem Cells Mouse and human somatic cells can either be reprogrammed to a pluripotent state or converted to another lineage with a combination of transcription factors suggesting that

More information

Breast pathology. 2nd Department of Pathology Semmelweis University

Breast pathology. 2nd Department of Pathology Semmelweis University Breast pathology 2nd Department of Pathology Semmelweis University Breast pathology - Summary - Benign lesions - Acute mastitis - Plasma cell mastitis / duct ectasia - Fat necrosis - Fibrocystic change/

More information

CONTRACTING ORGANIZATION: University of Michigan Ann Arbor, Michigan

CONTRACTING ORGANIZATION: University of Michigan Ann Arbor, Michigan AD AWARD NUMBER: W81XWH-04-1-0471 TITLE: Chemo Resistance of Breast Cancer Stem Cells PRINCIPAL INVESTIGATOR: Max S. Wicha, M.D. CONTRACTING ORGANIZATION: University of Michigan Ann Arbor, Michigan 48109-1274

More information

Extended Mammosphere Culture of Human Breast Cancer Cells

Extended Mammosphere Culture of Human Breast Cancer Cells Extended Mammosphere Culture of Human Breast Cancer Cells Application Note The PromoCell 3D Tumorsphere Medium XF The PromoCell 3D Tumorsphere Medium XF has been designed to meet your requirements for

More information

Jung Sun Lee 1, Woo Gyeong Kim 2. Introduction

Jung Sun Lee 1, Woo Gyeong Kim 2. Introduction Case Report Page 1 of 5 Cutaneous metastases of breast cancer during adjuvant chemotherapy correlates with increasing CD44 + /CD24 and ALDH-1 expression: a case report and literature review Jung Sun Lee

More information

Aldehyde dehydrogenase 1 expression correlates with the invasion of breast cancer

Aldehyde dehydrogenase 1 expression correlates with the invasion of breast cancer Pan et al. Diagnostic Pathology (2015) 10:66 DOI 10.1186/s13000-015-0301-5 RESEARCH Aldehyde dehydrogenase 1 expression correlates with the invasion of breast cancer Open Access Hong Pan 1, Naping Wu 1,2,

More information

Mohamed Bentires-Alj

Mohamed Bentires-Alj San Antonio Breast Cancer Symposium, December 6-10, 2016 Mohamed Bentires-Alj Professor of experimental surgical oncology Department of Biomedicine University of Basel University Hospital Basel m.bentires-alj@unibas.ch

More information

BL-8040: BEST-IN-CLASS CXCR4 ANTAGONIST FOR TREATMENT OF ONCOLOGICAL MALIGNANCIES. Overview and Mechanism of Action Dr.

BL-8040: BEST-IN-CLASS CXCR4 ANTAGONIST FOR TREATMENT OF ONCOLOGICAL MALIGNANCIES. Overview and Mechanism of Action Dr. BL-8040: BEST-IN-CLASS CXCR4 ANTAGONIST FOR TREATMENT OF ONCOLOGICAL MALIGNANCIES Overview and Mechanism of Action Dr. Leah Klapper, CSO 88 BL-8040: Novel CXCR4 Antagonist For Hematological Cancers Indications:

More information

Lecture 1: Carcinogenesis

Lecture 1: Carcinogenesis Lecture 1: Carcinogenesis Anti-cancer (oncology agents): These are perhaps the most dangerous of drugs, other than the narcotic analgesics. This is due to their toxicities. Killing or inhibiting cancer

More information

1.The metastatic cascade. 2.Pathologic features of metastasis. 3.Therapeutic ramifications

1.The metastatic cascade. 2.Pathologic features of metastasis. 3.Therapeutic ramifications Metastasis 1.The metastatic cascade 2.Pathologic features of metastasis 3.Therapeutic ramifications Sir James Paget (1814-1899) British Surgeon/ Pathologist Paget s disease of bone Paget s disease of the

More information

CCN1: A NOVEL TARGET FOR PANCREATIC CANCER. Andrew Leask.

CCN1: A NOVEL TARGET FOR PANCREATIC CANCER. Andrew Leask. CCN1: A NOVEL TARGET FOR PANCREATIC CANCER Andrew Leask CIHR Group in Skeletal Development and Remodeling, Division of Oral Biology and Department of Physiology and Pharmacology, Schulich School of Medicine

More information

Chapter 3. Use of Stem Cell Markers in Dissociated Mammary Populations

Chapter 3. Use of Stem Cell Markers in Dissociated Mammary Populations Chapter 3 Use of Stem Cell Markers in Dissociated Mammary Populations Dawne N. Shelton, Rodrigo Fernandez-Gonzalez, Irineu Illa-Bochaca, Carlos Ortiz-de-Solorzano, Mary Helen Barcellos-Hoff, and Bryan

More information

Cancer stem cells in oncology

Cancer stem cells in oncology Journal of BUON 17: 644-648, 2012 2012 Zerbinis Medical Publications. Printed in Greece REVIEW ARTICLE Cancer stem cells in oncology I. Cetin 1, M. Topcul 2 1 Istanbul University, Institute of Science,

More information

Supporting Information

Supporting Information Supporting Information Chan et al. 1.173/pnas.9654916 A Patient B Xenograft C * remaining feature of normal lymph node * * * D lymphocytes Infiltrating transitional carcinoma cells E Enlarged axillary

More information

DISCLOSURE. I have the following financial relationships:

DISCLOSURE. I have the following financial relationships: DISCLOSURE I have the following financial relationships: Consultant for: Fate Therapeutics, GlaxoSmithKline, Bone Therapeutics, G1 Therapeutics Contracted Research for: GlaxoSmithKline Royalties from:

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 4,000 116,000 120M Open access books available International authors and editors Downloads Our

More information

Introduction. Cancer Biology. Tumor-suppressor genes. Proto-oncogenes. DNA stability genes. Mechanisms of carcinogenesis.

Introduction. Cancer Biology. Tumor-suppressor genes. Proto-oncogenes. DNA stability genes. Mechanisms of carcinogenesis. Cancer Biology Chapter 18 Eric J. Hall., Amato Giaccia, Radiobiology for the Radiologist Introduction Tissue homeostasis depends on the regulated cell division and self-elimination (programmed cell death)

More information

1. The metastatic cascade. 3. Pathologic features of metastasis. 4. Therapeutic ramifications. Which malignant cells will metastasize?

1. The metastatic cascade. 3. Pathologic features of metastasis. 4. Therapeutic ramifications. Which malignant cells will metastasize? 1. The metastatic cascade 3. Pathologic features of metastasis 4. Therapeutic ramifications Sir James Paget (1814-1899) British Surgeon/ Pathologist Paget s disease of Paget s disease of the nipple (intraductal

More information

I TESSUTI: Dott.ssa Liliana Belgioia Università degli Studi di Genova

I TESSUTI: Dott.ssa Liliana Belgioia Università degli Studi di Genova I TESSUTI: 1. Repair, Radiosensitivity, Recruitment, Repopulation, Reoxygenation 2. Acute and chronic hypoxia 3. Tissue microenvironment and tissue organization Dott.ssa Liliana Belgioia Università degli

More information

stem cell products Basement Membrane Matrix Products Rat Mesenchymal Stem Cell Growth and Differentiation Products

stem cell products Basement Membrane Matrix Products Rat Mesenchymal Stem Cell Growth and Differentiation Products stem cell products Basement Membrane Matrix Products Rat Mesenchymal Stem Cell Growth and Differentiation Products Stem Cell Qualified Extracellular Matrix Proteins Stem cell research requires the finest

More information

Dominic J Smiraglia, PhD Department of Cancer Genetics. DNA methylation in prostate cancer

Dominic J Smiraglia, PhD Department of Cancer Genetics. DNA methylation in prostate cancer Dominic J Smiraglia, PhD Department of Cancer Genetics DNA methylation in prostate cancer Overarching theme Epigenetic regulation allows the genome to be responsive to the environment Sets the tone for

More information

Transformation of Normal HMECs (Human Mammary Epithelial Cells) into Metastatic Breast Cancer Cells: Introduction - The Broad Picture:

Transformation of Normal HMECs (Human Mammary Epithelial Cells) into Metastatic Breast Cancer Cells: Introduction - The Broad Picture: Transformation of Normal HMECs (Human Mammary Epithelial Cells) into Metastatic Breast Cancer Cells: Introduction - The Broad Picture: Spandana Baruah December, 2016 Cancer is defined as: «A disease caused

More information

Sumida T, Hamakawa H. Telomerase and oral cancer. Oral Oncol. 37(4): ,

Sumida T, Hamakawa H. Telomerase and oral cancer. Oral Oncol. 37(4): , Sogawa K, Yamada T, Sumida T, Hamakawa H, Oda H, Tashiro S, Matsuda M, Matsumoto K, Okutani K Induction of K-562 cell apoptosis and inhibitory effect of DNA topoisomerase-i by a marine microalgae G3 polysaccharide.

More information

Disorders of Cell Growth & Neoplasia

Disorders of Cell Growth & Neoplasia General Pathology VPM 152 Disorders of Cell Growth & Neoplasia Lecture 3 Rate of growth, local invasion, and metastasis. Molecular basis of cancer (normal cell-cycle and cellular proliferation). Enrique

More information

number Done by Corrected by Doctor Maha Shomaf

number Done by Corrected by Doctor Maha Shomaf number 19 Done by Waseem Abo-Obeida Corrected by Abdullah Zreiqat Doctor Maha Shomaf Carcinogenesis: the molecular basis of cancer. Non-lethal genetic damage lies at the heart of carcinogenesis and leads

More information

- is a common disease - 1 person in 3 can expect to contract cancer at some stage in their life -1 person in 5 can expect to die from it

- is a common disease - 1 person in 3 can expect to contract cancer at some stage in their life -1 person in 5 can expect to die from it MBB157 Dr D Mangnall The Molecular Basis of Disease CANCER Lecture 1 One of the simpler (and better) definitions of cancer comes from the American Cancer Society, who define cancer as; 'Cancer is a group

More information

Potential Signaling Pathways Activated in Cancer Stem Cells in Breast Cancer

Potential Signaling Pathways Activated in Cancer Stem Cells in Breast Cancer 13 Potential Signaling Pathways Activated in Cancer Stem Cells in Breast Cancer Noriko Gotoh Division of Systems Biomedical Technology, Institute of Medical Science, University of Tokyo Japan 1. Introduction

More information

Cancer and Oncogenes Bioscience in the 21 st Century. Linda Lowe-Krentz

Cancer and Oncogenes Bioscience in the 21 st Century. Linda Lowe-Krentz Cancer and Oncogenes Bioscience in the 21 st Century Linda Lowe-Krentz December 1, 2010 Just a Few Numbers Becoming Cancer Genetic Defects Drugs Our friends and family 25 More mutations as 20 you get older

More information

Breast Cancer. Excess Estrogen Exposure. Alcohol use + Pytoestrogens? Abortion. Infertility treatment?

Breast Cancer. Excess Estrogen Exposure. Alcohol use + Pytoestrogens? Abortion. Infertility treatment? Breast Cancer Breast Cancer Excess Estrogen Exposure Nulliparity or late pregnancy + Early menarche + Late menopause + Cystic ovarian disease + External estrogens exposure + Breast Cancer Excess Estrogen

More information

CPC 4 Breast Cancer. Rochelle Harwood, a 35 year old sales assistant, presents to her GP because she has noticed a painless lump in her left breast.

CPC 4 Breast Cancer. Rochelle Harwood, a 35 year old sales assistant, presents to her GP because she has noticed a painless lump in her left breast. CPC 4 Breast Cancer Rochelle Harwood, a 35 year old sales assistant, presents to her GP because she has noticed a painless lump in her left breast. 1. What are the most likely diagnoses of this lump? Fibroadenoma

More information

Simulating mouse mammary gland development: cell ageing and its relation to stem and progenitor activity

Simulating mouse mammary gland development: cell ageing and its relation to stem and progenitor activity Cell Prolif. 2007, 40, 106 124 Simulating mouse mammary gland development: cell ageing and its relation to stem and progenitor activity Blackwell Oxford, CPR Cell 0960-7722 36 ORIGINAL Simulating A. 2007

More information

BIT 120. Copy of Cancer/HIV Lecture

BIT 120. Copy of Cancer/HIV Lecture BIT 120 Copy of Cancer/HIV Lecture Cancer DEFINITION Any abnormal growth of cells that has malignant potential i.e.. Leukemia Uncontrolled mitosis in WBC Genetic disease caused by an accumulation of mutations

More information

Breast Cancer Statistics

Breast Cancer Statistics 1 in 8 Breast Cancer Statistics Incidence Mortality Prevalence 2 Breast Cancer Incidence Breast Cancer Mortality Breast Cancer Prevalence ~$100,000 Female Breast Anatomy Breasts consist mainly of fatty

More information

Understanding and Optimizing Treatment of Triple Negative Breast Cancer

Understanding and Optimizing Treatment of Triple Negative Breast Cancer Understanding and Optimizing Treatment of Triple Negative Breast Cancer Edith Peterson Mitchell, MD, FACP Clinical Professor of Medicine and Medical Oncology Program Leader, Gastrointestinal Oncology Department

More information

Triple Negative Breast Cancer

Triple Negative Breast Cancer Triple Negative Breast Cancer Prof. Dr. Pornchai O-charoenrat Division of Head-Neck & Breast Surgery Department of Surgery Faculty of Medicine Siriraj Hospital Breast Cancer Classification Traditional

More information

Inflammatory Cells and Metastasis

Inflammatory Cells and Metastasis Inflammatory Cells and Metastasis Experimentelle Krebsforschung SS 07 Gerhard Christofori Institute of Biochemistry and Genetics Department of Clinical-Biological Sciences Center of Biomedicine University

More information

Part I. An Introduction to Cancer

Part I. An Introduction to Cancer Part I An Introduction to Cancer 2 Chapter 1 Cancer: Descriptive Overview Cancer is a disease in which cells propagate uncontrollably. These cells can come from many different parts of the body and the

More information

Radiation Oncology. Initial Certification Qualifying (Computer-based) Examination: Study Guide for Radiation and Cancer Biology

Radiation Oncology. Initial Certification Qualifying (Computer-based) Examination: Study Guide for Radiation and Cancer Biology Radiation Oncology Initial Certification Qualifying (Computer-based) Examination: Study Guide for Radiation and Cancer Biology This exam tests your knowledge of the principles of cancer and radiation biology

More information

Clinico- Pathological Features And Out Come Of Triple Negative Breast Cancer

Clinico- Pathological Features And Out Come Of Triple Negative Breast Cancer Clinico- Pathological Features And Out Come Of Triple Negative Breast Cancer Dr. HassanAli Al-Khirsani, MBChB, CABM, F.I.C.M.S AL-Sadder teaching hospital, oncology unit Dr. Nasser Ghaly Yousif, MBChB,G.P.

More information

TITLE: Increase in Breast Cancer Stem Cells in Response to Prostaglandin E2. CONTRACTING ORGANIZATION: University of Michigan Ann Arbor, MI

TITLE: Increase in Breast Cancer Stem Cells in Response to Prostaglandin E2. CONTRACTING ORGANIZATION: University of Michigan Ann Arbor, MI AD Award Number: W81XWH-9-1-683 TITLE: Increase in Breast Cancer Stem Cells in Response to Prostaglandin E2 PRINCIPAL INVESTIGATOR: Monica Liebert, Ph.D. CONTRACTING ORGANIZATION: University of Michigan

More information

World Congress on Breast Cancer

World Congress on Breast Cancer World Congress on Breast Cancer 05.08.2015 How pregnancy at early age protects against breast cancer Fabienne Meier-Abt, MD PhD Background: Early age pregnancy protects against breast cancer. MacMahon,

More information

Breast cancer stem cells: treatment resistance and therapeutic opportunities

Breast cancer stem cells: treatment resistance and therapeutic opportunities Breast cancer stem cells: treatment resistance and therapeutic opportunities Author Al-Ejeh, Fares, E.Smart, Chanel, Morrison, Brian, Chenevix-Trench, Georgia, Lopez, Alejandro, R.Lakhani, Sunil, P.Brown,

More information

Diseases of the breast (2 of 2) Breast cancer

Diseases of the breast (2 of 2) Breast cancer Diseases of the breast (2 of 2) Breast cancer Epidemiology & etiology The most common type of cancer & the 2 nd most common cause of cancer death in women 1 of 8 women in USA Affects 7% of women Peak at

More information

Recent advances in breast cancers

Recent advances in breast cancers Recent advances in breast cancers Breast cancer is a hetrogenous disease due to distinct genetic alterations. Similar morphological subtypes show variation in clinical behaviour especially in response

More information

A NOVEL CANCER STEM CELL (CSC) DRUG DISCOVERY PLATFORM. Collaborative Opportunity

A NOVEL CANCER STEM CELL (CSC) DRUG DISCOVERY PLATFORM. Collaborative Opportunity A NOVEL CANCER STEM CELL (CSC) DRUG DISCOVERY PLATFORM Collaborative Opportunity March 2014 PURPOSE Cancer Research UK funded Investigators have established in vitro and in vivo models of CSCs for use

More information

Overview of Cancer. Mylene Freires Advanced Nurse Practitioner, Haematology

Overview of Cancer. Mylene Freires Advanced Nurse Practitioner, Haematology Overview of Cancer Mylene Freires Advanced Nurse Practitioner, Haematology Aim of the Presentation Review basic concepts of cancer Gain some understanding of the socio-economic impact of cancer Order of

More information

Chapter 28. Breasts and Mammary Glands

Chapter 28. Breasts and Mammary Glands Chapter 28 Breasts and Mammary Glands Breasts and Mammary Glands breast mound of tissue overlying the pectoralis major enlarges at puberty and remains so for life most of the time it contains very little

More information

Hematopoiesis. BHS Liège 27/1/2012. Dr Sonet Anne UCL Mont-Godinne

Hematopoiesis. BHS Liège 27/1/2012. Dr Sonet Anne UCL Mont-Godinne Hematopoiesis BHS Liège 27/1/2012 Dr Sonet Anne UCL Mont-Godinne Hematopoiesis: definition = all the phenomenons to produce blood cells Leukocytes = White Blood Cells Polynuclear = Granulocytes Platelet

More information

LETTERS. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice

LETTERS. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice Vol 445 4 January 27 doi:1.138/nature5372 A human colon cancer cell capable of initiating tumour growth in immunodeficient mice Catherine A. O Brien 1, Aaron Pollett 2, Steven Gallinger 3 & John E. Dick

More information

Extended Neurosphere Culture of Brain Tumor Stem Cells with the PromoCell 3D Tumorsphere Medium XF

Extended Neurosphere Culture of Brain Tumor Stem Cells with the PromoCell 3D Tumorsphere Medium XF Extended Neurosphere Culture of Brain Tumor Stem Cells with the PromoCell 3D Tumorsphere Medium XF Application Note The PromoCell 3D Tumorsphere Medium XF While adherent cultures of brain tumor cells in

More information

CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts

CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts Research article CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts Christophe Ginestier, 1,2 Suling Liu, 1 Mark E. Diebel, 1 Hasan Korkaya, 1 Ming Luo, 3 Marty

More information

Human Lung Cancer Pathology and Cellular Biology Mouse Lung Tumor Workshop

Human Lung Cancer Pathology and Cellular Biology Mouse Lung Tumor Workshop Human Lung Cancer Pathology and Cellular Biology Mouse Lung Tumor Workshop Jan 7 th and 8 th, 2014 Brigitte Gomperts, MD University of California, Los Angeles Lung Structure and Function Airway Epithelial

More information

Cancer Cells. It would take another 20 years and a revolution in the techniques of biological research to answer these questions.

Cancer Cells. It would take another 20 years and a revolution in the techniques of biological research to answer these questions. Cancer Cells Cancer, then, is a disease in which a single normal body cell undergoes a genetic transformation into a cancer cell. This cell and its descendants, proliferating across many years, produce

More information

Tumorsphere Culture of Cancer Stem Cells (CSC) with the Cancer Stem Cell Medium, Application Note

Tumorsphere Culture of Cancer Stem Cells (CSC) with the Cancer Stem Cell Medium, Application Note Tumorsphere Culture of Cancer Stem Cells (CSC) with the Cancer Stem Cell Medium, Application Note Interest in any of the products, request or order them at Bio-Connect. Bio-Connect B.V. T NL +31 (0)26

More information

Blood 101 Introduction Blood and Marrow & Overview of Bone Marrow Failure Diseases. Dr. M. Sabloff October 16 th 2010

Blood 101 Introduction Blood and Marrow & Overview of Bone Marrow Failure Diseases. Dr. M. Sabloff October 16 th 2010 Blood 101 Introduction Blood and Marrow & Overview of Bone Marrow Failure Diseases Dr. M. Sabloff October 16 th 2010 Normal Marrow knee joint white is articular cartilage Adjacent to this is the red marrow

More information

Crosstalk between Adiponectin and IGF-IR in breast cancer. Prof. Young Jin Suh Department of Surgery The Catholic University of Korea

Crosstalk between Adiponectin and IGF-IR in breast cancer. Prof. Young Jin Suh Department of Surgery The Catholic University of Korea Crosstalk between Adiponectin and IGF-IR in breast cancer Prof. Young Jin Suh Department of Surgery The Catholic University of Korea Obesity Chronic, multifactorial disorder Hypertrophy and hyperplasia

More information

Disclosure of Relevant Financial Relationships. Breast Pathology Evening Specialty Conference Case #4. Clinical Case: Pathologic Features

Disclosure of Relevant Financial Relationships. Breast Pathology Evening Specialty Conference Case #4. Clinical Case: Pathologic Features Breast Pathology Evening Specialty Conference Case #4 K.P. Siziopikou, MD, PhD Professor of Pathology Director of Breast Pathology and Breast Pathology Fellowship Program Northwestern University Feinberg

More information

Chapter 9, Part 1: Biology of Cancer and Tumor Spread

Chapter 9, Part 1: Biology of Cancer and Tumor Spread PATHOPHYSIOLOGY Name Chapter 9, Part 1: Biology of Cancer and Tumor Spread I. Cancer Characteristics and Terminology Neoplasm new growth, involves the overgrowth of tissue to form a neoplastic mass (tumor).

More information

Melatonin and its Role in the Inhibition of Breast Cancer Ciara Nicol Ross Copyright 2014 by Ciara Ross and Koni Stone

Melatonin and its Role in the Inhibition of Breast Cancer Ciara Nicol Ross Copyright 2014 by Ciara Ross and Koni Stone 1 Melatonin and its Role in the Inhibition of Breast Cancer Ciara Nicol Ross Copyright 2014 by Ciara Ross and Koni Stone Cancer is a disease caused by out of control division of abnormal cells within a

More information

Supplement 8: Candidate age-related genes and pathways

Supplement 8: Candidate age-related genes and pathways Supplement 8: Candidate age-related genes and pathways Function Untreated cohort (cohort 1) Treated cohort (cohort 2) Genes Gene sets Effect of age Effect of age FDR of 2 nd Effect of age adjusted Effect

More information

Novel Approaches to Targeting Cancer Stem Cells

Novel Approaches to Targeting Cancer Stem Cells Novel Approaches to Targeting Cancer Stem Cells Dr. Jeffrey M. Rosen C.C. Bell Professor of Molecular & Cellular Biology and Medicine Baylor College of Medicine Rosen and Jordan, Science 324:1670, 2009

More information